1
|
Rashwan E, Ibrahim N, Salem ML. Evaluation of NFKB1 and MyD88 expression levels in a sample of non-Hodgkin lymphoma patients before and during chemotherapy. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 11:386-401. [DOI: 10.1080/2314808x.2024.2347129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/19/2024] [Accepted: 04/19/2024] [Indexed: 12/03/2024]
Affiliation(s)
- Eman Rashwan
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Nagi Ibrahim
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
| | - Mohamed Labib Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Hubiernatorova A, Novak J, Vaskovicova M, Sekac D, Kropyvko S, Hodny Z. Tristetraprolin affects invasion-associated genes expression and cell motility in triple-negative breast cancer model. Cytoskeleton (Hoboken) 2024. [PMID: 39319680 DOI: 10.1002/cm.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that negatively regulates its target mRNAs and has been shown to inhibit tumor progression and invasion. Tumor invasion requires precise regulation of cytoskeletal components, and dysregulation of cytoskeleton-associated genes can significantly alter cell motility and invasive capability. Several genes, including SH3PXD2A, SH3PXD2B, CTTN, WIPF1, and WASL, are crucial components of the cytoskeleton reorganization machinery and are essential for adequate cell motility. These genes are also involved in invasion processes, with SH3PXD2A, SH3PXD2B, WIPF1, and CTTN being key components of invadopodia-specialized structures that facilitate invasion. However, the regulation of these genes is not well understood. This study demonstrates that ectopic expression of TTP in MDA-MB-231 cells leads to decreased mRNA levels of CTTN and SH3PXD2A, as well as defects in cell motility and actin filament organization. Additionally, doxorubicin significantly increases TTP expression and reduces the mRNA levels of cytoskeleton-associated genes, enhancing our understanding of how doxorubicin may affect the transcriptional profile of cells. However, doxorubicin affects target mRNAs differently than TTP ectopic expression, suggesting it may not be the primary mechanism of doxorubicin in breast cancer (BC) treatment. High TTP expression is considered as a positive prognostic marker in multiple cancers, including BC. Given that doxorubicin is a commonly used drug for treating triple-negative BC, using TTP as a prognostic marker in this cohort of patients might be limited since it might be challenging to understand if high TTP expression occurred due to the favorable physiological state of the patient or as a consequence of treatment.
Collapse
Affiliation(s)
- Anastasiia Hubiernatorova
- Department of Functional Genomics, Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Vaskovicova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Sekac
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Serhii Kropyvko
- Department of Functional Genomics, Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
4
|
Conan P, Léon A, Caroff N, Rollet C, Chaïr L, Martin J, Bihel F, Mignen O, Voisset C, Friocourt G. New insights into the regulation of Cystathionine beta synthase (CBS), an enzyme involved in intellectual deficiency in Down syndrome. Front Neurosci 2023; 16:1110163. [PMID: 36711154 PMCID: PMC9879293 DOI: 10.3389/fnins.2022.1110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS), the most frequent chromosomic aberration, results from the presence of an extra copy of chromosome 21. The identification of genes which overexpression contributes to intellectual disability (ID) in DS is important to understand the pathophysiological mechanisms involved and develop new pharmacological therapies. In particular, gene dosage of Dual specificity tyrosine phosphorylation Regulated Kinase 1A (DYRK1A) and of Cystathionine beta synthase (CBS) are crucial for cognitive function. As these two enzymes have lately been the main targets for therapeutic research on ID, we sought to decipher the genetic relationship between them. We also used a combination of genetic and drug screenings using a cellular model overexpressing CYS4, the homolog of CBS in Saccharomyces cerevisiae, to get further insights into the molecular mechanisms involved in the regulation of CBS activity. We showed that overexpression of YAK1, the homolog of DYRK1A in yeast, increased CYS4 activity whereas GSK3β was identified as a genetic suppressor of CBS. In addition, analysis of the signaling pathways targeted by the drugs identified through the yeast-based pharmacological screening, and confirmed using human HepG2 cells, emphasized the importance of Akt/GSK3β and NF-κB pathways into the regulation of CBS activity and expression. Taken together, these data provide further understanding into the regulation of CBS and in particular into the genetic relationship between DYRK1A and CBS through the Akt/GSK3β and NF-κB pathways, which should help develop more effective therapies to reduce cognitive deficits in people with DS.
Collapse
Affiliation(s)
- Pierre Conan
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Alice Léon
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Noéline Caroff
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Claire Rollet
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Loubna Chaïr
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Jennifer Martin
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR 7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, Illkirch, France
| | - Olivier Mignen
- U1227, Lymphocytes B, Autoimmunité et Immunothérapies, INSERM, Université de Brest, Brest, France
| | - Cécile Voisset
- INSERM, Université de Brest, EFS, UMR 1078, GGB, Brest, France
| | | |
Collapse
|
5
|
Bourseguin J, Cheng W, Talbot E, Hardy L, Lai J, Jeffries A, Lodato MA, Lee EA, Khoronenkova S. Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction. Nucleic Acids Res 2022; 50:2700-2718. [PMID: 35212385 PMCID: PMC8934660 DOI: 10.1093/nar/gkac104] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/21/2023] Open
Abstract
The autosomal recessive genome instability disorder Ataxia-telangiectasia, caused by mutations in ATM kinase, is characterized by the progressive loss of cerebellar neurons. We find that DNA damage associated with ATM loss results in dysfunctional behaviour of human microglia, immune cells of the central nervous system. Microglial dysfunction is mediated by the pro-inflammatory RELB/p52 non-canonical NF-κB transcriptional pathway and leads to excessive phagocytic clearance of neuronal material. Activation of the RELB/p52 pathway in ATM-deficient microglia is driven by persistent DNA damage and is dependent on the NIK kinase. Activation of non-canonical NF-κB signalling is also observed in cerebellar microglia of individuals with Ataxia-telangiectasia. These results provide insights into the underlying mechanisms of aberrant microglial behaviour in ATM deficiency, potentially contributing to neurodegeneration in Ataxia-telangiectasia.
Collapse
Affiliation(s)
- Julie Bourseguin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Wen Cheng
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Emily Talbot
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Liana Hardy
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| | - Jenny Lai
- Division of Genetics and Genomics, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA 02115, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael A Lodato
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Svetlana V Khoronenkova
- Department of Biochemistry, University of Cambridge, 80 Tennis Court road, CambridgeCB2 1GA, UK
| |
Collapse
|
6
|
Chora AF, Pedroso D, Kyriakou E, Pejanovic N, Colaço H, Gozzelino R, Barros A, Willmann K, Velho T, Moita CF, Santos I, Pereira P, Carvalho S, Martins FB, Ferreira JA, de Almeida SF, Benes V, Anrather J, Weis S, Soares MP, Geerlof A, Neefjes J, Sattler M, Messias AC, Neves-Costa A, Moita LF. DNA damage independent inhibition of NF-κB transcription by anthracyclines. eLife 2022; 11:77443. [PMID: 36476511 PMCID: PMC9771368 DOI: 10.7554/elife.77443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.
