1
|
Hong SH, Lee YJ, Jang EB, Hwang HJ, Kim ES, Son DH, Park SY, Moon HS, Yoon YE. Therapeutic Efficacy of YM155 to Regulate an Epigenetic Enzyme in Major Subtypes of RCC. Int J Mol Sci 2023; 25:216. [PMID: 38203388 PMCID: PMC10779260 DOI: 10.3390/ijms25010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and includes more than 10 subtypes. Compared to the intensively investigated clear cell RCC (ccRCC), the underlying mechanisms and treatment options of other subtypes, including papillary RCC (pRCC) and chromogenic RCC (chRCC), are limited. In this study, we analyzed the public databases for ccRCC, pRCC, and chRCC and found that BIRC5 was commonly overexpressed in a large cohort of pRCC and chRCC patients as well as ccRCC and was closely related to the progression of RCCs. We investigated the potential of BIRC5 as a therapeutic target for these three types of RCCs. Loss and gain of function studies showed the critical role of BIRC5 in cancer growth. YM155, a BIRC5 inhibitor, induced a potent tumor-suppressive effect in the three types of RCC cells and xenograft models. To determine the mechanism underlying the anti-tumor effects of YM155, we examined epigenetic modifications in the BIRC5 promoter and found that histone H3 lysine 27 acetylation (H3K27Ac) was highly enriched on the promoter region of BIRC5. Chromatin-immunoprecipitation analysis revealed that H3K27Ac enrichment was significantly decreased by YM155. Immunohistochemistry of xenografted tissue showed that overexpression of BIRC5 plays an important role in malignancy in RCC. Furthermore, high expression of P300 was significantly associated with the progression of RCC. Our findings demonstrate the P300-H3K27Ac-BIRC5 cascade in three types of RCC and provide a therapeutic path for future research on RCC.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Young Ju Lee
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Eun Bi Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Hyun Ji Hwang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Eun Song Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Da Hyeon Son
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; (E.B.J.); (H.J.H.); (E.S.K.); (D.H.S.)
| | - Sung Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Hong Sang Moon
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea; (S.H.H.); (Y.J.L.); (S.Y.P.); (H.S.M.)
| |
Collapse
|
2
|
Hua X, Zou R, Bai X, Yang Y, Lu J, Huang C. Differential functions of RhoGDIβ in malignant transformation and progression of urothelial cell following N-butyl-N-(4-hydmoxybutyl) nitrosamine exposure. BMC Biol 2023; 21:181. [PMID: 37635218 PMCID: PMC10463823 DOI: 10.1186/s12915-023-01683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/15/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Functional role of Rho GDP-dissociation inhibitor beta (RhoGDIβ) in tumor biology appears to be contradictory across various studies. Thus, the exploration of the molecular mechanisms underlying the differential functions of this protein in urinary bladder carcinogenesis is highly significant in the field. Here, RhoGDIβ expression patterns, biological functions, and mechanisms leading to transformation and progression of human urothelial cells (UROtsa cells) were evaluated following varying lengths of exposure to the bladder carcinogen N-butyl-N-(4-hydmoxybutyl) nitrosamine (BBN). RESULTS It was seen that compared to expression in vehicle-treated control cells, RhoGDIβ protein expression was downregulated after 2-month of BBN exposure, but upregulated after 6-month of exposure. Assessments of cell function showed that RhoGDIβ inhibited UROtsa cell growth in cells with BBN for 2-month exposure, whereas it promoted the invasion of cells treated with BBN for 6 months. Mechanistic studies revealed that 2-month of BBN exposure markedly attenuated DNMT3a abundance, and this led to reduced miR-219a promoter methylation, increased miR-219a binding to the RhoGDIβ mRNA 3'UTR, and reduced RhoGDIβ protein translation. While after 6-mo of BBN treatment, the cells showed increased PP2A/JNK/C-Jun axis phosphorylation and this in turn mediated overall RhoGDIβ mRNA transcription and protein expression as well as invasion. CONCLUSIONS These findings indicate that RhoGDIβ is likely to inhibit the transformation of human urothelial cells during the early phase of BBN exposure, whereas it promotes invasion of the transformed/progressed urothelial cells in the late stage of BBN exposure. The studies also suggest that RhoGDIβ may be a useful biomarker for evaluating the progression of human bladder cancers.
Collapse
Affiliation(s)
- Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Cellular Concentration of Survivin and Caspase 3 in Habitual Tobacco Chewers with and without Oral Squamous Cell Carcinoma in South Indian Rural Population-A Case Control Study. Diagnostics (Basel) 2022; 12:diagnostics12092249. [PMID: 36140650 PMCID: PMC9497477 DOI: 10.3390/diagnostics12092249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: There is paucity of data on tissue levels of Survivin and Caspase 3 in south Indian tobacco chewers with oral Squamous cell carcinoma (OSCC). Oral cancer is a rapidly growing, highly prevalent head and neck malignancy; it involves a mucosal epithelium of a buccal cavity exposed to tobacco and other carcinogens. The basis of the survival of a tumor cell or transformed normal cell into a neoplastic cell is by the suppression of apoptosis regulation. Recently, researchers have focused on Survivin, an inhibitor of apoptosis family of proteins (IAP), involved in apoptosis regulation in cancer cells targeting the executioner Caspase 3. The current study aims to quantify the cellular levels of Survivin and Caspase 3 in tobacco chewers with OSCC and in habitual tobacco chewers without OSCC, in comparison to controls. Methods: A single centric case control study included 186 study subjects, categorized into: Group I (n = 63), habitual tobacco chewers with OSCC; Group 2 (n = 63), habitual tobacco chewers without OSCC; and Group 3 (n = 63), the controls. Resected tumor tissue from Group 1 and buccal cell samples from Groups 2 and 3 were collected into phosphate buffer saline (PBS) and assayed for Survivin and Caspase 3 levels by the ELISA sandwich method. Results: The mean ± SD of the Survivin protein in Group 1 was (1670.9 ± 796.21 pg/mL); in Group 2, it was (1096.02 ± 346.17 pg/mL); and in Group 3, it was (397.5 ± 96.1 pg/mL) with a significance of p < 0.001. Similarly, the level of Caspase 3 in Group 1 was (7.48 ± 2.67 ng/mL); in Group 2, it was (8.85 ± 2.41 ng/mL); and in Group 3, it was (2.27 ± 2.24 ng/mL) with a significance of p < 0.001. Conclusion: The progressive transformation of buccal cells to neoplastic cells is evident; in the case of OSCC, this indicates that the over-expression of Survivin compared to Caspase 3 confirms the suppression and dysregulation of apoptosis.
Collapse
|
5
|
Carbonic Anhydrase IX and Survivin in Colorectal Adenocarcinoma Cells: Slovakian Population Study. BIOLOGY 2021; 10:biology10090872. [PMID: 34571749 PMCID: PMC8466885 DOI: 10.3390/biology10090872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary This retrospective study (Slovakian population study) brings information about immunohistochemical detection of CAIX and survivin in 74 samples of human colorectal adenocarcinoma and comparison their expression with expression in healthy colon tissue. Our results show that all of samples with healthy colon tissue were CAIX and survivin-negative and there is no statistically significant dependence of these proteins and the chosen clinicopathological parameters. These findings demonstrate that detection of these proteins could be useful for tumor diagnostic and prognostic and CAIX and survivin could represent independent negative prognostic markers of colorectal cancer. Abstract The aim of this study was to detect carbonic anhydrase IX (CAIX) and survivin in the colorectal adenocarcinoma cells of the Slovakian population. We used an indirect three-step immunohistochemical method with DAB staining for the localization of the proteins and investigation their expression. We compared their expression with expression in healthy colorectal tissue. In 74 tissues of colorectal adenocarcinomas, 42% showed CAIX positivity and 20% showed survivin positivity. Brown membrane immunostaining was visible in CAIX-positive tumors. Survivin-positive tumors had strong brown cytoplasmic immunostaining. Co-expression of both proteins was present in five specimens (7%). The samples of normal colorectal tissue (without carcinoma) were CAIX-negative and survivin-negative. We also applied the Chi-squared test for evaluation statistically significant association between the expression of proteins and selected clinical and histopathological parameters. We did not find any statistically significant correlations between CAIX or survivin expression and sex of patients, the grade of the tumor, nodal status and presence of metastasis (p > 0.05). The fact that all samples of normal colorectal tissue were CAIX- and survivin-negative could lead to the possibility of using these two proteins as potential tumor diagnostic markers. On the basic of the available publications and data, we suggest that CAIX and survivin could be negative independent prognostic markers of colorectal cancer, which could affect response to therapy.
