1
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
2
|
Banerjee S, Michalarea V, Ang JE, Ingles Garces A, Biondo A, Funingana IG, Little M, Ruddle R, Raynaud F, Riisnaes R, Gurel B, Chua S, Tunariu N, Porter JC, Prout T, Parmar M, Zachariou A, Turner A, Jenkins B, McIntosh S, Ainscow E, Minchom A, Lopez J, de Bono J, Jones R, Hall E, Cook N, Basu B, Banerji U. A Phase I Trial of CT900, a Novel α-Folate Receptor-Mediated Thymidylate Synthase Inhibitor, in Patients with Solid Tumors with Expansion Cohorts in Patients with High-Grade Serous Ovarian Cancer. Clin Cancer Res 2022; 28:4634-4641. [PMID: 35984704 PMCID: PMC9623233 DOI: 10.1158/1078-0432.ccr-22-1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE CT900 is a novel small molecule thymidylate synthase inhibitor that binds to α-folate receptor (α-FR) and thus is selectively taken up by α-FR-overexpressing tumors. PATIENTS AND METHODS A 3+3 dose escalation design was used. During dose escalation, CT900 doses of 1-6 mg/m2 weekly and 2-12 mg/m2 every 2 weeks (q2Wk) intravenously were evaluated. Patients with high-grade serous ovarian cancer were enrolled in the expansion cohorts. RESULTS 109 patients were enrolled: 42 patients in the dose escalation and 67 patients in the expansion cohorts. At the dose/schedule of 12 mg/m2/q2Wk (with and without dexamethasone, n = 40), the most common treatment-related adverse events were fatigue, nausea, diarrhea, cough, anemia, and pneumonitis, which were predominantly grade 1 and grade 2. Levels of CT900 more than 600 nmol/L needed for growth inhibition in preclinical models were achieved for >65 hours at a dose of 12 mg/m2. In the expansion cohorts, the overall response rate (ORR), was 14/64 (21.9%). Thirty-eight response-evaluable patients in the expansion cohorts receiving 12 mg/m2/q2Wk had tumor evaluable for quantification of α-FR. Patients with high or medium expression had an objective response rate of 9/25 (36%) compared with 1/13 (7.7%) in patients with negative/very low or low expression of α-FR. CONCLUSIONS The dose of 12 mg/m2/q2Wk was declared the recommended phase II dose/schedule. At this dose/schedule, CT900 exhibited an acceptable side effect profile with clinical benefit in patients with high/medium α-FR expression and warrants further investigation.
Collapse
Affiliation(s)
- Susana Banerjee
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Vasiliki Michalarea
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joo Ern Ang
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alvaro Ingles Garces
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrea Biondo
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ionut-Gabriel Funingana
- Cambridge University Hospitals NHS Foundation Trust and University of Cambridge, Cambridge, United Kingdom
| | - Martin Little
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ruth Ruddle
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Florence Raynaud
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ruth Riisnaes
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Bora Gurel
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sue Chua
- Radiology and Nuclear Medicine Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nina Tunariu
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Radiology and Nuclear Medicine Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joanna C. Porter
- UCL Respiratory, University College London and Interstitial Lung Disease Service, University College London NHS Foundation Trust, London, United Kingdom
| | - Toby Prout
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Mona Parmar
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Anna Zachariou
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alison Turner
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Ben Jenkins
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Anna Minchom
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Juanita Lopez
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Johann de Bono
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Robert Jones
- Cardiff University, School of Medicine, Velindre University NHS Trust, Cardiff, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Natalie Cook
- Experimental Cancer Medicine Team, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Bristi Basu
- Cambridge University Hospitals NHS Foundation Trust and University of Cambridge, Cambridge, United Kingdom
| | - Udai Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
3
|
Newstead S. Structural basis for recognition and transport of folic acid in mammalian cells. Curr Opin Struct Biol 2022; 74:102353. [PMID: 35303537 PMCID: PMC7612623 DOI: 10.1016/j.sbi.2022.102353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Structural studies on mammalian vitamin transport lag behind other metabolites. Folates, also known as B9 vitamins, are essential cofactors in one-carbon transfer reactions in biology. Three different systems control folate uptake in the human body; folate receptors function to capture and internalise extracellular folates via endocytosis, whereas two major facilitator superfamily transporters, the reduced folate carrier (RFC; SLC19A1) and proton-coupled folate transporter (PCFT; SLC46A1) control the transport of folates across cellular membranes. Targeting specific folate transporters is being pursued as a route to developing new antifolates with improved pharmacology. Recent structures of the proton-coupled folate transporter, PCFT, revealed key insights into antifolate recognition and the mechanism of proton-coupled transport. Combined with previously determined structures of folate receptors and new predictions for the structure of the RFC, we are now able to develop a structure-based understanding of folate and antifolate recognition to accelerate efforts in antifolate drug development.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
4
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|
5
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Rosch J, DuRoss AN, Landry MR, Sun C. Development of a Pemetrexed/Folic Acid Nanoformulation: Synthesis, Characterization, and Efficacy in a Murine Colorectal Cancer Model. ACS OMEGA 2020; 5:15424-15432. [PMID: 32637817 PMCID: PMC7331029 DOI: 10.1021/acsomega.0c01550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/04/2020] [Indexed: 05/07/2023]
Abstract
The folate analogue pemetrexed (PEM) is an approved therapeutic for non-small cell lung cancer and malignant pleural mesothelioma with the potential for broader application in combination therapies. Here, we report the development of a nanoformulation of PEM and its efficacy against the CT26 murine colorectal cancer cell line in vitro and in vivo. Utilizing layer-by-layer deposition, we integrate PEM, along with folic acid (FA), onto a fluorescent polystyrene nanoparticle (NP) substrate. The final nanoformulation (PEM/FA-NP) has a size of ∼40 nm and a zeta potential of approximately -20 mV. Cell uptake studies indicated increased uptake in vitro for the PEM/FA-NP compared to the uncoated NP, likely due to the presence of PEM and FA. Viability studies were performed to determine the potency of the PEM/FA-NP formulation against CT26 cells. Syngeneic CT26 tumors in BALB/c mice showed reduced growth when treated once daily (2.1 mg/kg PEM) for 3 days with PEM/FA-NP versus the vehicle (uncoated) control, with no observable signs of systemic toxicity associated with the nanoformulation. Although the current study size is limited (n = 4 animals for each group), the overall performance and biocompatibility of the PEM/FA-NP observed suggest that further optimization and larger-scale studies may be warranted for this novel formulation.
Collapse
Affiliation(s)
- Justin
G. Rosch
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Allison N. DuRoss
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Madeleine R. Landry
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
| | - Conroy Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, United States
- Department
of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
- . Phone: 503-346-4699
| |
Collapse
|
7
|
Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 2020; 17:349-359. [PMID: 32152484 DOI: 10.1038/s41571-020-0339-5] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 12/24/2022]
Abstract
Folate receptor α (FRα) came into focus as an anticancer target many decades after the successful development of drugs targeting intracellular folate metabolism, such as methotrexate and pemetrexed. Binding to FRα is one of several methods by which folate is taken up by cells; however, this receptor is an attractive anticancer drug target owing to the overexpression of FRα in a range of solid tumours, including ovarian, lung and breast cancers. Furthermore, using FRα to better localize effective anticancer therapies to their target tumours using platforms such as antibody-drug conjugates, small-molecule drug conjugates, radioimmunoconjugates and, more recently, chimeric antigen receptor T cells could further improve the outcomes of patients with FRα-overexpressing cancers. FRα can also be harnessed for predictive biomarker research. Moreover, imaging FRα radiologically or in real time during surgery can lead to improved functional imaging and surgical outcomes, respectively. In this Review, we describe the current status of research into FRα in cancer, including data from several late-phase clinical trials involving FRα-targeted therapies, and the use of new technologies to develop FRα-targeted agents with improved therapeutic indices.
