1
|
Mueller JL, Morhard R, DeSoto M, Chelales E, Yang J, Nief C, Crouch B, Everitt J, Previs R, Katz D, Ramanujam N. Optimizing ethyl cellulose-ethanol delivery towards enabling ablation of cervical dysplasia. Sci Rep 2021; 11:16869. [PMID: 34413378 PMCID: PMC8376953 DOI: 10.1038/s41598-021-96223-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
In low-income countries, up to 80% of women diagnosed with cervical dysplasia do not return for follow-up care, primarily due to treatment being inaccessible. Here, we describe development of a low-cost, portable treatment suitable for such settings. It is based on injection of ethyl cellulose (EC)-ethanol to ablate the transformation zone around the os, the site most impacted by dysplasia. EC is a polymer that sequesters the ethanol within a prescribed volume when injected into tissue, and this is modulated by the injected volume and delivery parameters (needle gauge, bevel orientation, insertion rate, depth, and infusion rate). Salient injection-based delivery parameters were varied in excised swine cervices. The resulting injection distribution volume was imaged with a wide-field fluorescence imaging device or computed tomography. A 27G needle and insertion rate of 10 mm/s achieved the desired insertion depth in tissue. Orienting the needle bevel towards the outer edge of the cervix and keeping infusion volumes ≤ 500 µL minimized leakage into off-target tissue. These results guided development of a custom hand-held injector, which was used to locate and ablate the upper quadrant of a swine cervix in vivo with no adverse events or changes in host temperature or heart rate. After 24 h, a distinct region of necrosis was detected that covered a majority (> 75%) of the upper quadrant of the cervix, indicating four injections could effectively cover the full cervix. The work here informs follow up large animal in vivo studies, e.g. in swine, to further assess safety and efficacy of EC-ethanol ablation in the cervix.
Collapse
Affiliation(s)
- Jenna L Mueller
- Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Robert Morhard
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Michael DeSoto
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Erika Chelales
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Yang
- Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Corrine Nief
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jeffrey Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Rebecca Previs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - David Katz
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
3
|
Veeravalli V, Cheruvu HS, Srivastava P, Vamsi Madgula LM. Three-dimensional aspects of formulation excipients in drug discovery: a critical assessment on orphan excipients, matrix effects and drug interactions. J Pharm Anal 2020; 10:522-531. [PMID: 33425449 PMCID: PMC7775846 DOI: 10.1016/j.jpha.2020.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/02/2020] [Accepted: 02/17/2020] [Indexed: 11/22/2022] Open
Abstract
Formulation/pharmaceutical excipients play a major role in formulating drug candidates, with the objectives of ease of administration, targeted delivery and complete availability. Many excipients used in pharmaceutical formulations are orphanized in preclinical drug discovery. These orphan excipients could enhance formulatability of highly lipophilic compounds. Additionally, they are safe in preclinical species when used below the LD50 values. However, when the excipients are used in formulating compounds with diverse physico-chemical properties, they pose challenges by modulating study results through their bioanalytical matrix effects. Excipients invariably present in study samples and not in the calibration curve standards cause over-/under- estimation of exposures. Thus, the mechanism by which excipients cause matrix effects and strategies to nullify these effects needs to be revisited. Furthermore, formulation excipients cause drug interactions by moderating the pathways of drug metabolizing enzymes and drug transport proteins. Although it is not possible to get rid of excipient driven interactions, it is always advised to be aware of these interactions and apply the knowledge to draw meaningful conclusions from study results. In this review, we will comprehensively discuss a) orphan excipients that have wider applications in preclinical formulations, b) bioanalytical matrix effects and possible approaches to mitigating these effects, and c) excipient driven drug interactions and strategies to alleviate the impacts of drug interactions.
Collapse
Affiliation(s)
- Vijayabhaskar Veeravalli
- Syngene International Limited, Biocon Park, SEZ, Bommasandra Industrial Area - Phase-IV Bommasandra-Jigani Link Road, Bangalore, 560099, India
| | - Hanumanth Srikanth Cheruvu
- Syngene International Limited, Biocon Park, SEZ, Bommasandra Industrial Area - Phase-IV Bommasandra-Jigani Link Road, Bangalore, 560099, India
| | | | - Lakshmi Mohan Vamsi Madgula
- Syngene International Limited, Biocon Park, SEZ, Bommasandra Industrial Area - Phase-IV Bommasandra-Jigani Link Road, Bangalore, 560099, India
| |
Collapse
|
4
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
5
|
Morhard R, Mueller JL, Tang Q, Nief C, Chelales E, Lam CT, Alvarez DA, Rubinstein M, Katz DF, Ramanujam N. Understanding Factors Governing Distribution Volume of Ethyl Cellulose-Ethanol to Optimize Ablative Therapy in the Liver. IEEE Trans Biomed Eng 2020; 67:2337-2348. [PMID: 31841399 PMCID: PMC7295656 DOI: 10.1109/tbme.2019.2960049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Ethanol ablation, the injection of ethanol to induce necrosis, was originally used to treat hepatocellular carcinoma, with survival rates comparable to surgery. However, efficacy is limited due to leakage into surrounding tissue. To reduce leakage, we previously reported incorporating ethyl cellulose (EC) with ethanol as this mixture forms a gel when injected into tissue. To further develop EC-ethanol injection as an ablative therapy, the present study evaluates the extent to which salient injection parameters govern the injected fluid distribution. METHODS Utilizing ex vivo swine liver, injection parameters (infusion rate, EC%, infusion volume) were examined with fluorescein added to each solution. After injection, tissue samples were frozen, sectioned, and imaged. RESULTS While leakage was higher for ethanol and 3%EC-ethanol at a rate of 10 mL/hr compared to 1 mL/hr, leakage remained low for 6%EC-ethanol regardless of infusion rate. The impact of infusion volume and pressure were also investigated first in tissue-mimicking surrogates and then in tissue. Results indicated that there is a critical infusion pressure beyond which crack formation occurs leading to fluid leakage. At a rate of 10 mL/hr, a volume of 50 μL remained below the critical pressure. CONCLUSIONS Although increasing the infusion rate increases stress on the tissue and the risk of crack formation, injections of 6%EC-ethanol were localized regardless of infusion rate. To further limit leakage, multiple low-volume infusions may be employed. SIGNIFICANCE These results, and the experimental framework developed to obtain them, can inform optimizing EC-ethanol to treat a range of medical conditions.
