1
|
Hintermann E, Tondello C, Fuchs S, Bayer M, Pfeilschifter JM, Taubert R, Mollenhauer M, Elferink RPJO, Manns MP, Christen U. Blockade of neutrophil extracellular trap components ameliorates cholestatic liver disease in Mdr2 (Abcb4) knockout mice. J Autoimmun 2024; 146:103229. [PMID: 38653165 DOI: 10.1016/j.jaut.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.
Collapse
Affiliation(s)
- Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Camilla Tondello
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sina Fuchs
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Ye L, Ziesch A, Schneider JS, Ofner A, Nieß H, Denk G, Hohenester S, Mayr D, Mahajan UM, Munker S, Khaled NB, Wimmer R, Gerbes AL, Mayerle J, He Y, Geier A, Toni END, Zhang C, Reiter FP. The inhibition of YAP Signaling Prevents Chronic Biliary Fibrosis in the Abcb4 -/- Model by Modulation of Hepatic Stellate Cell and Bile Duct Epithelium Cell Pathophysiology. Aging Dis 2024; 15:338-356. [PMID: 37307826 PMCID: PMC10796084 DOI: 10.14336/ad.2023.0602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Andreas Ziesch
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Andrea Ofner
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Hanno Nieß
- Biobank of the Department of General, Visceral and Transplantion Surgery, University Hospital, LMU Munich, Germany.
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Florian P. Reiter
- Department of Medicine II, University Hospital, LMU Munich, Germany.
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Sun Q, Schwabe RF. Hepatic Stellate Cell Depletion and Genetic Manipulation. Methods Mol Biol 2023; 2669:207-220. [PMID: 37247062 DOI: 10.1007/978-1-0716-3207-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) exert key roles in the development of liver disease. Cell-specific genetic labeling, gene knockout and depletion are important for the understanding of the HSC in homeostasis and a wide range of diseases ranging from acute liver injury and liver regeneration to nonalcoholic liver disease and cancer. Here, we will review and compare different Cre-dependent and Cre-independent methods for genetic labeling, gene knockout, HSC tracing and depletion, and their applications to different disease models. We provide detailed protocols for each method including methods to confirm successful and efficient targeting of HSCs.
Collapse
Affiliation(s)
- Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
4
|
Habenicht LKL, Wang Z, Zhang X, Li Y, Mogler C, Huspenina JS, Schmid RM, Weber C, Mohanta SK, Ma Z, Yin C. The C1q-ApoE complex: A new hallmark pathology of viral hepatitis and nonalcoholic fatty liver disease. Front Immunol 2022; 13:970938. [PMID: 36304458 PMCID: PMC9592549 DOI: 10.3389/fimmu.2022.970938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2023] Open
Abstract
We recently identified a high-affinity C1q-ApoE complex in human artery atherosclerotic intima lesions and in human amyloid plaques of Alzheimer's Disease brains defining a common pathogenetic pathway of two diverse diseases, i.e. atherosclerosis and dementia. C1q is the initiating and controlling protein of the classical complement cascade (CCC), which occupies a key role in multiple acute and chronic inflammatory tissue responses. C1q is largely produced by myeloid cells including Kupffer cells (KCs) and subsequently secreted into the circulation as an inactive preprotein. Its binding partner, Apolipoprotein E (ApoE), is produced by KCs and hepatocytes and it is also secreted into the circulation, where it regulates essential steps of lipid transport. In addition to its major source, ApoE can be produced by non-liver cells including immune cells and multiple other cells depending on local tissue contexts. To initiate the CCC cascade, C1q must be activated by molecules as varied as oxidized lipids, amyloid fibrils, and immune complexes. However, ApoE is mute towards inactive C1q but binds at high-affinity to its activated form. Specifically, our studies revealed that ApoE is a CCC-specific checkpoint inhibitor via the formation of the C1q-ApoE complex. We proposed that it may arise in multiple if not all CCC-associated diseases and that its presence indicates ongoing CCC activity. Here, we turned to the liver to examine C1q-ApoE complexes in human B- and C-viral hepatitis and nonalcoholic fatty liver disease (NAFLD). In addition, we used multidrug-resistance-2 gene-knockout (Mdr2-KO) mice as a model for inflammatory liver disease and hepatocellular carcinoma (HCC) pathogenesis. In normal murine and human livers, KCs were the major C1q-producing cell type while hepatocytes were the primary ApoE-forming cell type though the C1q-ApoE complex was rare or nonexistent. However, significant numbers of C1q-ApoE complexes formed in both Mdr2-KO, human viral hepatitis, and NAFLD around portal triads where immune cells had infiltrated the liver. Additionally, high numbers of C1q-ApoE complexes emerged in human livers in areas of extracellular lipid droplets across the entire liver parenchyma in NAFLD-affected patients. Thus, the C1q-ApoE complex is a new pathological hallmark of viral hepatitis B and C and NAFLD.
Collapse
Affiliation(s)
- Livia K. L. Habenicht
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Zhihua Wang
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Xi Zhang
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Yuanfang Li
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Slotta Huspenina
- Institute of Pathology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Tissue biobank of the Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M. Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sarajo K. Mohanta
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Zhe Ma
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Changjun Yin
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Vascular Remodeling Is a Crucial Event in the Early Phase of Hepatocarcinogenesis in Rodent Models for Liver Tumorigenesis. Cells 2022; 11:cells11142129. [PMID: 35883572 PMCID: PMC9320355 DOI: 10.3390/cells11142129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a highly vascularized tumor and remodeling of the tumor vasculature is one of the hallmarks of tumor progression. Mouse models are elegant tools to study the onset and progression of liver tumors. However, only few data exist on the vasculature and vascular remodeling processes especially in the early phase of hepatocarcinogenesis. The aim of this study was therefore to perform a comprehensive characterization and comparison of the vasculature in mouse models used for hepatocarcinogenesis studies. For this purpose, we characterized the preneoplastic foci of cellular alteration (FCA) and hepatocellular carcinoma (HCC) by using tissue-based techniques and computer-assisted analysis to better understand if and how vascular remodeling appears in rodent models for liver tumorigenesis. Our findings demonstrated crucial differences in the number and size of the vessels, degree of maturation and intratumoral localization of the vasculature in FCA and HCC, clearly indicating that vascular remodeling is an important step in the early phase of liver tumorigenesis of rodent models. Abstract The investigation of hepatocarcinogenesis is a major field of interest in oncology research and rodent models are commonly used to unravel the pathophysiology of onset and progression of hepatocellular carcinoma. HCC is a highly vascularized tumor and vascular remodeling is one of the hallmarks of tumor progression. To date, only a few detailed data exist about the vasculature and vascular remodeling in rodent models used for hepatocarcinogenesis. In this study, the vasculature of HCC and the preneoplastic foci of alteration (FCA) of different mouse models with varying genetic backgrounds were comprehensively characterized by using immunohistochemistry (CD31, Collagen IV, αSMA, Desmin and LYVE1) and RNA in situ hybridization (VEGF-A). Computational image analysis was performed to evaluate selected parameters including microvessel density, pericyte coverage, vessel size, intratumoral vessel distribution and architecture using the Aperio ImageScope and Definiens software programs. HCC presented with a significantly lower number of vessels, but larger vessel size and increased coverage, leading to a higher degree of maturation, whereas FCA lesions presented with a higher microvessel density and a higher amount of smaller but more immature vessels. Our results clearly demonstrate that vascular remodeling is present and crucial in early stages of experimental hepatocarcinogenesis. In addition, our detailed characterization provides a strong basis for further angiogenesis studies in these experimental models.
Collapse
|
6
|
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator that activates transcriptional enhanced associate domain transcription factors upon inactivation of the Hippo signaling pathway, to regulate biological processes like proliferation, survival, and differentiation. YAP1 is most prominently expressed in biliary epithelial cells (BECs) in normal adult livers and during development. In the current review, we will discuss the multiple roles of YAP1 in the development and morphogenesis of bile ducts inside and outside the liver, as well as in orchestrating the cholangiocyte repair response to biliary injury. We will review how biliary repair can occur through the process of hepatocyte-to-BEC transdifferentiation and how YAP1 is pertinent to this process. We will also discuss the liver's capacity for metabolic reprogramming as an adaptive mechanism in extreme cholestasis, such as when intrahepatic bile ducts are absent due to YAP1 loss from hepatic progenitors. Finally, we will discuss the roles of YAP1 in the context of pediatric pathologies afflicting bile ducts, such as Alagille syndrome and biliary atresia. In conclusion, we will comprehensively discuss the spatiotemporal roles of YAP1 in biliary development and repair after biliary injury while describing key interactions with other well-known developmental pathways.
Collapse
Affiliation(s)
- Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine,Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Piorońska W, Nwosu ZC, Han M, Büttner M, Ebert MP, Dooley S, Meyer C. Dysregulated paired related homeobox 1 impacts on hepatocellular carcinoma phenotypes. BMC Cancer 2021; 21:1006. [PMID: 34496784 PMCID: PMC8424914 DOI: 10.1186/s12885-021-08637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major cause of cancer-related death. Paired related homeobox 1 (PRRX1) is a transcription factor that regulates cell growth and differentiation, but its importance in HCC is unclear. METHODS We examined the expression pattern of PRRX1 in nine microarray datasets of human HCC tumour samples (n > 1100) and analyzed its function in HCC cell lines. In addition, we performed gene set enrichment, Kaplan-Meier overall survival analysis, metabolomics and functional assays. RESULTS PRRX1 is frequently upregulated in human HCC. Pathway enrichment analysis predicted a direct correlation between PRRX1 and focal adhesion and epithelial-mesenchymal transition. High expression of PRRX1 and low ZEB1 or high ZEB2 significantly predicted better overall survival in HCC patients. In contrast, metabolic processes correlated inversely and transcriptional analyses revealed that glycolysis, TCA cycle and amino acid metabolism were affected. These findings were confirmed by metabolomics analysis. At the phenotypic level, PRRX1 knockdown accelerated proliferation and clonogenicity in HCC cell lines. CONCLUSIONS Our results suggest that PRRX1 controls metabolism, has a tumour suppressive role, and may function in cooperation with ZEB1/2. These findings have functional relevance in HCC, including in understanding transcriptional control of distinct cancer hallmarks.