Collapse
Affiliation(s)
- Angelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Dora Pedroso
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Eleni Kyriakou
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Nadja Pejanovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Henrique Colaço
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | - André Barros
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Tiago Velho
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Centro Hospitalar Lisboa Norte - Hospital de Santa Maria, EPE, Avenida Professor Egas MonizLisbonPortugal
| | - Catarina F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Isa Santos
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Serviço de Cirurgia, Centro Hospitalar de SetúbalSetúbalPortugal
| | - Pedro Pereira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Silvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - Filipa Batalha Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | - João A Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de LisboaLisboaPortugal
| | | | | | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkUnited States
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, Friedrich-Schiller UniversityJenaGermany,Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller UniversityJenaGermany,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI)JenaGermany
| | - Miguel P Soares
- Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMCLeidenNetherlands
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana C Messias
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum MünchenNeuherbergGermany,Bavarian NMR Centre, Department of Bioscience, School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Ana Neves-Costa
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de CiênciaOeirasPortugal,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
| |
Collapse
|
7
|
Eisvand F, Imenshahidi M, Ghasemzadeh Rahbardar M, Tabatabaei Yazdi SA, Rameshrad M, Razavi BM, Hosseinzadeh H. Cardioprotective effects of alpha‐mangostin on doxorubicin‐induced cardiotoxicity in rats. Phytother Res 2021; 36:506-524. [DOI: 10.1002/ptr.7356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
8
|
Romero N, Favoreel HW. Pseudorabies Virus Infection Triggers NF-κB Activation via the DNA Damage Response but Actively Inhibits NF-κB-Dependent Gene Expression. J Virol 2021; 95:e0166621. [PMID: 34613805 PMCID: PMC8610585 DOI: 10.1128/jvi.01666-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) pathway is known to integrate signaling associated with very diverse intra- and extracellular stressors, including virus infections, and triggers a powerful (proinflammatory) response through the expression of NF-κB-regulated genes. Typically, the NF-κB pathway collects and transduces threatening signals at the cell surface or in the cytoplasm leading to nuclear import of activated NF-κB transcription factors. In the current work, we demonstrate that the swine alphaherpesvirus pseudorabies virus (PRV) induces a peculiar mode of NF-κB activation known as "inside-out" NF-κB activation. We show that PRV triggers the DNA damage response (DDR) and that this DDR response drives NF-κB activation since inhibition of the nuclear ataxia telangiectasia-mutated (ATM) kinase, a chief controller of DDR, abolished PRV-induced NF-κB activation. Initiation of the DDR-NF-κB signaling axis requires viral protein synthesis but occurs before active viral genome replication. In addition, the initiation of the DDR-NF-κB signaling axis is followed by a virus-induced complete shutoff of NF-κB-dependent gene expression that depends on viral DNA replication. In summary, the results presented in this study reveal that PRV infection triggers a noncanonical DDR-NF-κB activation signaling axis and that the virus actively inhibits the (potentially antiviral) consequences of this pathway, by inhibiting NF-κB-dependent gene expression. IMPORTANCE The NF-κB signaling pathway plays a critical role in coordination of innate immune responses that are of vital importance in the control of infections. The current report generates new insights into the interaction of the alphaherpesvirus pseudorabies virus (PRV) with the NF-κB pathway, as they reveal that (i) PRV infection leads to NF-κB activation via a peculiar "inside-out" nucleus-to-cytoplasm signal that is triggered via the DNA damage response (DDR), (ii) the DDR-NF-κB signaling axis requires expression of viral proteins but is initiated before active PRV replication, and (iii) late viral factor(s) allow PRV to actively and efficiently inhibit NF-κB-dependent (proinflammatory) gene expression. These data suggest that activation of the DDR-NF-κB during PRV infection is host driven and that its potential antiviral consequences are actively inhibited by the virus.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W. Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Czarnomysy R, Muszyńska A, Rok J, Rzepka Z, Bielawski K. Mechanism of Anticancer Action of Novel Imidazole Platinum(II) Complex Conjugated with G2 PAMAM-OH Dendrimer in Breast Cancer Cells. Int J Mol Sci 2021; 22:5581. [PMID: 34070401 PMCID: PMC8197546 DOI: 10.3390/ijms22115581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transition metal coordination compounds play an important role in the treatment of neoplastic diseases. However, due to their low selectivity and bioavailability, as well as the frequently occurring phenomenon of drug resistance, new chemical compounds that could overcome these phenomena are still being sought. The solution seems to be the synthesis of new metal complexes conjugated with drug carriers, e.g., dendrimers. Numerous literature data have shown that dendrimers improve the bioavailability of the obtained metal complexes, solving the problem of their poor solubility and stability in an aqueous environment and also breaking down inborn and acquired drug resistance. Therefore, the aim of this study was to synthesize a novel imidazole platinum(II) complex conjugated with and without the second-generation PAMAM dendrimer (PtMet2-PAMAM and PtMet2, respectively) and to evaluate its antitumor activity. Cell viability studies indicated that PtMet2-PAMAM exhibited higher cytotoxic activity than PtMet2 in MCF-7 and MDA-MB-231 breast cancer cells at relatively low concentrations. Moreover, our results indicated that PtMet2-PAMAM exerted antiproliferative effects in a zebrafish embryo model. Treatment with PtMet2-PAMAM substantially increased apoptosis in a dose-dependent manner via caspase-9 (intrinsic pathway) and caspase-8 (extrinsic pathway) activation along with pro-apoptotic protein expression modulation. Additionally, we showed that apoptosis can be induced by activating POX, which induces ROS production. Furthermore, our results also clearly showed that the tested compounds trigger autophagy through p38 pathway activation and increase Beclin-1, LC3, AMPK, and mTOR inhibition. The high pro-apoptotic activity and the ability to activate autophagy by the imidazole platinum(II) complex conjugated with a dendrimer may be due to its demonstrated ability to reverse multidrug resistance (MDR) and thereby increase cellular accumulation in breast cancer cells.
Collapse
Affiliation(s)
- Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (A.M.); (K.B.)
| | - Anna Muszyńska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (A.M.); (K.B.)
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (J.R.); (Z.R.)
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (J.R.); (Z.R.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (A.M.); (K.B.)
| |
Collapse
|
10
|
Purawarga Matada GS, Dhiwar PS, Abbas N, Singh E, Ghara A, Das A, Bhargava SV. Molecular docking and molecular dynamic studies: screening of phytochemicals against EGFR, HER2, estrogen and NF-KB receptors for their potential use in breast cancer. J Biomol Struct Dyn 2021; 40:6183-6192. [PMID: 33525984 DOI: 10.1080/07391102.2021.1877823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
Breast cancer (BC) is a second common malignancy in female globally. Hence, identification of novel therapeutic agents is extremely important. Molecular docking and MD simulation are the important tools in the process of drug discovery for searching the potential hits. The structure-based drug designing technique also reveals the information about ligands behavior in computational environment. Docking tools help in visualization and analysis of protein-ligand complex at atomic level. Molecular dynamics shows the stability of the molecules in the receptor cavity in the simulated environment. In this research work, we have screened potent phytochemicals against the BC. We docked the phytochemicals and examined the binding affinities of ligands towards the EGFR, HER2, estrogen and NF-κB receptors. Pristimerin, ixocarpalactone A, viscosalactone B and zhankuic acid A have shown higher binding affinities and energies towards targeted receptors among the screened phytochemicals. MD simulation study shows stability of docked complex for pristimerin and HER2 receptor. These phytochemicals can be repurposed for their anticancer activity. This in-silico work provides a strong ground for further investigation of their anticancer activity.
Collapse
Affiliation(s)
- Gurubasavaraj Swamy Purawarga Matada
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, India
| | - Prasad Sanjay Dhiwar
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, India
| | - Nahid Abbas
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, India
| | - Ekta Singh
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, India
| | - Arka Das
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Rajiv Gandhi University of Health & Science Bengaluru, Karnataka, India
| | - Sapna Vyas Bhargava
- Department of Zoology, Maa Bharti PG Science College, University of Kota, Rajasthan, India
| |
Collapse
|
11
|
Guo X, Hong S, He H, Zeng Y, Chen Y, Mo X, Li J, Li L, Steinmetz R, Liu Q. NFκB promotes oxidative stress-induced necrosis and ischemia/reperfusion injury by inhibiting Nrf2-ARE pathway. Free Radic Biol Med 2020; 159:125-135. [PMID: 32745764 PMCID: PMC7530060 DOI: 10.1016/j.freeradbiomed.2020.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/06/2023]
Abstract
In this study, we identified an unexpected pro-cell death role for NFκB in mediating oxidative stress-induced necrosis, and provide new mechanistic evidence that NFκB, in cooperation with HDAC3, negatively regulates Nrf2-ARE anti-oxidative signaling through transcriptional silencing. We showed that genetic inactivation of NFκB-p65 inhibited, whereas activation of NFκB promoted, oxidative stress-induced cell death and HMGB1 release, a biomarker of necrosis. Moreover, NFκB-luciferase activity was elevated in cardiomyocytes after simulated ischemia/reperfusion (sI/R) or doxorubicin (DOX) treatment, and inhibition of NFκB with Ad-p65-shRNA or Ad-IκBαM diminished sI/R- and DOX-induced cell death and HMGB1 release. Importantly, NFκB negatively regulated Nrf2-ARE activity and the expression of antioxidant proteins. Mechanistically, co-immunoprecipitation revealed that p65 was required for Nrf2-HDAC3 interaction and transcriptional silencing of Nrf2-ARE activity. Further, the ability of HDAC3 to repress Nrf2-ARE activity was lost in p65 deficient cells. Pharmacologic inhibition of HADCs or NFκB with trichostatin A (TSA) or BMS-345541, respectively, increased Nrf2-ARE activity and promoted cell survival after sI/R. In vivo, NFκB transcriptional activity in the mouse heart was significantly elevated after ischemia/reperfusion (I/R) injury, which was abolished by cardiomyocyte-specific deletion of p65 using p65fl/flNkx2.5-Cre mice. Moreover, genetic ablation of p65 in the mouse heart attenuated myocardial infarct size after acute I/R injury and improved cardiac remodeling and functional recovery after chronic myocardial infarction. Thus, our results identified NFκB as a key regulator of oxidative stress-induced necrosis by suppressing the Nrf2-ARE antioxidant pathway through an HDAC3-dependent mechanism. This study also revealed a new pathogenic role of NFκB in cardiac ischemic injury and pathological remodeling.
Collapse
Affiliation(s)
- Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Siqi Hong
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Hui He
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yachang Zeng
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yi Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoliang Mo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Lei Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Rachel Steinmetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
12
|
Nephroprotective Effect of Pleurotus ostreatus and Agaricus bisporus Extracts and Carvedilol on Ethylene Glycol-Induced Urolithiasis: Roles of NF-κB, p53, Bcl-2, Bax and Bak. Biomolecules 2020; 10:biom10091317. [PMID: 32937925 PMCID: PMC7565610 DOI: 10.3390/biom10091317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
This study was designed to assess the nephroprotective effects of Pleurotus ostreatus and Agaricus bisporus aqueous extracts and carvedilol on hyperoxaluria-induced urolithiasis and to scrutinize the possible roles of NF-κB, p53, Bcl-2, Bax and Bak. Phytochemical screening and GC-MS analysis of mushrooms’ aqueous extracts were also performed and revealed the presence of multiple antioxidant and anti-inflammatory components. Hyperoxaluria was induced in Wistar rats through the addition of 0.75% (v/v) ethylene glycol in drinking water for nine weeks. The ethylene glycol-administered rats were orally treated with Pleurotus ostreatus and Agaricus bisporus aqueous extracts (100 mg/kg) and carvedilol (30 mg/kg) daily during the last seven weeks. The study showed that Pleurotus ostreatus, Agaricus bisporus and carvedilol all successfully inhibited ethylene glycol-induced histological perturbations and the elevation of serum creatinine, serum urea, serum and urinary uric acid, serum, urinary and kidney oxalate, urine specific gravity, kidney calcium, kidney NF-κB, NF-κB p65, NF-κB p50, p53, Bax and Bak expressions as well as serum TNF-α and IL-1β levels. Moreover, the treatment decreased the reduction in urinary creatinine, urinary urea, ratios of urinary creatinine to serum creatinine and urinary urea to serum urea, Fex Urea and Bcl-2 expression in kidney. In conclusion, although Pleurotus ostreatus and Agaricus bisporus extracts and carvedilol all significantly inhibited the progression of nephrolithiasis and showed nephroprotective effects against ethylene glycol-induced kidney dysfunction, Pleurotus ostreatus and Agaricus bisporus seemed to be more effective than carvedilol. Moreover, the nephroprotective effects may be mediated via affecting NF-κB activation, extrinsic apoptosis and intrinsic apoptosis pathways.