Collapse
|
6
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
7
|
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine-An Overview. Int J Mol Sci 2018. [PMID: 29518011 PMCID: PMC5877636 DOI: 10.3390/ijms19030775] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
| |
Collapse
|
8
|
Development of enhanced ethanol ablation as an alternative to surgery in treatment of superficial solid tumors. Sci Rep 2017; 7:8750. [PMID: 28821832 PMCID: PMC5562881 DOI: 10.1038/s41598-017-09371-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
While surgery is at the foundation of cancer treatment, its access is limited in low-income countries. Here, we describe development of a low-cost alternative therapy based on intratumoral ethanol injection suitable for resource-limited settings. Although ethanol-based tumor ablation is successful in treating hepatocellular carcinomas, the necessity for multiple treatments, injection of large fluid volumes, and decreased efficacy in treatment of non-capsulated tumors limit its applicability. To address these limitations, we investigated an enhanced ethanol ablation strategy to retain ethanol within the tumor through the addition of ethyl cellulose. This increases the viscosity of injected ethanol and forms an ethanol-based gel-phase upon exposure to the aqueous tumor environment. This technique was first optimized to maximize distribution volume, using tissue-simulating phantoms. Then, chemically-induced epithelial tumors in the hamster cheek pouch were treated. As controls, pure ethanol injections of either four times or one-fourth the tumor volume induced complete regression of 33% and 0% of tumors, respectively. In contrast, ethyl cellulose-ethanol injections of one-fourth the tumor volume induced complete regression in 100% of tumors. These results contribute to proof-of-concept for enhanced ethanol ablation as a novel and effective alternative to surgery for tumor treatment, with relevance to resource-limited settings.
Collapse
|
9
|
Rey-Rico A, Babicz H, Madry H, Concheiro A, Alvarez-Lorenzo C, Cucchiarini M. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine. Int J Pharm 2017; 531:492-503. [PMID: 28552768 DOI: 10.1016/j.ijpharm.2017.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
The aim of this work was to investigate, for the first time, the possibility of using supramolecular polypseudorotaxane gels as scaffolds that can durably deliver rAAV vectors for applications in cartilage regeneration. Dispersions of Pluronic® F68 (PF68) or Tetronic® 908 (T908) containing either hyaluronic acid (HA) or chondroitin sulfate (CS) were prepared in PBS. Then, alpha-cyclodextrin (αCD) was added to some dispersions to form polypseudorotaxane gels. Polysaccharides and αCD reinforced the viscoelasticity of the gels, which could withstand autoclaving without changes. In vitro release of rAAV vectors and subsequent transduction of human mesenchymal stem cells (hMSCs) by rAAV vectors from the release medium and from gels in direct contact with the cells were investigated. Compared with free vectors, the gels provided higher levels of transgene expression. CS (or HA)/PF68/αCD gels rapidly released rAAV vectors while CS (or HA)/T908/αCD gels provided sustained release probably due to different interactions with the viral vectors. Incorporation of αCD into CS (or HA)/PF68 gels resulted on higher rAAV concentrations and sustained levels of transgene expression over time. HA increased the bioactivity and cytocompatibility of the gels, especially those based on T908. Overall, combining rAAV gene transfer with polypseudorotaxane gels may provide new, promising tools for human tissue engineering and regenerative medicine strategies.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
| | - Heiko Babicz
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany; Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
10
|
Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20600-20613. [PMID: 27404480 DOI: 10.1021/acsami.6b06509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | | | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
- Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center , Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| |
Collapse
|
11
|
Ishii S, Kaneko J, Nagasaki Y. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials 2016; 84:210-218. [PMID: 26828685 DOI: 10.1016/j.biomaterials.2016.01.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/09/2016] [Accepted: 01/15/2016] [Indexed: 11/20/2022]
Abstract
Although cancer immunotherapies are attracting much attention, it is difficult to develop bioactive proteins owing to the severe systemic toxicity. To overcome the issue, we designed new local protein delivery system by using a protein-loaded, redox-active, injectable gel (RIG), which is formed by a polyion complex (PIC) comprising three components, viz., cationic polyamine-poly(ethylene glycol)-polyamine triblock copolymer possessing ROS-scavenging moieties as side chains; anionic poly(acrylic acid); and a protein. The mixture formed the protein-loaded PIC flower micelles at room temperature, which immediately converted to a gel with high mechanical strength upon exposure to physiological conditions. Because the protein electrostatically interacts with the PIC gel network, RIG provided a sustained release of the protein without a significant initial burst, regardless of the types of proteins in vitro, and much longer retention of the protein at the local injection site in mice than that of the naked protein. Subcutaneous injections of IL-12@RIG in the vicinity of tumor tissue showed remarkable tumor growth inhibition in tumor-bearing mice, compared to that observed with injection of IL-12 alone, suppressing adverse events caused by IL-12-induced ROS. Our results indicate that RIG has potential as a platform technology for an injectable sustained-release carrier for proteins.
Collapse
Affiliation(s)
- Shiro Ishii
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, 305-8573, Japan
| | - Junya Kaneko
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, 305-8573, Japan; Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, 305-8573, Japan.
| |
Collapse
|
12
|
Rey-Rico A, Venkatesan JK, Frisch J, Rial-Hermida I, Schmitt G, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater 2015; 27:42-52. [PMID: 26320543 DOI: 10.1016/j.actbio.2015.08.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are clinically adapted gene transfer vectors for direct human cartilage regenerative medicine. Their appropriate use in patients is still limited by a relatively low efficacy of vector penetration inside the cells, by the pre-existing humoral immune responses against the viral capsid proteins in a large part of the human population, and by possible inhibition of viral uptake by clinical compounds such as heparin. The delivery of rAAV vectors to their targets using optimized vehicles is therefore under active investigation. Here, we evaluated the possibility of providing rAAV to human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cartilage regenerative cells, via self-assembled poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as linear poloxamers or X-shaped poloxamines. Encapsulation in poloxamer PF68 and poloxamine T908 polymeric micelles allowed for an effective, durable, and safe modification of hMSCs via rAAV to levels similar to or even higher than those noted upon direct vector application. The copolymers were capable of restoring the transduction of hMSCs with rAAV in conditions of gene transfer inhibition, i.e. in the presence of heparin or of a specific antibody directed against the rAAV capsid, enabling effective therapeutic delivery of a chondrogenic sox9 sequence leading to an enhanced chondrocyte differentiation of the cells. The present findings highlight the value of PEO-PPO copolymers as powerful tools for rAAV-based cartilage regenerative medicine. STATEMENT OF SIGNIFICANCE While recombinant adeno-associated viral (rAAV) vectors are adapted vectors to treat a variety of human disorders, their clinical use is still restricted by pre-existing antiviral immune responses, by a low efficacy of natural vector entry in the target cells, and by inhibition of viral uptake by clinically used compounds like heparin. The search for alternative routes of rAAV delivery is thus becoming a new field of investigation. In the present study, we describe the strong benefits of providing rAAV to human mesenchymal stem cells, a potent source of cells for regenerative medicine, encapsulated in polymeric micelles based on poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as novel, effective and safe delivery systems for human gene therapy.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany; Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
13
|
Price R, Poursaid A, Ghandehari H. Controlled release from recombinant polymers. J Control Release 2014; 190:304-13. [PMID: 24956486 PMCID: PMC4142100 DOI: 10.1016/j.jconrel.2014.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.