Collapse
Affiliation(s)
- Weronika Piorońska
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Zeribe Chike Nwosu
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Current address: Department of Molecular and Integrative Physiology, Rogel Cancer Centre, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mei Han
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Current address: Department of Internal Medicine, the Second Hospital of Dalian Medical University, Shahekou District, Dalian City, Liaoning Province, China
| | - Michael Büttner
- The Metabolomics Core Technology Platform of the University of Heidelberg, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
8
|
Differentiation of Heterogeneous Mouse Liver from HCC by Hyperpolarized 13C Magnetic Resonance. SCI 2021. [DOI: 10.3390/sci3010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The clinical characterization of small hepatocellular carcinoma (HCC) lesions in the liver and differentiation from heterogeneous inflammatory or fibrotic background is important for early detection and treatment. Metabolic monitoring of hyperpolarized 13C-labeled substrates has been suggested as a new avenue for diagnostic magnetic resonance. The metabolism of hyperpolarized [1-13C]pyruvate was monitored in mouse precision-cut liver slices (PCLS) of aged MDR2-KO mice, which served as a model for heterogeneous liver and HCC that develops similarly to the human disease. The relative in-cell activities of lactate dehydrogenase (LDH) to alanine transaminase (ALT) were found to be 0.40 ± 0.06 (n = 3) in healthy livers (from healthy mice), 0.90 ± 0.27 (n = 3) in heterogeneously inflamed liver, and 1.84 ± 0.46 (n = 3) in HCC. Thus, the in-cell LDH/ALT activities ratio was found to correlate with the progression of the disease. The results suggest that the LDH/ALT activities ratio may be useful in the assessment of liver disease. Because the technology used here is translational to both small liver samples that may be obtained from image-guided biopsy (i.e., ex vivo investigation) and to the intact liver (i.e., in a noninvasive MRI scan), these results may provide a path for differentiating heterogeneous liver from HCC in human subjects.
Collapse
|
9
|
Gamaev L, Mizrahi L, Friehmann T, Rosenberg N, Pappo O, Olam D, Zeira E, Bahar Halpern K, Caruso S, Zucman-Rossi J, Axelrod JH, Galun E, Goldenberg DS. The pro-oncogenic effect of the lncRNA H19 in the development of chronic inflammation-mediated hepatocellular carcinoma. Oncogene 2021; 40:127-139. [PMID: 33093654 DOI: 10.1038/s41388-020-01513-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
The oncofetal long noncoding RNA (lncRNA) H19 is postnatally repressed in most tissues, and re-expressed in many cancers, including hepatocellular carcinoma (HCC). The role of H19 in carcinogenesis is a subject of controversy. We aimed to examine the role of H19 in chronic inflammation-mediated hepatocarcinogenesis using the Mdr2/Abcb4 knockout (Mdr2-KO) mouse, a well-established HCC model. For this goal, we have generated Mdr2-KO/H19-KO double knockout (dKO) mice and followed spontaneous tumor development in the dKO and control Mdr2-KO mice. Cellular localization of H19 and effects of H19 loss in the liver were determined in young and old Mdr2-KO mice. Tumor incidence and tumor load were both significantly decreased in the liver of dKO versus Mdr2-KO females. The expression levels of H19 and Igf2 were variable in nontumor liver tissues of Mdr2-KO females and were significantly downregulated in most matched tumors. In nontumor liver tissue of aged Mdr2-KO females, H19 was expressed mainly in hepatocytes, and hepatocyte proliferation was increased compared to dKO females. At an early age, dKO females displayed lower levels of liver injury and B-cell infiltration, with higher percentage of binuclear hepatocytes. In human samples, H19 expression was higher in females, positively correlated with cirrhosis (in nontumor liver samples) and negatively correlated with CTNNB1 (beta-catenin) mutations and patients' survival (in tumors). Our data demonstrate that the lncRNA H19 is pro-oncogenic during the development of chronic inflammation-mediated HCC in the Mdr2-KO mouse model, mainly by increasing liver injury and decreasing hepatocyte polyploidy in young mice.
Collapse
Affiliation(s)
- Lika Gamaev
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lina Mizrahi
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tomer Friehmann
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Nofar Rosenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Evelyne Zeira
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, F-75006, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors Laboratory, F-75006, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, F-75015, Paris, France
| | - Jonathan H Axelrod
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel S Goldenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
10
|
Berkel C, Cacan E. DYNLL1 is hypomethylated and upregulated in a tumor stage- and grade-dependent manner and associated with increased mortality in hepatocellular carcinoma. Exp Mol Pathol 2020; 117:104567. [PMID: 33171156 DOI: 10.1016/j.yexmp.2020.104567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 01/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and cellular mechanisms regulating HCC pathogenesis and progression are not completely understood. DYNLL1 is essential for the development and expansion of MYC-driven B cell lymphoma, and also regulates genomic stability and responses to DNA-damaging chemotherapy in BRCA1-deficient tumors. However, the role and regulation of DYNLL1 has not been previously studied in the context of HCC. Here we report that DYNLL1 gene is hypomethylated and its expression is upregulated in HCC patients compared to healthy controls. The expression of DYNLL1 changes in a tumor grade- and stage-dependent manner in HCC. In this study, we further show that high DYNLL1 expression results in shorter overall and progression-free survival in hepatocellular carcinoma patients. Similar to DYNLL1, one of its protein interactors, RACK1, also shows decreased CpG-aggregated methylation and increased expression in HCC. RACK1 expression increases from early to late stage and from low to high grade in HCC. We found that high RACK1 expression is significantly associated with increased mortality of HCC patients. The present study shows that the epigenetic regulation of DYNLL1 and its consequent upregulation might be contributing to cancer development and progression in HCC. Its higher expression in late stage or high grade HCC may favor more aggressive disease as pointed by the increased mortality in high expression cohort. A better mechanistic understanding of the role of DYNLL1 in HCC will be needed to develop targeted treatment strategies in the future.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| |
Collapse
|
11
|
Differentiation of Heterogeneous Mouse Liver from HCC by Hyperpolarized 13C Magnetic Resonance. SCI 2020. [DOI: 10.3390/sci2020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The clinical characterization of small hepatocellular carcinoma (HCC) lesions in the liver and differentiation from heterogeneous inflammatory or fibrotic background is important for early detection and treatment. Metabolic monitoring of hyperpolarized 13C-labeled substrates has been suggested as a new avenue for diagnostic magnetic resonance. The metabolism of hyperpolarized [1-13C]pyruvate was monitored in mouse precision-cut liver slices (PCLS) of aged MDR2-KO mice, which served as a model for heterogeneous liver and HCC that develops similarly to the human disease. The relative in-cell activities of lactate dehydrogenase (LDH) to alanine transaminase (ALT) were found to be 0.40 ± 0.06 (n = 3) in healthy livers (from healthy mice), 0.90 ± 0.27 (n = 3) in heterogeneously inflamed liver, and 1.84 ± 0.46 (n = 3) in HCC. Thus, the in-cell LDH/ALT activities ratio was found to correlate with the progression of the disease. The results suggest that the LDH/ALT activities ratio may be useful in the assessment of liver disease. Because the technology used here is translational to both small liver samples that may be obtained from image-guided biopsy (i.e., ex vivo investigation) and to the intact liver (i.e., in a non-invasive MRI scan), these results may provide a path for differentiating heterogeneous liver from HCC in human subjects.
Collapse
|
12
|
Cadamuro M, Girardi N, Gores GJ, Strazzabosco M, Fabris L. The Emerging Role of Macrophages in Chronic Cholangiopathies Featuring Biliary Fibrosis: An Attractive Therapeutic Target for Orphan Diseases. Front Med (Lausanne) 2020; 7:115. [PMID: 32373615 PMCID: PMC7186419 DOI: 10.3389/fmed.2020.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cholangiopathies are a heterogeneous group of chronic liver diseases caused by different types of injury targeting the biliary epithelium, such as genetic defects and immune-mediated attacks. Notably, most cholangiopathies are orphan, thereby representing one of the major gaps in knowledge of the modern hepatology. A typical hallmark of disease progression in cholangiopathies is portal scarring, and thus development of effective therapeutic approaches would aim to hinder cellular and molecular mechanisms underpinning biliary fibrogenesis. Recent lines of evidence indicate that macrophages, rather than more conventional cell effectors of liver fibrosis such as hepatic stellate cells and portal fibroblasts, are actively involved in the earliest stages of biliary fibrogenesis by exchanging a multitude of cues with cholangiocytes, which promote their recruitment from the circulating compartment owing to a senescent or an immature epithelial phenotype. Two cholangiopathies, namely primary sclerosing cholangitis and congenital hepatic fibrosis, are paradigmatic of this mechanism. This review summarizes current understandings of the cytokine and extracellular vesicles-mediated communications between cholangiocytes and macrophages typically occurring in the two cholangiopathies to unveil potential novel targets for the treatment of biliary fibrosis.
Collapse
Affiliation(s)
| | - Noemi Girardi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, NY, United States
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, United States
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, Padua, Italy.,Liver Center, Department of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
13
|
Differentiation of Heterogeneous Mouse Liver from HCC by Hyperpolarized 13C Magnetic Resonance. SCI 2020. [DOI: 10.3390/sci2010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The clinical characterization of small hepatocellular carcinoma (HCC) lesions in the liver and differentiation from heterogeneous inflammatory or fibrotic background is important for early detection and treatment. Metabolic monitoring of hyperpolarized 13C-labeled substrates has been suggested as a new avenue for diagnostic magnetic resonance. The metabolism of hyperpolarized [1-13C]pyruvate was monitored in mouse precision-cut liver slices (PCLS) of aged MDR2-KO mice, which served as a model for heterogeneous liver and HCC that develops similarly to the human disease. The relative in-cell activities of lactate dehydrogenase (LDH) to alanine transaminase (ALT) were found to be 0.40 ± 0.06 (n = 3) in healthy livers (from healthy mice), 0.90 ± 0.27 (n = 3) in heterogeneously inflamed liver, and 1.84 ± 0.46 (n = 3) in HCC. Thus, the in-cell LDH/ALT activities ratio was found to correlate with the progression of the disease. The results suggest that the LDH/ALT activities ratio may be useful in the assessment of liver disease. Because the technology used here is translational to both small liver samples that may be obtained from image-guided biopsy (i.e., ex vivo investigation) and to the intact liver (i.e., in a non-invasive MRI scan), these results may provide a path for differentiating heterogeneous liver from HCC in human subjects.