Collapse
|
13
|
Bashiri Dezfouli A, Salar-Amoli J, Pourfathollah AA, Yazdi M, Nikougoftar-Zarif M, Khosravi M, Hassan J. Doxorubicin-induced senescence through NF-κB affected by the age of mouse mesenchymal stem cells. J Cell Physiol 2019; 235:2336-2349. [PMID: 31517394 DOI: 10.1002/jcp.29140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
The senescence is proposed as a defense mechanism against many anticancer drugs. This complication is marked by differences in cell appearance and inner structures underlying the impairment in function. In this experiment, doxorubicin-induced senescence was assessed in mesenchymal stem cells (MSCs) isolated from the bone marrow of different-aged Balb/c mice (1, 8, and 16 months old). In addition, doxorubicin kinetics in culture medium were investigated to compare the drug absorption rate by different-aged MSCs. Several methods were exerted including Sandwich ELISA for NF-κB activation, propidium iodide staining for cell cycle analysis, Flow-fluorescent in-situ hybridization (Flow-FISH) assay for telomere length measurement, and specific staining for evaluation of β-galactosidase. Determination of doxorubicin in a medium was performed by high-performance liquid chromatography technique. Following doxorubicin exposure, cells underwent substantial telomere shortening, cell cycle arresting in G2 phase, and increased β-galactosidase activity. Interestingly, the enhanced level of NF-κB was observed in all age groups. The highest and lowest sensitivity to telomere shortening attributed to 1- and 8-month-old MSCs, respectively. In consistent with Flow-FISH results, the β-galactosidase activity was higher in young-aged MSCs after treatment. Statistical analysis indicated a correlation between the reduction of telomere length and cessation in G2 phase. Regarding the obtained kinetics equations, the rate of doxorubicin absorption by all aged MSCs followed the same trend. In conclusion, the changing of some elements involved in doxorubicin-induced senescence can be affected by the age of the cells significantly in young MSCs than two other age groups. Hereupon, these changing patterns can open new insights to develop anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Ali Bashiri Dezfouli
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jamileh Salar-Amoli
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mina Yazdi
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahin Nikougoftar-Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jalal Hassan
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
14
|
Quiñones-Lombraña A, Intini A, Blanco JG. Insights into the transcriptional regulation of the anthracycline reductase AKR7A2 in human cardiomyocytes. Toxicol Lett 2019; 307:11-16. [PMID: 30817976 DOI: 10.1016/j.toxlet.2019.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/22/2022]
Abstract
Aldo-Keto Reductase Family 7 Member A2 (AKR7A2) is the most abundant anthracycline metabolizing enzyme in human myocardium. Myocardial AKR7A2 contributes to the synthesis of cardiotoxic C-13 anthracycline alcohol metabolites (e.g., doxorubicinol). The factors that govern the transcription of human AKR7A2 in cardiomyocytes remain largely unexplored. In this study, we performed the functional characterization of the AKR7A2 gene promoter in human AC16 cardiomyocytes. Experiments with gene reporter constructs and chromatin immunoprecipitation assays suggest that NF-κB binds to specific regions in the AKR7A2 promoter. Doxorubicin treatment modified the cellular levels of NF-κB and the expression of AKR7A2. Moreover, doxorubicin treatment led to changes in the pattern of AKR7A2 phosphorylation status. Our results suggest that AKR7A2 expression in human cardiomyocytes is mediated by NF-κB through conserved response elements in the proximal gene promoter region. This study provides the first insights into the functional characteristics of the human AKR7A2 gene promoter.
Collapse
Affiliation(s)
- Adolfo Quiñones-Lombraña
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Amy Intini
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Javier G Blanco
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
15
|
Micheliolide Protects Against Doxorubicin-Induced Cardiotoxicity in Mice by Regulating PI3K/Akt/NF-kB Signaling Pathway. Cardiovasc Toxicol 2019; 19:297-305. [DOI: 10.1007/s12012-019-09511-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
16
|
Methot L, Soubannier V, Hermann R, Campos E, Li S, Stifani S. Nuclear factor-kappaB regulates multiple steps of gliogenesis in the developing murine cerebral cortex. Glia 2018; 66:2659-2672. [DOI: 10.1002/glia.23518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Laurent Methot
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Robert Hermann
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Erin Campos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Sally Li
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
17
|
Tury S, Assayag F, Bonin F, Chateau-Joubert S, Servely JL, Vacher S, Becette V, Caly M, Rapinat A, Gentien D, de la Grange P, Schnitzler A, Lallemand F, Marangoni E, Bièche I, Callens C. The iron chelator deferasirox synergises with chemotherapy to treat triple-negative breast cancers. J Pathol 2018; 246:103-114. [PMID: 29876931 DOI: 10.1002/path.5104] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2018] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
To ensure their high proliferation rate, tumor cells have an iron metabolic disorder causing them to have increased iron needs, making them more susceptible to iron deprivation. This vulnerability could be a therapeutic target. In breast cancers, the development of new therapeutic approaches is urgently needed for patients with triple-negative tumors, which frequently relapse after chemotherapy and suffer from a lack of targeted therapies. In this study, we demonstrated that deferasirox (DFX) synergises with standard chemotherapeutic agents such as doxorubicin, cisplatin and carboplatin to inhibit cell proliferation and induce apoptosis and autophagy in triple-negative breast cancer (TNBC) cells. Moreover, the combination of DFX with doxorubicin and cyclophosphamide delayed recurrences in breast cancer patient-derived xenografts without increasing the side-effects of chemotherapies alone or altering the global iron storage of mice. Antitumor synergy of DFX and doxorubicin seems to involve downregulation of the phosphoinositide 3-kinase and nuclear factor-κB pathways. Iron deprivation in combination with chemotherapy could thus help to improve the effectiveness of chemotherapy in TNBC patients without increasing toxicity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sandrine Tury
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - Franck Assayag
- Laboratory of Preclinical Investigations, Translational Research Department, Curie Institute, PSL Research University Paris, France
| | - Florian Bonin
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | | | - Jean-Luc Servely
- BioPôle Alfort, National Veterinary School of Alfort, Maisons-Alfort, France.,PHASE Department, INRA, Paris, France
| | - Sophie Vacher
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - Véronique Becette
- Department of Biopathology, Curie Institute, René Huguenin Hospital, Saint-Cloud, France
| | - Martial Caly
- Department of Biopathology, Curie Institute, PSL Research University, Paris, France
| | - Audrey Rapinat
- Genomics Platform, Translational Research Department, Curie Institute, PSL Research University, Paris, France
| | - David Gentien
- Genomics Platform, Translational Research Department, Curie Institute, PSL Research University, Paris, France
| | | | - Anne Schnitzler
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - François Lallemand
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigations, Translational Research Department, Curie Institute, PSL Research University Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France.,EA7331, Paris Descartes University, Sorbonne Paris Cité, Faculty of Pharmaceutical and Biological Sciences, Paris, France
| | - Céline Callens
- Pharmacogenomic Unit, Genetics Department, Curie Institute, PSL Research University, Paris, France
| |
Collapse
|
18
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
19
|
Shi F, Li M, Wang J, Wu D, Pan M, Guo M, Dou J. Induction of multiple myeloma cancer stem cell apoptosis using conjugated anti-ABCG2 antibody with epirubicin-loaded microbubbles. Stem Cell Res Ther 2018; 9:144. [PMID: 29784015 PMCID: PMC5963075 DOI: 10.1186/s13287-018-0885-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023] Open
Abstract
Background Multiple myeloma (MM) currently remains largely incurable. Cancer stem cells (CSCs) are believed to be responsible for drug resistance and eventual relapse. In this study, we exploited a novel agent to evaluate its inhibitory effect on MM CSCs. Methods Epirubicin (EPI)-loaded lipid microbubbles (MBs) conjugated with anti-ABCG2 monoclonal antibody (EPI-MBs + mAb) were developed and their effect on MM 138−CD34− CSCs isolated from human MM RPMI 8226 cell line plus ultrasound exposure in vitro and in vivo in a nonobese diabetic/severe combined immunodeficient mouse model were assessed. Results EPI-MBs + mAb combined with ultrasound led to a significant decrease in the clone formation ability and the mitochondrial membrane potential along with an increase in MM CSC apoptosis. Moreover, treatment with EPI-MBs + mAb with ultrasound exposure remarkably inhibited the growth of MM CSC-derived tumors in xenograft nonobese diabetic/severe combined immunodeficient mice compared with a single agent or EPI-MBs + mAb without ultrasound exposure. The inhibitive efficacy was also correlated with an increased expression of caspase-3, Bax, and TUNEL and decreased expressions of PCNA, Bcl-2, and CD31. Conclusions Our findings reveal that the EPI-MBs + mAb combined with therapeutic ultrasound may confer an effective approach for treatment of MM by induction of an apoptotic pathway in MM CSCs.