Collapse
Affiliation(s)
- Robert Price
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Azadeh Poursaid
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Jung SH, Choi JW, Yun CO, Yhee JY, Price R, Kim SH, Kwon IC, Ghandehari H. Sustained local delivery of oncolytic short hairpin RNA adenoviruses for treatment of head and neck cancer. J Gene Med 2014; 16:143-52. [DOI: 10.1002/jgm.2770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/09/2014] [Accepted: 06/18/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Se-Hui Jung
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Korea
| | - Ji Young Yhee
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Robert Price
- Departments of Phamaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City UT USA
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
- Departments of Phamaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City UT USA
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
- Center for Nanomedicine, Nano Institute of Utah; University of Utah; Salt Lake City UT USA
| |
Collapse
|
15
|
Frandsen JL, Ghandehari H. Recombinant protein-based polymers for advanced drug delivery. Chem Soc Rev 2012; 41:2696-706. [DOI: 10.1039/c2cs15303c] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Price R, Gustafson J, Greish K, Cappello J, McGill L, Ghandehari H. Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery. Int J Pharm 2011; 427:97-104. [PMID: 21982738 DOI: 10.1016/j.ijpharm.2011.09.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/24/2011] [Indexed: 11/26/2022]
Abstract
The silk-elastinlike protein polymer, SELP 815K, and poloxomer 407, a commercially available synthetic copolymer, were evaluated to compare their relative performance in matrix-mediated viral gene delivery. Using a xenogenic mouse tumor model of human head and neck squamous cell carcinoma, the efficacy of viral gene-directed enzyme prodrug therapy with these polymers was characterized by viral gene expression in the tumor tissue, tumor size reduction, and survivability with treatment. Viral injection in SELP 815K produced a greater level and more prolonged extent of gene expression in the tumor, a statistically greater tumor size reduction, a longer time until tumor rebound, and a significantly increased survivability, as compared to injection of virus alone or in Poloxamer 407. Safety of treatment with these polymers was evaluated in a non-tumor bearing immunocompetent mouse model. Compared to virus injected alone or in Poloxamer 407, virus injected in SELP 815K had fewer and less severe indications of toxicity related to treatment as assessed by blood analysis, body weight, and histopathology of distant organs and the injection sites. Similar to virus alone or in Poloxamer 407, virus injected in SELP 815K elicited a mild injection site inflammatory response characterized primarily by a mononuclear leukocyte infiltrate and the formation of granulation tissue. Virus injected in SELP 815K resulted in fewer animals with elevated white blood cell counts and a less pronounced local toxicity reaction than was observed with virus in Poloxamer 407. In contrast to virus injected alone or in Poloxamer 407, which were not retained in the injection site tissues beyond week 1, SELP 815K was retained at the injection sites and by the end of the study (week 12), displayed limited absorption, and mild encapsulation. These results demonstrate the benefits of SELP 815K for matrix-mediated gene delivery over the injection of free virus and the injection of virus in Poloxamer 407. Virus in SELP 815K had greater efficacy of tumor suppression, promoted greater levels and greater duration of viral gene expression, and displayed reduced levels of injection site toxicity. Combining these performance and safety benefits with the degree of control with which they can be designed, synthesized and formulated, SELPs continue to show promise for their application in viral gene delivery.
Collapse
Affiliation(s)
- Robert Price
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
17
|
Rajendran S, O'Hanlon D, Morrissey D, O'Donovan T, O'Sullivan GC, Tangney M. Preclinical evaluation of gene delivery methods for the treatment of loco-regional disease in breast cancer. Exp Biol Med (Maywood) 2011; 236:423-34. [DOI: 10.1258/ebm.2011.010234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preclinical results with various gene therapy strategies indicate significant potential for new cancer treatments. However, many therapeutics fail at clinical trial, often due to differences in tissue physiology between animal models and humans, and tumor phenotype variation. Clinical data relevant to treatment strategies may be generated prior to clinical trial through experimentation using intact patient tissue ex vivo. We developed a novel tumor slice model culture system that is universally applicable to gene delivery methods, using a realtime luminescence detection method to assess gene delivery. Methods investigated include viruses (adenovirus [Ad] and adeno-associated virus), lipofection, ultrasound (US), electroporation and naked DNA. Viability and tumor populations within the slices were well maintained for seven days, and gene delivery was qualitatively and quantitatively examinable for all vectors. Ad was the most efficient gene delivery vector with transduction efficiency >50%. US proved the optimal non-viral gene delivery method in human tumor slices. The nature of the ex vivo culture system permitted examination of specific elements. Parameters shown to diminish Ad gene delivery included blood, regions of low viability and secondary disease. US gene delivery was significantly reduced by blood and skin, while tissue hyperthermia improved gene delivery. US achieved improved efficacy for secondary disease. The ex vivo model was also suitable for examination of tissue-specific effects on vector expression, with Ad expression mediated by the CXCR4 promoter shown to provide a tumor selective advantage over the ubiquitously active cytomegalovirus promoter. In conclusion, this is the first study incorporating patient tissue models in comparing gene delivery from various vectors, providing knowledge on cell-type specificity and examining the crucial biological factors determining successful gene delivery. The results highlight the importance of in-depth preclinical assessment of novel therapeutics and may serve as a platform for further testing of current, novel gene delivery approaches.