Collapse
|
14
|
Fuchs S, Bayer M, Taubert R, Manns MP, Pfeilschifter JM, Christen U, Hintermann E. Effects of adenovirus-induced hepatocyte damage on chronic bile duct inflammation in a sclerosing cholangitis mouse model. Liver Int 2019; 39:2330-2340. [PMID: 31225929 DOI: 10.1111/liv.14183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Four major autoimmune diseases target the liver. They develop because of bile duct destruction, leading to chronic cholestasis or result from hepatocyte damage like autoimmune hepatitis (AIH). Interestingly, some patients simultaneously show features of both cholangitis and AIH. Our goal was to mimic such concurrent characteristics in a mouse model that would help deciphering mechanisms possibly involved in an inflammatory crosstalk between cholestatic disease and hepatitis. METHODS Mdr2-/- mice, which spontaneously develop sclerosing cholangitis because of accumulation of toxic bile salts, were infected with adenovirus (Ad) encoding human Cytochrome P4502D6 (hCYP2D6), the major target autoantigen in type-2 AIH, to trigger hepatocyte injury. Wild type FVB mice were controls. RESULTS Resulting Ad-Mdr2-/- mice presented with cholangitis, fibrosis and cellular infiltrations that were higher than in Mdr2-/- or Ad-FVB mice. Increased levels of anti-neutrophil cytoplasmic antibodies but similar anti-hCYP2D6 antibody titres were detected in Ad-Mdr2-/- compared to Mdr2-/- and Ad-FVB mice respectively. IFNγ-expressing hCYP2D6-specific CD4 T cells declined, whereas hCYP2D6-specific CD8 T cells increased in Ad-Mdr2-/- compared to Ad-FVB mice. The overall T cell balance in Ad-Mdr2-/- mice was a combination of a type 17 T cell response typically found in Mdr2-/- mice with a type 1 dominated T cell response characteristic for Ad-FVB mice. Simultaneously, the type 2 T cell compartment was markedly reduced. CONCLUSIONS Experimental hepatitis induction in a mouse with sclerosing cholangitis results in a disorder which represents not simply the sum of the individual characteristics but depicts a more complex entity which urges on further analysis.
Collapse
Affiliation(s)
- Sina Fuchs
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Monika Bayer
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Josef M Pfeilschifter
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Role of Non-Coding RNAs in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers (Basel) 2019; 11:cancers11111652. [PMID: 31731549 PMCID: PMC6896146 DOI: 10.3390/cancers11111652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Liver cancer is a devastating cancer that ranges from relatively rare (around 2% of all cancers in the United States) to commonplace (up to 50% of cancers in underdeveloped countries). Depending upon the stage of pathogenesis, prognosis, or functional liver tissue present, transplantation or partial hepatectomy may be the only available treatment option. However, due to the rise in metabolic syndrome and the increasing demand for livers, patients often wait months or years for available organs. Due to this shortage, doctors must have other treatment options available. One promising area of cancer research lies in understanding the role of regulatory non-coding RNAs (ncRNAs) as oncogenic drivers and potential targets for prospective therapies. While the role of these ncRNAs was not initially clear, many of them have since been recognized to function as important players in the regulation of gene expression, epigenetic modification, and signal transduction in both normal and cancer cell cycles. Dysregulation of these different ncRNA subtypes has been implicated in the pathogenesis and progression of many major cancers including hepatocellular carcinoma. This review summarizes current findings on the roles noncoding RNAs play in the progression of liver cancer and the various animal models used in current research to elucidate those data.
Collapse
|
16
|
Rajapaksha IG, Gunarathne LS, Asadi K, Cunningham SC, Sharland A, Alexander IE, Angus PW, Herath CB. Liver-Targeted Angiotensin Converting Enzyme 2 Therapy Inhibits Chronic Biliary Fibrosis in Multiple Drug-Resistant Gene 2-Knockout Mice. Hepatol Commun 2019; 3:1656-1673. [PMID: 31832573 PMCID: PMC6887688 DOI: 10.1002/hep4.1434] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/07/2019] [Indexed: 12/11/2022] Open
Abstract
There is a large unmet need for effective therapies for cholestatic disorders, including primary sclerosing cholangitis (PSC), a disease that commonly results in liver failure. Angiotensin (Ang) II of the renin Ang system (RAS) is a potent profibrotic peptide, and Ang converting enzyme 2 (ACE2) of the alternate RAS breaks down Ang II to antifibrotic peptide Ang‐(1‐7). In the present study, we investigated long‐term effects of ACE2 delivered by an adeno‐associated viral vector and short‐term effects of Ang‐(1‐7) peptide in multiple drug‐resistant gene 2‐knockout (Mdr2‐KO) mice. These mice develop progressive biliary fibrosis with pathologic features closely resembling those observed in PSC. A single intraperitoneal injection of ACE2 therapy markedly reduced liver injury (P < 0.05) and biliary fibrosis (P < 0.01) at both established (3‐6 months of age) and advanced (7‐9 months of age) disease compared to control vector‐injected Mdr2‐KO mice. This was accompanied by increased hepatic Ang‐(1‐7) levels (P < 0.05) with concomitant reduction in hepatic Ang II levels (P < 0.05) compared to controls. Moreover, Ang‐(1‐7) peptide infusion improved liver injury (P < 0.05) and biliary fibrosis (P < 0.0001) compared to saline‐infused disease controls. The therapeutic effects of both ACE2 therapy and Ang‐(1‐7) infusion were associated with significant (P < 0.01) reduction in hepatic stellate cell (HSC) activation and collagen expression. While ACE2 therapy prevented the loss of epithelial characteristics of hepatocytes and/or cholangiocytes in vivo, Ang‐(1‐7) prevented transdifferentiation of human cholangiocytes (H69 cells) into the collagen‐secreting myofibroblastic phenotype in vitro. We showed that an increased ratio of hepatic Ang‐(1‐7) to Ang II levels by ACE2 therapy results in the inhibition of HSC activation and biliary fibrosis. Conclusion: ACE2 therapy has the potential to treat patients with biliary diseases, such as PSC.
Collapse
Affiliation(s)
- Indu G Rajapaksha
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| | - Lakmie S Gunarathne
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| | | | - Sharon C Cunningham
- Children's Medical Research Institute School of Medicine University of Sydney Sydney Australia
| | - Alexandra Sharland
- Central Clinical School School of Medicine University of Sydney Sydney Australia
| | - Ian E Alexander
- Children's Medical Research Institute School of Medicine University of Sydney Sydney Australia
| | - Peter W Angus
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| | - Chandana B Herath
- Department of Medicine University of Melbourne Austin Health Heidelberg Australia
| |
Collapse
|
17
|
Hartwig V, Dewidar B, Lin T, Dropmann A, Ganss C, Kluth MA, Tappenbeck N, Tietze L, Christ B, Frank M, Vogelmann R, Ebert MPA, Dooley S. Human skin-derived ABCB5 + stem cell injection improves liver disease parameters in Mdr2KO mice. Arch Toxicol 2019; 93:2645-2660. [PMID: 31435712 DOI: 10.1007/s00204-019-02533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-β family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.
Collapse
Affiliation(s)
- Vanessa Hartwig
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Bedair Dewidar
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Anne Dropmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Ganss
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | - Mark Andreas Kluth
- RHEACELL GmbH and Co. KG, 69120, Heidelberg, Germany
- TICEBA GmbH, 69120, Heidelberg, Germany
| | | | - Lysann Tietze
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Bruno Christ
- Applied Molecular Hepatology, Department of Visceral Transplantation, Thoracic und Vascular Surgery, Leipzig University, 04103, Leipzig, Germany
| | - Markus Frank
- Department of Pediatrics and Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Roger Vogelmann
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Philip Alexander Ebert
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
18
|
Potikha T, Pappo O, Mizrahi L, Olam D, Maller SM, Rabinovich GA, Galun E, Goldenberg DS. Lack of galectin-1 exacerbates chronic hepatitis, liver fibrosis, and carcinogenesis in murine hepatocellular carcinoma model. FASEB J 2019; 33:7995-8007. [PMID: 30897344 PMCID: PMC9292271 DOI: 10.1096/fj.201900017r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/18/2019] [Indexed: 04/16/2024]
Abstract
Chronic liver inflammation (CLI) is a risk factor for development of hepatocellular carcinoma (HCC). Galectin-1 (Gal1) is involved in the regulation of inflammation, angiogenesis, and tumorigenesis, exhibiting multiple anti-inflammatory and protumorigenic activities. We aimed to explore its regulatory role in CLI and HCC progression using an established model of CLI-mediated HCC development, Abcb4 [multidrug-resistance 2 (Mdr2)]-knockout (KO) mice, which express high levels of Gal1 in the liver. We generated double-KO (dKO) Gal1-KO/Mdr2-KO mice on C57BL/6 and FVB/N genetic backgrounds and compared HCC development in the generated strains with their parental Mdr2-KO strains. Loss of Gal1 increased liver injury, inflammation, fibrosis, and ductular reaction in dKO mice of both strains starting from an early age. Aged dKO mutants displayed earlier hepatocarcinogenesis and increased tumor size compared with control Mdr2-KO mice. We found that osteopontin, a well-known modulator of HCC development, and oncogenic proteins Ntrk2 (TrkB) and S100A4 were overexpressed in dKO compared with Mdr2-KO livers. Our results demonstrate that in Mdr2-KO mice, a model of CLI-mediated HCC, Gal1-mediated protection from hepatitis, liver fibrosis, and HCC initiation dominates over its known procarcinogenic activities at later stages of HCC development. These findings suggest that anti-Gal1 treatments may not be applicable at all stages of CLI-mediated HCC.-Potikha, T., Pappo, O., Mizrahi, L., Olam, D., Maller, S. M., Rabinovich, G. A., Galun, E., Goldenberg, D. S. Lack of galectin-1 exacerbates chronic hepatitis, liver fibrosis, and carcinogenesis in murine hepatocellular carcinoma model.