Collapse
Affiliation(s)
- Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.,Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87# Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87# Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Jing Wang
- Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Di Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87# Ding Jiaqiao Rd., Nanjing, 210009, China.,Department of Gynecology & Obstetrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87# Ding Jiaqiao Rd., Nanjing, 210009, China
| | - Mei Guo
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, 87# Ding Jiaqiao Rd., Nanjing, 210009, China.
| |
Collapse
|
20
|
Abstract
The nuclear factor-kappa B (NF-κB) pathway is known to contribute to critical signaling in cancer biology, including breast cancer, through promotion of proliferation, angiogenesis, metastasis, tumor progression, inflammation and cell survival. In this review, in vivo and in vitro studies of the NF-κB pathway in breast cancer are discussed, focusing on DNA damage and the epithelial-mesenchymal transition associated with breast cancer stem cell properties. The relationships between NF-κB signaling and conventional cancer treatments in terms of response to chemo- and radiotherapy will also be discussed. Then contribution and involvement of immune system in the NF-κB pathway will be covered. Furthermore, the future perspective of NF-κB targeting as an innovative strategy to overcome refractory breast cancer, including recent updates on out-receptor activator of NF-κB (RANKing), will be covered.
Collapse
Affiliation(s)
- Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| |
Collapse
|
21
|
Jain A, Rani V. Mode of treatment governs curcumin response on doxorubicin-induced toxicity in cardiomyoblasts. Mol Cell Biochem 2017; 442:81-96. [DOI: 10.1007/s11010-017-3195-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2017] [Accepted: 09/09/2017] [Indexed: 01/01/2023]
|
22
|
Li R, Zhang Z, Wang J, Huang Y, Sun W, Xie R, Hu F, Lei T. Triptolide suppresses growth and hormone secretion in murine pituitary corticotroph tumor cells via NF-kappaB signaling pathway. Biomed Pharmacother 2017; 95:771-779. [PMID: 28892788 DOI: 10.1016/j.biopha.2017.08.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
Triptolide is a principal diterpene triepoxide from the Chinese medical plant Tripterygium wilfordii Hook. f., whose extracts have been utilized in dealing with diverse diseases in traditional Chinese medicine for centuries. Recently, the antitumor effect of triptolide has been found in several pre-clinical neoplasm models, but its effect on pituitary corticotroph adenomas has not been investigated so far. In this study, we are aiming to figure out the antitumor effect of triptolide and address the underlying molecular mechanism in AtT20 murine corticotroph cell line. Our results demonstrated that triptolide inhibited cell viability and colony number of AtT20 cells in a dose- and time-dependent pattern. Triptolide also suppressed proopiomelanocortin (Pomc) mRNA expression and extracellular adrenocorticotropic hormone (ACTH) secretion in AtT20 cells. Flow cytometry prompted that triptolide leaded to G2/M phase arrest, apoptosis program and mitochondrial membrane depolarization in AtT20 cells. Moreover, dose-dependent activation of caspase-3 and decreased Bcl2/Bax proportion were observed after triptolide treatment. By western blot analysis we found that triptolide impeded phosphorylation of NF-κB p65 subunit and extracellular signal-regulated kinase (ERK), along with reduction of cyclin D1, without any impact on other NF-κB related protein expression like total p65, p50, IκB-α, p-IκB-α. Furthermore, the mouse xenograft model revealed the inhibition of tumor growth and hormone secretion after triptolide administration. Altogether this compound might be a potential pharmaceutical choice in managing Cushing's disease.
Collapse
Affiliation(s)
- Ran Li
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Zhuo Zhang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Junwen Wang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Yiming Huang
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Wei Sun
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Ruifan Xie
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China; Research Group Experimental Neurooncology, Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Feng Hu
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
| | - Ting Lei
- Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China.
| |
Collapse
|
23
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, Abo Mansour HE. Metformin augments doxorubicin cytotoxicity in mammary carcinoma through activation of adenosine monophosphate protein kinase pathway. Tumour Biol 2017; 39:1010428317692235. [PMID: 28459206 DOI: 10.1177/1010428317692235] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Since the incidence of breast cancer increases dramatically all over the world, the search for effective treatment is an urgent need. Metformin has demonstrated anti-tumorigenic effect both in vivo and in vitro in different cancer types. This work was designed to examine on molecular level the mode of action of metformin in mice bearing solid Ehrlich carcinoma and to evaluate the use of metformin in conjunction with doxorubicin as a combined therapy against solid Ehrlich carcinoma. Ehrlich ascites carcinoma cells were inoculated in 60 female mice as a model of breast cancer. The mice were divided into four equal groups: Control tumor, metformin, doxorubicin, and co-treatment. Metformin (15 mg/kg) and doxorubicin (4 mg/kg) were given intraperitoneally (i.p.) for four cycles every 5 days starting on day 12 of inoculation. The anti-tumorigenic effect of metformin was mediated by enhancement of adenosine monophosphate protein kinase activity and elevation of P53 protein as well as the suppression of nuclear factor-kappa B, DNA contents, and cyclin D1 gene expression. Metformin and doxorubicin mono-treatments exhibited opposing action regarding cyclin D1 gene expression, phosphorylated adenosine monophosphate protein kinase, and nuclear factor-kappa B levels. Co-treatment markedly decreased tumor volume, increased survival rate, and improved other parameters compared to doxorubicin group. In parallel, the histopathological findings demonstrated enhanced apoptosis and absence of necrosis in tumor tissue of co-treatment group. Metformin proved chemotherapeutic effect which could be mediated by the activation of adenosine monophosphate protein kinase and related pathways. Combining metformin and doxorubicin, which exhibited different mechanisms of action, produced greater efficacy as anticancer therapeutic regimen.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hoda A El-Bahrawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hend E Abo Mansour
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
24
|
Ho SC, Wu SM, Feng PH, Liu WT, Chen KY, Chuang HC, Chan YF, Kuo LW, Lee KY. Noncanonical NF-κB mediates the Suppressive Effect of Neutrophil Elastase on IL-8/CXCL8 by Inducing NKRF in Human Airway Smooth Muscle. Sci Rep 2017; 7:44930. [PMID: 28322300 PMCID: PMC5359717 DOI: 10.1038/srep44930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023] Open
Abstract
Neutrophil elastase (NE) suppresses IL-8/CXCL8 in human airway smooth muscle cells (hASM) while stimulating its production in respiratory epithelial cells. This differential effect is mediated by the selective induction of NKRF and dysregulation in chronic inflammatory diseases. We hypothesized that the differential activation of NF-κB subunits confer the opposite effect of NKRF on IL-8/CXCL8 in primary hASM and A549 cells stimulated with NE. The events occurring at the promoters of NKRF and IL-8/CXCL8 were observed by ChIP assays, and the functional role of RelB was confirmed by knockdown and overexpression. Although p65 was stimulated in both cell types, RelB was only activated in NE-treated hASM, as confirmed by NF-κB DNA binding ELISA, Western blotting and confocal microscopy. Knockdown of RelB abolished the induction of NKRF and converted the suppression of IL-8/CXCL8 to stimulation. The forced expression of RelB induced NKRF production in hASM and A549 cells. NE activated the NIK/IKK1/RelB non-canonical NF-κB pathway in hASM but not in A549. The nuclear-translocated RelB was recruited to the NKRF promoter around the putative κB site, accompanied by p52 and RNA polymerase II. In conclusion, NFRF is a novel RelB-response gene, and NE is a stimulator of the non-canonical RelB/NF-κB pathway in hASM.
Collapse
Affiliation(s)
- Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Fei Chan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lu-Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Triptolide Combined with Radiotherapy for the Treatment of Nasopharyngeal Carcinoma via NF-κB-Related Mechanism. Int J Mol Sci 2016; 17:ijms17122139. [PMID: 27999372 PMCID: PMC5187939 DOI: 10.3390/ijms17122139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022] Open
Abstract
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis because of the lack of an effective treatment. Here we explored the efficiency and the molecular mechanisms of combined treatment with triptolide and ionizing radiation for treating NPC. Human nasopharyngeal carcinoma (CNE) cells were treated with triptolide, ionizing radiation, or triptolide plus ionizing radiation in vitro. Tumor potency was examined in an in vivo CNE cell xenograft mouse model, which was treated as above. Our results demonstrated that triptolide caused a significant reduction in cell growth and colony number, and induced a marked apoptosis that was further enhanced with increasing doses of ionizing radiation. Combination treatment synergistically reduced tumor weight and volume without obvious toxicity. Western blot analysis in vitro and in vivo showed that triptolide induced apoptotic protein Bax expression and inhibited phosph-NF-κB p65, Bcl-2 and VEGF proteins without affecting other NF-κB related protein expression. In conclusion, our findings revealed that triptolide plus ionizing radiation had synergistic anti-tumor and anti-angiogenesis effects in NPC via down-regulating NF-κB p65 phosphorylation. The combination therapy may provide novel mechanism insights into inhibit NPC.