Collapse
|
6
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
7
|
Moradi Tabriz H, Nazar E, Ahmadi SA, Azimi E, Majidi F. Survivin and Her2 Expressions in Different Grades of Urothelial Neoplasms of Urinary Bladder. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:154-161. [PMID: 33936226 PMCID: PMC8085283 DOI: 10.30699/ijp.2020.130859.2447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023]
Abstract
Background & Objective: Urothelial neoplasm (UN) of bladder is a potentially lethal malignancy, particularly in locally advanced or metastatic cases. Development of molecular markers such as HER2 and Survivin may provide useful information on diagnosis and prognosis in UN of bladder. Methods: We studied the immunohistochemical (IHC) expression of HER2 and Survivin in 84 radical/partial cystectomy and transurethral resection (TUR) specimens with different histologic grades and stages. All samples were obtained from Pathology Department of Sina Hospital in Tehran, Iran from 2014 to 2018. Results: From the total number of 84 UN samples, 10 cases (11.9%) showed papillary neoplasm of low malignant potential, 30 cases (35.7%) presented with low-grade papillary urothelial neoplasm, and 44 cases (52.4%) diagnosed as high-grade papillary urothelial neoplasm. HER2 and Survivin expressions were seen in 44 (52.4%) (P=0.610) and 9 (10.7%) patients (P=0.046), respectively. Survivin expression showed a mild increase in high grade UN. Conclusion: Our findings suggest that the IHC expression of Survivin and HER2 are not well associated with histological grades of urothelial neoplasms of bladder. This may be partly due to relatively small sample size and other factors such as patient characteristics or antibody specifications.
Collapse
Affiliation(s)
- Hedieh Moradi Tabriz
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Nazar
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ahmadi
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Azimi
- Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazeleh Majidi
- Research and Development Center Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Levy A, Leynes C, Baig M, Chew SA. The Application of Biomaterials in the Treatment of Platinum‐Resistant Ovarian Cancer. ChemMedChem 2019; 14:1810-1827. [DOI: 10.1002/cmdc.201900450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Arkene Levy
- Department of Pharmacology, College of Medical Sciences Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Carolina Leynes
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| | - Mirza Baig
- Dr. Kiran C. Patel College of Osteopathic Medicine Nova Southeastern University 3200 South University Drive Davie FL 33328 USA
| | - Sue Anne Chew
- Department Health and Biomedical Sciences University of Texas Rio Grande Valley One West University Boulevard Brownsville TX 78520 USA
| |
Collapse
|
9
|
Kamra M, Maiti B, Dixit A, Karande AA, Bhattacharya S. Tumor Chemosensitization through Oncogene Knockdown Mediated by Unique α-Tocopherylated Cationic Geminis. Biomacromolecules 2019; 20:1555-1566. [DOI: 10.1021/acs.biomac.8b01751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mohini Kamra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bappa Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anjali A. Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
10
|
Martin DT, Shen H, Steinbach-Rankins JM, Zhu X, Johnson KK, Syed J, Saltzman WM, Weiss RM. Glycoprotein-130 Expression Is Associated with Aggressive Bladder Cancer and Is a Potential Therapeutic Target. Mol Cancer Ther 2018; 18:413-420. [PMID: 30381445 DOI: 10.1158/1535-7163.mct-17-1079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/01/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Predicting bladder cancer progression is important in selecting the optimal treatment for bladder cancer. Because current diagnostic factors regarding progression are lacking, new factors are needed to further stratify the curative potential of bladder cancer. Glycoprotein-130 (GP130), a transmembrane protein, is central to a number of signal transduction pathways involved in tumor aggressiveness, making it an attractive target. We hypothesize that if GP130 is found in an aggressive population of bladder tumors, then blocking GP130 expression may inhibit bladder cancer growth. Herein, we quantitatively show, using 11 patient samples and four bladder cancer cell lines, that GP130 is expressed in the aggressive human bladder tumors and in high-grade bladder cancer cell lines. Moreover, GP130 is significantly correlated with tumor grade, node category, tumor category, and patient outcome. We demonstrated a tumor-specific GP130 effect by blocking GP130 expression in bladder tumor cells, which resulted in decreased cell viability and reduced cell migration. Furthermore, we reduced tumor volume by approximately 70% compared with controls by downregulating GP130 expression using chitosan-functionalized nanoparticles encapsulating GP130 siRNA in an in vivo bladder cancer xenograft mouse model. Our results indicate that GP130 expression is linked to the aggressiveness of bladder tumors, and blocking GP130 has therapeutic potential in controlling tumor growth.
Collapse
Affiliation(s)
- Darryl T Martin
- Department of Urology, Yale University, New Haven, Connecticut.
| | - Hongliang Shen
- Department of Urology, Yale University, New Haven, Connecticut
| | - Jill M Steinbach-Rankins
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Xi Zhu
- Department of Urology, Yale University, New Haven, Connecticut
| | | | - Jamil Syed
- Department of Urology, Yale University, New Haven, Connecticut
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Robert M Weiss
- Department of Urology, Yale University, New Haven, Connecticut
| |
Collapse
|
11
|
Kaymak A, Sayols S, Papadopoulou T, Richly H. Role for the transcriptional activator ZRF1 in early metastatic events in breast cancer progression and endocrine resistance. Oncotarget 2018; 9:28666-28690. [PMID: 29983888 DOI: 10.18632/oncotarget.25596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most common malignancies among women which is often treated with hormone therapy and chemotherapy. Despite the improvements in detection and treatment of breast cancer, the vast majority of breast cancer patients are diagnosed with metastatic disease either at the beginning of the disease or later during treatment. Still, the molecular mechanisms causing a therapy resistant metastatic breast cancer are still elusive. In the present study we addressed the function of the transcriptional activator ZRF1 during breast cancer progression. We provide evidence that ZRF1 plays an essential role for the early metastatic events in vitro and acts like a tumor suppressor protein during the progression of breast invasive ductal carcinoma into a more advanced stage. Hence, depletion of ZRF1 results in the acquisition of metastatic behavior by facilitating the initiation of the metastatic cascade, notably for cell adhesion, migration and invasion. Furthermore absence of ZRF1 provokes endocrine resistance via misregulation of cell death and cell survival related pathways. Taken together, we have identified ZRF1 as an important regulator of breast cancer progression that holds the potential to be explored for new treatment strategies in the future.