Collapse
Affiliation(s)
- Mariana Scaranti
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Elena Cojocaru
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Susana Banerjee
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Udai Banerji
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
Golani LK, Islam F, O'Connor C, Dekhne AS, Hou Z, Matherly LH, Gangjee A. Design, synthesis and biological evaluation of novel pyrrolo[2,3-d]pyrimidine as tumor-targeting agents with selectivity for tumor uptake by high affinity folate receptors over the reduced folate carrier. Bioorg Med Chem 2020; 28:115544. [PMID: 32503687 DOI: 10.1016/j.bmc.2020.115544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
Tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl compounds based on 2 were isosterically modified at the 4-carbon bridge by replacing the vicinal (C11) carbon by heteroatoms N (4), O (5) or S (6), or with an N-substituted formyl (7), trifluoroacetyl (8) or acetyl (9). Replacement with sulfur (6) afforded the most potent KB tumor cell inhibitor, ~6-fold better than the parent 2. In addition, 6 retained tumor transport selectivity via folate receptor (FR) α and -β over the ubiquitous reduced folate carrier (RFC). FRα-mediated cell inhibition for 6 was generally equivalent to 2, while the FRβ-mediated activity was improved by 16-fold over 2. N (4) and O (5) substitutions afforded similar tumor cell inhibitions as 2, with selectivity for FRα and -β over RFC. The N-substituted analogs 7-9 also preserved transport selectivity for FRα and -β over RFC. For FRα-expressing CHO cells, potencies were in the order of 8 > 7 > 9. Whereas 8 and 9 showed similar results with FRβ-expressing CHO cells, 7 was ~16-fold more active than 2. By nucleoside rescue experiments, all the compounds inhibited de novo purine biosynthesis, likely at the step catalyzed by glycinamide ribonucleotide formyltransferase. Thus, heteroatom replacements of the CH2 in the bridge of 2 afford analogs with increased tumor cell inhibition that could provide advantages over 2, as well as tumor transport selectivity over clinically used antifolates including methotrexate and pemetrexed.
Collapse
Affiliation(s)
- Lalit K Golani
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| | - Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, United States
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, United States.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
9
|
Tian L, Yang L, Zheng W, Hu Y, Ding P, Wang Z, Zheng D, Fu L, Chen B, Xiao T, Wang Y, Chen F, Liu J, Gao K, Shen S, Zhai R. RNA sequencing of exosomes revealed differentially expressed long noncoding RNAs in early-stage esophageal squamous cell carcinoma and benign esophagitis. Epigenomics 2020; 12:525-541. [PMID: 32043367 DOI: 10.2217/epi-2019-0371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To explore the roles of exosomal long noncoding RNAs (lncRNAs) in early-stage esophageal squamous cell carcinoma (ESCC) and benign esophagitis. Materials & methods: Exosomal lncRNAs were analyzed using RNA-seq and validated by quantitative real-time PCR, loss-of-function, co-culture and RNA pulldown assays. Results: Exosomal lncRNAs displayed tighter tissue-specificity, higher expression level and lower splicing efficiency than that of mRNAs. A total of 152 exosomal lncRNAs were differentially expressed between ESCC and controls. A total of 124 exosomal lncRNAs were dysregulated between ESCC and esophagitis. Knockdown of 13 ESCC-associated lncRNAs modified proliferation, migration, and apoptosis of ESCC cells. A novel lncRNA RP5-1092A11.2 was highly expressed in ESCC-derived exosomes, ESCC cells and tumor tissues. Exosomes released from RP5-1092A11.2-knockdown cells inhibited ESCC cell proliferation. Conclusion: Dysregulated exosomal lncRNAs were functionally associated with different disease status in esophagus.
Collapse
Affiliation(s)
- Li Tian
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen 518020, PR China
| | - Wenjing Zheng
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen 518060, PR China
| | - Yinqing Hu
- Department of Digestive Endoscopy, The First Affiliated Hospital of Shenzhen University, Shenzhen 518023, PR China
| | - Peikun Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen 518020, PR China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Shenzhen 518020, PR China
| | - Duo Zheng
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Li Fu
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Bin Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518023, PR China
| | - Tian Xiao
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Yuejun Wang
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Feng Chen
- Department of Biostatistics, Nanjing Medical University, Nanjing 211166, PR China
| | - Jun Liu
- Department of Digestive Endoscopy, The First Affiliated Hospital of Shenzhen University, Shenzhen 518023, PR China
| | - Kaiping Gao
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Sipeng Shen
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Rihong Zhai
- School of Public Health, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Carson Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| |
Collapse
|
10
|
Rosch JG, DuRoss AN, Landry MR, Sun C. Formulation of Folate-Modified Raltitrexed-Loaded Nanoparticles for Colorectal Cancer Theranostics. Pharmaceutics 2020; 12:pharmaceutics12020133. [PMID: 32033317 PMCID: PMC7076500 DOI: 10.3390/pharmaceutics12020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
Multifunctional nanoparticles (NPs) that enable the imaging of drug delivery and facilitate cancer cell uptake are potentially powerful tools in tailoring oncologic treatments. Here we report the development of a layer-by-layer (LbL) formulation of folic acid (FA) and folate antimetabolites that have been well-established for enhanced tumor uptake and as potent chemotherapeutics, respectively. To investigate the uptake of LbL coated NPs, we deposited raltitrexed (RTX) or combined RTX-FA on fluorescent polystyrene NPs. The performance of these NP formulations was evaluated with CT26 murine colorectal cancer (CRC) cells in vitro and in vivo to examine both uptake and cytotoxicity against CRC. Fluorescence microscopy and flow cytometry indicated an increased accumulation of the coated NP formulations versus bare NPs. Ex vivo near-infrared (NIR) fluorescence imaging of major organs suggested the majority of NPs accumulated in the liver, which is typical of a majority of NP formulations. Imaging of the CRC tumors alone showed a higher average fluorescence from NPs accumulated in animals treated with the coated NPs, with the majority of RTX NP-treated animals showing the consistently-highest mean tumoral accumulation. Overall, these results contribute to the development of LbL formulations in CRC theranostic applications.
Collapse
Affiliation(s)
- Justin G. Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; (J.G.R.); (A.N.D.); (M.R.L.)
| | - Allison N. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; (J.G.R.); (A.N.D.); (M.R.L.)
| | - Madeleine R. Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; (J.G.R.); (A.N.D.); (M.R.L.)
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; (J.G.R.); (A.N.D.); (M.R.L.)
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
11
|
Discovery of amide-bridged pyrrolo[2,3-d]pyrimidines as tumor targeted classical antifolates with selective uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis. Bioorg Med Chem 2019; 27:115125. [PMID: 31679978 DOI: 10.1016/j.bmc.2019.115125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1 kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a "first-in-class" classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.
Collapse
|
12
|
Chandrupatla DMSH, Molthoff CFM, Lammertsma AA, van der Laken CJ, Jansen G. The folate receptor β as a macrophage-mediated imaging and therapeutic target in rheumatoid arthritis. Drug Deliv Transl Res 2019; 9:366-378. [PMID: 30280318 PMCID: PMC6328514 DOI: 10.1007/s13346-018-0589-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages play a key role in the pathophysiology of rheumatoid arthritis (RA). Notably, positive correlations have been reported between synovial macrophage infiltration and disease activity as well as therapy outcome in RA patients. Hence, macrophages can serve as an important target for both imaging disease activity and drug delivery in RA. Folate receptor β (FRβ) is a glycosylphosphatidyl (GPI)-anchored plasma membrane protein being expressed on myeloid cells and activated macrophages. FRβ harbors a nanomolar binding affinity for folic acid allowing this receptor to be exploited for RA disease imaging (e.g., folate-conjugated PET tracers) and therapeutic targeting (e.g., folate antagonists and folate-conjugated drugs). This review provides an overview of these emerging applications in RA by summarizing and discussing properties of FRβ, expression of FRβ in relation to macrophage polarization, FRβ-targeted in vivo imaging modalities, and FRβ-directed drug targeting.
Collapse
Affiliation(s)
- Durga M S H Chandrupatla
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Conny J van der Laken
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Sab concentrations indicate chemotherapeutic susceptibility in ovarian cancer cell lines. Biochem J 2018; 475:3471-3492. [PMID: 30322886 DOI: 10.1042/bcj20180603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023]
Abstract
The occurrence of chemotherapy-resistant tumors makes ovarian cancer (OC) the most lethal gynecological malignancy. While many factors may contribute to chemoresistance, the mechanisms responsible for regulating tumor vulnerability are under investigation. Our analysis of gene expression data revealed that Sab, a mitochondrial outer membrane (MOM) scaffold protein, was down-regulated in OC patients. Sab-mediated signaling induces cell death, suggesting that this apoptotic pathway is diminished in OC. We examined Sab expression in a panel of OC cell lines and found that the magnitude of Sab expression correlated to chemo-responsiveness; wherein, OC cells with low Sab levels were chemoresistant. The Sab levels were reflected by a corresponding amount of stress-induced c-Jun N-terminal kinase (JNK) on the MOM. BH3 profiling and examination of Bcl-2 and BH3-only protein concentrations revealed that cells with high Sab concentrations were primed for apoptosis, as determined by the decrease in pro-survival Bcl-2 proteins and an increase in pro-apoptotic BH3-only proteins on mitochondria. Furthermore, overexpression of Sab in chemoresistant cells enhanced apoptotic priming and restored cellular vulnerability to a combination treatment of cisplatin and paclitaxel. Contrariwise, inhibiting Sab-mediated signaling or silencing Sab expression in a chemosensitive cell line resulted in decreased apoptotic priming and increased resistance. The effects of silencing on Sab on the resistance to chemotherapeutic agents were emulated by the silencing or inhibition of JNK, which could be attributed to changes in Bcl-2 protein concentrations induced by sub-chronic JNK inhibition. We propose that Sab may be a prognostic biomarker to discern personalized treatments for OC patients.