Collapse
Affiliation(s)
- Simon Rajendran
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
- Department of Surgery, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Deirdre O'Hanlon
- Department of Surgery, South Infirmary Victoria University Hospital, Cork, Ireland
| | - David Morrissey
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| | - Tracey O'Donovan
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| | - Gerald C O'Sullivan
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| | - Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| |
Collapse
|
18
|
Soontornworajit B, Zhou J, Zhang Z, Wang Y. Aptamer-functionalized in situ injectable hydrogel for controlled protein release. Biomacromolecules 2011; 11:2724-30. [PMID: 20809645 DOI: 10.1021/bm100774t] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various in situ injectable hydrogels have been developed for protein delivery in treating human diseases. However, most hydrogels are highly permeable, which can lead to the rapid release of loaded proteins. The purpose of this study is to apply nucleic acid aptamers to functionalize an in situ injectable hydrogel model to control the release of proteins. The aptamers were studied using secondary structural predictions and binding analyses. The results showed that the structural predictions were different from the experimental measurements in numerous cases. The affinity of the aptamer was significantly affected by the mutations of the essential nucleotides, whereas it was not significantly affected by the variations of the nonessential nucleotides. The mutated aptamers were then used to functionalize the injectable hydrogel model. The results showed that the aptamer-functionalized hydrogel could prolong protein release. Moreover, the release rates could be controlled by adjusting the affinity of the aptamer.
Collapse
Affiliation(s)
- Boonchoy Soontornworajit
- Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269-3222, USA
| | | | | | | |
Collapse
|
19
|
Driessens G, Nuttin L, Gras A, Maetens J, Mievis S, Schoore M, Velu T, Tenenbaum L, Préat V, Bruyns C. Development of a successful antitumor therapeutic model combining in vivo dendritic cell vaccination with tumor irradiation and intratumoral GM-CSF delivery. Cancer Immunol Immunother 2011; 60:273-81. [PMID: 21076828 PMCID: PMC11029469 DOI: 10.1007/s00262-010-0941-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/26/2010] [Indexed: 01/01/2023]
Abstract
Vaccination of dendritic cells (DC) combined with GM-CSF secreting tumor cells has shown good therapeutic efficacy in several tumor models. Nevertheless, the engineering of GM-CSF secreting tumor cell line could represent a tedious step limiting its application for treatment in patients. We therefore developed in rats, an "all in vivo" strategy of combined vaccination using an in vivo local irradiation of the tumor as a source of tumor antigens for DC vaccines and an exogenous source of GM-CSF. We report here that supplying recombinant mGM-CSF by local injections or surgical implantation of osmotic pumps did not allow reproducing the therapeutic efficacy observed with in vitro prepared combined vaccines. To bypass this limitation possibly due to the short half-life of recombinant GM-CSF, we have generated adeno-associated virus coding for mGM-CSF and tested their efficacy to transduce tumor cells in vitro and in vivo. The in vivo vaccines combining local irradiation and AAV2/1-mGM-CSF vectors showed high therapeutic efficacy allowing to cure 60% of the rats with pre-implanted tumors, as previously observed with in vitro prepared vaccines. Same efficacy has been observed with a second generation of vaccines combining DC, local tumor irradiation, and the controlled supply of recombinant mGM-CSF in poloxamer 407, a biocompatible thermoreversible hydrogel. By generating a successful "all in vivo" vaccination protocol combining tumor radiotherapy with DC vaccines and a straightforward supply of GM-CSF, we have developed a therapeutic strategy easily translatable to clinic that could become accessible to a much bigger number of cancer patients.
Collapse
Affiliation(s)
- Gregory Driessens
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Faculty of Medicine, route de Lennik 808, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gustafson JA, Ghandehari H. Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy. Adv Drug Deliv Rev 2010; 62:1509-23. [PMID: 20430059 DOI: 10.1016/j.addr.2010.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/14/2010] [Accepted: 04/17/2010] [Indexed: 10/24/2022]
Abstract
Silk-elastinlike protein polymers (SELPs) are recombinant polymers designed from silk fibroin and mammalian elastin amino acid repeats. These are versatile materials that have been examined as controlled release systems for intratumoral gene delivery. SELP hydrogels comprise monodisperse and tunable polymers that have the capability to control and localize the release and expression of plasmid DNA and viruses. This article reviews recent developments in the synthesis and characterization of SELP hydrogels and their use for matrix-mediated gene delivery.
Collapse
|
21
|
Gustafson JA, Price RA, Greish K, Cappello J, Ghandehari H. Silk-elastin-like hydrogel improves the safety of adenovirus-mediated gene-directed enzyme-prodrug therapy. Mol Pharm 2010; 7:1050-6. [PMID: 20586469 DOI: 10.1021/mp100161u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant silk-elastin-like protein polymers (SELPs) are well-known for their highly tunable properties on both the molecular and macroscopic hydrogel levels. One specific structure of these polymers, SELP-815K, has been investigated as an injectable controlled delivery system for the treatment of head and neck cancer via a gene-directed enzyme prodrug therapy (GDEPT) approach. Due to its pore size and gelation properties in vivo, SELP restricts the distribution and controls the release of therapeutic viruses for up to one month. It has been shown that SELP-mediated delivery significantly improves therapeutic outcome of the herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) system in xenograft models of human head and neck cancer. However little is known about potential benefits of this approach with regard to toxicity in the presence of a fully intact immune system. The studies presented here were designed to assess the change in toxicity of the SELP-mediated viral delivery compared to free viral injection in a non-tumor-bearing immune competent mouse model. Toxicity was assessed at 1, 2, 4, and 12 weeks via body weight monitoring, complete blood count (CBC), and blood chemistry. It was found that in the acute and subacute phases (weeks 1-4) there is significant toxicity in groups combining the virus and the prodrug, and matrix-mediated gene delivery with SELP demonstrates a reduction in toxicity from the 2 week time point through the 4 week time point. At the end of the subchronic phase (12 weeks), signs of toxicity had subsided in both groups. Based on these results, recombinant SELPs offer a significant reduction in toxicity of virus-mediated GDEPT treatment compared to free virus injection in the acute and subacute phases.