Collapse
|
26
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2016. [PMID: 26668505 DOI: 10.3748/wjg.v21.i45.1281426668505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
Affiliation(s)
- Yun Shi
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Si-Ye Wang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wei Wu
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yin Cai
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Jie Zheng
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Yun Shi, Si-Ye Wang, Min Yao, Wen-Li Sai, Wei Wu, Jun-Ling Yang, Wen-Jie Zheng, Deng-Fu Yao, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
27
|
Xiao C, Beitler JJ, Higgins KA, Conneely K, Dwivedi B, Felger J, Wommack EC, Shin DM, Saba NF, Ong LY, Kowalski J, Bruner DW, Miller AH. Fatigue is associated with inflammation in patients with head and neck cancer before and after intensity-modulated radiation therapy. Brain Behav Immun 2016; 52:145-152. [PMID: 26515035 PMCID: PMC4867228 DOI: 10.1016/j.bbi.2015.10.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/20/2015] [Revised: 10/01/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
Patients with head and neck cancer (HNC) receiving intensity-modulated radiation therapy (IMRT) have particularly high rates of fatigue, and pre- and post-radiotherapy fatigue are prognostic factors for pathologic tumor responses and poor survival. Although inflammation has been proposed as one of the potential mechanisms of fatigue in cancer patients, findings have not been consistent, and there is a dearth of longitudinal studies. Accordingly, we conducted a prospective study in 46 HNC patients pre- and one-month post-IMRT. Fatigue was measured by the Multidimensional Fatigue Inventory (MFI)-20 at both time points along with the assessment of peripheral blood inflammatory markers including interleukin (IL)-6, soluble tumor necrosis factor receptor 2, and C-reactive protein (CRP) and gene expression. Generalized estimating equations were used to examine the association between inflammatory markers and fatigue. Gene enrichment analysis using MetaCore software was performed using up-regulated genes that were significantly associated with IMRT and fatigue. Significant associations between fatigue and IL-6 as well as CRP, which were independent of time, were observed. In addition the change in fatigue from pre- to post-IMRT was positively associated with the change in IL-6 and CRP. Analysis of up-regulated gene transcripts as a function of IMRT and fatigue revealed overrepresentation of transcripts related to the defense response and nuclear factor kappa B. In conclusion, our findings support the hypotheses that inflammation is associated with fatigue over time in HNC patients. Future studies on how inflammation contributes to fatigue as well as strategies targeting inflammation to reduce fatigue are warranted.
Collapse
Affiliation(s)
- Canhua Xiao
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Jonathan J Beitler
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Kristin A Higgins
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Karen Conneely
- Department of Human Genetics, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, United States
| | - Bhakti Dwivedi
- Biostatistics and Bioinformatics Shared Resource, 1365-B Clifton Road, Atlanta, GA 30322, United States
| | - Jennifer Felger
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322, United States
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322, United States
| | - Dong M Shin
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Nabil F Saba
- School of Medicine, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Luke Yeeloo Ong
- Emory University, 201 Dowman Dr, Atlanta, GA 30322, United States
| | - Jeanne Kowalski
- Biostatistics and Bioinformatics Shared Resource, 1365-B Clifton Road, Atlanta, GA 30322, United States
| | - Deborah W Bruner
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta 30322, United States
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA 30322, United States
| |
Collapse
|
28
|
Shi Y, Wang SY, Yao M, Sai WL, Wu W, Yang JL, Cai Y, Zheng WJ, Yao DF. Chemosensitization of HepG2 cells by suppression of NF-κB/p65 gene transcription with specific-siRNA. World J Gastroenterol 2015; 21:12814-12821. [PMID: 26668505 PMCID: PMC4671036 DOI: 10.3748/wjg.v21.i45.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/28/2015] [Revised: 07/04/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate small interfering RNA (siRNA)-mediated inhibition of nuclear factor-kappa B (NF-κB) activation and multidrug-resistant (MDR) phenotype formation in human HepG2 cells. METHODS Total RNA was extracted from human HepG2 or LO2 cells. NF-κB/p65 mRNA was amplified by nested reverse transcription polymerase chain reaction and confirmed by sequencing. NF-κB/p65 was analyzed by immunohistochemistry. Specific-siRNA was transfected to HepG2 cells to knock down NF-κB/p65 expression. The effects on cell proliferation, survival, and apoptosis were assessed, and the level of NF-κB/p65 or P-glycoprotein (P-gp) was quantitatively analyzed by enzyme-linked immunosorbent assay. RESULTS HepG2 cells express NF-κB/p65 and express relatively less phosphorylated p65 (P-p65) and little P-gp. After treatment of HepG2 cells with different doses of doxorubicin, the expression of NF-κB/p65, P-p65, and especially P-gp were dose-dependently upregulated. After HepG2 cells were transfected with NF-κB/p65 siRNA (100 nmol/L), the expression of NF-κB/p65, P-p65, and P-gp were downregulated significantly and dose-dependently. The viability of HepG2 cells was decreased to 23% in the combination NF-κB/p65 siRNA (100 nmol/L) and doxorubicin (0.5 μmol/L) group and 47% in the doxorubicin (0.5 μmol/L) group (t = 7.043, P < 0.001). CONCLUSION Knockdown of NF-κB/p65 with siRNA is an effective strategy for inhibiting HepG2 cell growth by downregulating P-gp expression associated chemosensitization and apoptosis induction.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Male
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNAi Therapeutics
- Time Factors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Transcription, Genetic
- Transfection
Collapse
|
29
|
Doxorubicin induces apoptosis in Jurkat cells by mitochondria-dependent and mitochondria-independent mechanisms under normoxic and hypoxic conditions. Anticancer Drugs 2015; 26:583-98. [PMID: 25734830 DOI: 10.1097/cad.0000000000000223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
In this study, we investigated the molecular mechanism of doxorubicin (dxr)-induced cytotoxicity on Jurkat cells - a model cell of human acute lymphoblastic leukemia - under normoxic (20% O2) and hypoxic (5% O2) conditions. Using in-cell western analysis, immunofluorescence, flow cytometry analysis, and biochemical inhibitors, we evaluated several oxidative stress (OS) and cell death markers. It was found that dxr (5-100 μmol/l) induced apoptosis by OS mechanisms involving DNA fragmentation (8-48%), loss of mitochondrial membrane potential (ΔΨm, 33-92%), and H2O2 production (15-42%) under normoxia. In addition, dxr (10 μmol/l) induced activation and/or nuclei translocation of NF-κB (6.6, 1.6-fold increase), p53 (4.3, 3.1 f), c-Jun (9.5, 5.0 f), apoptosis-inducing factor (AIF) (1.9, 3.9 f), caspase-3 (3.7, 1.9 f), overexpression of Parkin (2.1, 1.2 f)/PINK-1 (2.1 f) proteins, and reduced DJ-1 levels by half compared with untreated cells under normoxia, according to immunofluorescence and in-cell western analysis, respectively. In contrast, dxr (10 μmol/l) could not induce apoptosis in Jurkat cells under hypoxia. Effectively, dxr significantly reduced DNA fragmentation (6%), expression levels of cell death (e.g. p53, c-Jun, caspase-3, AIF), and OS (e.g. Parkin) markers, whereas it increased ΔΨm, hypoxia-inducible factor 1-α (HIF-1α, 3.1, 2.3 f), NF-κB (6.8, 2.0 f), and DJ-1 (1.3, 1.0 f) levels. This investigation suggests that dxr might efficiently eliminate acute lymphoblastic leukemia cells by OS-induced apoptosis under normoxic conditions through a minimal completeness of cell death signaling (i.e. mitochondria-caspase-3/AIF-dependent pathways) and through a direct DNA damage process. However, hypoxic conditions may reduce the effectiveness of dxr toxicity.
Collapse
|
30
|
Xu F, Wang F, Yang T, Sheng Y, Zhong T, Chen Y. Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell Int 2014; 14:142. [PMID: 25550688 PMCID: PMC4279688 DOI: 10.1186/s12935-014-0142-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Several signal transduction pathways have been reported being involved in the acquisition of P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) upon exposure to anti-cancer drugs, whereas there is evidence indicating that the expression and activity of P-gp were not equally or even reversely modulated by different drugs. METHODS To further illustrate this drug-specific effect, possible mechanisms that enable breast cancer cells MCF-7 to acquire MDR to either paclitaxel (PTX) or doxorubicin (DOX) were investigated in a time-dependent manner. RESULTS The results suggested that at least two pathways participated in this process. One was the short and transient activation of NF-κB, the second one was the relatively prolonged induction of PXR. Both PXR and NF-κB pathways took part in the PTX drug resistance acquisition, whereas DOX did not exert a significant effect on the PXR-mediated induction of P-gp. Furthermore, the property of NF-κB activation shared by DOX and PTX was not identical. An attempt made in the present study demonstrated that the acquired resistance to DOX was via or partially via NF-κB activation but not its upstream receptor TLR4, while PTX can induce the drug resistance via TLR4-NF-κB pathway. CONCLUSIONS To our knowledge, this report is among the first to directly compare the time dependence of NF-κB and PXR pathways. The current study provides useful insight into the distinct ability of DOX and PTX to induce P-gp mediated MDR in breast cancer. Different strategies may be required to circumvent MDR in the presence of different anti-cancer drugs.