Collapse
Affiliation(s)
- Tamara Potikha
- The Goldyne Savad Institute of Gene TherapyHadassah-Hebrew University Medical CenterJerusalemIsrael
| | - Orit Pappo
- Department of PathologyHadassah-Hebrew University Medical CenterJerusalemIsrael
| | - Lina Mizrahi
- The Goldyne Savad Institute of Gene TherapyHadassah-Hebrew University Medical CenterJerusalemIsrael
| | - Devorah Olam
- The Goldyne Savad Institute of Gene TherapyHadassah-Hebrew University Medical CenterJerusalemIsrael
| | - Sebastián M. Maller
- Laboratory of ImmunopathologyInstitute of Biology and Experimental Medicine (IBYME)Argentinean National Research Council (CONICET)Buenos AiresArgentina
| | - Gabriel A. Rabinovich
- Laboratory of ImmunopathologyInstitute of Biology and Experimental Medicine (IBYME)Argentinean National Research Council (CONICET)Buenos AiresArgentina
- Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Eithan Galun
- The Goldyne Savad Institute of Gene TherapyHadassah-Hebrew University Medical CenterJerusalemIsrael
| | - Daniel S. Goldenberg
- The Goldyne Savad Institute of Gene TherapyHadassah-Hebrew University Medical CenterJerusalemIsrael
| |
Collapse
|
19
|
Wang R, Sheps JA, Liu L, Han J, Chen PSK, Lamontagne J, Wilson PD, Welch I, Borchers CH, Ling V. Hydrophilic bile acids prevent liver damage caused by lack of biliary phospholipid in Mdr2-/- mice. J Lipid Res 2019; 60:85-97. [PMID: 30416103 PMCID: PMC6314265 DOI: 10.1194/jlr.m088070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Bile acid imbalance causes progressive familial intrahepatic cholestasis type 2 (PFIC2) or type 3 (PFIC3), severe liver diseases associated with genetic defects in the biliary bile acid transporter bile salt export pump (BSEP; ABCB11) or phosphatidylcholine transporter multidrug resistance protein 3 (MDR3; ABCB4), respectively. Mdr2-/- mice (a PFIC3 model) develop progressive cholangitis, ductular proliferation, periportal fibrosis, and hepatocellular carcinoma (HCC) because the nonmicelle-bound bile acids in the bile of these mice are toxic. We asked whether the highly hydrophilic bile acids generated by Bsep-/- mice could protect Mdr2-/- mice from progressive liver damage. We generated double-KO (DKO: Bsep-/- and Mdr2-/- ) mice. Their bile acid composition resembles that of Bsep-/- mice, with increased hydrophilic muricholic acids, tetrahydroxylated bile acids (THBAs), and reduced hydrophobic cholic acid. These mice lack the liver pathology of their Mdr2-/- littermates. The livers of DKO mice have gene expression profiles very similar to Bsep-/- mice, with 4,410 of 6,134 gene expression changes associated with the Mdr2-/- mutation being suppressed. Feeding with THBAs partially alleviates liver damage in the Mdr2-/- mice. Hydrophilic changes to biliary bile acid composition, including introduction of THBA, can prevent the progressive liver pathology associated with the Mdr2-/- (PFIC3) mutation.
Collapse
Affiliation(s)
- Renxue Wang
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | - Lin Liu
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jun Han
- University of Victoria-Genome BC Proteomics Centre University of Victoria, Victoria, British Columbia, Canada
| | - Patrick S K Chen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jason Lamontagne
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter D Wilson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ian Welch
- Department of Pathology University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Comparative Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christoph H Borchers
- University of Victoria-Genome BC Proteomics Centre University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Victor Ling
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:298-307. [PMID: 30447270 DOI: 10.1016/j.bbadis.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ACLF is usually associated with a precipitant in the setting of a chronically damaged liver. We aim to combine a mouse model with a pre-injured liver (Abcb4/Mdr2-/-) with a recently standardized ethanol feeding model to dissect alcohol-related inflammatory responses in this model. METHOD Ten (n = 64) and 15 (n = 64) week old wild-type (WT) C57BL/6 J and Abcb4-/- knock-out (KO) mice were either fed control (WT/Cont and KO/Cont groups) or liquid ethanol diet (5% v/v) followed by an ethanol binge (4 mg/kg) (WT/EtOH and KO/EtOH groups). Hepatic mRNA levels of IL6, IFN-G, IL-1B, TGFB1, TNF-A, CCL2, HGF, CRP, RANTES, PNPLA3 and COL3A1 were evaluated using the 2-ΔΔCt method. IL6 and HGF plasma levels were quantified by ELISA. RESULTS Older mice in KO/EtOH group displayed higher IL6 expressions compared to KO/Cont, WT/EtOH and WT/Cont groups of the same age, whereas HGF did not differ. Significant over-expression of CCL2 also corresponded to the same group. Males in KO/EtOH group exhibited higher IL6 expression than females. Lipid droplets were observed in about 80% of mice challenged with ethanol. There was a profound downregulation in PNPLA3 and RANTES levels after ethanol exposure. Mean size of the LDs was inversely correlated with hepatic PNPLA3 levels. CONCLUSION We propose a novel promising approach to model alcohol-related ACLI. Acute inflammatory IL6-driven response might help transition from a stable chronic state to a progressive liver damage in Abcb4-/- mice. Repression of PNPLA3 resulted in a notable expansion in size of lipid droplets, indicating lipid remodeling in this model.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Barikbin R, Berkhout L, Bolik J, Schmidt-Arras D, Ernst T, Ittrich H, Adam G, Parplys A, Casar C, Krech T, Karimi K, Sass G, Tiegs G. Early heme oxygenase 1 induction delays tumour initiation and enhances DNA damage repair in liver macrophages of Mdr2 -/- mice. Sci Rep 2018; 8:16238. [PMID: 30389969 PMCID: PMC6214975 DOI: 10.1038/s41598-018-33233-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
Multi drug resistance protein 2 knockout mice (Mdr2-/-) are a mouse model of chronic liver inflammation and inflammation-induced tumour development. Here we investigated the kinetics of early heme oxygenase 1 (HO-1) induction on inflammation, tumour development, and DNA damage in Mdr2-/- mice. HO-1 was induced by intraperitoneal injection of cobalt protoporphyrin IX (CoPP) twice weekly for 9 consecutive weeks. Immediately after HO-1 induction, liver function improved and infiltration of CD4+ and CD8+ T cells was reduced. Furthermore, we observed increased p38 activation with concomitant reduction of Cyclin D1 expression in aged Mdr2-/- mice. Long-term effects of HO-1 induction included increased CD8+ T cell infiltration as well as delayed and reduced tumour growth in one-year-old animals. Unexpectedly, DNA double-strand breaks were detected predominantly in macrophages of 65-week-old Mdr2-/- mice, while DNA damage was reduced in response to early HO-1 induction in vivo and in vitro. Overall, early induction of HO-1 in Mdr2-/- mice had a beneficial short-term effect on liver function and reduced hepatic T cell accumulation. Long-term effects of early HO-1 induction were increased CD8+ T cell numbers, decreased proliferation as wells as reduced DNA damage in liver macrophages of aged animals, accompanied by delayed and reduced tumour growth.
Collapse
Affiliation(s)
- Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Ernst
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Duisburg, Germany
| | - Harald Ittrich
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann Parplys
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Casar
- Medical Clinics I, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Gabriele Sass
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Infectious Diseases, California Institute for Medical Research, San Jose, CA, USA
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
22
|
Kaltenecker D, Themanns M, Mueller KM, Spirk K, Suske T, Merkel O, Kenner L, Luís A, Kozlov A, Haybaeck J, Müller M, Han X, Moriggl R. Hepatic growth hormone - JAK2 - STAT5 signalling: Metabolic function, non-alcoholic fatty liver disease and hepatocellular carcinoma progression. Cytokine 2018; 124:154569. [PMID: 30389231 DOI: 10.1016/j.cyto.2018.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
The rising prevalence of obesity came along with an increase in associated metabolic disorders in Western countries. Non-alcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of the metabolic syndrome and is linked to primary stages of liver cancer development. Growth hormone (GH) regulates various vital processes such as energy supply and cellular regeneration. In addition, GH regulates various aspects of liver physiology through activating the Janus kinase (JAK) 2- signal transducer and activator of transcription (STAT) 5 pathway. Consequently, disrupted GH - JAK2 - STAT5 signaling in the liver alters hepatic lipid metabolism and is associated with NAFLD development in humans and mouse models. Interestingly, while STAT5 as well as JAK2 deficiency correlates with hepatic lipid accumulation, recent studies suggest that these proteins have unique ambivalent functions in chronic liver disease progression and tumorigenesis. In this review, we focus on the consequences of altered GH - JAK2 - STAT5 signaling for hepatic lipid metabolism and liver cancer development with an emphasis on lessons learned from genetic knockout models.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Madeleine Themanns
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Kristina M Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Katrin Spirk
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olaf Merkel
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria; Institute of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Austria; Department of Pathology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaonan Han
- Key Laboratory of Human Disease Comparative Medicine, the Ministry of Health; Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Science (CAMS) and Peking Union Medical College (PUMC), Beijing, PR China; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Collino A, Termanini A, Nicoli P, Diaferia G, Polletti S, Recordati C, Castiglioni V, Caruso D, Mitro N, Natoli G, Ghisletti S. Sustained activation of detoxification pathways promotes liver carcinogenesis in response to chronic bile acid-mediated damage. PLoS Genet 2018; 14:e1007380. [PMID: 29734330 PMCID: PMC5957449 DOI: 10.1371/journal.pgen.1007380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/17/2018] [Accepted: 04/26/2018] [Indexed: 01/14/2023] Open
Abstract
Chronic inflammation promotes oncogenic transformation and tumor progression. Many inflammatory agents also generate a toxic microenvironment, implying that adaptive mechanisms must be deployed for cells to survive and undergo transformation in such unfavorable contexts. A paradigmatic case is represented by cancers occurring in pediatric patients with genetic defects of hepatocyte phosphatidylcholine transporters and in the corresponding mouse model (Mdr2-/- mice), in which impaired bile salt emulsification leads to chronic hepatocyte damage and inflammation, eventually resulting in oncogenic transformation. By combining genomics and metabolomics, we found that the transition from inflammation to cancer in Mdr2-/- mice was linked to the sustained transcriptional activation of metabolic detoxification systems and transporters by the Constitutive Androstane Receptor (CAR), a hepatocyte-specific nuclear receptor. Activation of CAR-dependent gene expression programs coincided with reduced content of toxic bile acids in cancer nodules relative to inflamed livers. Treatment of Mdr2-/- mice with a CAR inhibitor blocked cancer progression and caused a partial regression of existing tumors. These results indicate that the acquisition of resistance to endo- or xeno-biotic toxicity is critical for cancers that develop in toxic microenvironments.