Collapse
|
14
|
Soleymani J, Hasanzadeh M, Somi MH, Ozkan SA, Jouyban A. Targeting and sensing of some cancer cells using folate bioreceptor functionalized nitrogen-doped graphene quantum dots. Int J Biol Macromol 2018; 118:1021-1034. [PMID: 30001595 DOI: 10.1016/j.ijbiomac.2018.06.183] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 02/02/2023]
Abstract
In recent years, study of folate receptor (FR) expression related to targeting, drug delivery and counting of tumoral cells have been followed. In this work, a fast and simple strategy was reported to determine the FR expressed cancer cells based on the selective bonding of the folic acid/folate (FA) to the FR-positive tumor cells. The folate decorated Nitrogen-doped graphene quantum dots (N-GQDs) were utilized as selective targeting of the MKN 45 cells. Fluorescent microscopy imaging investigations revealed that the produced FA conjugated N-GQDs could specifically attach to the target FR-positive tumor cells. Due to the fluorescence emission of N-GQDs, the developed cytosensor is free from attaching any fluorescent ligand i.e. Rhodamine B to capture the florescence microscopy images and also flow cytometry analysis. The fabricated cytosensor possesses a dynamic range from 100 to 7.0 × 104 cell·mL-1 with high selectivity. Furthermore, the cytosensor also could visualized the MCF 7 and HT 29 cells where the dynamic ranges were 100 to 1.0 × 104 and 500 to 4.0 × 104 cells·mL-1, respectively. In vitro toxicity tests has shown low toxicity of the synthesized N-GQDs where the minimum viability is 68%. The proposed FA-N-GQDs based cytosensor provides a novel platform for detection of MKN 45, HT 29 and MCF 7 cancer cell lines which could be used in multi-channel cancer diagnosis biodevice.
Collapse
Affiliation(s)
- Jafar Soleymani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel Ayşil Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Xing L, Xu Y, Sun K, Wang H, Zhang F, Zhou Z, Zhang J, Zhang F, Caliskan B, Qiu Z, Wang M. Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci Rep 2018; 8:8426. [PMID: 29849110 PMCID: PMC5976665 DOI: 10.1038/s41598-018-26683-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
The expression level of folate receptor alpha (FRα) is located highly rate in ovarian cancer though it is remained absent in normal tissues. This highly tumor restricted expression profile makes FRα a promising target for tumor therapy and diagnosis. In this research we report a FRα binding peptide C7(Met-His-Thr-Ala-Pro-Gly-Trp-Gly-Tyr-Arg-Leu-Ser) discovered by phage display and this peptide showed specific binding to FRα expressing cells by cell ELISA and flow cytometry. Tumor targeting ability of C7 was proved in vivo by both phage homing experiment and fluorescence imaging. C7 can be internalized by SKOV3 cells and its affinity to FRα was determined by MST. The molecular recognition was revealed by structure modeling, suggesting its binding mode with FRα.
Collapse
Affiliation(s)
- Lijun Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yifeng Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Keyong Sun
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Hong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Fengguo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Zhengpin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Juan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P.R. China
| | - Bilgen Caliskan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Zheng Qiu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China.
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, P.R. China.
| |
Collapse
|
16
|
Ravindra M, Wallace-Povirk A, Karim MA, Wilson MR, O'Connor C, White K, Kushner J, Polin L, George C, Hou Z, Matherly LH, Gangjee A. Tumor Targeting with Novel Pyridyl 6-Substituted Pyrrolo[2,3- d]Pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of De Novo Purine Nucleotide Biosynthesis. J Med Chem 2018; 61:2027-2040. [PMID: 29425443 DOI: 10.1021/acs.jmedchem.7b01708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor-targeted specificities of 6-substituted pyrrolo[2,3- d]pyrimidine analogues of 1, where the phenyl side-chain is replaced by 3',6' (5, 8), 2',5' (6, 9), and 2',6' (7, 10) pyridyls, were analyzed. Proliferation inhibition of isogenic Chinese hamster ovary (CHO) cells expressing folate receptors (FRs) α and β were in rank order, 6 > 9 > 5 > 7 > 8, with 10 showing no activity, and 6 > 9 > 5 > 8, with 10 and 7 being inactive, respectively. Antiproliferative effects toward FRα- and FRβ-expressing cells were reflected in competitive binding with [3H]folic acid. Only compound 6 was active against proton-coupled folate receptor (PCFT)-expressing CHO cells (∼4-fold more potent than 1) and inhibited [3H]methotrexate uptake by PCFT. In KB and IGROV1 tumor cells, 6 showed <1 nM IC50, ∼2-3-fold more potent than 1. Compound 6 inhibited glycinamide ribonucleotide formyltransferase in de novo purine biosynthesis and showed potent in vivo efficacy toward subcutaneous IGROV1 tumor xenografts in SCID mice.
Collapse
Affiliation(s)
- Manasa Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Adrianne Wallace-Povirk
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Mohammad A Karim
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| | - Mike R Wilson
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Carrie O'Connor
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Kathryn White
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Juiwanna Kushner
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Lisa Polin
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Christina George
- Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Zhanjun Hou
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Larry H Matherly
- Molecular Therapeutics Program , Barbara Ann Karmanos Cancer Institute , 421 East Canfield Street , Detroit , Michigan 48201 , United States.,Department of Oncology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States.,Department of Pharmacology , Wayne State University School of Medicine , Detroit , Michigan 48201 , United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences , Duquesne University , 600 Forbes Avenue , Pittsburgh , Pennsylvania 15282 , United States
| |
Collapse
|
17
|
Ferrari S, Severi L, Pozzi C, Quotadamo A, Ponterini G, Losi L, Marverti G, Costi MP. Human Thymidylate Synthase Inhibitors Halting Ovarian Cancer Growth. VITAMINS AND HORMONES 2018; 107:473-513. [PMID: 29544641 DOI: 10.1016/bs.vh.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human thymidylate synthase (hTS) has an important role in DNA biosynthesis, thus it is essential for cell survival. TS is involved in the folate pathways, specifically in the de novo pyrimidine biosynthesis. Structure and functions are intimately correlated, account for cellular activity and, in a broader view, with in vivo mechanisms. hTS is a target for anticancer agents, some of which are clinical drugs. The understanding of the detailed mechanism of TS inhibition by currently used drugs and of the interaction with the mechanism of action of other anticancer agents can suggest new perspective of TS inhibition able to improve the anticancer effect and to overcome drug resistance. TS-targeting drugs in therapy today are inhibitors that bind at the active site and that mostly resemble the substrates. Nonsubstrate analogs offer an opportunity for allosteric binding and novel mode of inhibition in the cancer cells. This chapter illustrates the relationship among the large number of hTS actions at molecular and clinical levels, its role as a target for ovarian cancer therapy, in particular in cases of overexpression of hTS and other folate proteins such as those induced by platinum drug treatments, and address the potential combination of TS inhibitors with other suitable anticancer agents.