Collapse
Affiliation(s)
- Feifei Xu
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Fengliang Wang
- Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004 China
| | - Ting Yang
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Yuan Sheng
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Ting Zhong
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, 818 Tian Yuan East Road, Nanjing, 211166 China
| |
Collapse
|
31
|
Deficiency in p53 is required for doxorubicin induced transcriptional activation of NF-кB target genes in human breast cancer. Oncotarget 2014; 5:196-210. [PMID: 24344116 PMCID: PMC3960201 DOI: 10.18632/oncotarget.1556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
NF-κB has been linked to doxorubicin resistance in breast cancer patients. NF-κB nuclear translocation and DNA binding in doxorubicin treated-breast cancer cells have been extensively examined; however its functional relevance at transcriptional level on NF-κB -dependent genes and the biological consequences are unclear. We studied NF-κB -dependent gene expression induced by doxorubicin in breast cancer cells and fresh human cancer specimens with different genetic backgrounds focusing on their p53 status. NF-κB -dependent signature of doxorubicin was identified by gene expression microarrays in breast cancer cells treated with doxorubicin and the IKKβ-inhibitor MLN120B, and confirmed ex vivo in human cancer samples. The association with p53 was functionally validated. Finally, NF-κB activation and p53 status was determined in a cohort of breast cancer patients treated with adjuvant doxorubicin-based chemotherapy. Doxorubicin treatment in the p53-mutated MDA-MB-231 cells resulted in NF NF-κB driven-gene transcription signature. Modulation of genes related with invasion, metastasis and chemoresistance (ICAM-1, CXCL1, TNFAIP3, IL8) were confirmed in additional doxorubicin-treated cell lines and fresh primary human breast tumors. In both systems, p53-defcient background correlated with the activation of the NF-κB -dependent signature. Furthermore, restoration of p53WT in the mutant p53 MDA-MB-231 cells impaired NF-κB driven transcription induced by doxorubicin. Moreover, a p53 deficient background and nuclear NF-κB /p65 in breast cancer patients correlated with reduced disease free-survival. This study supports that p53 deficiency is necessary for a doxorubicin driven NF-κB -response that limits doxorubicin cytotoxicity in breast cancer and is linked to an aggressive clinical behavior.
Collapse
|
32
|
Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer 2014; 13:35. [PMID: 24565101 PMCID: PMC3938074 DOI: 10.1186/1476-4598-13-35] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022] Open
Abstract
Background Abnormal activation of the NF-κB pathway is closely related to tumorigenesis and chemoresistance. Therefore, microRNAs that possess the NF-κB inhibitory activity may provide novel targets for anti-cancer therapy. miR-26 family members have been shown to be frequently downregulated in hepatocellular carcinoma (HCC) and correlated with the poor survival of HCC patients. To date, there is no report disclosing the regulatory role of miR-26 on the NF-κB pathway and its biological significance. Methods The effects of miR-26b on the NF-κB signaling pathway and the chemosensitivity of cancer cells were examined in two HCC cell lines, QGY-7703 and MHCC-97H, using both gain- and loss-of-function studies. The correlation between miR-26b level and apoptosis rate was further investigated in clinical HCC specimens. Results Both TNFα and doxorubicin treatment activated the NF-κB signaling pathway in HCC cells. However, the restoration of miR-26b expression significantly inhibited the phosphorylation of IκBα and p65, blocked the nuclear translocation of NF-κB, reduced the NF-κB reporter activity, and consequently abrogated the expression of NF-κB target genes in TNFα or doxorubicin-treated HCC cells. Furthermore, the ectopic expression of miR-26b dramatically sensitized HCC cells to the doxorubicin-induced apoptosis, whereas the antagonism of miR-26b attenuated cell apoptosis. Consistently, the miR-26b level was positively correlated with the apoptosis rate in HCC tissues. Subsequent investigations revealed that miR-26b inhibited the expression of TAK1 and TAB3, two positive regulators of NF-κB pathway, by binding to their 3’-untranslated region. Moreover, knockdown of TAK1 or TAB3 phenocopied the effects of miR-26b overexpression. Conclusions These data suggest that miR-26b suppresses NF-κB signaling and thereby sensitized HCC cells to the doxorubicin-induced apoptosis by inhibiting the expression of TAK1 and TAB3. Our findings highlight miR-26b as a potent inhibitor of the NF-κB pathway and an attractive target for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Mei Zhuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou 510275, P R China.
| |
Collapse
|
33
|
Munde M, Wang S, Kumar A, Stephens CE, Farahat AA, Boykin DW, Wilson WD, Poon GMK. Structure-dependent inhibition of the ETS-family transcription factor PU.1 by novel heterocyclic diamidines. Nucleic Acids Res 2013; 42:1379-90. [PMID: 24157839 PMCID: PMC3902942 DOI: 10.1093/nar/gkt955] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
ETS transcription factors mediate a wide array of cellular functions and are attractive targets for pharmacological control of gene regulation. We report the inhibition of the ETS-family member PU.1 with a panel of novel heterocyclic diamidines. These diamidines are derivatives of furamidine (DB75) in which the central furan has been replaced with selenophene and/or one or both of the bridging phenyl has been replaced with benzimidazole. Like all ETS proteins, PU.1 binds sequence specifically to 10-bp sites by inserting a recognition helix into the major groove of a 5′-GGAA-3′ consensus, accompanied by contacts with the flanking minor groove. We showed that diamidines target the minor groove of AT-rich sequences on one or both sides of the consensus and disrupt PU.1 binding. Although all of the diamidines bind to one or both of the expected sequences within the binding site, considerable heterogeneity exists in terms of stoichiometry, site–site interactions and induced DNA conformation. We also showed that these compounds accumulate in live cell nuclei and inhibit PU.1-dependent gene transactivation. This study demonstrates that heterocyclic diamidines are capable of inhibiting PU.1 by targeting the flanking sequences and supports future efforts to develop agents for inhibiting specific members of the ETS family.
Collapse
Affiliation(s)
- Manoj Munde
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA and Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164-6534, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang YP, Liu IJ, Chiang CP, Wu HC. Astrocyte elevated gene-1 is associated with metastasis in head and neck squamous cell carcinoma through p65 phosphorylation and upregulation of MMP1. Mol Cancer 2013; 12:109. [PMID: 24063540 PMCID: PMC3856534 DOI: 10.1186/1476-4598-12-109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022] Open
Abstract
Background The survival rate of head and neck squamous cell carcinoma (HNSCC) at advanced stage is poor, despite contemporary advances in treatment modalities. Recent studies have indicated that astrocyte elevated gene-1 (AEG-1), a single transmembrane protein without any known functional domains, is overexpressed in various malignancies and is implicated in both distant metastasis and poor survival. Results High expression of AEG-1 in HNSCC was positively correlated with regional lymph node metastasis and a poor 5-year survival rate. Knockdown of AEG-1 in HNSCC cell lines reduced their capacity for colony formation, migration and invasion. Furthermore, decreased tumor volume and metastatic foci were observed after knockdown of AEG-1 in subcutaneous xenografts and pulmonary metastasis assays in vivo, respectively. We also demonstrated that AEG-1 increased phosphorylation of the p65 subunit of NF-κB, and regulated the expression of MMP1 in HNSCC cells. Moreover, compromised phosphorylation of the p65 (RelA) subunit of NF-κB at serine 536 was observed upon silencing of AEG-1 in both HNSCC cell lines and clinical specimens. Conclusion High expression of AEG-1 is associated with lymph node metastasis and its potentially associated mechanism is investigated.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | | | | | | |
Collapse
|
35
|
Imran M, Lim IK. Regulation of Btg2(/TIS21/PC3) expression via reactive oxygen species-protein kinase C-ΝFκΒ pathway under stress conditions. Cell Signal 2013; 25:2400-12. [PMID: 23876794 DOI: 10.1016/j.cellsig.2013.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Human B-cell translocation gene 2 (BTG2), an ortholog of mouse TIS21 (12-O-tetradecanoyl phorbol-13-acetate inducible sequence 21) and rat PC3 (Pheochromocytoma Cell 3), is a tumor suppressor gene that belongs to an antiproliferative gene family. Btg2 is involved in a variety of biological processes including cell growth, development, differentiation, senescence, and cell death and its expression is strongly regulated by p53. Recently, we have reported transient induction of Btg2 expression in response to oxidative damage; however, the regulatory mechanism was not explored. In the present study we revealed ΝFκΒ as the upstream mediator involved in Btg2 transcription in response to cell stress challenges such as serum deprivation and oxidative stress i.e. H2O2, TPA or doxorubicin treatments in several cell lines. We observed close interrelation between generation of reactive oxygen species (ROS), enhanced IκBα degradation, nuclear translocation of ΝFκΒ (p65/RelA) and the significant increase of Btg2 expression independent of p53 status. ChIP analysis revealed an enrichment of RelA (p65) bound to the κB response element on Btg2 promoter in response to the cell stress challenges. Employing various inhibitors led to cytoplasmic accumulation of IκBα, decreased p65 nuclear translocation along with significant reduction of Btg2 expression. Generation of ROS was the common event mediating ΝFκΒ activation and Btg2 transcription. Furthermore, PKC activation was also found to be a critical factor mediating ROS-mediated signals to NFκB pathway that culminate on Btg2 regulation, and specifically PKC-δ was responsible for this regulation under oxidative stress. However, serum deprivation-associated ROS generation bypassed PKC activation for induction of Btg2 expression via NFκB activation. The present data imply that oxidative stress upregulates Btg2 expression via ROS-PKC-ΝFκΒ cascade, independent of p53 status that in turn could be involved in mediating various biological phenotypes depending on the cellular context.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Biochemistry and Molecular Biology, BK21 Cell Transformation and Restoration Project, Ajou University School of Medicine, Suwon 443-721, Republic of Korea
| | | |
Collapse
|
36
|
Interaction and antagonistic roles of NF-κB and Hes6 in the regulation of cortical neurogenesis. Mol Cell Biol 2013; 33:2797-808. [PMID: 23689134 DOI: 10.1128/mcb.01610-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
The involvement of nuclear factor kappa B (NF-κB) in several processes in the postnatal and adult brain, ranging from neuronal survival to synaptogenesis and plasticity, has been documented. In contrast, little is known about the functions of NF-κB during embryonic brain development. It is shown here that NF-κB is selectively activated in neocortical neural progenitor cells in the developing mouse telencephalon. Blockade of NF-κB activity leads to premature cortical neuronal differentiation and depletion of the progenitor cell pool. Conversely, NF-κB activation causes decreased cortical neurogenesis and expansion of the progenitor cell compartment. These effects are antagonized by the proneuronal transcription factor Hes6, which physically and functionally interacts with RelA-containing NF-κB complexes in cortical progenitor cells. In turn, NF-κB exerts an inhibitory effect on the ability of Hes6 to promote cortical neuronal differentiation. These results reveal previously uncharacterized functions and modes of regulation for NF-κB and Hes6 during cortical neurogenesis.