Collapse
Affiliation(s)
- Aysegül Kaymak
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Sergi Sayols
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Thaleia Papadopoulou
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany.,Department of Developmental and Stem Cell Biology, Institute Pasteur, Paris, France
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology, Mainz, Germany
| |
Collapse
|
12
|
Conde M, Michen S, Wiedemuth R, Klink B, Schröck E, Schackert G, Temme A. Chromosomal instability induced by increased BIRC5/Survivin levels affects tumorigenicity of glioma cells. BMC Cancer 2017; 17:889. [PMID: 29282022 PMCID: PMC5745881 DOI: 10.1186/s12885-017-3932-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023] Open
Abstract
Background Survivin, belonging to the inhibitor of apoptosis (IAP) gene family, is abundantly expressed in tumors. It has been hypothesized that Survivin facilitates carcinogenesis by inhibition of apoptosis resulting in improved survival of tumorigenic progeny. Additionally, Survivin plays an essential role during mitosis. Together with its molecular partners Aurora B, Borealin and inner centromere protein it secures bipolar chromosome segregation. However, whether increased Survivin levels contribute to progression of tumors by inducing chromosomal instability remains unclear. Methods We overexpressed Survivin in U251-MG, SVGp12, U87-MG, HCT116 and p53-deficient U87-MGshp53 and HCT116p53−/− cells. The resulting phenotype was investigated by FACS-assisted cell cycle analysis, Western Blot analysis, confocal laser scan microscopy, proliferation assays, spectral karyotyping and in a U251-MG xenograft model using immune-deficient mice. Results Overexpression of Survivin affected cells with knockdown of p53, cells harboring mutant p53 and SV40 large T antigen, respectively, resulting in the increase of cell fractions harboring 4n and >4n DNA contents. Increased γH2AX levels, indicative of DNA damage were monitored in all Survivin-transduced cell lines, but only in p53 wild type cells this was accompanied by an attenuated S-phase entry and activation of p21waf/cip. Overexpression of Survivin caused a DNA damage response characterized by increased appearance pDNA-PKcs foci in cell nuclei and elevated levels of pATM S1981 and pCHK2 T68. Additionally, evolving structural chromosomal aberrations in U251-MG cells transduced with Survivin indicated a DNA-repair by non-homologous end joining recombination. Subcutaneous transplantation of U251-MG cells overexpressing Survivin and mycN instead of mycN oncogene alone generated tumors with shortened latency and decreased apoptosis. Subsequent SKY-analysis of Survivin/mycN-tumors revealed an increase in structural chromosomal aberrations in cells when compared to mycN-tumors. Conclusions Our data suggest that increased Survivin levels promote adaptive evolution of tumors through combining induction of genetic heterogeneity with inhibition of apoptosis. Electronic supplementary material The online version of this article (10.1186/s12885-017-3932-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Conde
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ralf Wiedemuth
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany.
| |
Collapse
|
13
|
Wang D, Jiao C, Zhu Y, Liang D, Zao M, Meng X, Gao J, He Y, Liu W, Hou J, Zhong Z, Cheng Z. Activation of CXCL12/CXCR4 renders colorectal cancer cells less sensitive to radiotherapy via up-regulating the expression of survivin. Exp Biol Med (Maywood) 2016; 242:429-435. [PMID: 27798120 DOI: 10.1177/1535370216675068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer is the most common malignancy of the gastrointestinal tract. Surgical treatment combined with radiotherapy is the main treatment course for colorectal cancer; nevertheless, radio-resistance is commonly encountered during the treatment course and seriously influences the therapeutic efficacy. We tested the hypothesis that the CXCL12/CXCR4 axis is closely related to radiotherapy sensitivity in colorectal cancer cells. Here, we found that the decrease in cell viability and the increase in cell death induced by radiotherapy were attenuated by CXCL12 treatment, and the inhibition of CXCR4 promoted colorectal cancer cells to be more sensitive to radiotherapy. We also examined the critical roles of CXCL12/CXCR4 in cell survival and found that radiotherapy induced Bax expression and facilitated the activity of caspase-3 and caspase-9, which were reversed by CXCL12 treatment. Cell apoptosis was enhanced by the inhibition of CXCR4 under radiotherapy conditions. Furthermore, treatment with CXCL12 resulted in an increased expression of survivin, and the inhibitory roles of CXCL12 in radiotherapy-induced apoptosis were mitigated by survivin knockdown. These results indicate that CXCL12/CXCR4 protects colorectal cancer cells against radiotherapy via survivin, implying an important underlying mechanism of resistance to radiotherapy during colorectal cancer therapy.
Collapse
Affiliation(s)
- Dawei Wang
- 1 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Chengbin Jiao
- 2 Department of General Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154002, P.R. China
| | - Yanli Zhu
- 2 Department of General Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154002, P.R. China
| | - Deshen Liang
- 1 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Ming Zao
- 1 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Xiangyu Meng
- 1 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Jianwei Gao
- 1 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China
| | - Yunlong He
- 2 Department of General Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154002, P.R. China
| | - Weixin Liu
- 2 Department of General Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154002, P.R. China
| | - Jie Hou
- 2 Department of General Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154002, P.R. China
| | - Zhaohua Zhong
- 3 Department of Microbiology, Harbin Medical University, Nangang, Harbin 150081, P.R. China
| | - Zhuoxin Cheng
- 1 Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P.R. China.,2 Department of General Surgery, the First Affiliated Hospital of Jiamusi University, Jiamusi 154002, P.R. China
| |
Collapse
|
14
|
Abstract
Survivin, a member of the inhibitor of apoptosis (IAP) protein family that inhibits caspases and blocks cell death, is highly expressed in most cancers and is associated with a poor clinical outcome. Survivin has consistently been identified by molecular profiling analysis to be associated with high tumour grade cancers, different disease survival and recurrence. Polymorphisms in the survivin gene are emerging as powerful tools to study the biology of the disease and have the potential to be used in disease prognosis and diagnosis. The survivin gene polymorphisms have also been reported to influence tumour aggressiveness as well as survival of cancer patients. The differential expression of survivin in cancer cells compared to normal tissues and its role as a nodal protein in a number of cellular pathways make it a high target for different therapeutics. This review discusses the complex circuitry of survivin in human cancers and gene variants of survivin, and highlights novel therapy that targets this important protein.
Collapse
Affiliation(s)
| | | | - R D Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
15
|
Khan Z, Khan AA, Prasad GBKS, Khan N, Tiwari RP, Bisen PS. Growth inhibition and chemo-radiosensitization of head and neck squamous cell carcinoma (HNSCC) by survivin-siRNA lentivirus. Radiother Oncol 2015; 118:359-68. [PMID: 26747757 DOI: 10.1016/j.radonc.2015.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Survivin expression is often associated with aggressive tumor behavior and therapy resistance. In this study, we investigated the effect of survivin knockdown by survivin-siRNA lentiviral vector (Svv-Lent) on the response of HNSCC to chemo-radiotherapy, tumor growth and metastasis. METHODS Four human HNSCC (OSC19, Cal27, Cal33 and FaDu) and one normal HOK cell lines were included in the study, and survivin knockdown was achieved with Svv-Lent treatment. Cell proliferation and apoptosis were measured by MTT and TUNEL assay, respectively. Transwell assays were performed to measure in vitro cell migration and matrigel invasion. Xenograft tumors were developed in nude mice by injecting Cal27 cells subcutaneously and following tail-vein injection of lung and liver metastasis. RESULTS Knockdown of survivin significantly suppressed HNSCC cell proliferation and induced apoptosis in vitro. Survivin inhibition could also significantly reduce in vitro cell migration and matrigel invasion that might be due to inactivation of matrix metalloproteinases. In vivo studies showed significant repression of Cal27 xenograft tumor growth and tissue metastasis leading to improvement in mice survival in the Svv-Lent treated group compared to controls. Our data indicated that survivin expression in HNSCC cells contributed to chemo-radioresistance, and its down-regulation increased anti-cancer effects of paclitaxel, cisplatin and radiation. CONCLUSIONS Our findings suggest that sustained survivin expression facilitates HNSCC tumor growth and confers resistance to chemo-radiotherapy. Svv-Lent therapy may be able to enhance the cytotoxic effect of commonly used anticancer drugs such as cisplatin and paclitaxel, and radiotherapy that could provide a promising strategy for the effective control of resistant head and neck cancer.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, India; Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, USA.