Collapse
Affiliation(s)
| | - Leda Severi
- University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Lorena Losi
- University of Modena and Reggio Emilia, Modena, Italy
| | | | | |
Collapse
|
18
|
Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, Bloomfield J, Fittall M, Grigoriadis A, Figini M, Canevari S, Spicer JF, Tutt AN, Karagiannis SN. Targeting folate receptor alpha for cancer treatment. Oncotarget 2018; 7:52553-52574. [PMID: 27248175 PMCID: PMC5239573 DOI: 10.18632/oncotarget.9651] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/19/2016] [Indexed: 12/27/2022] Open
Abstract
Promising targeted treatments and immunotherapy strategies in oncology and advancements in our understanding of molecular pathways that underpin cancer development have reignited interest in the tumor-associated antigen Folate Receptor alpha (FRα). FRα is a glycosylphosphatidylinositol (GPI)-anchored membrane protein. Its overexpression in tumors such as ovarian, breast and lung cancers, low and restricted distribution in normal tissues, alongside emerging insights into tumor-promoting functions and association of expression with patient prognosis, together render FRα an attractive therapeutic target. In this review, we summarize the role of FRα in cancer development, we consider FRα as a potential diagnostic and prognostic tool, and we discuss different targeted treatment approaches with a specific focus on monoclonal antibodies. Renewed attention to FRα may point to novel individualized treatment approaches to improve the clinical management of patient groups that do not adequately benefit from current conventional therapies.
Collapse
Affiliation(s)
- Anthony Cheung
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - James Opzoomer
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Jacinta Bloomfield
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom
| | - Matthew Fittall
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Mariangela Figini
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Canevari
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - James F Spicer
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Andrew N Tutt
- Breast Cancer Now Research Unit, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Matherly LH, Hou Z, Gangjee A. The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother Pharmacol 2018; 81:1-15. [PMID: 29127457 PMCID: PMC5756103 DOI: 10.1007/s00280-017-3473-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
This review considers the "promise" of exploiting the proton-coupled folate transporter (PCFT) for selective therapeutic targeting of cancer. PCFT was discovered in 2006 and was identified as the principal folate transporter involved in the intestinal absorption of dietary folates. The recognition that PCFT was highly expressed in many tumors stimulated substantial interest in using PCFT for cytotoxic drug targeting, taking advantage of its high level transport activity under the acidic pH conditions that characterize many tumors. For pemetrexed, among the best PCFT substrates, transport by PCFT establishes its importance as a clinically important transporter in malignant pleural mesothelioma and non-small cell lung cancer. In recent years, the notion of PCFT-targeting has been extended to a new generation of tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine compounds that are structurally and functionally distinct from pemetrexed, and that exhibit near exclusive transport by PCFT and potent inhibition of de novo purine nucleotide biosynthesis. Based on compelling preclinical evidence in a wide range of human tumor models, it is now time to advance the most optimized PCFT-targeted agents with the best balance of PCFT transport specificity and potent antitumor efficacy to the clinic to validate this novel paradigm of highly selective tumor targeting.
Collapse
Affiliation(s)
- Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield Street, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
20
|
Hou Z, Gattoc L, O'Connor C, Yang S, Wallace-Povirk A, George C, Orr S, Polin L, White K, Kushner J, Morris RT, Gangjee A, Matherly LH. Dual Targeting of Epithelial Ovarian Cancer Via Folate Receptor α and the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3- d]pyrimidine Antifolates. Mol Cancer Ther 2017; 16:819-830. [PMID: 28138029 DOI: 10.1158/1535-7163.mct-16-0444] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 01/19/2017] [Indexed: 02/04/2023]
Abstract
Folate uptake in epithelial ovarian cancer (EOC) involves the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT), both facilitative transporters and folate receptor (FR) α. Although in primary EOC specimens, FRα is widely expressed and increases with tumor stage, PCFT was expressed independent of tumor stage (by real-time RT-PCR and IHC). EOC cell line models, including cisplatin sensitive (IGROV1 and A2780) and resistant (SKOV3 and TOV112D) cells, expressed a 17-fold range of FRα and similar amounts (within ∼2-fold) of PCFT. Novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates AGF94 and AGF154 exhibited potent antiproliferative activities toward all of the EOC cell lines, reflecting selective cellular uptake by FRα and/or PCFT over RFC. When IGROV1 cells were pretreated with AGF94 at pH 6.8, clonogenicity was potently inhibited, confirming cell killing. FRα was knocked down in IGROV1 cells with lentiviral shRNAs. Two FRα knockdown clones (KD-4 and KD-10) showed markedly reduced binding and uptake of [3H]folic acid and [3H]AGF154 by FRα, but maintained high levels of [3H]AGF154 uptake by PCFT compared to nontargeted control cells. In proliferation assays, KD-4 and KD-10 cells preserved in vitro inhibition by AGF94 and AGF154, compared to a nontargeted control, attributable to residual FRα- and substantial PCFT-mediated uptake. KD-10 tumor xenografts in severe-compromised immune-deficient mice were likewise sensitive to AGF94 Collectively, our results demonstrate the substantial therapeutic potential of novel 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with dual targeting of PCFT and FRα toward EOCs that express a range of FRα, along with PCFT, as well as cisplatin resistance. Mol Cancer Ther; 16(5); 819-30. ©2017 AACR.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Leda Gattoc
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Si Yang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania
| | | | - Christina George
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve Orr
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert T Morris
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
21
|
Ai P, Wang H, Liu K, Wang T, Gu W, Ye L, Yan C. The relative length of dual-target conjugated on iron oxide nanoparticles plays a role in brain glioma targeting. RSC Adv 2017. [DOI: 10.1039/c7ra02102j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cy5.5-labeled, CTX/PEG-FA dual-target conjugated Fe3O4 NPs were prepared and the effect of dual-target relative length on glioma targeting was investigated.
Collapse
Affiliation(s)
- Penghui Ai
- Department of Neurosurgery
- Beijing Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Hao Wang
- Department of Anatomy
- School of Basic Medical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Kang Liu
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Tingjian Wang
- Department of Neurosurgery
- Beijing Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Wei Gu
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ling Ye
- School of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Changxiang Yan
- Department of Neurosurgery
- Beijing Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| |
Collapse
|
22
|
Golani LK, Wallace-Povirk A, Deis SM, Wong J, Ke J, Gu X, Raghavan S, Wilson MR, Li X, Polin L, de Waal PW, White K, Kushner J, O'Connor C, Hou Z, Xu HE, Melcher K, Dann CE, Matherly LH, Gangjee A. Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3-d] Pyrimidine Antifolates with Heteroatom Bridge Substitutions via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis. J Med Chem 2016; 59:7856-76. [PMID: 27458733 DOI: 10.1021/acs.jmedchem.6b00594] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Targeted antifolates with heteroatom replacements of the carbon vicinal to the phenyl ring in 1 by N (4), O (8), or S (9), or with N-substituted formyl (5), acetyl (6), or trifluoroacetyl (7) moieties, were synthesized and tested for selective cellular uptake by folate receptor (FR) α and β or the proton-coupled folate transporter. Results show increased in vitro antiproliferative activity toward engineered Chinese hamster ovary cells expressing FRs by 4-9 over the CH2 analogue 1. Compounds 4-9 inhibited de novo purine biosynthesis and glycinamide ribonucleotide formyltransferase (GARFTase). X-ray crystal structures for 4 with FRα and GARFTase showed that the bound conformations of 4 required flexibility for attachment to both FRα and GARFTase. In mice bearing IGROV1 ovarian tumor xenografts, 4 was highly efficacious. Our results establish that heteroatom substitutions in the 3-atom bridge region of 6-substituted pyrrolo[2,3-d]pyrimidines related to 1 provide targeted antifolates that warrant further evaluation as anticancer agents.