Collapse
Affiliation(s)
- Agnese Collino
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Giuseppe Diaferia
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Camilla Recordati
- Mouse & Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | | | - Donatella Caruso
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Gioacchino Natoli
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | | |
Collapse
|
25
|
Faggioli F, Palagano E, Di Tommaso L, Donadon M, Marrella V, Recordati C, Mantero S, Villa A, Vezzoni P, Cassani B. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 2018; 67:1970-1985. [PMID: 29105104 DOI: 10.1002/hep.29636] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/20/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a frequent neoplasia and a leading cause of inflammation-related cancer mortality. Despite that most HCCs arise from persistent inflammatory conditions, pathways linking chronic inflammation to cancer development are still incompletely elucidated. We dissected the role of adaptive immunity in the Mdr2 knockout (Mdr2-/- ) mouse, a model of inflammation-associated cancer, in which ablation of adaptive immunity has been induced genetically (Rag2-/- Mdr2-/- and μMt-Mdr2-/- mice) or with in vivo treatments using lymphocyte-specific depleting antibodies (anti-CD20 or anti-CD4/CD8). We found that activated B and T lymphocytes, secreting fibrogenic tumor necrosis factor alpha (TNFα) and other proinflammatory cytokines, infiltrated liver of the Mdr2-/- mice during chronic fibrosing cholangitis. Lymphocyte ablation, in the Rag2-/- Mdr2-/- and μMt-Mdr2-/- mice, strongly suppressed hepatic stellate cell (HSC) activation and extracellular matrix deposition, enhancing HSC transition to cellular senescence. Moreover, lack of lymphocytes changed the intrahepatic metabolic/oxidative state, resulting in skewed macrophage polarization toward an anti-inflammatory M2 phenotype. Remarkably, hepatocarcinogenesis was significantly suppressed in the Rag2-/- Mdr2-/- mice, correlating with reduced TNFα/NF-κB (nuclear factor kappa B) pathway activation. Ablation of CD20+ B cells, but not of CD4+ /CD8+ T cells, in Mdr2-/- mice, promoted senescence-mediated fibrosis resolution and inhibited the protumorigenic TNFα/NF-κB pathway. Interestingly, presence of infiltrating B cells correlated with increased tumor aggressiveness and reduced disease-free survival in human HCC. CONCLUSION Adaptive immunity sustains liver fibrosis (LF) and favors HCC growth in chronic injury, by modulating innate components of inflammation and limiting the extent of HSC senescence. Therapies designed for B-cell targeting may be an effective strategy in LF. (Hepatology 2018;67:1970-1985).
Collapse
Affiliation(s)
- Francesca Faggioli
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Eleonora Palagano
- Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Veronica Marrella
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milano, Italy
| | - Stefano Mantero
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paolo Vezzoni
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Barbara Cassani
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
26
|
Piccinin E, Peres C, Bellafante E, Ducheix S, Pinto C, Villani G, Moschetta A. Hepatic peroxisome proliferator-activated receptor γ coactivator 1β drives mitochondrial and anabolic signatures that contribute to hepatocellular carcinoma progression in mice. Hepatology 2018; 67:884-898. [PMID: 28857232 DOI: 10.1002/hep.29484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
UNLABELLED The peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1β (PGC-1 β) is a master regulator of mitochondrial biogenesis and oxidative metabolism as well as of antioxidant defense. Specifically, in the liver, PGC-1β also promotes de novo lipogenesis, thus sustaining cellular anabolic processes. Given the relevant pathogenic role of mitochondrial and fatty acid metabolism in hepatocarcinoma (HCC), here we pointed to PGC-1β as a putative novel transcriptional player in the development and progression of HCC. For this purpose, we generated both hepatic-specific PGC-1β-overexpressing (LivPGC-1β) and PGC-1β knockout (LivPGC-1βKO) mice, and we challenged them with both chemical and genetic models of hepatic carcinogenesis. Our results demonstrate a pivotal role of PGC-1β in driving liver tumor development. Indeed, whereas mice overexpressing PGC-1β show greater tumor susceptibility, PGC-1β knockout mice are protected from carcinogenesis. High levels of PGC-1β are able to boost reactive oxygen species (ROS) scavenger expression, therefore limiting the detrimental ROS accumulation and, consequently, apoptosis. Moreover, it supports tumor anabolism, enhancing the expression of genes involved in fatty acid and triglyceride synthesis. Accordingly, the specific hepatic ablation of PGC-1β promotes the accumulation of ROS-driven macromolecule damage, finally limiting tumor growth. CONCLUSION The present data elect hepatic PGC-1β as a transcriptional gatekeeper of mitochondrial function and redox status in HCC, orchestrating different metabolic programs that allow tumor progression. (Hepatology 2018;67:884-898).
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.,INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Claudia Peres
- INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | | | - Simon Ducheix
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.,INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Claudio Pinto
- Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.,National Cancer Center, IRCCS "Giovanni Paolo II", 70124, Bari, Italy
| |
Collapse
|
27
|
Heim D, Gil-Ibanez I, Herden J, Parplys AC, Borgmann K, Schmidt-Arras D, Lohse AW, Rose-John S, Wege H. Constitutive gp130 activation rapidly accelerates the transformation of human hepatocytes via an impaired oxidative stress response. Oncotarget 2018; 7:55639-55648. [PMID: 27489351 PMCID: PMC5342442 DOI: 10.18632/oncotarget.10956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/09/2016] [Indexed: 01/29/2023] Open
Abstract
Pro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransformed telomerase-immortalized human fetal hepatocytes (FH-hTERT). As known from hepatocellular adenomas, forced gp130 activation alone was not sufficient to induce malignant transformation. However, additional challenge of FH-hTERT L-gp130 clones with oxidative stress resulted in 2- to 3-fold higher ROS levels and up to 6-fold more DNA-double strand breaks (DSB). Despite increased DNA damage, ROS-challenged FH-hTERT L-gp130 clones displayed an enhanced proliferation and rapidly developed colony growth capabilities in soft agar. As driving gp130-mediated oncogenic mechanism, we detected a decreased expression of antioxidant genes, in particular glutathione peroxidase 3 and apolipoprotein E, and an absence of P21 upregulation following ROS-conferred induction of DSB. In summary, an impaired oxidative stress response in hepatocytes with gp130 gain-of-function mutations, as detected in dysplastic intrahepatic nodules and hepatocellular adenomas, is one of the central oncogenic mechanisms in chronic liver inflammation.
Collapse
Affiliation(s)
- Denise Heim
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ines Gil-Ibanez
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Herden
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ann Christin Parplys
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Ansgar W Lohse
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Henning Wege
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
28
|
Mora MI, Molina M, Odriozola L, Elortza F, Mato JM, Sitek B, Zhang P, He F, Latasa MU, Ávila MA, Corrales FJ. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism. J Proteome Res 2017; 16:4506-4514. [PMID: 28944671 DOI: 10.1021/acs.jproteome.7b00390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl4. This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).
Collapse
Affiliation(s)
- María Isabel Mora
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Manuela Molina
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Leticia Odriozola
- Proteomics Laboratory, CIMA, University of Navarra , ProteoRed-ISCIII, 31008 Pamplona, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - José María Mato
- Proteomics Platform, CIC bioGUNE , CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Pumin Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 100039, China.,National Center for Protein Sciences (The PHOENIX Center, Beijing) , Beijing 102206, China
| | - María Uxue Latasa
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Matías Antonio Ávila
- Hepatology Laboratory, CIMA, University of Navarra , CIBERehd, 31008 Pamplona, Spain
| | - Fernando José Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC , Proteored-ISCIII, CIBERehd. 28049 Madrid, Spain
| |
Collapse
|
29
|
Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1308-1318. [PMID: 28965883 DOI: 10.1016/j.bbadis.2017.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
Abstract
The nuclear receptor farnesoid X receptor (FXR) is the master regulator of bile acids (BAs) homeostasis since it transcriptionally drives modulation of BA synthesis, influx, efflux, and detoxification along the enterohepatic axis. Due to its crucial role, FXR alterations are involved in the progression of a plethora of BAs associated inflammatory disorders in the liver and in the gut. The involvement of the FXR pathway in cholestasis development and management has been elucidated so far with a direct role of FXR activating therapy in this condition. However, the recent identification of a new type of genetic progressive familial intrahepatic cholestasis (PFIC) linked to FXR mutations has strengthen also the bona fide beneficial effects of target therapies that by-pass FXR activation, directly promoting the action of its target, namely the enterokine FGF19, in the repression of hepatic BAs synthesis with reduction of total BA levels in the liver and serum, accomplishing one of the major goals in cholestasis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Elena Piccinin
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
| | - Oihane Garcia-Irigoyen
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124 Bari, Italy; National Cancer Center, IRCCS Istituto Oncologico "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
30
|
Hall C, Ehrlich L, Meng F, Invernizzi P, Bernuzzi F, Lairmore TC, Alpini G, Glaser S. Inhibition of microRNA-24 increases liver fibrosis by enhanced menin expression in Mdr2 -/- mice. J Surg Res 2017; 217:160-169. [PMID: 28602220 PMCID: PMC5760243 DOI: 10.1016/j.jss.2017.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Liver transplantation remains the primary treatment for primary sclerosing cholangitis (PSC). Mdr2-/- mice provide a reliable in vivo model of PSC and develop characteristic biliary inflammation and fibrosis. We tested the hypothesis that the tumor suppressor protein menin is implicated in the progression of liver fibrosis and that menin expression can be regulated in the liver via microRNA-24 (miR-24). MATERIALS AND METHODS Menin expression was measured in human PSC and Mdr2-/- mice. Twelve-week-old FVB/NJ wild-type (WT) and Mdr2-/- mice were treated with miR-24 Vivo-Morpholino to knockdown miR-24 expression levels. Liver fibrosis was evaluated by Sirius Red staining and quantitative polymerase chain reaction (qPCR) for genes associated with liver fibrosis, such as fibronectin 1, collagen type 1 alpha 1, transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin. Studies were also performed in vitro using immortalized murine cholangiocyte lines treated with miR-24 hairpin inhibitor and mimic. RESULTS Menin gene expression was increased in Mdr2-/- mice and late-stage human PSC samples. Treatment of FVB/NJ WT and Mdr2-/- mice with miR-24 Vivo-Morpholino increased menin expression, which correlated with increased expression of fibrosis genes. In vitro, inhibition of miR-24 also significantly increased the expression of fibrosis genes. CONCLUSIONS Inhibition of miR-24 increases menin and TGF-β1 expression, subsequently increasing hepatic fibrosis in FVB/NJ WT and Mdr2-/- mice. Modulation of the menin/miR-24 axis may provide novel targeted therapies to slow the progression of hepatic fibrosis into cirrhosis in PSC patients by altering TGF-β1 expression.