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Noor Khan
- Division of Plant-Microbe Interactions, National Botanical Research Institute, Lucknow, India
| | | | | |
Collapse
|
16
|
Mathieu R, Klatte T, Margulis V, Karam JA, Rouprêt M, Seitz C, Karakiewicz PI, Fajkovic H, Wood CG, Weizer AZ, Raman JD, Remzi M, Rioux-Leclercq N, Haitel A, Bensalah K, Lotan Y, Rink M, Kluth LA, Scherr DS, Robinson BD, Shariat SF. Survivin is not an independent prognostic factor for patients with upper tract urothelial carcinoma: a multi-institutional study. Urol Oncol 2015; 33:495.e15-22. [PMID: 26228160 DOI: 10.1016/j.urolonc.2015.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Several small single-center studies have reported conflicting results on the prognostic value of survivin expression in upper tract urothelial carcinoma (UTUC) following radical nephroureterectomy. We attempted to validate the prognostic utility of survivin using a large multi-institutional cohort. MATERIAL AND METHODS Survivin expression was evaluated by immunohistochemistry in tumor tissue from 732 patients with unilateral, sporadic UTUC treated with radical nephroureterectomy between 1990 and 2008 at 7 centers. Survivin expression was considered altered when at least 10% of the tumor cells stained positive. Associations of altered survivin expression with recurrence-free survival (RFS) and cancer-specific survival (CSS) were evaluated using Cox proportional hazards regression models. RESULTS Altered survivin expression was observed in 288 (39.3%) tumors and was associated with more advanced pathological tumor stages (P<0.001), lymph node metastases (P<0.001), lymphovascular invasion (P<0.001), tumor necrosis (P = 0.027), and tumor architecture (P<0.001). Median follow-up was 35 (16-64) months. There were 191 (25.4%) patients who experienced disease recurrence, and 165 patients (21.9%) died of the disease. In the univariable analysis, altered survivin expression was significantly associated with worse RFS and CSS (each P<0.001); however, altered survivin expression did not achieve independent predictive status on multivariable models (P = 0.24 and P = 0.53). Similarly, survivin was not independently associated with outcomes in subgroup analyses, including patients with high-grade tumors. CONCLUSIONS In UTUC, altered survivin expression is associated with worse clinicopathological features and worse RFS and CSS. However, it does not appear to be independently associated with cancer outcomes when considering standard prognostic factors.
Collapse
Affiliation(s)
- Romain Mathieu
- Department of Urology, Medical University Vienna, General Hospital, Vienna, Austria; Department of Urology, Rennes University Hospital, Rennes, France
| | - Tobias Klatte
- Department of Urology, Medical University Vienna, General Hospital, Vienna, Austria
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Jose A Karam
- Department of Urology, MD Anderson Cancer Center, Houston, TX
| | - Morgan Rouprêt
- Academic Department of Urology, La Pitié-Salpetrière Hospital, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Pierre et Marie Curie, University Paris 6, Paris, France
| | - Christian Seitz
- Department of Urology, Medical University Vienna, General Hospital, Vienna, Austria
| | - Pierre I Karakiewicz
- Cancer Prognostics and Health Outcomes Unit, University of Montreal Health Centre, Montreal, Canada
| | - Harun Fajkovic
- Department of Urology, Medical University Vienna, General Hospital, Vienna, Austria
| | | | - Alon Z Weizer
- Department of Urology, University of Michigan Cancer Center, Ann Arbor, MI
| | - Jay D Raman
- Division of Urology, Penn State Milton S. Hershey Medical Center, Hershey, PA
| | - Mesut Remzi
- Department of Urology, Medical University Vienna, General Hospital, Vienna, Austria
| | | | - Andrea Haitel
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Karim Bensalah
- Department of Urology, Rennes University Hospital, Rennes, France
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luis A Kluth
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Douglas S Scherr
- Department of Urology, Weill Cornell Medical College, New York, NY
| | - Brian D Robinson
- Department of Urology, Weill Cornell Medical College, New York, NY; Department of Pathology, Weill Cornell Medical College, New York, NY
| | - Shahrokh F Shariat
- Department of Urology, Medical University Vienna, General Hospital, Vienna, Austria; Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX; Department of Urology, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
17
|
Development of replication-competent adenovirus for bladder cancer by controlling adenovirus E1a and E4 gene expression with the survivin promoter. Oncotarget 2015; 5:5615-23. [PMID: 25015402 PMCID: PMC4170600 DOI: 10.18632/oncotarget.2151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Survivin is a member of the inhibitors of apoptosis protein family. Here, we examined survivin expression and confirmed abundant survivin expression in bladder cancer cells. This expression pattern indicated that the transcriptional regulatory elements that control survivin expression could be utilized to discriminate cancer from normal cells. We therefore generated a novel adenovirus termed Ad5/35E1apsurvivinE4 with the following characteristics: 1) E1A and E4 protein expression was dependent on survivin promoter activity; 2) the green fluorescence protein gene was inserted into the genome under the control of the CMV promoter; 3) most of the E3 sequences were deleted, but the construct was still capable of expressing the adenovirus death protein with potent cytotoxic effects; and 4) the fiber knob was from serotype 35 adenovirus. As expected from the abundant survivin expression observed in bladder cancer cells, Ad5/35E1apsurvivinE4 replicated better in cancer cells than in normal cells by a factor of 106 to 102. Likewise, Ad5/35E1apsurvivinE4 exerted greater cytotoxic effects on all bladder cancer cell lines tested. Importantly, Ad5/35E1apsurvivinE4 inhibited the growth of Ku7-Luc orthotopic xenografts in nude mice. Taken together, Ad5/35E1apsurvivinE4 indicates that the survivin promoter may be utilized for the development of a replication-competent adenovirus to target bladder cancers.
Collapse
|
18
|
Salzano G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP. Multifunctional Polymeric Micelles Co-loaded with Anti-Survivin siRNA and Paclitaxel Overcome Drug Resistance in an Animal Model of Ovarian Cancer. Mol Cancer Ther 2015; 14:1075-84. [PMID: 25657335 DOI: 10.1158/1535-7163.mct-14-0556] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is a dreadful disease estimated to be the second most common gynecologic malignancy worldwide. Its current therapy, based on cytoreductive surgery followed by the combination of platinum and taxanes, is frequently complicated by the onset of multidrug resistance (MDR). The discovery that survivin, a small antiapoptotic protein, is involved in chemoresistance provided a new prospect to overcome MDR in cancer, because siRNA could be used to inhibit the expression of survivin in cancer cells. With this in mind, we have developed self-assembly polymeric micelles (PM) able to efficiently co-load an anti-survivin siRNA and a chemotherapeutic agent, such as paclitaxel (PXL; survivin siRNA/PXL PM). Previously, we have successfully demonstrated that the downregulation of survivin by using siRNA-containing PM strongly sensitizes different cancer cells to paclitaxel. Here, we have evaluated the applicability of the developed multifunctional PM in vivo. Changes in survivin expression, therapeutic efficacy, and biologic effects of the nanopreparation were investigated in an animal model of paclitaxel-resistant ovarian cancer. The results obtained in mice xenografed with SKOV3-tr revealed a significant downregulation of survivin expression in tumor tissues together with a potent anticancer activity of survivin siRNA/PXL PM, while the tumors remained unaffected with the same quantity of free paclitaxel. These promising results introduce a novel type of nontoxic and easy-to-obtain nanodevice for the combined therapy of siRNA and anticancer agents in the treatment of chemoresistant tumors.
Collapse
Affiliation(s)
- Giuseppina Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts. Department of Pharmacy, School of Pharmacy Federico II, Naples, Italy
| | - Gemma Navarro
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts
| | - Malav S Trivedi
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Giuseppe De Rosa
- Department of Pharmacy, School of Pharmacy Federico II, Naples, Italy
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts. Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Abstract
Although technically a member of the Inhibitor of Apoptosis (IAP) gene family, survivin has consistently defied assumptions, refuted predictions and challenged paradigms. Despite its more than 5500 citations currently in Medline, the biology of survivin has remained fascinatingly complex, its exploitation in human disease, most notably cancer, tantalizing, and its regulation of cellular homeostasis unexpectedly far-reaching. An inconvenient outsider that resists schemes and dogmas, survivin continues to hold great promise to unlock fundamental circuitries of cellular functions in health and disease.