Collapse
Affiliation(s)
- Lalit K Golani
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Adrianne Wallace-Povirk
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States
| | - Siobhan M Deis
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Jennifer Wong
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Jiyuan Ke
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute , 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, United States
| | - Xin Gu
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute , 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, United States
| | - Sudhir Raghavan
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mike R Wilson
- Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Xinxin Li
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Lisa Polin
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Parker W de Waal
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute , 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, United States
| | - Kathryn White
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Juiwanna Kushner
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Carrie O'Connor
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - H Eric Xu
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute , 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, United States.,Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
| | - Karsten Melcher
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute , 333 Bostwick Avenue NE, Grand Rapids, Michigan 49503, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States.,Department of Pharmacology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
23
|
Nagai T, Furusho Y, Li H, Hasui K, Matsukita S, Sueyoshi K, Yanagi M, Hatae M, Takao S, Matsuyama T. Production of a High-affinity Monoclonal Antibody Reactive with Folate Receptors Alpha and Beta. Monoclon Antib Immunodiagn Immunother 2016; 34:181-90. [PMID: 26090596 DOI: 10.1089/mab.2014.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Folate receptors α (FRα) and β (FRβ) are two isoforms of the cell surface glycoprotein that binds folate. The expression of FRα is rare in normal cells and elevated in cancer cells. Thus, FRα-based tumor-targeted therapy has been a focus area of laboratory research and clinical trials. Recently, it was shown that a significant fraction of tumor-associated macrophages expresses FRβ and that these cells can enhance tumor growth. Although FRα and FRβ share 70% identity in their deduced amino acid sequence, a monoclonal antibody (MAb) reactive with both receptors has not been developed. A MAb that can target both FRα-expressing cancer cells and FRβ-expressing tumor-associated macrophages may provide a more potent therapeutic tool for cancer than individual anti-FRα or anti-FRβ MAbs. In this study, we developed a MAb that recognizes both FRα and FRβ (anti-FRαβ). The anti-FRαβ specifically stained trophoblasts and macrophages from human placenta, synovial macrophages from rheumatoid arthritis patient, liver macrophages from cynomolgus monkey and common marmoset, and cancer cells and tumor-associated macrophages from ovary and lung carcinomas. Surface plasmon resonance showed that the anti-FRαβ bound to soluble forms of the FRα and FRβ proteins with high affinity (KD=6.26×10(-9) M and 4.33×10(-9) M, respectively). In vitro functional analysis of the anti-FRαβ showed that this MAb mediates complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis of FRα-expressing and FRβ-expressing cell lines. The anti-FRαβ MAb is a promising therapeutic candidate for cancers in which macrophages promote tumor progression.
Collapse
Affiliation(s)
- Taku Nagai
- 1 Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Yuko Furusho
- 1 Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Hua Li
- 1 Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Kazuhisa Hasui
- 1 Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Sumika Matsukita
- 2 Department of Clinical Pathology, Kagoshima Kousei-Ren Hospital , Kagoshima, Japan
| | - Kazunobu Sueyoshi
- 3 Department of Clinical Pathology, Kagoshima City Hospital , Kagoshima, Japan
| | - Masakazu Yanagi
- 4 Department of Surgery, Kagoshima City Hospital , Kagoshima, Japan
| | - Masaki Hatae
- 5 Department of Obstetrics, Kagoshima City Hospital , Kagoshima, Japan
| | - Sonshin Takao
- 6 The Center for Advanced Biomedical Sciences and Swine Research, Kagoshima University , Kagoshima, Japan
| | - Takami Matsuyama
- 6 The Center for Advanced Biomedical Sciences and Swine Research, Kagoshima University , Kagoshima, Japan
| |
Collapse
|
24
|
Abstract
Among female-specific cancers worldwide, ovarian cancer is the leading cause of death from gynecologic malignancy in the western world. Despite radical surgery and initial high response rates to first-line chemotherapy, up to 70% of patients experience relapses with a median progression-free survival of 12-18 months. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. This review aims to assess current understanding of targeted therapy in ovarian cancer and evaluate the evidence for targeting growth-dependent mechanisms involved in its pathogenesis. Of the many targeted therapies currently under evaluation, the most promising strategies developed thus far are antiangiogenic agents and PARP inhibitors.
Collapse
Affiliation(s)
- Hui Jun Lim
- Faculty of Medicine, University of New South Wales, Australia
| | - William Ledger
- School of Women's & Children's Health, University of New South Wales, Sydney 2031, New South Wales, Australia
| |
Collapse
|
25
|
Wilson MR, Hou Z, Yang S, Polin L, Kushner J, White K, Huang J, Ratnam M, Gangjee A, Matherly LH. Targeting Nonsquamous Nonsmall Cell Lung Cancer via the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3-d]Pyrimidine Thienoyl Antifolates. Mol Pharmacol 2016; 89:425-34. [PMID: 26837243 PMCID: PMC4809305 DOI: 10.1124/mol.115.102798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 02/04/2023] Open
Abstract
Pemetrexed (PMX) is a 5-substituted pyrrolo[2,3-d]pyrimidine antifolate used for therapy of nonsquamous nonsmall cell lung cancer (NS-NSCLC). PMX is transported by the reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). Unlike RFC, PCFT is active at acidic pH levels characterizing the tumor microenvironment. By real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, PCFT transcripts and proteins were detected in primary NS-NSCLC specimens. In six NS-NSCLC cell lines (A549, H1437, H460, H1299, H1650, and H2030), PCFT transcripts and proteins were detected by real-time RT-PCR and western blots, respectively. 6-Substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates related to PMX [compound 1 (C1) and compound 2 (C2), respectively] are selective substrates for PCFT over RFC. In the NS-NSCLC cell lines, both [(3)H]PMX and [(3)H]C2 were transported by PCFT. C1 and C2 inhibited proliferation of the NS-NSCLC cell lines; A549, H460, and H2030 cells were more sensitive to C1 than to PMX. C1 and C2 inhibited glycinamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis. When treated at pH 6.8, which favors PCFT uptake, C1 and C2 inhibited clonogenicity of H460 cells greater than PMX; PMX inhibited clonogenicity more than C1 or C2 at pH 7.2, which favors RFC transport over PCFT. Knockdown of PCFT in H460 cells resulted in decreased [(3)H]PMX and [(3)H]C2 transport and decreased growth inhibition by C1 and C2, and to a lesser extent by PMX. In vivo efficacy of C1 was seen toward H460 tumor xenografts in severe-combined immunodeficient mice. Our results suggest that 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates offer significant promise for treating NS-NSCLC by selective uptake by PCFT.
Collapse
Affiliation(s)
- Mike R. Wilson
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Zhanjun Hou
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Si Yang
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Lisa Polin
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Juiwanna Kushner
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Kathryn White
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Jenny Huang
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | - Manohar Ratnam
- Department of Oncology (M.R.W., Z.H., L.P., J.K., K.W., J.H., M.R., L.H.M.), and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., L.P., M.R., L.H.M.); and Division of Medicinal Chemistry, Graduate School of Pharmaceutical Science, Duquesne University, Pittsburgh, Pennsylvania (S.Y., A.G.)
| | | | | |
Collapse
|
26
|
Qiao J, Dong P, Mu X, Qi L, Xiao R. Folic acid-conjugated fluorescent polymer for up-regulation folate receptor expression study via targeted imaging of tumor cells. Biosens Bioelectron 2016; 78:147-153. [DOI: 10.1016/j.bios.2015.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/20/2015] [Accepted: 11/08/2015] [Indexed: 01/18/2023]
|
27
|
Ledermann J, Canevari S, Thigpen T. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol 2015; 26:2034-43. [DOI: 10.1093/annonc/mdv250] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/22/2015] [Indexed: 11/13/2022] Open
|
28
|
Wang L, Wallace A, Raghavan S, Deis SM, Wilson MR, Yang S, Polin L, White K, Kushner J, Orr S, George C, O'Connor C, Hou Z, Mitchell-Ryan S, Dann CE, Matherly LH, Gangjee A. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors. J Med Chem 2015; 58:6938-59. [PMID: 26317331 DOI: 10.1021/acs.jmedchem.5b00801] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting.
Collapse
Affiliation(s)
- Lei Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Adrianne Wallace
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States
| | - Sudhir Raghavan
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Siobhan M Deis
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Mike R Wilson
- Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Si Yang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Lisa Polin
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Kathryn White
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Juiwanna Kushner
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Steven Orr
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States
| | - Christina George
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States
| | - Carrie O'Connor
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Shermaine Mitchell-Ryan
- Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute , 110 East Warren Avenue, Detroit, Michigan 48201, United States.,Department of Oncology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States.,Department of Pharmacology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
29
|
Holm J, Bruun SW, Hansen SI. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1249-59. [PMID: 26116148 DOI: 10.1016/j.bbapap.2015.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Abstract
This review analyzes how interplay between folate binding and changes in folate binding protein (FBP) conformation/self-association affects the biological function of FBP. Concentration-dependent, reversible self-association of hydrophobic apo-FBP at pI=7.4 is associated with decreased affinity for folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against biological/physicochemical decomposition. In biological fluids with low FBP concentrations, e.g., saliva, semen and plasma, hydrophobic apo-monomers and hydrophilic holo-monomers associate into stable asymmetrical complexes with aberrant binding kinetics unless detergents, e.g., cholesterol or phospholipids are present.