Collapse
|
37
|
Sims JT, Ganguly SS, Bennett H, Friend JW, Tepe J, Plattner R. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One 2013; 8:e55509. [PMID: 23383209 PMCID: PMC3561297 DOI: 10.1371/journal.pone.0055509] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Despite advances in cancer detection and prevention, a diagnosis of metastatic disease remains a death sentence due to the fact that many cancers are either resistant to chemotherapy (conventional or targeted) or develop resistance during treatment, and residual chemoresistant cells are highly metastatic. Metastatic cancer cells resist the effects of chemotherapeutic agents by upregulating drug transporters, which efflux the drugs, and by activating proliferation and survival signaling pathways. Previously, we found that c-Abl and Arg non-receptor tyrosine kinases are activated in breast cancer, melanoma, and glioblastoma cells, and promote cancer progression. In this report, we demonstrate that the c-Abl/Arg inhibitor, imatinib (imatinib mesylate, STI571, Gleevec), reverses intrinsic and acquired resistance to the anthracycline, doxorubicin, by inducing G2/M arrest and promoting apoptosis in cancer cells expressing highly active c-Abl and Arg. Significantly, imatinib prevents intrinsic resistance by promoting doxorubicin-mediated NF-κB/p65 nuclear localization and repression of NF-κB targets in a STAT3-dependent manner, and by preventing activation of a novel STAT3/HSP27/p38/Akt survival pathway. In contrast, imatinib prevents acquired resistance by inhibiting upregulation of the ABC drug transporter, ABCB1, directly inhibiting ABCB1 function, and abrogating survival signaling. Thus, imatinib inhibits multiple novel chemoresistance pathways, which indicates that it may be effective in reversing intrinsic and acquired resistance in cancers containing highly active c-Abl and Arg, a critical step in effectively treating metastatic disease. Furthermore, since imatinib converts a master survival regulator, NF-κB, from a pro-survival into a pro-apoptotic factor, our data suggest that NF-κB inhibitors may be ineffective in sensitizing tumors containing activated c-Abl/Arg to anthracyclines, and instead might antagonize anthracycline-induced apoptosis.
Collapse
Affiliation(s)
- Jonathan T. Sims
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Sourik S. Ganguly
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Holly Bennett
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - J. Woodrow Friend
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Jessica Tepe
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Rina Plattner
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
38
|
Baldwin AS. Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 2012; 246:327-45. [PMID: 22435564 DOI: 10.1111/j.1600-065x.2012.01095.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The cellular response to survive or to undergo death is fundamental to the benefit of the organism, and errors in this process can lead to autoimmunity and cancer. The transcription factor nuclear factor κB (NF-κB) functions to block cell death through transcriptional induction of genes encoding anti-apoptotic and antioxidant proteins. This is essential for survival of activated cells of the immune system and for cells undergoing a DNA damage response. In Ras-transformed cells and tumors as well as other cancers, NF-κB functions to suppress apoptosis--a hallmark of cancer. Critical prosurvival roles for inhibitor of NF-κB kinase (IKK) family members, including IKKε and TBK1, have been reported, which are both NF-κB-dependent and -independent. While the roles of NF-κB in promoting cell survival in lymphocytes and in cancers is relatively clear, evidence has been presented that NF-κB can promote cell death in particular contexts. Recently, IKK was shown to play a critical role in the induction of autophagy, a metabolic response typically associated with cell survival but which can lead to cell death. This review provides an historical perspective, along with new findings, regarding the roles of the IKK and NF-κB pathways in regulating cell survival.
Collapse
Affiliation(s)
- Albert S Baldwin
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Schmitt AM, Crawley CD, Kang S, Raleigh DR, Yu X, Wahlstrom JS, Voce DJ, Darga TE, Weichselbaum RR, Yamini B. p50 (NF-κB1) is an effector protein in the cytotoxic response to DNA methylation damage. Mol Cell 2012; 44:785-96. [PMID: 22152481 DOI: 10.1016/j.molcel.2011.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2011] [Revised: 07/05/2011] [Accepted: 09/20/2011] [Indexed: 12/24/2022]
Abstract
The functional significance of the signaling pathway induced by O(6)-methylguanine (O(6)-MeG) lesions is poorly understood. Here, we identify the p50 subunit of NF-κB as a central target in the response to O(6)-MeG and demonstrate that p50 is required for S(N)1-methylator-induced cytotoxicity. In response to S(N)1-methylation, p50 facilitates the inhibition of NF-κB-regulated antiapoptotic gene expression. Inhibition of NF-κB activity is noted to be an S phase-specific phenomenon that requires the formation of O(6)-MeG:T mismatches. Chk1 associates with p50 following S(N)1-methylation, and phosphorylation of p50 by Chk1 results in the inhibition of NF-κB DNA binding. Expression of an unphosphorylatable p50 mutant blocks inhibition of NF-κB-regulated antiapoptotic gene expression and attenuates S(N)1-methylator-induced cytotoxicity. While O(6)-MeG:T-induced, p50-dependent signaling is not sufficient to induce cell death, this pathway sensitizes cells to the cytotoxic effects of DNA breaks.
Collapse
Affiliation(s)
- Adam M Schmitt
- Department of Surgery, Section of Neurosurgery, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
It is only recently that the full importance of nuclear factor-κB (NF-κB) signalling to cancer development has been understood. Although much attention has focused on the upstream pathways leading to NF-κB activation, it is now becoming clear that the inhibitor of NF-κB kinases (IKKs), which regulate NF-κB activation, have many independent functions in tissue homeostasis and normal immune function that could compromise the clinical utility of IKK inhibitors. Therefore, if the NF-κB pathway is to be properly exploited as a target for both anticancer and anti-inflammatory drugs, it is appropriate to reconsider the complex roles of the individual NF-κB subunits.
Collapse
Affiliation(s)
- Neil D Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Catherine Cookson Building, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
41
|
Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol 2011; 82:1371-83. [PMID: 21872579 DOI: 10.1016/j.bcp.2011.07.105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 01/11/2023]
Abstract
Alteration of the genome integrity leads to the activation of a vast network of cellular responses named "DNA damage response". Three kinases from the phosphoinositide 3-kinase-like protein kinase family regulate this network; ATM and DNA-PK both activated by DNA double-strand breaks and ATR activated by replication blocks. "DNA damage response" pathway coordinates cell cycle arrest, DNA repair, and the activation of transcription factors such as p53 and NF-κB. It controls senescence/apoptosis/survival of the damaged cells. Cell death or survival result from a tightly regulated balance between antagonist pro- and anti-apoptotic signals. NF-κB is a key transcription factor involved in immunity, inflammation and cell transformation. When activated by DNA double-strand breaks, NF-κB has most often a pro-survival effect and thereof interferes with chemotherapy treatments that often rely on DNA damage to induce tumor cell death (i.e. topoisomerase inhibitors and ionizing radiation). NF-κB is thus an important pharmaceutical target. Agents leading to replication stress induce a pro-apoptotic NF-κB. The molecular mechanisms initiated by DNA lesions leading to NF-κB nuclear translocation have been extensively studied these last years. In this review, we will focus on ATM, ATR and DNA-PK functions both in the IKKα/IKKβ/NEMO-dependent or -independent signaling pathways and on the regulation they can exercise at the promoter level of NF-κB regulated genes.
Collapse
|
42
|
Wang J, Ma Y, Jiang H, Zhu H, Liu L, Sun B, Pan S, Krissansen GW, Sun X. Overexpression of von Hippel-Lindau protein synergizes with doxorubicin to suppress hepatocellular carcinoma in mice. J Hepatol 2011; 55:359-68. [PMID: 21168458 DOI: 10.1016/j.jhep.2010.10.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/03/2010] [Revised: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hypoxia-inducible factors (HIFs) and nuclear factor-κB (NF-κB) regulate genes involved in carcinogenesis and progression of cancers including hepatocellular carcinoma (HCC). The von Hippel-Lindau (VHL) protein (pVHL) targets HIFα subunits for destruction and participates in modulating the activity of NF-κB. The present study aimed to investigate whether the overexpression of pVHL synergizes with doxorubicin in the treatment of HCC. METHODS Overexpression of pVHL was induced by infecting mouse HCC Hepa1-6 and H22 cells, or injecting subcutaneous Hepa1-6 tumors in C57BL/c mice, with adenoviral vectors encoding mouse VHL gene. Cell proliferation, apoptosis, tumoral angiogenesis, and gene expression and DNA-binding activity of NF-κB were examined. The therapeutic effects of pVHL were also evaluated in orthotopic Hepa1-6 tumors by intraportal delivery of Ad-VHL. RESULTS Ad-VHL enhanced the anti-tumor activity of doxorubicin by inhibiting cell proliferation, and causing cell cycle arrest and apoptosis. The Ad-VHL infection downregulated HIF-1α and HIF-2α expression, and inhibited NF-κB activity and the expression of genes involved in apoptosis, proliferation, angiogenesis, invasion, and metastasis. Injection of Ad-VHL into HCC tumors augmented doxorubicin-induced suppression of tumor growth by inhibiting cell proliferation and tumor angiogenesis, and by inducing cell apoptosis. Effects on the expression of HIFαs, activity of NF-κB, and their downstream genes were in accordance with the in vitro findings. Intraportal injection of Ad-VHL enhanced the efficacy of doxorubicin to suppress the growth of orthotopic liver tumors. CONCLUSIONS By targeting HIF and NF-κB, overexpression of pVHL enhances the efficacy of doxorubicin, and warrants consideration as a potential therapeutic strategy for treating HCC.