Collapse
Affiliation(s)
- Dario C Altieri
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Survivin modulates genes with divergent molecular functions and regulates proliferation of hematopoietic stem cells through Evi-1. Leukemia 2014; 29:433-40. [PMID: 24903482 PMCID: PMC4258188 DOI: 10.1038/leu.2014.183] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022]
Abstract
The inhibitor of apoptosis protein Survivin regulates hematopoiesis, although its mechanisms of regulation of hematopoietic stem cells (HSCs) remain largely unknown. While investigating conditional Survivin deletion in mice, we found that Survivin was highly expressed in phenotypically defined HSCs and Survivin deletion in mice resulted in significantly reduced total marrow HSC and progenitor cells (HPC). Transcriptional analysis of Survivin−/− HSCs revealed altered expression of multiple genes not previously linked to Survivin activity. In particular, Survivin deletion significantly reduced expression of the Evi-1 transcription factor indispensable for HSC function, and the downstream Evi-1 target genes Gata2, Pbx1 and Sall2. The loss of HSCs following Survivin deletion and impaired long-term HSC repopulating function could be partially rescued by ectopic Evi-1 expression in Survivin −/− HSCs. These data demonstrate that Survivin partially regulates HSC function by modulating the Evi-1transcription factor and its downstream targets and identify new genetic pathways in HSCs regulated by Survivin.
Collapse
|
21
|
Xylinas E, Kluth LA, Lotan Y, Daneshmand S, Rieken M, Karakiewicz PI, Shariat SF. Blood- and tissue-based biomarkers for prediction of outcomes in urothelial carcinoma of the bladder. Urol Oncol 2014; 32:230-42. [DOI: 10.1016/j.urolonc.2013.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 01/29/2023]
|
22
|
Diamantopoulos PT, Polonyfi K, Sofotasiou M, Mantzourani M, Galanopoulos A, Spanakis N, Papadopoulou V, Kalala F, Iliakis T, Zareifi DS, Kodandreopoulou E, Vassilakopoulos T, Angelopoulou M, Siakantaris M, Terpos E, Variami E, Kollia P, Vaiopoulos G, Pangalis G, Viniou NA. Survivin Messenger RNA Levels in Epstein-Barr Virus–Positive Patients With Leukemic Low-Grade B-Cell Lymphomas Expressing the Latent Membrane Protein 1: Evidence of Apoptotic Function? CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:56-60. [DOI: 10.1016/j.clml.2013.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
|
23
|
Mull AN, Klar A, Navara CS. Differential localization and high expression of SURVIVIN splice variants in human embryonic stem cells but not in differentiated cells implicate a role for SURVIVIN in pluripotency. Stem Cell Res 2014; 12:539-49. [PMID: 24487129 DOI: 10.1016/j.scr.2014.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 12/22/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
The BIRC5 gene encodes the oncofetal protein SURVIVIN, as well as four additional splice variants (ΔEx3, 2B, 3B and 2α). SURVIVIN, an inhibitor of apoptosis, is also a chromosomal passenger protein (CPP). Previous results have demonstrated that SURVIVIN is expressed at high levels in embryonic stem cells and inhibition of SURVIVIN function results in apoptosis, however these studies have not investigated the other four splice variants. In this study, we demonstrate that all variants are expressed at significantly higher levels in human embryonic stem (hES) cells than in differentiated cells. We examined the subcellular localization of the three most highly expressed variants. SURVIVIN displayed canonical CPP localization in mitotic cells and cytoplasmic localization in interphase cells. In contrast, SURVIVIN-ΔEx3 and SURVIVIN-2B did not localize as a CPP; SURVIVIN-ΔEx3 was found constitutively in the nucleus while SURVIVIN-2B was distributed along the chromosomes during mitosis and also to the mitotic spindle poles. We used inducible shRNA against SURVIVIN to inhibit expression in a titratable fashion. Using this system, we reduced the mRNA levels of these three variants to approx. 40%, resulting in a concomitant reduction of OCT4 and NANOG mRNA, suggesting a role for the SURVIVIN variants in pluripotency.
Collapse
Affiliation(s)
- Amber N Mull
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Amanda Klar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
24
|
Chen P, Zhu J, Liu DY, Li HY, Xu N, Hou M. Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med Oncol 2013; 31:775. [PMID: 24338338 DOI: 10.1007/s12032-013-0775-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023]
Abstract
The expression of survivin, an inhibitor of apoptosis can be seen in most tumors and is correlated with the angiogenic factor vascular endothelial growth factor (VEGF). But little is known about their contribution in small-cell lung cancer (SCLC). This study was designed to investigate the expression of survivin and VEGF in SCLC, and to explore their correlation with clinical-pathological feature and prognosis. Forty-five patients with pathological histology of SCLC were entered into this study. Forty-five cases of matched adjacent non-tumor samples and 10 samples of operated patients with benign lung tumor were also included as control. The expression of survivin and VEGF was detected by immunohistochemistry (IHC, SP). These two sets of data were processed and tested for correlation with major patients' characteristics, and overall survival. The correlations between survivin and VEGF expressions and the clinical-pathological features were evaluated by chi-square test. The correlation between survivin and VEGF expressions was analyzed by Spearman's rank correlation test; the overall survival was analyzed by the Kaplan-Meier method; and the relationship between clinical and pathological features and overall survival was analyzed by the Cox proportional hazard models. Positive expression rate of survivin and VEGF was significantly higher in SCLC than those of adjacent non-tumor tissues and benign lung tumor tissues (73.3 vs. 15.6 vs. 0 %, P < 0.05) and (75.6 vs. 20 vs. 0 %, P < 0.05), respectively. Survivin and VEGF expressions were significantly associated with lymph node metastasis (P = 0.003, 0.011) and clinical stage (P = 0.006, 0.021). The expression of survivin was significantly coincident with the expression of VEGF (r = 0.644, P = 0.000). The median overall survival in survivin positive group and VEGF positive group was significantly shorter than those in survivin negative and VEGF negative group, respectively (log-rank P = 0.000). Moreover, multivariate analysis showed that survivin expression (HR 0.224; 95 % CI 0.074-0.675; P = 0.008) and VEGF expression (HR 0.172; 95 % CI 0.054-0.559; P = 0.003) were statistically independent predictive factors of poorer prognosis for SCLC patients. Our results indicated that survivin and VEGF were over-expressed in small-cell lung cancer, each of them may be an independent poor prognostic factor.
Collapse
Affiliation(s)
- Ping Chen
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu Cancer Hospital, Chengdu, 610041, China,
| | | | | | | | | | | |
Collapse
|
25
|
Yamazaki H, Takagi S, Hoshino Y, Hosoya K, Okumura M. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines. PLoS One 2013; 8:e79810. [PMID: 24260303 PMCID: PMC3829869 DOI: 10.1371/journal.pone.0079810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 09/25/2013] [Indexed: 01/27/2023] Open
Abstract
Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.