Collapse
Affiliation(s)
- Joshua A Gustafson
- Department of Bioengineering, Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|
22
|
Greish K, Frandsen J, Scharff S, Gustafson J, Cappello J, Li D, O'Malley BW, Ghandehari H. Silk-elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. J Gene Med 2010; 12:572-9. [PMID: 20603862 DOI: 10.1002/jgm.1469] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Adenoviral-directed enzyme prodrug therapy is a promising approach for head and neck cancer gene therapy. The challenges faced by this approach, however, comprise transient gene expression and dissemination of viruses to distant organs. METHODS We used recombinant silk-elastinlike protein polymer (SELP) matrices for intratumoral delivery of adenoviruses containing both thymidine kinase-1 and luciferase genes in a nude mouse model of JHU-022 head and neck tumor. Hydrogels made from two SELP analogues (47K and 815K), with similar silk to elastinlike block ratios but different block lengths, were studied for intratumoral viral delivery. Tumor-bearing mice were followed up for tumor progression and luciferase gene expression concomitantly for 5 weeks. Polymer safety was evaluated through body weight change, blood count, and liver and kidney functions, in addition to gross and microscopic histological examination. RESULTS SELP-815K analogues efficiently controlled the duration and extent of transfection in tumors for up to 5 weeks with no detectable spread to the liver. An approximately five-fold greater reduction in tumor volume was obtained with matrix-mediated delivery compared to intra-tumoral injection of adenoviruses in saline. SELP matrix proved safe in all injected mice compared to the control group. CONCLUSIONS The SELP-controlled gene delivery approach could potentially improve the anticancer activity of virus-mediated gene therapy at the same time as limiting viral spread to normal organs.
Collapse
Affiliation(s)
- Khaled Greish
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials 2010; 31:9106-16. [PMID: 20822811 DOI: 10.1016/j.biomaterials.2010.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/07/2010] [Indexed: 01/08/2023]
Abstract
The effective and sustained delivery of DNA and siRNAs locally would increase the applicability of gene therapy in tissue regeneration and cancer therapy. One promising approach is to use hydrogel scaffolds to encapsulate and deliver nucleotides in the form of nanoparticles to the disease sites. However, this approach is currently limited by the inability to load concentrated and active gene delivery nanoparticles into the hydrogels due to the severe nanoparticle aggregation during the loading process. Here, we present a process to load concentrated and un-aggregated non-viral gene delivery nanoparticles, using DNA/polyethylene imine (PEI) polyplexes as an example, into neutral polyethylene glycol (PEG), negatively charged hyaluronic acid (HA) and protein fibrin hydrogels crosslinked through various chemistries. The encapsulated polyplexes are highly active both in vitro and in vivo. We believe this process will significantly advance the applications of hydrogel scaffold mediated non-viral gene delivery in tissue regeneration and cancer therapy.
Collapse
Affiliation(s)
- Yuguo Lei
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, 420 Westwood Plaza, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
24
|
Branched oligomerization of cell-permeable peptides markedly enhances the transduction efficiency of adenovirus into mesenchymal stem cells. Gene Ther 2010; 17:1052-61. [PMID: 20485381 DOI: 10.1038/gt.2010.58] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell-permeable peptides (CPPs) promote the transduction of nonpermissive cells by recombinant adenovirus (rAd) to improve the therapeutic efficacy of rAd. In this study, branched oligomerization of CPPs significantly enhanced the transduction of human mesenchymal stem cells (MSCs) by rAd in a CPP type-independent manner. In particular, tetrameric CPPs increased transduction efficiency at 3000-5000-fold lower concentrations than did monomeric CPPs. Although branched oligomerization of CPPs also increases cytotoxicity, optimal concentrations of tetrameric CPPs required for maximum transduction are at least 300-1000-fold lower than those causing 50% cytotoxicity. Furthermore, although only approximately 60% of MSCs were maximally transduced at 500 muM of monomeric CPPs, >95% of MSCs were transduced with 0.1 muM of tetrameric CPPs. Tetrameric CPPs also significantly increased the formation and net surface charge of CPP/rAd complexes, as well as the binding of rAd to cell membranes at a greater degree than did monomeric CPPs, followed by rapid internalization into MSCs. In a critical-size calvarial defect model, the inclusion of tetrameric CPPs in ex vivo transduction of rAd expressing bone morphogenetic protein 2 into MSCs promoted highly mineralized bone formation. In addition, MSCs that were transduced with rAd expressing brain-derived neurotrophic factor in the presence of tetrameric CPPs improved functional recovery in a spinal cord injury model. These results demonstrated the potential for tetrameric CPPs to provide an innovative tool for MSC-based gene therapy and for in vitro gene delivery to MSCs.
Collapse
|
25
|
Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E. Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys 2010; 78:1494-502. [PMID: 20421152 DOI: 10.1016/j.ijrobp.2010.02.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/15/2009] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's "self-sieving" ability, protecting it against ionizing radiation. METHODS AND MATERIALS The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of (188)Re-labeled 6D2 melanin-binding antibody. RESULTS Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. CONCLUSIONS MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin.
Collapse
Affiliation(s)
- Andrew D Schweitzer
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin CW, Yuan F. Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork. Ann Biomed Eng 2010; 38:935-44. [PMID: 20140518 DOI: 10.1007/s10439-010-9947-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/23/2010] [Indexed: 12/22/2022]
Abstract
Topical application of drugs for treatment of intraocular diseases is often limited by inadequate transport and induced toxicity in corneal tissues. To improve the drug delivery, a mathematical model was developed to numerically simulate the transport process of ethacrynic acid (ECA), a potential drug for glaucoma treatment, in the anterior segment of a typical human eye. The model considered diffusion of ECA in all tissues and the aqueous humor (AH) as well as convection of ECA in the AH. The simulation results showed that ECA concentration in the eye depended on the rate of AH production, the half-life of ECA in the precorneal tear film, and the transport parameters in the model. In addition, the main pathway for ECA clearance from the eye was the trabecular meshwork (TM) and the rate of clearance was approximately proportional to the AH production rate. The model predicted that the most effective approach to improving topical drug delivery was to prolong its half-life in the precorneal tear film. These simulation results and model prediction, which could be verified experimentally, might be useful for improving delivery of ECA and other therapeutic agents to the TM as well as other tissues in the anterior segment of the eye.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | | |
Collapse
|
27
|
Hwang D, Moolchandani V, Dandu R, Haider M, Cappello J, Ghandehari H. Influence of polymer structure and biodegradation on DNA release from silk-elastinlike protein polymer hydrogels. Int J Pharm 2008; 368:215-9. [PMID: 19027056 DOI: 10.1016/j.ijpharm.2008.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
Silk-elastinlike protein polymers (SELPs) of varying ratios and lengths of silk and elastin blocks capable of hydrogel formation were evaluated as matrices for controlled delivery of plasmid DNA. Influence of polymer structure, ionic strength of the media and gelation time on DNA release from two structurally related hydrogels, SELP-47K and SELP-415K, was evaluated. The influence of elastase-induced degradation on the swelling behavior and DNA release from these hydrogels was investigated. Results indicate that release is a function of polymer structure, concentration and cure time. SELP-415K which has twice the number of elastin units as that of SELP-47K demonstrated higher release than that of SELP-47K. DNA release from these hydrogels is an inverse function of polymer concentration and cure time, with higher release observed at lower polymer concentration and shorter cure time. Results indicate that ionic strength of the media governs the rate of release. An increase in swelling ratio was observed in the presence of elastase at 12 wt.% composition for both SELP analogs. Release in the presence of elastase was enhanced due to increased swelling ratio and loss of hydrogel integrity. These studies allude to the utility of recombinant techniques to control plasmid DNA release and biodegradation in SELP hydrogels.