Collapse
Affiliation(s)
- Jizhou Wang
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jamshidi M, Bartkova J, Greco D, Tommiska J, Fagerholm R, Aittomäki K, Mattson J, Villman K, Vrtel R, Lukas J, Heikkilä P, Blomqvist C, Bartek J, Nevanlinna H. NQO1 expression correlates inversely with NFκB activation in human breast cancer. Breast Cancer Res Treat 2011; 132:955-68. [DOI: 10.1007/s10549-011-1629-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2011] [Accepted: 06/03/2011] [Indexed: 12/17/2022]
|
44
|
Nucleolar NF-κB/RelA mediates apoptosis by causing cytoplasmic relocalization of nucleophosmin. Cell Death Differ 2011; 18:1889-903. [PMID: 21660047 DOI: 10.1038/cdd.2011.79] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
In a number of contexts, and particularly in response to cellular stress, stimulation of the NF-kappaB (NF-κB) pathway promotes apoptosis. One mechanism underlying this pro-apoptotic activity is nucleolar sequestration of RelA, which is reported to cause cell death by repressing NF-κB-driven transcription. Here, we identify a novel and distinct nucleolar activity of RelA that induces apoptosis. We demonstrate, using a viral nucleolar localization signal (NoLS)-RelA fusion protein, that direct targeting of RelA to the nucleolus mediates apoptosis, independent of NF-κB transcriptional activity. We demonstrate a requirement for nucleophosmin (NPM, B23.1) in this apoptotic effect, and the apoptotic effect of stress-induced nucleolar RelA. We show by multiple approaches that nucleolar translocation of RelA is causally involved in the relocalization of NPM from the nucleolus to the cytoplasm and that RelA-induced cytoplasmic NPM mediates apoptosis by facilitating the mitochondrial accumulation of BAX. These data uncover a novel stress-response pathway and mechanism by which RelA promotes apoptosis, independent of its effects on NF-κB transcriptional activity. These findings are relevant to the design of novel anticancer agents that target RelA to this compartment.
Collapse
|
45
|
Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 2011; 117:321-32. [DOI: 10.1111/j.1471-4159.2011.07207.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
|
46
|
Ho JQ, Asagiri M, Hoffmann A, Ghosh G. NF-κB potentiates caspase independent hydrogen peroxide induced cell death. PLoS One 2011; 6:e16815. [PMID: 21347231 PMCID: PMC3039651 DOI: 10.1371/journal.pone.0016815] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2010] [Accepted: 01/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background The pro-survival activity of NF-κB in response to a variety of stimuli has been extensively characterized. Although there have been a few reports addressing the pro-cell death role of NF-κB, the precise mechanism of NF-κB's pro-cell death function still remains elusive. Methodology/Principal Findings In the present study, we investigated the role of NF-κB in cell death induced by chronic insult with hydrogen peroxide (H2O2). Here, we show that NF-κB promotes H2O2 induced caspase independent but PARP dependent fibroblast cell death. The pro-death activity of NF-κB is due to the DNA binding activity of RelA, which is induced through IKK- mediated IκBα degradation. NF-κB dependent pro-survival genes, Bcl-2 and XIAP, were significantly repressed, while NF-κB dependent pro-death genes, TNFα and Fas Ligand, were induced in response to H2O2. Conclusions/Significance We discovered an unexpected function of NF-κB, in that it potentiates chronic H2O2 exposure induced cell death, and suggest that NF-κB mediates cell death through the repression of pro-survival genes and induction of pro-death genes. Since unremitting exposure of tissues to H2O2 and other reactive oxygen species can lead to several degenerative disorders and diseases, our results have important implications for the use of NF-κB inhibitors in therapeutic drug design.
Collapse
Affiliation(s)
- Jessica Q. Ho
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Masataka Asagiri
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Malonia SK, Sinha S, Lakshminarasimhan P, Singh K, Jalota-Badhwar A, Rampalli S, Kaul-Ghanekar R, Chattopadhyay S. Gene regulation by SMAR1: Role in cellular homeostasis and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:1-12. [PMID: 20709157 DOI: 10.1016/j.bbcan.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022]
Abstract
Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis.
Collapse
|
48
|
Suttana W, Mankhetkorn S, Poompimon W, Palagani A, Zhokhov S, Gerlo S, Haegeman G, Berghe WV. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols. Mol Cancer 2010; 9:99. [PMID: 20438634 PMCID: PMC2873443 DOI: 10.1186/1476-4598-9-99] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2009] [Accepted: 05/03/2010] [Indexed: 11/13/2022] Open
Abstract
Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis.
Collapse
Affiliation(s)
- Wipob Suttana
- Laboratory of Physical Chemistry, Molecular and Cellular Biology and Center of Excellence for Molecular Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bednarski BK, Baldwin AS, Kim HJ. Addressing reported pro-apoptotic functions of NF-kappaB: targeted inhibition of canonical NF-kappaB enhances the apoptotic effects of doxorubicin. PLoS One 2009; 4:e6992. [PMID: 19746155 PMCID: PMC2734988 DOI: 10.1371/journal.pone.0006992] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2009] [Accepted: 08/19/2009] [Indexed: 11/25/2022] Open
Abstract
The ability of the transcription factor NF-κB to upregulate anti-apoptotic proteins has been linked to the chemoresistance of solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-κB can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the outcome of NF-κB inhibition on the cytotoxicity of doxorubicin in studies describing pro-apoptotic NF-κB activity. In this study, we further characterize the activation of NF-κB in response to doxorubicin and evaluate its role in chemotherapy-induced cell death in sarcoma cells where NF-κB is reported to be pro-apoptotic. Doxorubicin treatment in U2OS cells induced canonical NF-κB activity as evidenced by increased nuclear accumulation of phosphorylated p65 at serine 536 and increased DNA–binding activity. Co-treatment with a small molecule IKKβ inhibitor, Compound A, abrogated this response. RT–PCR evaluation of anti-apoptotic gene expression revealed that doxorubicin-induced transcription of cIAP2 was inhibited by Compound A, while doxorubicin-induced repression of other anti-apoptotic genes was unaffected by Compound A or siRNA to p65. Furthermore, the combination of doxorubicin and canonical NF-κB inhibition with Compound A or siRNA to p65 resulted in decreased cell viability measured by trypan blue staining and MTS assay and increased apoptosis measured by cleaved poly (ADP-ribose) polymerase and cleaved caspase 3 when compared to doxorubicin alone. Our results demonstrate that doxorubicin-induced canonical NF-κB activity associated with phosphorylated p65 is anti-apoptotic in its function and that doxorubicin-induced repression of anti-apoptotic genes occurs independent of p65. Therefore, combination therapies incorporating NF-κB inhibitors together with standard chemotherapies remains a viable method to improve the clinical outcomes in patients with advanced stage malignancies.
Collapse
Affiliation(s)
- Brian K. Bednarski
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hong Jin Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Karl S, Pritschow Y, Volcic M, Häcker S, Baumann B, Wiesmüller L, Debatin KM, Fulda S. Identification of a novel pro-apopotic function of NF-kappaB in the DNA damage response. J Cell Mol Med 2009; 13:4239-56. [PMID: 19725919 PMCID: PMC4496130 DOI: 10.1111/j.1582-4934.2009.00888.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
NF-κB is activated by DNA-damaging anticancer drugs as part of the cellular stress response. However, the consequences of drug-induced NF-κB activation are still only partly understood. To investigate the impact of NF-κB on the cell’s response to DNA damage, we engineered glioblastoma cells that stably express mutant IκBα superrepressor (IκBα-SR) to block NF-κB activation. Here, we identify a novel pro-apoptotic function of NF-κB in the DNA damage response in glioblastoma cells. Chemotherapeutic drugs that intercalate into DNA and inhibit topoisomerase II such as Doxorubicin, Daunorubicin and Mitoxantrone stimulate NF-κB DNA binding and transcriptional activity prior to induction of cell death. Importantly, specific inhibition of drug-induced NF-κB activation by IκBα-SR or RNA interference against p65 significantly reduces apoptosis upon treatment with Doxorubicin, Daunorubicin or Mitoxantrone. NF-κB exerts this pro-apoptotic function especially after pulse drug exposure as compared to continuous treatment indicating that the contribution of NF-κB becomes relevant during the recovery phase following the initial DNA damage. Mechanistic studies show that NF-κB inhibition does not alter Doxorubicin uptake and efflux or cell cycle alterations. Genetic silencing of p53 by RNA interference reveals that NF-κB promotes drug-induced apoptosis in a p53-independent manner. Intriguingly, drug-mediated NF-κB activation results in a significant increase in DNA damage prior to the induction of apoptosis. By demonstrating that NF-κB promotes DNA damage formation and apoptosis upon pulse treatment with DNA intercalators, our findings provide novel insights into the control of the DNA damage response by NF-κB in glioblastoma.
Collapse
Affiliation(s)
- Sabine Karl
- University Children's Hospital, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|