Collapse
Affiliation(s)
- Chad Hall
- Department of Surgery, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas
| | - Laurent Ehrlich
- Department of Surgery, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas; Department of Medicine, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas
| | - Fanyin Meng
- Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Terry C Lairmore
- Department of Surgery, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Medicine, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; Research, Central Texas Veterans Health Care System, Temple, Texas
| | - Shannon Glaser
- Department of Medicine, Baylor Scott & White Health and Texas A&M University Health Science Center, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Temple, Texas; Research, Central Texas Veterans Health Care System, Temple, Texas.
| |
Collapse
|
31
|
Tumor-suppressive effect of S-adenosylmethionine supplementation in a murine model of inflammation-mediated hepatocarcinogenesis is dependent on treatment longevity. Oncotarget 2017; 8:104772-104784. [PMID: 29285212 PMCID: PMC5739599 DOI: 10.18632/oncotarget.18300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/03/2017] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation precedes the majority of hepatocellular carcinoma (HCC) cases. We investigated the chemopreventive potential of S-adenosylmethionine (SAM), an essential donor for all methylation reactions in the cell, at the late precancerous stage of HCC development using the Mdr2-knockout (Mdr2-KO, Abcb4−/−) mice, a model of inflammation-mediated hepatocarcinogenesis. Previously, we revealed down-regulation of the genes regulating SAM metabolism in the liver of these mice at the precancerous stages. Now, we have supplied Mdr2-KO mice at the late precancerous stage with SAM during either a short-term (17 days) or a long-term (51 days) period and explored the effects of such supplementation on tumor development, DNA methylation and gene expression in the liver. The short-term SAM supplementation significantly decreased the number of small tumor nodules, proliferating hepatocytes and the total DNA methylation level, while it increased expression of the tumor suppressor proteins Mat1a and p21. Surprisingly, the long-term SAM supplementation did not affect tumor growth and hepatocyte proliferation, while it increased the total liver DNA methylation. Our results demonstrate that the short-term SAM supplementation in the Mdr2-KO mice inhibited liver tumor development potentially by increasing multiple tumor suppressor mechanisms resulting in cell cycle arrest. The long-term SAM supplementation resulted in a bypass of the cell cycle arrest in this HCC model by a yet unknown mechanism.
Collapse
|
32
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
33
|
Jung IH, Choi JHK, Chung YY, Lim GL, Park YN, Park SW. Predominant Activation of JAK/STAT3 Pathway by Interleukin-6 Is Implicated in Hepatocarcinogenesis. Neoplasia 2016; 17:586-97. [PMID: 26297436 PMCID: PMC4547407 DOI: 10.1016/j.neo.2015.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/04/2015] [Accepted: 07/13/2015] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is an important process leading to tumorigenesis. Therefore, targeting and controlling inflammation can be a promising cancer therapy. Inflammation is often caused by a variety of inflammatory cytokine such as the interleukin (IL)-6, a pleiotrophic cytokine known to be involved in the tumorigenesis. In this study, an in vivo hepatic tumorigenesis model of zebrafish was generated to demonstrate a direct consequence of the human IL6 expression causing hepatocarcinogenesis. To do this, an elevated expression of the hIL6 gene was established to specifically target the zebrafish hepatocytes by transgenesis. Interestingly, the elevated hIL6 expression caused the chronic inflammation which results in a massive infiltration of inflammatory cells. This eventually resulted in the generation of various dysplastic lesions such as clear cell, small cell, and large cell changes, and also eosinophilic and basophilic foci of hepatocellular alteration. Hepatocellular carcinoma was then developed in the transgenic zebrafish. Molecular characterization revealed upregulation of the downstream components involved in the IL6-mediated signaling pathways, especially PI3K/Akt and JAK/STAT3 pathways. Further investigation indicated that PI3K was the most reactive to the infiltrated inflammatory cells and dysplasia with large cell change, whereas STAT3 was heavily activated in the region with dysplastic foci, suggesting that the JAK/STAT3 pathway was mainly implicated in the hepatic tumorigenesis in the current model. Our present study provides an in vivo evidence of the relationship between chronic inflammation and tumorigenesis and reinforces the pivotal role of IL6 in the inflammation-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- In Hye Jung
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Yong-Yoon Chung
- Research Institute of SMT Bio, SMT Bio Co., Ltd. Seoul, Korea
| | - Ga-Lam Lim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Nyun Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Nesset CK, Kong XY, Damme M, Schjalm C, Roos N, Løberg EM, Eskild W. Age-dependent development of liver fibrosis in Glmp (gt/gt) mice. FIBROGENESIS & TISSUE REPAIR 2016; 9:5. [PMID: 27141234 PMCID: PMC4852418 DOI: 10.1186/s13069-016-0042-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
Background Mice lacking glycosylated lysosomal membrane protein (Glmpgt/gt mice) have liver fibrosis as the predominant phenotype due to chronic liver injury. The Glmpgt/gt mice grow and reproduce at the same rate as their wild-type siblings. Life expectancy is around 18 months. Methods Wild-type and Glmpgt/gt mice were studied between 1 week and 18 months of age. Livers were analyzed using histological, immunohistochemical, biochemical, and qPCR analyses. Results It was shown that Glmpgt/gt mice were not born with liver injury; however, it appeared shortly after birth as indicated by excess collagen expression, deposition of fibrous collagen in the periportal areas, and increased levels of hydroxyproline in Glmpgt/gt liver. Liver functional tests indicated a chronic, mild liver injury. Markers of inflammation, fibrosis, apoptosis, and modulation of extracellular matrix increased from an early age, peaking around 4 months of age and followed by attenuation of these signals. To compensate for loss of hepatocytes, the oval cell compartment was activated, with the highest activity of the oval cells detected at 3 months of age, suggesting insufficient hepatocyte proliferation in Glmpgt/gt mice around this age. Although constant proliferation of hepatocytes and oval cells maintained adequate hepatic function in Glmpgt/gt mice, it also resulted in a higher frequency of liver tumors in older animals. Conclusions The Glmpgt/gt mouse is proposed as a model for slowly progressing liver fibrosis and possibly as a model for a yet undescribed human lysosomal disorder. Electronic supplementary material The online version of this article (doi:10.1186/s13069-016-0042-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Xiang Yi Kong
- Department of Bioscience, University of Oslo, Oslo, Norway ; Research Institute for Internal Medicine, University of Oslo, Oslo, Norway ; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | | | - Norbert Roos
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Else Marit Løberg
- Department of Pathology, Oslo University Hospital Ullevaal, Oslo, Norway
| | - Winnie Eskild
- Department of Bioscience, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Tebbi A, Levillayer F, Jouvion G, Fiette L, Soubigou G, Varet H, Boudjadja N, Cairo S, Hashimoto K, Suzuki AM, Carninci P, Carissimo A, di Bernardo D, Wei Y. Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress. Carcinogenesis 2016; 37:39-48. [PMID: 26542370 PMCID: PMC4700935 DOI: 10.1093/carcin/bgv156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with several liver diseases. Knockout of Mdr2 results in hepatic inflammation, liver fibrosis and hepatocellular carcinoma (HCC). Whereas the pathogenesis in Mdr2 (-/-) mice has been largely attributed to the toxicity of bile acids due to the absence of PC in the bile, the question of whether Mdr2 deficiency per se perturbs biological functions in the cell has been poorly addressed. As Mdr2 is expressed in many cell types, we used mouse embryonic fibroblasts (MEF) derived from Mdr2 (-/-) embryos to show that deficiency of Mdr2 increases reactive oxygen species accumulation, lipid peroxidation and DNA damage. We found that Mdr2 (-/-) MEFs undergo spontaneous transformation and that Mdr2 (-/-) mice are more susceptible to chemical carcinogen-induced intestinal tumorigenesis. Microarray analysis in Mdr2-/- MEFs and cap analysis of gene expression in Mdr2 (-/-) HCCs revealed extensively deregulated genes involved in oxidation reduction, fatty acid metabolism and lipid biosynthesis. Our findings imply a close link between Mdr2 (-/-) -associated tumorigenesis and perturbation of these biological processes and suggest potential extrahepatic functions of Mdr2/MDR3.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA Damage
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Intestinal Neoplasms/metabolism
- Intestinal Neoplasms/pathology
- Lipid Peroxidation
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Oxidative Stress/physiology
- Reactive Oxygen Species/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Ali Tebbi
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Florence Levillayer
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | - Guillaume Soubigou
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
| | - Hugo Varet
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
| | - Nesrine Boudjadja
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | | | - Kosuke Hashimoto
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Ana Maria Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Yu Wei
- *To whom correspondence should be addressed. Tel: +33 145688866; Fax: +33 140613841;
| |
Collapse
|
36
|
Rozenblum N, Zeira E, Scaiewicz V, Bulvik B, Gourevitch S, Yotvat H, Galun E, Goldberg SN. Oncogenesis: An "Off-Target" Effect of Radiofrequency Ablation. Radiology 2015. [PMID: 26203709 DOI: 10.1148/radiol.2015141695] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare hepatocellular carcinoma (HCC) development after radiofrequency (RF) ablation, partial surgical hepatectomy, and a sham operation and to inhibit HCC recurrence after RF ablation in a mouse model of spontaneously forming HCC in the setting of chronic inflammation (ie, the MDR2 knockout model). MATERIALS AND METHODS Animal experiments were performed according to an approved animal care committee protocol. The authors compared the survival of MDR2 knockout mice (an inflammation-induced HCC model) that underwent RF ablation, 35% partial hepatectomy (ie, left lobectomy), or a sham operation (controls) by using Kaplan-Meier survival curve analysis. Tumor load and tumor frequency in mice that underwent sham operation were further compared with those of mice treated with RF ablation at 1 month after therapy by using a two-tailed Student t test. Liver slices from mice treated with RF ablation were stained for α-smooth muscle actin and Ki-67 to establish the role of liver regeneration in the tumorigenic effect of RF ablation. Finally, tumor load and tumor incidence were evaluated in mice treated with a c-met inhibitor after RF ablation by using the Mann-Whitney U test. RESULTS Ablation of 3.5% ± 0.02 of the MDR2 knockout mice liver induced increased tumor load (P = .007) and reduced survival (P = .03) in comparison to that of controls, with no significant difference to the 10-fold volume removal of partial hepatectomy. Seven days after RF treatment, the border zone of the coagulation zone was surrounded by α-smooth muscle actin-positive activated myofibroblasts. A significant elevation of hepatocyte proliferation was also seen 7 days after RF ablation in the distant liver (ablated lobe: P = .003; untreated lobe: P = .02). A c-met inhibitor significantly attenuated HCC development in MDR2 knockout mice treated with RF ablation (P = .001). CONCLUSION Liver regeneration induced by RF ablation facilitates c-met/hepatocyte growth factor axis-dependent HCC tumor formation after treatment in the MDR2 knockout model. Blockage of the c-met/hepatocyte growth factor axis attenuates HCC recurrence, raising the potential for therapeutic intervention to reverse this potentially deleterious tumorigenic effect.