Collapse
Affiliation(s)
- Hiroki Yamazaki
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoshi Takagi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yuki Hoshino
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Kenji Hosoya
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
26
|
Chopra AS, Kuratnik A, Scocchera EW, Wright DL, Giardina C. Identification of novel compounds that enhance colon cancer cell sensitivity to inflammatory apoptotic ligands. Cancer Biol Ther 2013; 14:436-49. [PMID: 23377828 DOI: 10.4161/cbt.23787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune and inflammatory death ligands expressed within neoplastic tissue could potentially target apoptosis to transformed cells. To develop approaches that accentuate the anti-cancer potential of the inflammatory response, the Chembridge DIVERSet (TM) library was screened for compounds that accentuated apoptosis in a strictly TNF-dependent manner. We identified a number of novel compounds with this activity, the most active of these, AK3 and AK10, sensitized colon cancer cells to TNF at 0.5 μM and 2 μM, respectively, without inducing apoptosis on their own. The activity of these compounds was structure-dependent and general, as they accentuated cell death by TNF or Fas ligation in multiple colon cancer cell lines. Both AK3 and AK10 arrested cells in mitosis, with live cell imaging indicating that mitotically arrested cells were the source of apoptotic bodies. AK3 accentuated caspase-8 and caspase-9 activation with little effect on NFκB target gene activation. Enhanced caspase activation corresponded to an increased expression of TNFR1 on the cell surface. To determine the general interplay between mitotic arrest and TNF sensitivity, Aurora kinase (MLN8054 and MLN8237) and PLK1 (BI2536) inhibitors were tested for their ability to sensitize cells to TNF. PLK1 inhibition was particularly effective and influenced TNFR1 surface presentation and caspase cleavage like AK3, even though it arrested mitosis at an earlier stage. We propose that AK3 and AK10 represent a new class of mitotic inhibitor and that selected mitotic inhibitors may be useful for treating colon cancers or earlier lesions that have a high level of inflammatory cell infiltrate.
Collapse
Affiliation(s)
- Avijeet S Chopra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
27
|
Hartman ML, Czyz M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett 2013; 331:24-34. [PMID: 23340174 DOI: 10.1016/j.canlet.2013.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 12/30/2022]
Abstract
Apoptosis plays a pivotal role in sustaining proper tissue development and homeostasis. Evading apoptosis by cancer cells is a part of their adaption to microenvironment and therapies. Cellular integrity is predominantly maintained by pro-survival members of Bcl-2 family and IAPs. Melanoma cells are characterized by a labile and stage-dependent phenotype. Pro-survival molecules can protect melanoma cells from apoptosis and mediate other processes, thus enhancing aggressive phenotype. The essential role of Bcl-2, Mcl-1, Bcl-X(L), livin, survivin and XIAP was implicated for melanoma, often in a tumor stage-dependent fashion. In this review, the current knowledge of pro-survival machinery in melanoma is discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland
| | | |
Collapse
|
28
|
Rink M, Cha EK, Green D, Hansen J, Robinson BD, Lotan Y, Sagalowsky AI, Chun FK, Karakiewicz PI, Fisch M, Scherr DS, Shariat SF. Biomolecular Predictors of Urothelial Cancer Behavior and Treatment Outcomes. Curr Urol Rep 2012; 13:122-35. [DOI: 10.1007/s11934-012-0237-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Matsushita K, Cha EK, Matsumoto K, Baba S, Chromecki TF, Fajkovic H, Sun M, Karakiewicz PI, Scherr DS, Shariat SF. Immunohistochemical biomarkers for bladder cancer prognosis. Int J Urol 2011; 18:616-29. [PMID: 21771101 DOI: 10.1111/j.1442-2042.2011.02809.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Urothelial carcinoma of the bladder (UCB) is an especially complex and heterogeneous disease with a broad spectrum of histologic findings and potentially lethal behavior. Despite advances in surgical techniques, as well as intravesical and systemic therapies, up to 30% of patients with non-muscle-invasive UCB and 50% of patients with muscle-invasive UCB experience disease progression, recurrence, and eventual death. Standard prognostic features, such as pathologic stage and grade, have limited ability to predict the outcomes of this heterogeneous population. Current risk-stratification algorithms using clinical and pathologic parameters are limited in their prognostic ability. Molecular medicine holds the promise that clinical outcomes will be improved by more accurate prognostication and directing therapy towards the mechanisms and targets associated with the growth of an individual patient's tumor. Immunohistochemical analysis of biomarker expression has provided insight into the molecular pathogenesis of UCB and offers the potential for improving clinical decision making. Numerous candidate immunohistochemical biomarkers for patients with UCB have been identified, with those relating to the cell cycle and apoptosis/cell proliferation being the most extensively studied. The present review discusses the most promising immunohistochemical biomarkers. Special attention is paid to recent data from a multi-institutional collaboration that has implemented a regulated, phased biomarker discovery and validation pathway. Because UCB tumorigenesis and progression is a process involving multiple genetic and epigenetic alterations, multiple biomarkers need to be integrated into a prognostic signature to accurately predict outcomes. There is no doubt that biomarkers will eventually guide our clinical decision making regarding follow-up scheduling and treatment choice.
Collapse
Affiliation(s)
- Kazuhito Matsushita
- Department of Urology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Seth S, Matsui Y, Fosnaugh K, Liu Y, Vaish N, Adami R, Harvie P, Johns R, Severson G, Brown T, Takagi A, Bell S, Chen Y, Chen F, Zhu T, Fam R, Maciagiewicz I, Kwang E, McCutcheon M, Farber K, Charmley P, Houston ME, So A, Templin MV, Polisky B. RNAi-based therapeutics targeting survivin and PLK1 for treatment of bladder cancer. Mol Ther 2011; 19:928-35. [PMID: 21364537 PMCID: PMC3098637 DOI: 10.1038/mt.2011.21] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/26/2011] [Indexed: 12/27/2022] Open
Abstract
Harnessing RNA interference (RNAi) to silence aberrant gene expression is an emerging approach in cancer therapy. Selective inhibition of an overexpressed gene via RNAi requires a highly efficacious, target-specific short interfering RNA (siRNA) and a safe and efficient delivery system. We have developed siRNA constructs (UsiRNA) that contain unlocked nucleobase analogs (UNA) targeting survivin and polo-like kinase-1 (PLK1) genes. UsiRNAs were encapsulated into dialkylated amino acid-based liposomes (DiLA(2)) containing a nor-arginine head group, cholesteryl hemisuccinate (CHEMS), cholesterol and 1, 2-dimyristoyl-phosphatidylethanolamine-polyethyleneglycol 2000 (DMPE-PEG2000). In an orthotopic bladder cancer mouse model, intravesical treatment with survivin or PLK1 UsiRNA in DiLA(2) liposomes at 1.0 and 0.5 mg/kg resulted in 90% and 70% inhibition of survivin or PLK1 mRNA, respectively. This correlated with a dose-dependent decrease in tumor volumes which was sustained over a 3-week period. Silencing of survivin and PLK1 mRNA was confirmed to be RNA-induced silencing complex mediated as specific cleavage products were detected in bladder tumors over the duration of the study. This report suggests that intravesical instillation of survivin or PLK1 UsiRNA can serve as a potential therapeutic modality for treatment of bladder cancer.
Collapse
Affiliation(s)
- Shaguna Seth
- Discovery Research and Pharmaceutical Development, Marina Biotech Inc., Bothell, Washington 98021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Survivin selectively modulates genes deregulated in human leukemia stem cells. JOURNAL OF ONCOLOGY 2010; 2011:946936. [PMID: 21253548 PMCID: PMC3021862 DOI: 10.1155/2011/946936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 10/19/2010] [Indexed: 01/13/2023]
Abstract
ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy.
Collapse
|
33
|
McKenzie JA, Liu T, Goodson AG, Grossman D. Survivin enhances motility of melanoma cells by supporting Akt activation and {alpha}5 integrin upregulation. Cancer Res 2010; 70:7927-37. [PMID: 20807805 DOI: 10.1158/0008-5472.can-10-0194] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Survivin expression in melanoma is inversely correlated with patient survival. Transgenic mice harboring melanocyte-specific overexpression of survivin exhibit increased susceptibility to UV-induced melanoma and metastatic progression. To understand the mechanistic basis for metastatic progression, we investigated the effects of survivin on the motility of human melanocytes and melanoma cells. We found that survivin overexpression enhanced migration on fibronectin and invasion through Matrigel, whereas survivin knockdown under subapoptotic conditions blocked migration and invasion. In melanocytes, survivin overexpression activated the Akt and mitogen-activated protein kinase pathways. Akt phosphorylation was required for survivin-enhanced migration and invasion, whereas Erk phosphorylation was required only for enhanced invasion. In both melanocytes and melanoma cells, survivin overexpression was associated with upregulation of α5 integrin (fibronectin receptor component), the antibody-mediated blockade or RNA interference-mediated knockdown of which blocked survivin-enhanced migration. Knockdown of α5 integrin did not affect Akt activation, but inhibition of Akt phosphorylation prevented α5 integrin upregulation elicited by survivin overexpression. Together, our results showed that survivin enhanced the migration and invasion of melanocytic cells and suggested that survivin may promote melanoma metastasis by supporting Akt-dependent upregulation of α5 integrin.