Collapse
Affiliation(s)
- Jan Holm
- Department of Clinical Biochemistry, Nordsjællands Hospital - Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| | - Susanne W Bruun
- Faculty of Science, Department of Food Science, Spectroscopy and Chemometrics, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Steen I Hansen
- Department of Clinical Biochemistry, Nordsjællands Hospital - Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK-3400 Hillerød, Denmark.
| |
Collapse
|
30
|
Zhao R, Visentin M, Goldman ID. Determinants of the activities of antifolates delivered into cells by folate-receptor-mediated endocytosis. Cancer Chemother Pharmacol 2015; 75:1163-73. [PMID: 25847479 PMCID: PMC4442060 DOI: 10.1007/s00280-015-2733-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Elements in the endocytic process that are determinants of the activities of antifolates delivered by folate-receptor alpha (FRα) were explored. METHODS Antifolate growth inhibition was assessed with a 1- or 5-day exposure in reduced folate carrier-null HeLa cell lines that express a high level of FRα in the presence or absence of the proton-coupled folate transporter (PCFT). pH-dependent rates of dissociation from FRα were also determined. RESULTS With a 1-day drug exposure which is relevant to the pulse clinical administration of these drugs, FRα expression enhanced raltitrexed activity and modestly enhanced ZD9331 activity, but did not significantly augment the activity of pemetrexed or lomotrexol. With a 5-day drug exposure, FRα-mediated growth inhibition was increased for raltitrexed and ZD9331 and emerged for lomotrexol. While the FRα-augmented activity of lomotrexol and raltitrexed did not require PCFT, augmentation of ZD9331 activity required the co-expression of PCFT with both 1- and 5-day exposures. In contrast, there was no augmentation of pemetrexed activity by FRα under any condition. The activities of these agents correlated with their rate of dissociation from the receptor at acidic pH: raltitrexed > ZD9331 > lomotrexol > pemetrexed consistent with insufficient pemetrexed release from FRα for export from the endosomes. CONCLUSIONS FRα is unlikely to contribute to the pharmacological activity of antifolates, such as pemetrexed, that bind tightly to, and dissociate slowly from, the receptor particularly when the exposure time is brief. While PCFT was required for FRα-mediated ZD9931 activity, the activities of the other antifolates was independent of PCFT.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine, Albert Einstein College of Medicine, Chanin 628, 1300 Morris Park Ave, Bronx, NY, 10461, USA,
| | | | | |
Collapse
|
31
|
Jansen G, Peters GJ. Novel insights in folate receptors and transporters: implications for disease and treatment of immune diseases and cancer. Pteridines 2015; 26:41-53. [DOI: 10.1515/pterid-2015-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Abstract
Folate receptors and transporters as well as folate enzymes play an essential role in human disease and form important targets for the treatment of immune diseases and cancer. To discuss new developments in this area, every 2 years a multidisciplinary meeting is held, which aims to be an informal forum for fundamental scientists and clinicians. During this meeting, the regulation of folate transporters and folate enzymes is discussed at the level of expression, transcription, translation, post-translational modification, and splicing and enzyme regulation. Importantly, this knowledge is applied and translated into exciting clinical applications by clinicians with various backgrounds, such as surgeons, nephrologists, rheumatologists and oncologists. Moreover, the meeting provides an excellent forum for a scientific interaction between academia and industry.
Collapse
Affiliation(s)
- Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Cancer Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
32
|
Wang Y, Mitchell-Ryan S, Raghavan S, George C, Orr S, Hou Z, Matherly LH, Gangjee A. Novel 5-substituted pyrrolo[2,3-d]pyrimidines as dual inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase and as potential antitumor agents. J Med Chem 2015; 58:1479-93. [PMID: 25602637 DOI: 10.1021/jm501787c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A new series of 5-substituted thiopheneyl pyrrolo[2,3-d]pyrimidines 6-11 with varying chain lengths (n = 1-6) were designed and synthesized as hybrids of the clinically used anticancer drug pemetrexed (PMX) and our 6-substituted thiopheneyl pyrrolo[2,3-d]pyrimidines 2c and 2d with folate receptor (FR) α and proton-coupled folate transporter (PCFT) uptake specificity over the reduced folate carrier (RFC) and inhibition of de novo purine nucleotide biosynthesis at glycinamide ribonucleotide formyltransferase (GARFTase). Compounds 6-11 inhibited KB human tumor cells in the order 9 = 10 > 8 > 7 > 6 = 11. Compounds 8-10 were variously transported by FRα, PCFT, and RFC and, unlike PMX, inhibited de novo purine nucleotide rather than thymidylate biosynthesis. The antiproliferative effects of 8 and 9 appeared to be due to their dual inhibitions of both GARFTase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase. Our studies identify a unique structure-activity relationship for transport and dual target inhibition.
Collapse
Affiliation(s)
- Yiqiang Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University , 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Potential application of curcumin and its analogues in the treatment strategy of patients with primary epithelial ovarian cancer. Int J Mol Sci 2014; 15:21703-22. [PMID: 25429431 PMCID: PMC4284673 DOI: 10.3390/ijms151221703] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 12/25/2022] Open
Abstract
Recent findings on the molecular basis of ovarian cancer development and progression create new opportunities to develop anticancer medications that would affect specific metabolic pathways and decrease side systemic toxicity of conventional treatment. Among new possibilities for cancer chemoprevention, much attention is paid to curcumin—A broad-spectrum anticancer polyphenolic derivative extracted from the rhizome of Curcuma longa L. According to ClinicalTrials.gov at present there are no running pilot studies, which could assess possible therapeutic benefits from curcumin supplementation to patients with primary epithelial ovarian cancer. Therefore, the goal of this review was to evaluate potential preclinical properties of curcumin and its new analogues on the basis of in vivo and in vitro ovarian cancer studies. Curcumin and its different formulations have been shown to display multifunctional mechanisms of anticancer activity, not only in platinum-resistant primary epithelial ovarian cancer, but also in multidrug resistant cancer cells/xenografts models. Curcumin administered together with platinum-taxane chemotherapeutics have been reported to demonstrate synergistic effects, sensitize resistant cells to drugs, and decrease their biologically effective doses. An accumulating body of evidence suggests that curcumin, due to its long-term safety and an excellent profile of side effects should be considered as a beneficial support in ovarian cancer treatment strategies, especially in patients with platinum-resistant primary epithelial recurrent ovarian cancer or multidrug resistant disease. Although the prospect of curcumin and its formulations as anticancer agents in ovarian cancer treatment strategy appears to be challenging, and at the same time promising, there is a further need to evaluate its effectiveness in clinical studies.
Collapse
|
34
|
Zhao R, Diop-Bove N, Goldman ID. Enhanced receptor-mediated endocytosis and cytotoxicity of a folic acid-desacetylvinblastine monohydrazide conjugate in a pemetrexed-resistant cell line lacking folate-specific facilitative carriers but with increased folate receptor expression. Mol Pharmacol 2014; 85:310-21. [PMID: 24249723 PMCID: PMC3913358 DOI: 10.1124/mol.113.089110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/18/2013] [Indexed: 11/22/2022] Open
Abstract
The reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptors (FR) are folate-specific transporters. Antifolates currently in the clinic, such as pemetrexed, methotrexate, and pralatrexate, are transported into tumor cells primarily via RFC. Folic acid conjugated to cytotoxics, a new class of antineoplastics, are transported into cells via FR-mediated endocytosis. To better define the role of PCFT in antifolate resistance, a methotrexate-resistant cell line, M160-8, was selected from a HeLa subline in which the RFC gene was deleted and PCFT was highly overexpressed. These cells were cross-resistant to pemetrexed. PCFT function and the PCFT mRNA level in M160-8 cells were barely detectable, and FR-α function and mRNA level were increased as compared with the parent cells. While pemetrexed rapidly associated with FR and was internalized within endosomes in M160-8 cells, consistent with FR-mediated transport, subsequent pemetrexed and (6S)-5-formyltetrahydrofolate export into the cytosol was markedly impaired. In contrast, M160-8 cells were collaterally sensitive to EC0905, a folic acid-desacetylvinblastine monohydrazide conjugate also transported by FR-mediated endocytosis. However, in this case a sulfhydryl bond is cleaved to release the lipophilic cytotoxic moiety into the endosome, which passively diffuses out of the endosome into the cytosol. Hence, resistance to pemetrexed in M160-8 cells was due to entrapment of the drug within the endosome due to the absence of PCFT under conditions in which the FR cycling function was intact.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine (R.Z., I.D.G.) and Molecular Pharmacology (R.Z., N.D.-P., I.D.G.), Albert Einstein College of Medicine, Bronx, New York
| | | | | |
Collapse
|
35
|
Hou Z, Matherly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. CURRENT TOPICS IN MEMBRANES 2014; 73:175-204. [PMID: 24745983 DOI: 10.1016/b978-0-12-800223-0.00004-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
36
|
Mitchell-Ryan S, Wang Y, Raghavan S, Ravindra MP, Hales E, Orr S, Cherian C, Hou Z, Matherly LH, Gangjee A. Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual-acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to ampk activation and antitumor activity. J Med Chem 2013; 56:10016-10032. [PMID: 24256410 DOI: 10.1021/jm401328u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5-10) with one-to-six bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analogue and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Antiproliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action.