Collapse
Affiliation(s)
- David Hwang
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND The development of viral vectors capable of providing efficient gene transfer in diseased tissues without causing any pathogenic effects is pivotal for overcoming the many challenges facing gene therapy. OBJECTIVE Immune responses against viral vectors, inadequate gene expression and inefficient targeting to specific cells in vivo are some of the major problems limiting the clinical utility of viral gene therapy. METHODS This review will focus on recent progress in strategic polymer-based modifications to improve the performance and biocompatibility of a variety of viral vectors. We will discuss the preclinical development of four approaches involving injectable polymers, polyelectrolytes, polymer microspheres and polymer-virus conjugates. RESULTS/CONCLUSION Much progress has been made in creating 'hybrid' gene delivery vectors that combine the strengths of polymers and viruses. With further optimization, these hybrid vectors, which may be safer and more effective, are likely to succeed in clinical applications.
Collapse
Affiliation(s)
- Chun Wang
- University of Minnesota, Department of Biomedical Engineering, 7-105 Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455, USA.
| | | |
Collapse
|
29
|
Using Genetically Modified Microvascular Free Flaps to Deliver Local Cancer Immunotherapy with Minimal Systemic Toxicity. Plast Reconstr Surg 2008; 121:1541-1553. [PMID: 18453976 DOI: 10.1097/prs.0b013e31816ff6aa] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Weinberg BD, Blanco E, Gao J. Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy. J Pharm Sci 2008; 97:1681-702. [PMID: 17847077 DOI: 10.1002/jps.21038] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address the need for minimally invasive treatment of unresectable tumors, intratumoral polymer implants have been developed to release a variety of chemotherapeutic agents for the locoregional therapy of cancer. These implants, also termed "polymer millirods," were designed to provide optimal drug release kinetics to improve drug delivery efficiency and antitumor efficacy when treating unresectable tumors. Modeling of drug transport properties in different tissue environments has provided theoretical insights on rational implant design, and several imaging techniques have been established to monitor the local drug concentrations surrounding these implants both ex vivo and in vivo. Preliminary antitumor efficacy and drug distribution studies in a rabbit liver tumor model have shown that these implants can restrict tumor growth in small animal tumors (diameter < 1 cm). In the future, new approaches, such as three-dimensional (3-D) drug distribution modeling and the use of multiple drug-releasing implants, will be used to extend the efficacy of these implants in treating larger tumors more similar to intractable human tumors.
Collapse
Affiliation(s)
- Brent D Weinberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
31
|
Henshaw JW, Yuan F. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery. J Pharm Sci 2008; 97:691-711. [PMID: 17624918 DOI: 10.1002/jps.21000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.
Collapse
Affiliation(s)
- Joshua W Henshaw
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Durham, North Carolina 27708, USA
| | | |
Collapse
|
32
|
Dandu R, Ghandehari H, Cappello J. Characterization of Structurally Related Adenovirus-laden Silk-elastinlike Hydrogels. J BIOACT COMPAT POL 2008. [DOI: 10.1177/0883911507085278] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetically engineered silk-elastinlike protein polymer (SELP) analogs, SELP-47 K and -415 K, consisting of varying ratio(s) and length(s) of silk and elastin in their monomer repeats and capable of spontaneous hydrogel formation were evaluated as matrices for controlled adenoviral release in vitro. The degree of swelling (q) and the amount of soluble fraction of SELP hydrogel analogs were evaluated with and without the incorporation of adenoviruses. The results indicate that polymer concentration and structure and not the incorporated adenoviruses are the predominant factors that influence q and the soluble fraction in these hydrogels over a 28-day period. The release of adenoviruses was a function of polymer concentration and structure. The higher cumulative percentage release observed in SELP-415 K compared to SELP-47 K can be attributed to the longer elastin sequence in the polymer backbone. These results indicate the potential of customizing the network properties and release from SELPs by manipulating the macromolecular architecture using recombinant synthesis.
Collapse
Affiliation(s)
- Ramesh Dandu
- Center for Nanomedicine & Cellular Delivery, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Hamidreza Ghandehari
- Center for Nanomedicine & Cellular Delivery, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Baltimore, MD, USA,
| | | |
Collapse
|
33
|
Frey SL, Zhang D, Carignano MA, Szleifer I, Lee KYC. Effects of block copolymer's architecture on its association with lipid membranes: experiments and simulations. J Chem Phys 2007; 127:114904. [PMID: 17887877 DOI: 10.1063/1.2768947] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Triblock copolymers of the form poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) have been shown to effectively interact with and restore activity of damaged cell membranes. To better understand the interaction between these polymers and cell membranes, we have modeled the outer leaflet of a cell membrane with a lipid monolayer spread at the air-water interface and injected poloxamers of varying architectures into the subphase beneath the monolayer. Subsequent interactions of the polymer with the monolayer upon compression were monitored with concurrent Langmuir isotherm and fluorescence microscopy measurements. Monte Carlo simulations were run in parallel using a coarse-grained model to capture interactions between lipids and poloxamers. Changing the ratio of the PEO to PPO block lengths (NPEO:NPPO) affects the equilibrium spreading pressure of the polymer. Poloxamers with a relatively longer central hydrophobic block are less soluble, resulting in more polymer adsorbed to the interface and therefore a higher equilibrium spreading pressure. Simulation results show that changing the poloxamer structure effectively affects its solubility. This is also reflected in the degree of lipid corralling as poloxamers with a higher chemical potential (and resulting higher equilibrium spreading pressure) cause the neighboring lipid domains to be more ordered. Upon lateral compression of the monolayers, the polymer is expelled from the film beyond a certain squeeze-out pressure. A poloxamer with a higher NPEO:NPPO ratio (with either NPEO or NPPO held constant in each series) has a lower squeeze-out pressure. Likewise when the total size of the polymer is varied with a constant hydrophilic:hydrophobic ratio, smaller poloxamers are squeezed out at a lower pressure. Our simulation results capture the trends of our experimental observations, both indicating how the interactions between lipids and poloxamers can be tuned by the polymer architecture.