Collapse
Affiliation(s)
- Nir Rozenblum
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - Evelyne Zeira
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - Viviana Scaiewicz
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - Baruch Bulvik
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - Svetlana Gourevitch
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - Hagit Yotvat
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - Eithan Galun
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| | - S Nahum Goldberg
- From the Goldyne Saved Institute for Gene Therapy (N.R., E.Z., B.B., S.G., H.Y., E.G., S.N.G.) and Department of Radiology (S.N.G.), Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel (V.S.); and Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (S.N.G.)
| |
Collapse
|
37
|
Kong XY, Kase ET, Herskedal A, Schjalm C, Damme M, Nesset CK, Thoresen GH, Rustan AC, Eskild W. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver. PLoS One 2015; 10:e0129402. [PMID: 26047317 PMCID: PMC4457871 DOI: 10.1371/journal.pone.0129402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/07/2015] [Indexed: 12/25/2022] Open
Abstract
Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1) has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmpgt/gt mice (formerly known as Ncu-g1gt/gtmice) were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmpgt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmpgt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmpgt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmpgt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmpgt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmpgt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmpgt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.
Collapse
Affiliation(s)
- Xiang Yi Kong
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | | | - G. Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Arild C. Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Winnie Eskild
- Department of Bioscience, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
38
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
39
|
Territo PR, Maluccio M, Riley AA, McCarthy BP, Fletcher J, Tann M, Saxena R, Skill NJ. Evaluation of 11C-acetate and 18F-FDG PET/CT in mouse multidrug resistance gene-2 deficient mouse model of hepatocellular carcinoma. BMC Med Imaging 2015; 15:15. [PMID: 25981587 PMCID: PMC4493966 DOI: 10.1186/s12880-015-0058-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a global health problem with unique diagnostic and therapeutic challenges, including difficulties in identifying the highest risk patients. Previous work from our lab has established the murine multidrug resistance-2 mouse (MDR2) model of HCC as a reasonable preclinical model that parallels the changes seen in human inflammatory associated HCC. The purpose of this study is to evaluate modalities of PET/CT in MDR2(-/-) mice in order to facilitate therapeutic translational studies from bench to bedside. METHODS 18F-FDG and 11C-acetate PET/CT was performed on 12 m MDR2(-/-) mice (n = 3/tracer) with HCC and 12 m MDR2(-/+) control mice (n = 3/tracer) without HCC. To compare PET/CT to biological markers of HCC and cellular function, serum alpha-fetoprotein (AFP), lysophosphatidic acid (LPA), cAMP and hepatic tumor necrosis factor α (TNFα) were quantified in 3-12 m MDR2(-/-) (n = 10) mice using commercially available ELISA analysis. To translate results in mice to patients 11C-acetate PET/CT was also performed in 8 patents suspected of HCC recurrence following treatment and currently on the liver transplant wait list. RESULTS Hepatic18F-FDG metabolism was not significantly increased in MDR2(-/-) mice. In contrast, hepatic 11C-acetate metabolism was significantly elevated in MDR2(-/-) mice when compared to MDR2(-/+) controls. Serum AFP and LPA levels increased in MDR2(-/-) mice contemporaneous with the emergence of HCC. This was accompanied by a significant decrease in serum cAMP levels and an increase in hepatic TNFα. In patients suspected of HCC recurrence there were 5 true positives, 2 true negatives and 1 suspected false 11C-acetate negative. CONCLUSIONS Hepatic 11C-acetate PET/CT tracks well with HCC in MDR2(-/-) mice and patients with underlying liver disease. Consequently 11C-acetate PET/CT is well suited to study (1) HCC emergence/progression in patients and (2) reduce animal numbers required to study new chemotherapeutics in murine models of HCC.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Mary Maluccio
- Department of Surgery, Indiana University School of Medicine, C519 Walthur Cancer Research Building (R3), 980 W Walnut Street, Indianapolis, IN, 46077, USA.
| | - Amanda A Riley
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Brian P McCarthy
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - James Fletcher
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Mark Tann
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Romil Saxena
- Department of Surgery, Radiology and Imaging Sciences, Indianapolis, IN, 46202, USA.
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, C519 Walthur Cancer Research Building (R3), 980 W Walnut Street, Indianapolis, IN, 46077, USA.
| |
Collapse
|
40
|
Stoyanov E, Ludwig G, Mizrahi L, Olam D, Schnitzer-Perlman T, Tasika E, Sass G, Tiegs G, Jiang Y, Nie T, Kohler J, Schinazi RF, Vertino PM, Cedar H, Galun E, Goldenberg D. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget 2015; 6:11047-60. [PMID: 25918251 PMCID: PMC4484438 DOI: 10.18632/oncotarget.3567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls. The observed hypermethylation resulted mainly from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2(-/-) liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2(-/-) livers affected either hepatocyte, or non-hepatocyte, or both fractions without a correlation between changes of gene methylation and expression. Our findings demonstrate that chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as useful markers of an increased regenerative activity and of a late precancerous stage in the chronically inflamed liver.
Collapse
Affiliation(s)
- Evgeniy Stoyanov
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Ludwig
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Lina Mizrahi
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Temima Schnitzer-Perlman
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elena Tasika
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Sass
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Jiang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ting Nie
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - James Kohler
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - Raymond F. Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - Paula M. Vertino
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel Goldenberg
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
41
|
Exploring the Molecular Mechanism and Biomakers of Liver Cancer Based on Gene Expression Microarray. Pathol Oncol Res 2015; 21:1077-83. [PMID: 25907256 PMCID: PMC4550637 DOI: 10.1007/s12253-015-9926-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/05/2015] [Indexed: 11/03/2022]
Abstract
Liver cancer is one of the most common cancers worldwide with high morbidity and mortality. Its molecular mechanism hasn’t been fully understood though many studies have been conducted and thus further researches are still needed to improve the prognosis of liver cancer. Firstly, differentially expressed genes (DEGs) between six Mdr2-knockout (Mdr2-KO) mutant mice samples (3-month-old and 12-month-old) and six control mice samples were identified. Then, the enriched GO terms and KEGG pathways of those DEGs were obtained using the Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/). Finally, protein-protein interactions (PPI) network of those DEGs were constructed using STRING database (http://www.string-db.org/) and visualized by Cytoscape software, at the same time, genes with high degree were selected out. Several novel biomarkers that might play important roles in liver cancer were identified through the analysis of gene microarray in GEO. Also, some genes such as Tyrobp, Ctss and pathways such as Pathways in cancer, ECM-receptor interaction that had been researched previously were further confirmed in this study. Through the bioinformatics analysis of the gene microarray in GEO, we found some novel biomarkers of liver cancer and further confirmed some known biomarkers.