Collapse
Affiliation(s)
| | - Yiqiang Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282
| | - Sudhir Raghavan
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282
| | - Manasa Punaha Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282
| | - Eric Hales
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Ave, Detroit, MI 48201.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Steven Orr
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Ave, Detroit, MI 48201.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Christina Cherian
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Ave, Detroit, MI 48201.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Ave, Detroit, MI 48201.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Larry H Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Ave, Detroit, MI 48201.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282
| |
Collapse
|
37
|
Zhao R, Goldman ID. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med 2013; 34:373-85. [PMID: 23506878 DOI: 10.1016/j.mam.2012.07.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/03/2012] [Indexed: 01/19/2023]
Abstract
The reduced folate carrier (RFC, SLC19A1), thiamine transporter-1 (ThTr1, SLC19A2) and thiamine transporter-2 (ThTr2, SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT, SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease).
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
38
|
Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci U S A 2013; 110:15180-8. [PMID: 23934049 DOI: 10.1073/pnas.1308827110] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.
Collapse
|
39
|
Walters CL, Arend RC, Armstrong DK, Naumann RW, Alvarez RD. Folate and folate receptor alpha antagonists mechanism of action in ovarian cancer. Gynecol Oncol 2013; 131:493-8. [PMID: 23863359 DOI: 10.1016/j.ygyno.2013.07.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/28/2013] [Accepted: 07/05/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The goal of this report is to review the activity of promising antifolate and folate receptor agents being developed for ovarian cancer including thymidylate synthase inhibitors, antifolate receptor antibodies, and folate-chemotherapy conjugates. METHODS A literature search was performed over the last 5 years using the terms "folate receptor" and "ovarian cancer" and those that specifically addressed the MOA were included. Abstracts presented within the last 3 years were also searched and included in this review where appropriate. RESULTS Thymidylate synthase inhibitors are a promising avenue for ovarian cancer treatment. Phase II trials have shown pemetrexed to have activity in patients with platinum resistant ovarian cancer. Several other thymidylate synthase inhibitors are in the early phase of development including BGC 945 and ZD-9331. Monoclonal antibodies that target the folate receptor have also shown potential in the development of ovarian cancer therapies. Farletuzumab is one of these antibodies. A recent phase III trial found that farletuzumab in combination with carboplatin and taxane did not meet the study's primary endpoint of progression-free survival (PFS). The post hoc exploratory analysis showed, however, a trend toward improved PFS in some patient subsets and further analysis is ongoing. The folate receptor is also utilized through folate conjugates. Vintafolide is one such agent which is currently in phase III development. Encouraging data from phase II trials showed an improvement in PFS from 2.7 months to 5 months. Folate can also be conjugated to radioisotopes for both therapeutic and imaging purposes, and early studies have shown correlation with amount of disease to therapy response. CONCLUSION Folate targeted agents continue to show promising antitumor activity in ovarian malignancy and initial clinical experience has demonstrated favorable toxicity profiles. Further development and resources targeted toward these therapies appear to be warranted.
Collapse
|
40
|
Tochowicz A, Dalziel S, Eidam O, O'Connell JD, Griner S, Finer-Moore JS, Stroud RM. Development and binding mode assessment of N-[4-[2-propyn-1-yl[(6S)-4,6,7,8-tetrahydro-2-(hydroxymethyl)-4-oxo-3H-cyclopenta[g]quinazolin-6-yl]amino]benzoyl]-l-γ-glutamyl-D-glutamic acid (BGC 945), a novel thymidylate synthase inhibitor that targets tumor cells. J Med Chem 2013; 56:5446-55. [PMID: 23710599 DOI: 10.1021/jm400490e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N-[4-[2-Propyn-1-yl[(6S)-4,6,7,8-tetrahydro-2-(hydroxymethyl)-4-oxo-3H-cyclopenta[g]quinazolin-6-yl]amino]benzoyl]-l-γ-glutamyl-d-glutamic acid 1 (BGC 945, now known as ONX 0801), is a small molecule thymidylate synthase (TS) inhibitor discovered at the Institute of Cancer Research in London. It is licensed by Onyx Pharmaceuticals and is in phase 1 clinical studies. It is a novel antifolate drug resembling TS inhibitors plevitrexed and raltitrexed that combines enzymatic inhibition of thymidylate synthase with α-folate receptor-mediated targeting of tumor cells. Thus, it has potential for efficacy with lower toxicity due to selective intracellular accumulation through α-folate receptor (α-FR) transport. The α-FR, a cell-surface receptor glycoprotein, which is overexpressed mainly in ovarian and lung cancer tumors, has an affinity for 1 similar to that for its natural ligand, folic acid. This study describes a novel synthesis of 1, an X-ray crystal structure of its complex with Escherichia coli TS and 2'-deoxyuridine-5'-monophosphate, and a model for a similar complex with human TS.
Collapse
Affiliation(s)
- Anna Tochowicz
- Department of Biochemistry and Biophysics, University of California-San Francisco , 600 16th Street, San Francisco, California 94158, United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu X, Ma S, Dai C, Cai F, Yao Y, Yang Y, Feng M, Deng K, Li G, Ma W, Xin B, Lian W, Xiang G, Zhang B, Wang R. Antiproliferative, antiinvasive, and proapoptotic activity of folate receptor α-targeted liposomal doxorubicin in nonfunctional pituitary adenoma cells. Endocrinology 2013; 154:1414-23. [PMID: 23462961 DOI: 10.1210/en.2012-2128] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is an urgent need for novel therapeutic strategies for the treatment of nonfunctional pituitary adenomas (NFPAs), especially those that are invasive. The folate receptor (FR)α is overexpressed in several cancers, including NFPA. The aim of this study was to determine the efficacy of FRα-targeted liposomes loaded with doxorubicin (F-L-DOX) in the treatment of NFPA. We evaluated targeting, cytotoxicity, antiinvasive, and proapoptotic activity of F-L-DOX in 25 primary cell lines derived from patients with NFPAs. We found that these liposomes effectively targeted NFPA cells through FRα and that endocytosis of the liposomes was blocked by 1mM free folic acid. F-L-DOX inhibited proliferation of NFPA cells and promoted apoptosis through activation of caspase-8, caspase-9, and caspase-3/7 more effectively than L-DOX. Furthermore, F-L-DOX also exerted greater antiinvasive ability in NFPA cells than L-DOX through suppression of the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9. Addition of 1mM free folic acid significantly reduced the pleotropic effects of F-L-DOX in NFPA cells, suggesting that FRα plays a critical role in mediating the antitumor effect of F-L-DOX. Our findings warrant further investigation of F-L-DOX as an alternative therapeutic strategy for the treatment of NFPAs that express FRα.
Collapse
Affiliation(s)
- Xiaohai Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cherian C, Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Gangjee A, Matherly LH. Therapeutic targeting malignant mesothelioma with a novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate via its selective uptake by the proton-coupled folate transporter. Cancer Chemother Pharmacol 2013; 71:999-1011. [PMID: 23412628 DOI: 10.1007/s00280-013-2094-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022]
Abstract
PURPOSE We examined whether the novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate, compound 2, might be an effective treatment for malignant pleural mesothelioma (MPM), reflecting its selective membrane transport by the proton-coupled folate transport (PCFT) over the reduced folate carrier (RFC). METHODS HeLa sublines expressing exclusively PCFT (R1-11-PCFT4) or RFC (R1-11-RFC6) and H2452 MPM cells were assayed for transport with [(3)H]compound 2. [(3)H]Polyglutamate metabolites of compound 2 were measured in R1-11-PCFT4 and H2452 cells. In vitro cell proliferation assays and colony formation assays were performed. Inhibition of glycinamide ribonucleotide formyltransferase (GARFTase) was assayed by nucleoside protection assays and in situ GARFTase assays with [(14)C]glycine. In vivo efficacy was established with early- and advanced-stage H2452 xenografts in severe-combined immunodeficient (SCID) mice administered intravenous compound 2. RESULTS [(3)H]Compound 2 was selectively transported by PCFT and was metabolized to polyglutamates. Compound 2 selectively inhibited proliferation of R1-11-PCFT4 cells over R1-11-RFC6 cells. H2452 human MPM cells were sensitive to the antiproliferative effects of compound 2. By colony-forming assays with H2452 cells, compound 2 was cytotoxic. Compound 2 inhibited GARFTase in de novo purine biosynthesis. In vivo efficacy was confirmed toward early- and advanced-stage H2452 xenografts in SCID mice administered compound 2. CONCLUSIONS Our results demonstrate potent antitumor efficacy of compound 2 toward H2452 MPM cells in vitro and in vivo, reflecting its efficient membrane transport by PCFT, synthesis of polyglutamates, and inhibition of GARFTase. Selectivity for non-RFC cellular uptake processes by tumor-targeted antifolates such as compound 2 presents an exciting new opportunity for treating solid tumors.