Collapse
Affiliation(s)
- Shelli L Frey
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
34
|
Chen CS, Jounaidi Y, Su T, Waxman DJ. Enhancement of intratumoral cyclophosphamide pharmacokinetics and antitumor activity in a P450 2B11-based cancer gene therapy model. Cancer Gene Ther 2007; 14:935-44. [PMID: 17853921 PMCID: PMC2613860 DOI: 10.1038/sj.cgt.7701092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of cytochrome P450-based enzyme prodrug therapy is well established by preclinical studies and in initial clinical trials. The underlying premise of this gene therapy is that intratumoral P450 expression leads to in situ activation of anticancer P450 prodrugs, such as cyclophosphamide (CPA), with intratumoral accumulation of its activated 4-OH metabolite. In mice bearing 9L gliosarcomas expressing the CPA 4-hydroxylase P450 2B6, enhanced tumor apoptosis was observed 48 h after CPA treatment; however, intratumoral 4-OH-CPA levels were indistinguishable from those of P450-deficient tumors, indicating that the bulk of activated CPA is derived from hepatic metabolism. In contrast, in 9L tumors expressing P450 2B11, a low K(m) CPA 4-hydroxylase, intratumoral 4-OH-CPA levels were higher than in blood, liver and P450-deficient tumors. Intratumoral 4-OH-CPA increased dose-dependently, without saturation at 140 mg kg(-1) CPA, suggesting restricted tumor cell permeation of the parent drug. To circumvent this problem, CPA was administered by direct intratumoral injection, which increased the maximum concentration and area under the curve of drug concentration x time (AUC) of intratumoral 4-OH-CPA by 1.8- and 2.7-fold, respectively. An overall 3.9-fold increase in intratumoral 4-OH-CPA AUC, and in antitumor activity, was obtained when CPA release to systemic circulation was delayed using the slow-release polymer poloxamer 407 as vehicle for intratumoral CPA delivery. These findings highlight the advantage of gene therapy strategies that combine low K(m) P450 prodrug activation enzymes with slow, localized release of P450 prodrug substrates.
Collapse
Affiliation(s)
- C-S Chen
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
35
|
Henshaw JW, Zaharoff DA, Mossop BJ, Yuan F. Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo. Bioelectrochemistry 2007; 71:233-42. [PMID: 17728192 PMCID: PMC2885976 DOI: 10.1016/j.bioelechem.2007.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 07/07/2007] [Accepted: 07/18/2007] [Indexed: 12/11/2022]
Abstract
Local pulsed electric field application is a method for improving non-viral gene delivery. Mechanisms of the improvement include electroporation and electrophoresis. To understand how electrophoresis affects pDNA delivery in vivo, we quantified the magnitude of electric field-induced interstitial transport of pDNA in 4T1 and B16.F10 tumors implanted in mouse dorsal skin-fold chambers. Four different electric pulse sequences were used in this study, each consisted of 10 identical pulses that were 100 or 400 V/cm in strength and 20 or 50 ms in duration. The interval between consecutive pulses was 1 s. The largest distance of transport was obtained with the 400 V/cm and 50 ms pulse, and was 0.23 and 0.22 microm/pulse in 4T1 and B16.F10 tumors, respectively. There were no significant differences in transport distances between 4T1 and B16.F10 tumors. Results from in vivo mapping and numerical simulations revealed an approximately uniform intratumoral electric field that was predominantly in the direction of the applied field. The data in the study suggested that interstitial transport of pDNA induced by a sequence of ten electric pulses was ineffective for macroscopic delivery of genes in tumors. However, the induced transport was more efficient than passive diffusion.
Collapse
Affiliation(s)
| | | | | | - Fan Yuan
- Corresponding author: Dr. Fan Yuan Department of Biomedical Engineering Duke University 136 Hudson Hall Durham, NC 27708 (919) 660 – 5411 (phone) (919) 684 – 4488 (fax)
| |
Collapse
|
36
|
|
37
|
Liu CH, Wu PS. Optimization of adenoviral production in human embryonic kidney cells using response surface methodology. J Biosci Bioeng 2007; 103:406-11. [PMID: 17609154 DOI: 10.1263/jbb.103.406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 01/31/2007] [Indexed: 11/17/2022]
Abstract
Adenoviruses are the most commonly used vectors in clinical trials for gene therapy. How to efficiently produce abundant and high-quality adenoviral vectors for therapeutic research is a challenge for biochemical engineers. A recombinant adenovirus carrying a green fluorescent protein (GFP) gene together with an anchorage-dependent 293 cell line is used as a model system for evaluating the effects of chemicals on adenoviral production in this study. Our aim is to develop a formulation to be added to an infection medium that could enhance the in vitro production of adenoviral vectors. Eleven ingredients obtained from a literature survey were screened for their stimulatory effects on adenoviral production using the 50% tissue culture infectious dose (TCID(50)) method. Among these ingredients, sucrose and mannitol when supplemented to the infection medium significantly increased adenovirus titer. Central composite design and response surface methodology were also adopted to determine the optimal concentrations of sucrose and mannitol. The formulation developed, which is composed of DMEM/F12 medium plus 0.54 M sucrose and 0.37 M mannitol, can significantly increase adenoviral production by 13-fold that of the control (DMEM/F12 medium).
Collapse
Affiliation(s)
- Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.
| | | |
Collapse
|
38
|
Hatefi A, Cappello J, Ghandehari H. Adenoviral Gene Delivery to Solid Tumors by Recombinant Silk–Elastinlike Protein Polymers. Pharm Res 2007; 24:773-9. [PMID: 17308969 DOI: 10.1007/s11095-006-9200-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 11/29/2006] [Indexed: 11/27/2022]
Abstract
PURPOSE The purpose of this study was to investigate the potential of silk-elastinlike protein polymers (SELPs) in controlling the release rate of adenoviruses in vitro and in vivo while preserving their bioactivity. MATERIALS AND METHODS A hydrogel system composed of SELP/adenovirus mixture was prepared. The release of the adenovirus particles from the hydrogels was quantified by Real Time-PCR and the bioactivity of the released viruses was evaluated using confocal microscopy and beta-galactosidase assay. To demonstrate the ability of SELP in entrapping virus cargo and releasing it over a prolonged period of time in vivo, a SELP/adenovirus mixture was prepared and injected directly into xenograft tumor models of breast and head and neck cancer in mice. At various time points mice were sacrificed, tumors dissected, and tissue sections studied under confocal microscope. RESULTS In vitro studies demonstrated that SELP hydrogels release viruses over a period of 4 weeks while preserving their bioactivity. After intratumoral injection, a prolonged and localized expression of adenoviruses was observed. CONCLUSIONS These results suggest the potential of SELPs in local adenoviral delivery to solid tumors as an alternative approach to intratumoral virus infusion.