Collapse
Affiliation(s)
- Jodi A McKenzie
- Departments of Dermatology and Oncological Sciences, and the Huntsman Cancer Institute; University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
34
|
Clinical significance of Cox-2, Survivin and Bcl-2 expression in hepatocellular carcinoma (HCC). Med Oncol 2010; 28:796-803. [PMID: 20401641 DOI: 10.1007/s12032-010-9519-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 03/26/2010] [Indexed: 02/05/2023]
Abstract
Cox-2, Survivin and Bcl-2 are frequently overexpressed in numerous types of cancers. They are known to be the important regulators of apoptosis. This study was designed to investigate the correlation between the clinical characteristics and the expression of Cox-2, Survivin and Bcl-2 in hepatocellular carcinoma. A total of 63 postoperative hepatocellular carcinoma (HCC) samples, 10 adjacent non-tumor samples and 10 normal liver samples were immunochemically detected for the expression of Cox-2, Survivin and Bcl-2. A median follow-up of 4 years for the 63 HCC patients was conducted. Univariate tests and multivariate Cox regression were performed for statistical analysis. The Kaplan-Meier method was used to analyze the survival. Positive expression of Cox-2 (84.3%) and Survivin (77.8%) was detected significantly more frequently in the HCC samples than in the normal liver tissues (30% and 0, respectively). Bcl-2 was highly expressed in the adjacent non-tumor tissue. Cox-2 was positively correlative to Survivin. Survivin and Bcl-2 were significantly associated with the pathological grade of HCC (P<0.05). Expression of both Cox-2 and Survivin was significantly associated with the poor overall survival (OS) (P=0.0141, P=0.0039). Furthermore, multivariate analysis confirmed the independent prognostic value of Survivin expression, along with tumor size and hepatic function. Cox-2 and Survivin were highly expressed in the HCC tissue. Survivin and Bcl-2 were significantly associated with the pathological grade of HCC. The expression of Survivin was an independent prognostic factor for HCC after a hepatectomy. Treatment that inhibits Survivin may be a promising targeted approach in HCC.
Collapse
|
35
|
Ørntoft TF, Dyrskjøt L. Gene signatures for risk-adapted treatment of bladder cancer. ACTA ACUST UNITED AC 2010:166-74. [DOI: 10.1080/03008880802283730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Torben F. Ørntoft
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Dyrskjøt
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Schaefer JS, Sabherwal Y, Shi HY, Sriraman V, Richards J, Minella A, Turner DP, Watson DK, Zhang M. Transcriptional regulation of p21/CIP1 cell cycle inhibitor by PDEF controls cell proliferation and mammary tumor progression. J Biol Chem 2010; 285:11258-69. [PMID: 20139077 DOI: 10.1074/jbc.m109.073932] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ets family of transcription factors control a myriad of cellular processes and contribute to the underlying genetic loss of cellular homeostasis resulting in cancer. PDEF (prostate-derived Ets factor) has been under investigation for its role in tumor development and progression. However, the role of PDEF in cancer development has been controversial. Some reports link PDEF to tumor promoter, and others show tumor-suppressing functions in various systems under different conditions. So far, there has been no conclusive evidence from in vivo experiments to prove the role of PDEF. We have used both in vitro and in vivo systems to provide a conclusive role of PDEF in the progression process. PDEF-expressing cells block the cell growth rate, and this retardation was reversible when PDEF expression was silenced with PDEF-specific small interfering RNA. When these PDEF-expressing cells were orthotopically implanted into the mouse mammary gland, tumor incidence and growth rate were significantly retarded. Cell cycle analysis revealed that PDEF expression partially blocked cell cycle progression at G(1)/S without an effect on apoptosis. PDEF overexpression resulted in an increase in p21/CIP1 at both the mRNA and protein levels, resulting in decreased Cdk2 activity. Promoter deletion analysis, electrophoresis mobility shift assays, and chromatin immunoprecipitation studies identified the functional Ets DNA binding site at -2118 bp of the p21/CIP1 gene promoter. This site is capable of binding and responding to PDEF. Furthermore, we silenced p21/CIP1 expression in PDEF-overexpressing cells by small interfering RNA. p21-silenced PDEF cells exhibited significantly increased cell growth in vitro and in vivo, demonstrating the p21 regulation by PDEF as a key player. These experiments identified PDEF as a new transcription factor that directly regulates p21/CIP1 expression under non-stressed conditions. This study conclusively proves that PDEF is a breast tumor suppressor for the first time using both in vitro and in vivo systems. PDEF can be further developed as a target for designing therapeutic intervention of breast cancer.
Collapse
Affiliation(s)
- Jeremy S Schaefer
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mehrotra S, Languino LR, Raskett CM, Mercurio AM, Dohi T, Altieri DC. IAP regulation of metastasis. Cancer Cell 2010; 17:53-64. [PMID: 20129247 PMCID: PMC2818597 DOI: 10.1016/j.ccr.2009.11.021] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/29/2009] [Accepted: 11/11/2009] [Indexed: 12/16/2022]
Abstract
Inhibitor-of-Apoptosis (IAP) proteins contribute to tumor progression, but the requirements of this pathway are not understood. Here, we show that intermolecular cooperation between XIAP and survivin stimulates tumor cell invasion and promotes metastasis. This pathway is independent of IAP inhibition of cell death. Instead, a survivin-XIAP complex activates NF-kappaB, which in turn leads to increased fibronectin gene expression, signaling by beta1 integrins, and activation of cell motility kinases FAK and Src. Therefore, IAPs are direct metastasis genes, and their antagonists could provide antimetastatic therapies in patients with cancer.
Collapse
Affiliation(s)
- Swarna Mehrotra
- Prostate Cancer Discovery and Development Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lucia R. Languino
- Prostate Cancer Discovery and Development Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Christopher M. Raskett
- Prostate Cancer Discovery and Development Program, University of Massachusetts Medical School, Worcester, MA 01605
| | - Arthur M. Mercurio
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | |
Collapse
|
38
|
Apolo AB, Milowsky M, Bajorin DF. Clinical states model for biomarkers in bladder cancer. Future Oncol 2009; 5:977-92. [PMID: 19792967 DOI: 10.2217/fon.09.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer is a significant healthcare problem in the USA, with a high recurrence rate, the need for expensive continuous surveillance and limited treatment options for patients with advanced disease. Research has contributed to an understanding of the molecular pathways involved in the development and progression of bladder cancer, and that understanding has led to the discovery of potentially diagnostic, predictive and prognostic biomarkers. In this review, a clinical states model of bladder cancer is introduced and integrated into a paradigm for biomarker development. Biomarkers are systematically incorporated with predefined end points to aid in clinical management.