Collapse
Affiliation(s)
- Christina Cherian
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
This article focuses on the cellular, biochemical, and molecular pharmacology of antifolates and how a basic understanding of the mechanism of action of methotrexate, its cytotoxic determinants, mechanisms of resistance, and transport into and out of cells has led to the development of a new generation of antifolates, a process that continues in the laboratory and in the clinics. New approaches to folate-based cancer chemotherapy are described based on the targeted delivery of drugs to malignant cells.
Collapse
Affiliation(s)
- Michele Visentin
- Department of Medicine and the Albert Einstein Cancer Center, The Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
44
|
Desmoulin SK, Wang L, Polin L, White K, Kushner J, Stout M, Hou Z, Cherian C, Gangjee A, Matherly LH. Functional loss of the reduced folate carrier enhances the antitumor activities of novel antifolates with selective uptake by the proton-coupled folate transporter. Mol Pharmacol 2012; 82:591-600. [PMID: 22740639 PMCID: PMC3463226 DOI: 10.1124/mol.112.079004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/26/2012] [Indexed: 01/24/2023] Open
Abstract
Uptake of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates with four or three bridge carbons [compound 1 (C1) and compound 2 (C2), respectively] into solid tumors by the proton-coupled folate transporter (PCFT) represents a novel therapeutic strategy that harnesses the acidic tumor microenvironment. Although these compounds are not substrates for the reduced folate carrier (RFC), the major facilitative folate transporter, RFC expression may alter drug efficacies by affecting cellular tetrahydrofolate (THF) cofactor pools that can compete for polyglutamylation and/or binding to intracellular enzyme targets. Human tumor cells including wild-type (WT) and R5 (RFC-null) HeLa cells express high levels of PCFT protein. C1 and C2 inhibited proliferation of R5 cells 3 to 4 times more potently than WT cells or R5 cells transfected with RFC. Transport of C1 and C2 was virtually identical between WT and R5 cells, establishing that differences in drug sensitivities between sublines were independent of PCFT transport. Steady-state intracellular [³H]THF cofactors derived from [³H]5-formyl-THF were depleted in R5 cells compared with those in WT cells, an effect exacerbated by C1 and C2. Whereas C1 and C2 polyglutamates accumulated to similar levels in WT and R5 cells, there were differences in polyglutamyl distributions in favor of the longest chain length forms. In severe combined immunodeficient mice, the antitumor efficacies of C1 and C2 were greater toward subcutaneous R5 tumors than toward WT tumors, confirming the collateral drug sensitivities observed in vitro. Thus, solid tumor-targeted antifolates with PCFT-selective cellular uptake should have enhanced activities toward tumors lacking RFC function, reflecting contraction of THF cofactor pools.
Collapse
Affiliation(s)
- Sita Kugel Desmoulin
- Graduate Program in Cancer Biology and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol Ther 2012; 13:1355-73. [PMID: 22954694 PMCID: PMC3542225 DOI: 10.4161/cbt.22020] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis.
Collapse
Affiliation(s)
- Sita Kugel Desmoulin
- Cancer Biology Graduate Program in Cancer Biology, Department of Oncology, Wayne State University School of Medicine; Detroit, MI USA
| | | | | | | |
Collapse
|
46
|
Gonen N, Assaraf YG. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012; 15:183-210. [DOI: 10.1016/j.drup.2012.07.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023]
|
47
|
Analogue-based drug discovery: Contributions to medicinal chemistry principles and drug design strategies. Microtubule stabilizers as a case in point (Special Topic Article). PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-02-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The benefits of utilizing marketed drugs as starting points to discover new therapeutic agents have been well documented within the IUPAC series of books that bear the title Analogue-based Drug Discovery (ABDD). Not as clearly demonstrated, however, is that ABDD also contributes to the elaboration of new basic principles and alternative drug design strategies that are useful to the field of medicinal chemistry in general. After reviewing the ABDD programs that have evolved around the area of microtubule-stabilizing chemo-therapeutic agents, the present article delineates the associated research activities that additionally contributed to general strategies that can be useful for prodrug design, identifying pharmacophores, circumventing multidrug resistance (MDR), and achieving targeted drug distribution.
Collapse
|
48
|
Marzaro G, Guiotto A, Chilin A. Quinazoline derivatives as potential anticancer agents: a patent review (2007 - 2010). Expert Opin Ther Pat 2012; 22:223-52. [PMID: 22404097 DOI: 10.1517/13543776.2012.665876] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Due to the increase in knowledge about cancer pathways, there is a growing interest in finding novel potential drugs. Quinazoline is one of the most widespread scaffolds amongst bioactive compounds. A number of patents and papers appear in the literature regarding the discovery and development of novel promising quinazoline compounds for cancer chemotherapy. Although there is a progressive decrease in the number of patents filed, there is an increasing number of biochemical targets for quinazoline compounds. AREAS COVERED This paper provides a comprehensive review of the quinazolines patented in 2007 - 2010 as potential anticancer agents. Information from articles published in international peer-reviewed journals was also included, to give a more exhaustive overview. EXPERT OPINION From about 1995 to 2006, the anticancer quinazolines panorama has been dominated by the 4-anilinoquinazolines as tyrosine kinase inhibitors. The extensive researches conducted in this period could have caused the progressive reduction in the ability to file novel patents as shown in the 2007 - 2010 period. However, the growing knowledge of cancer-related pathways has recently highlighted some novel potential targets for therapy, with quinazolines receiving increasing attention. This is well demonstrated by the number of different targets of the patents considered in this review. The structural heterogeneity in the patented compounds makes it difficult to derive general pharmacophores and make comparisons among claimed compounds. On the other hand, the identification of multi-target compounds seems a reliable goal. Thus, it is reasonable that quinazoline compounds will be studied and developed for multi-target therapies.
Collapse
Affiliation(s)
- Giovanni Marzaro
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, via Marzolo 5, 35131 Padova, Italy.
| | | | | |
Collapse
|
49
|
Wang L, Cherian C, Kugel Desmoulin S, Mitchell-Ryan S, Hou Z, Matherly LH, Gangjee A. Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. J Med Chem 2012; 55:1758-70. [PMID: 22243528 DOI: 10.1021/jm201688n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported the selective transport of classical 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl-for-benzoyl-substituted side chain and a three- (3a) and four-carbon (3b) bridge. Compound 3a was more potent than 3b against tumor cells. While 3b was completely selective for transport by folate receptors (FRs) and the proton-coupled folate transporter (PCFT) over the reduced folate carrier (RFC), 3a was not. To determine if decreasing the distance between the bicyclic scaffold and l-glutamate in 3b would preserve transport selectivity and potency against human tumor cells, 3b regioisomers with [1,3] (7 and 8) and [1,2] (4, 5, and 6) substitutions on the thienoyl ring and with acetylenic insertions in the four-atom bridge were synthesized and evaluated. Compounds 7 and 8 were potent nanomolar inhibitors of KB and IGROV1 human tumor cells with complete selectivity for FRα and PCFT over RFC.
Collapse
Affiliation(s)
- Lei Wang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | | | | | | | | | | | | |
Collapse
|
50
|
Ray-Coquard I, Selle F, Cottu P, Laurraine EP. Thérapies ciblées dans le traitement des carcinomes de l’ovaire. ONCOLOGIE 2012. [DOI: 10.1007/s10269-011-2101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|