Collapse
Affiliation(s)
- A Hatefi
- Center for Nanomedicine and Cellular Delivery, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1075, USA
| | | | | |
Collapse
|
39
|
Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 2006; 23:2709-28. [PMID: 17096184 DOI: 10.1007/s11095-006-9104-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/27/2006] [Indexed: 12/16/2022]
Abstract
Poloxamer 407 copolymer (ethylene oxide and propylene oxide blocks) shows thermoreversible properties, which is of the utmost interest in optimising drug formulation (fluid state at room temperature facilitating administration and gel state above sol-gel transition temperature at body temperature promoting prolonged release of pharmacological agents). Pharmaceutical evaluation consists in determining the rheological behaviour (flow curve or oscillatory studies), sol-gel transition temperature, in vitro drug release using either synthetic or physiological membrane and (bio)adhesion characteristics. Poloxamer 407 formulations led to enhanced solubilisation of poorly water-soluble drugs and prolonged release profile for many galenic applications (e.g., oral, rectal, topical, ophthalmic, nasal and injectable preparations) but did not clearly show any relevant advantages when used alone. Combination with other excipients like Poloxamer 188 or mucoadhesive polymers promotes Poloxamer 407 action by optimising sol-gel transition temperature or increasing bioadhesive properties. Inclusion of liposomes or micro(nano)particles in Poloxamer 407 formulations offers interesting prospects, as well. Besides these promising data, Poloxamer 407 has been held responsible for lipidic profile alteration and possible renal toxicity, which compromises its development for parenteral applications. In addition, new findings have demonstrated immuno-modulation and cytotoxicity-promoting properties of Poloxamer 407 revealing significant pharmacological interest and, hence, human trials are in progress to specify these potential applications.
Collapse
Affiliation(s)
- Gilles Dumortier
- Laboratoire de Galénique, UPRES EA 2498, Faculté des Sciences Pharmaceutiques et Biologiques (Université Paris 5), 4, Avenue de l'Observatoire, 75270, Paris Cedex 06, France.
| | | | | | | |
Collapse
|
40
|
McGuire S, Zaharoff D, Yuan F. Nonlinear dependence of hydraulic conductivity on tissue deformation during intratumoral infusion. Ann Biomed Eng 2006; 34:1173-81. [PMID: 16791492 DOI: 10.1007/s10439-006-9136-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
Efficiency of intratumoral infusion for drug and gene delivery depends on intrinsic tissue structures as well as infusion-induced changes in these structures. To this end, we investigated effects of infusion pressure (P(inf)) and infusion-induced tissue deformation on infusion rate (Q) in three mouse tumor models (B16.F10, 4T1, and U87) and developed a poroelastic model for interpreting data and understanding mechanisms of fluid transport in tumors. The collagen concentrations in these tumors were 2.9+/-1.2, 12.2+/-0.9, and 18.1+/-3.5 microg/mg wet wt. of tissues, respectively. During the infusion, there existed a threshold infusion pressure (P(t)), below which fluid flow could not be initiated. The values of P(t) for these tumors were 7.36, 36.8, and 29.4 mmHg, respectively. Q was a bell-shaped function of P(inf) in 4T1 tumors but increased monotonically with increasing P(inf) in other tumors. These observations were consistent with results from numerical simulations based on the poroelastic model, suggesting that both the existence of P(t) and the nonlinear relationships between Q and P(inf) could be explained by infusion-induced tissue deformation that anisotropically affected the hydraulic conductivity of tissues. These results may be useful for further investigations of intratumoral infusion of drugs and genes.
Collapse
Affiliation(s)
- Sarah McGuire
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708, USA
| | | | | |
Collapse
|
41
|
Wang Y, Yuan F. Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 2006; 34:114-27. [PMID: 16520902 DOI: 10.1007/s10439-005-9007-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 06/30/2005] [Indexed: 12/23/2022]
Abstract
It is a challenge to deliver therapeutic genes to tumor cells using viral vectors because (i) the size of these vectors are close to or larger than the space between fibers in extracellular matrix and (ii) viral proteins are potentially toxic in normal tissues. In general, gene delivery is hindered by various physiological barriers to virus transport from the site of injection to the nucleus of tumor cells and is limited by normal tissue tolerance of toxicity determined by local concentrations of transgene products and viral proteins. To illustrate the obstacles encountered in the delivery and yet limit the scope of discussion, this review focuses only on extracellular transport in solid tumors and distribution of viral vectors in normal organs after they are injected intravenously or intratumorally. This review also discusses current strategies for improving intratumoral transport and specificity of viral vectors.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
42
|
Yu P, Wang X, Fu YX. Enhanced local delivery with reduced systemic toxicity: Delivery, delivery, and delivery. Gene Ther 2006; 13:1131-2. [PMID: 17243201 DOI: 10.1038/sj.gt.3302760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
43
|
Wang Y, Wang H, Li CY, Yuan F. Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery. Mol Cancer Ther 2006; 5:362-6. [PMID: 16505110 DOI: 10.1158/1535-7163.mct-05-0266] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have shown that up to 90% of viral vectors could disseminate to normal organs following intratumoral infusion. The amount of dissemination might be dependent on the infusion conditions. Therefore, we investigated the effects of infusion rate, volume, and dose on transgene expression in liver and tumor tissues after intratumoral infusion of an adenoviral vector encoding luciferase. Luciferase expression was determined through bioluminescence intensity measurement. We observed that the luciferase expression in the liver was independent of the infusion rate but increased with the infusion dose, whereas the luciferase expression in the tumor was a bell-shaped function of the infusion rate. The latter observation was consistent with the distribution pattern of Evans blue-labeled albumin after its solution was infused into tumors at the same infusion rates. We also observed that the infusion volume could affect luciferase expression in the tumor but not in the liver. These observations implied that virus dissemination was determined mainly by the infusion dose, whereas the amount of transgene expression in the tumor depended on the distribution volume of viral vectors in the tumor as well as the infusion dose.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biomedical Engineering, 136 Hudson Hall, Box 90281, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|