Collapse
Affiliation(s)
- Andrea B Apolo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
39
|
Promkan M, Liu G, Patmasiriwat P, Chakrabarty S. BRCA1 modulates malignant cell behavior, the expression of survivin and chemosensitivity in human breast cancer cells. Int J Cancer 2009; 125:2820-8. [DOI: 10.1002/ijc.24684] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Shariat SF, Karakiewicz PI, Godoy G, Karam JA, Ashfaq R, Fradet Y, Isbarn H, Montorsi F, Jeldres C, Bastian PJ, Nielsen ME, Müller SC, Sagalowsky AI, Lotan Y. Survivin as a Prognostic Marker for Urothelial Carcinoma of the Bladder: A Multicenter External Validation Study. Clin Cancer Res 2009; 15:7012-9. [DOI: 10.1158/1078-0432.ccr-08-2554] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
CD52 expression is induced in the mouse uterus at the time of embryo implantation. J Reprod Immunol 2009; 82:32-9. [DOI: 10.1016/j.jri.2009.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/25/2009] [Accepted: 07/30/2009] [Indexed: 11/16/2022]
|
42
|
Filion TM, Qiao M, Ghule PN, Mandeville M, van Wijnen AJ, Stein JL, Lian JB, Altieri DC, Stein GS. Survival responses of human embryonic stem cells to DNA damage. J Cell Physiol 2009; 220:586-92. [PMID: 19373864 DOI: 10.1002/jcp.21735] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pluripotent human embryonic stem (hES) cells require mechanisms to maintain genomic integrity in response to DNA damage that could compromise competency for lineage-commitment, development, and tissue-renewal. The mechanisms that protect the genome in rapidly proliferating hES cells are minimally understood. Human ES cells have an abbreviated cell cycle with a very brief G1 period suggesting that mechanisms mediating responsiveness to DNA damage may deviate from those in somatic cells. Here, we investigated how hES cells react to DNA damage induced by ionizing radiation (IR) and whether genomic insult evokes DNA repair pathways and/or cell death. We find that hES cells respond to DNA damage by rapidly inducing Caspase-3 and -8, phospho-H2AX foci, phosphorylation of p53 on Ser15 and p21 mRNA levels, as well as concomitant cell cycle arrest in G2 based on Ki67 staining and FACS analysis. Unlike normal somatic cells, hES cells and cancer cells robustly express the anti-apoptotic protein Survivin, consistent with the immortal growth phenotype. SiRNA depletion of Survivin diminishes hES survival post-irradiation. Thus, our findings provide insight into pathways and processes that are activated in human embryonic stem cells upon DNA insult to support development and tissue regeneration.
Collapse
Affiliation(s)
- Tera M Filion
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Whitson JM, Noonan EJ, Pookot D, Place RF, Dahiya R. Double stranded-RNA-mediated activation of P21 gene induced apoptosis and cell cycle arrest in renal cell carcinoma. Int J Cancer 2009; 125:446-52. [PMID: 19384944 DOI: 10.1002/ijc.24370] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small double stranded RNAs (dsRNA) are a new class of molecules which regulate gene expression. Accumulating data suggest that some dsRNA can function as tumor suppressors. Here, we report further evidence on the potential of dsRNA mediated p21 induction. Using the human renal cell carcinoma cell line A498, we found that dsRNA targeting the p21 promoter significantly induced the expression of p21 mRNA and protein levels. As a result, dsP21 transfected cells had a significant decrease in cell viability with a concomitant G1 arrest. We also observed a significant increase in apoptosis. These findings were associated with a significant decrease in survivin mRNA and protein levels. This is the first report that demonstrates dsRNA mediated gene activation in renal cell carcinoma and suggests that forced over-expression of p21 may lead to an increase in apoptosis through a survivin dependent mechanism.
Collapse
Affiliation(s)
- Jared M Whitson
- University of California San Francisco, Department of Urology, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
44
|
Yang X, Xiong G, Chen X, Xu X, Wang K, Fu Y, Yang K, Bai Y. Polymorphisms of survivin promoter are associated with risk of esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2009; 135:1341-9. [DOI: 10.1007/s00432-009-0575-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 03/09/2009] [Indexed: 02/05/2023]
|
45
|
Romagnoli M, Séveno C, Wuillème-Toumi S, Amiot M, Bataille R, Minvielle S, Barillé-Nion S. The imbalance between Survivin and Bim mediates tumour growth and correlates with poor survival in patients with multiple myeloma. Br J Haematol 2009; 145:180-9. [DOI: 10.1111/j.1365-2141.2009.07608.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Estevez LG, Fortes JL, Adrover E, Peiró G, Margelí M, Castellá E, Cuevas JM, Bernet L, Segui MA, Andreu X. Doxorubicin and cyclophosphamide followed by weekly docetaxel as neoadjuvant treatment of early breast cancer: analysis of biological markers in a GEICAM phase II study. Clin Transl Oncol 2009; 11:54-9. [DOI: 10.1007/s12094-009-0311-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Stec AA, Cookson MS, Chang SS. Detection of Extravesical Disease: A Lack of Bladder Cancer Markers. Bladder Cancer 2009. [DOI: 10.1007/978-1-59745-417-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Lu YH, Wang K, He R, Xi T. Knockdown of Survivin and Upregulation of p53 Gene Expression by Small Interfering RNA Induces Apoptosis in Human Gastric Carcinoma Cell Line SGC-823. Cancer Biother Radiopharm 2008; 23:727-34. [DOI: 10.1089/cbr.2008.0503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun-Hua Lu
- Research Centre of Biotechnology, China Pharmaceutical University, NanJing, China
- JiangSu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, NanJing, China
- College of Chemistry and Biotechnology, YiChun University, YiChun, China
| | - Kai Wang
- Research Centre of Biotechnology, China Pharmaceutical University, NanJing, China
- JiangSu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, NanJing, China
| | - Rui He
- Research Centre of Biotechnology, China Pharmaceutical University, NanJing, China
- JiangSu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, NanJing, China
| | - Tao Xi
- Research Centre of Biotechnology, China Pharmaceutical University, NanJing, China
- JiangSu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, NanJing, China
| |
Collapse
|
49
|
Calogero RA, Quaglino E, Saviozzi S, Forni G, Cavallo F. Oncoantigens as anti-tumor vaccination targets: the chance of a lucky strike? Cancer Immunol Immunother 2008; 57:1685-94. [PMID: 18286283 PMCID: PMC11030840 DOI: 10.1007/s00262-008-0481-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Accepted: 02/05/2008] [Indexed: 11/25/2022]
Abstract
Neoplastic transformation is a multistage process and distinct gene products of specific cell regulatory pathways are involved at each stage. Identification of genes overexpressed at a specific stage provides an unprecedented opportunity to address the immune system against antigens with a driving role in tumor progression (oncoantigens). The ERBB2 oncogene is a prototype of deregulated oncogenic protein kinase membrane receptors. Mice transgenic for rat ERBB2 (BALB-neuT mice) were used in this study to identify an additional set of oncoantigens expressed at defined stages by most breast carcinomas to be used as alternatives to ERBB2-driven vaccination. To address this question, we integrated the transcription data generated by comparing preneoplastic lesions and neoplasia in BALB-neuT mice with a meta-analysis on transcription profiles generated from normal and breast tumor human specimens. Forty-six putative oncoantigens identified and prioritized according to their expression on the cell membrane or in the extra cellular space, cytoplasm and nucleus were chosen for preclinical investigation as vaccination targets.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cancer Vaccines/genetics
- Cancer Vaccines/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/immunology
- Carcinoma, Lobular/pathology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
- Precancerous Conditions/genetics
- Precancerous Conditions/immunology
- Precancerous Conditions/pathology
- Rats
- Receptor, ErbB-2/physiology
- Signal Transduction
- Transcription, Genetic
Collapse
Affiliation(s)
- Raffaele Adolfo Calogero
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy
| | - Silvia Saviozzi
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy
| | - Guido Forni
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
50
|
Chen CL, Cen L, Kohout J, Hutzen B, Chan C, Hsieh FC, Loy A, Huang V, Cheng G, Lin J. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol Cancer 2008; 7:78. [PMID: 18939995 PMCID: PMC2577686 DOI: 10.1186/1476-4598-7-78] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 10/21/2008] [Indexed: 01/01/2023] Open
Abstract
Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3) signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19%) bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F) and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC). The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin) and a cell cycle regulating gene (cyclin D1) was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|