Collapse
|
42
|
Yoshida S, Ikenaga N, Liu SB, Peng ZW, Chung J, Sverdlov DY, Miyamoto M, Kim YO, Ogawa S, Arch RH, Schuppan D, Popov Y. Extrahepatic platelet-derived growth factor-β, delivered by platelets, promotes activation of hepatic stellate cells and biliary fibrosis in mice. Gastroenterology 2014; 147:1378-92. [PMID: 25173753 DOI: 10.1053/j.gastro.2014.08.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Platelet-derived growth factor-β (PDGFB) is a mitogen for hepatic stellate cells (HSCs). We studied the cellular sources of PDGFB and the effects of a high-affinity monoclonal antibody against PDGFB (MOR8457) in mouse models of biliary fibrosis. METHODS Cellular sources of PDGFB were identified using quantitative reverse-transcription polymerase chain reaction, biochemical, and immunohistologic methods. Mice with advanced biliary fibrosis, MDR2(Abcb4)-null mice, and C57Bl/6 (control) mice were placed on 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-supplemented diets and were given weekly intraperitoneal injections of MOR8457. Platelets were depleted from MDR2-null mice by injection of an antibody against CD41, or inhibited with diets containing low-dose aspirin. Liver tissues were collected and analyzed by quantitative reverse-transcription PCR and histologic and biochemical analyses. RESULTS Levels of PDGFB protein, but not messenger RNA, were increased in fibrotic livers of MDR2-null mice, compared with control mice. Platelet clusters were detected in the hepatic endothelium, in close proximity to HSCs, and were identified as a source of PDGFB protein in MDR2-null mice. Levels of the PDGFB were increased in serum samples from patients with early stages of liver fibrosis of various etiologies (F1-2, n = 16; P < .05), compared with nonfibrotic liver tissue (F0, n = 12). Depletion of platelets from MDR2-null mice normalized hepatic levels of PDGFB within 48 hours, reducing levels of a marker of HSC activation (α-smooth muscle actin) and expression of genes that promote fibrosis. Diets supplemented with low-dose aspirin reduced circulating serum and hepatic levels of PDGFB and significantly reduced progression of fibrosis in MDR2-null mice over 1 year. MOR8457 produced a dose-dependent decrease in liver fibrosis in MDR2-null mice, reducing collagen deposition by 45% and expression of fibrosis-associated genes by 50%, compared with mice given a control antibody. In vitro, platelets activated freshly isolated HSCs (induction of α-smooth muscle actin and fibrosis-associated genes) via a PDGFB-dependent mechanism. MOR8457 also reduced liver fibrosis in mice placed on DDC-supplemented diets. CONCLUSIONS Platelets produce PDGFB to activate HSC and promote fibrosis in MDR2-null mice and mice on DDC-supplemented diets. Antiplatelet therapy or selective inhibition of PDGFB might reduce biliary fibrosis in patients with liver disease.
Collapse
Affiliation(s)
- Shuhei Yoshida
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Naoki Ikenaga
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Susan B Liu
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhen-Wei Peng
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jeanhee Chung
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Deanna Y Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Makoto Miyamoto
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yong Ook Kim
- Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | | | | | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Institute of Translational Immunology, University Medical Center, Mainz, Germany
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
43
|
Marhenke S, Buitrago-Molina LE, Endig J, Orlik J, Schweitzer N, Klett S, Longerich T, Geffers R, Sánchez Muñoz A, Dorrell C, Katz SF, Lechel A, Weng H, Krech T, Lehmann U, Dooley S, Rudolph KL, Manns MP, Vogel A. p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut 2014; 63:1501-12. [PMID: 24092862 DOI: 10.1136/gutjnl-2013-304829] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The cyclin-dependent kinase inhibitor p21 has been implicated as a tumour suppressor. Moreover, recent genetic studies suggest that p21 might be a potential therapeutic target to improve regeneration in chronic diseases. The aim of this study was to delineate the role of p21 in chronic liver injury and to specify its role in hepatocarcinogenesis in a mouse model of chronic cholestatic liver injury. METHODS The degree of liver injury, regeneration and tumour formation was assessed in Mdr2(-/-) mice and compared with Mdr2/ p21(-/-) mice. Moreover, the role of p21 was evaluated in hepatoma cells in vitro and in human hepatocellular carcinoma (HCC). RESULTS Mdr2(-/-) mice developed HCCs as a consequence of chronic inflammatory liver injury. In contrast, tumour development was profoundly delayed in Mdr2/ p21(-/-) mice. Delayed tumour development was accompanied by markedly impaired liver regeneration in Mdr2/ p21(-/-) mice. Moreover, the regenerative capacity of the Mdr2/ p21(-/-) livers in response to partial hepatectomy declined with age in these mice. Hepatocyte transplantation experiments revealed that impaired liver regeneration was due to intrinsic factors within the cells and changes in the Mdr2/ p21(-/-) microenvironment. In human HCCs, a subset of tumours expressed p21, which was associated with a significant shorter patient survival. CONCLUSIONS We provide experimental evidence that p21 is required for sustained liver regeneration and tumour development in chronic liver injury indicating that p21 needs to be tightly regulated in order to balance liver regeneration and cancer risk. Moreover, we identify p21 as a negative prognostic marker in human HCC.
Collapse
Affiliation(s)
- Silke Marhenke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Jessica Endig
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Johanna Orlik
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nora Schweitzer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephanie Klett
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aránzazu Sánchez Muñoz
- Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain
| | - Craig Dorrell
- Department of Genetics, Oregon Stem Cell Center, Oregon Health & Science University, Portland, USA
| | - Sarah-Fee Katz
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Honglei Weng
- Department of Medicine II, Molecular Hepatology-Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Till Krech
- Department of Pathology, Medical School Hannover, Hannover, Germany
| | - Ulrich Lehmann
- Department of Pathology, Medical School Hannover, Hannover, Germany
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology-Alcohol Associated Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Mamoon A, Subauste A, Subauste MC, Subauste J. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes. Gene 2014; 550:165-70. [PMID: 25014134 DOI: 10.1016/j.gene.2014.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/22/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver.
Collapse
Affiliation(s)
- Abulkhair Mamoon
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Angela Subauste
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Maria C Subauste
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jose Subauste
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
45
|
Fickert P, Pollheimer MJ, Beuers U, Lackner C, Hirschfield G, Housset C, Keitel V, Schramm C, Marschall HU, Karlsen TH, Melum E, Kaser A, Eksteen B, Strazzabosco M, Manns M, Trauner M. Characterization of animal models for primary sclerosing cholangitis (PSC). J Hepatol 2014; 60:1290-303. [PMID: 24560657 PMCID: PMC4517670 DOI: 10.1016/j.jhep.2014.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/01/2014] [Accepted: 02/08/2014] [Indexed: 01/17/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholangiopathy characterized by biliary fibrosis, development of cholestasis and end stage liver disease, high risk of malignancy, and frequent need for liver transplantation. The poor understanding of its pathogenesis is also reflected in the lack of effective medical treatment. Well-characterized animal models are utterly needed to develop novel pathogenetic concepts and study new treatment strategies. Currently there is no consensus on how to evaluate and characterize potential PSC models, which makes direct comparison of experimental results and effective exchange of study material between research groups difficult. The International Primary Sclerosing Cholangitis Study Group (IPSCSG) has therefore summarized these key issues in a position paper proposing standard requirements for the study of animal models of PSC.
Collapse
Affiliation(s)
- Peter Fickert
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria; Institute of Pathology, Medical University of Graz, Austria.
| | - Marion J. Pollheimer
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Austria,Institute of Pathology, Medical University of Graz, Austria
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | - Gideon Hirschfield
- Centre for Liver Research, Institute of Biomedical Research, School of Immunity and Infection, University of Birmingham, UK
| | - Chantal Housset
- UPMC Univ Paris 06 & INSERM, UMR-S 938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| | - Verena Keitel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Düsseldorf Germany
| | | | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, The Sahlgrenska Academy, Sweden
| | - Tom H. Karlsen
- Division of Gastroenterology and Hepatology, Department of Medicine, Rikshospitalet, Oslo, Norway,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway,Division of Gastroenterology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Espen Melum
- Division of Gastroenterology and Hepatology, Department of Medicine, Rikshospitalet, Oslo, Norway,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway,Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooek's Hospital, UK
| | - Bertus Eksteen
- Centre for Liver Research, MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, and The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham, UK
| | - Mario Strazzabosco
- Section of Gastroenterology, University of Milan-Bicocca, Milan, Italy,Liver Center, Yale University School of Medicine, United States
| | - Michael Manns
- Division of Gastroenterology, Hepatology and Endocrinology, Medical University Hannover, Germany
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria.
| | | |
Collapse
|
46
|
Pusterla T, Nèmeth J, Stein I, Wiechert L, Knigin D, Marhenke S, Longerich T, Kumar V, Arnold B, Vogel A, Bierhaus A, Pikarsky E, Hess J, Angel P. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology 2013; 58:363-73. [PMID: 23504974 DOI: 10.1002/hep.26395] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 03/12/2013] [Accepted: 03/21/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor and member of the immunoglobulin superfamily. RAGE is mainly involved in tissue damage and chronic inflammatory disorders, sustaining the inflammatory response upon engagement with damage-associated molecular pattern molecules (DAMPs) such as S100 proteins and high-mobility group box 1 (HMGB1). Enhanced expression of RAGE and its ligands has been demonstrated in distinct tumors and several studies support its crucial role in tumor progression and metastasis by still unknown mechanisms. Here we show that RAGE supports hepatocellular carcinoma (HCC) formation in the Mdr2(-/-) mouse model, a prototype model of inflammation-driven HCC formation, which mimics the human pathology. Mdr2(-/-) Rage(-/-) (dKO) mice developed smaller and fewer HCCs than Mdr2(-/-) mice. Interestingly, although in preneoplastic Mdr2(-/-) livers RAGE ablation did not affect the onset of inflammation, premalignant dKO livers showed reduced liver damage and fibrosis, in association with decreased oval cell activation. Oval cells expressed high RAGE levels and displayed reduced proliferation upon RAGE silencing. Moreover, stimulation of oval cells with HMGB1 promoted an ERK1/2-Cyclin D1-dependent oval cell proliferation in vitro. Finally, genetic and pharmacologic blockade of RAGE signaling impaired oval cell activation in an independent mouse model of oval cell activation, the choline deficient ethionine-supplemented dietary regime. CONCLUSION Our data identified a novel function of RAGE in regulating oval cell activation and tumor development in inflammation-associated liver carcinogenesis.
Collapse
Affiliation(s)
- Tobias Pusterla
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Potikha T, Stoyanov E, Pappo O, Frolov A, Mizrahi L, Olam D, Shnitzer-Perlman T, Weiss I, Barashi N, Peled A, Sass G, Tiegs G, Poirier F, Rabinovich GA, Galun E, Goldenberg D. Interstrain differences in chronic hepatitis and tumor development in a murine model of inflammation-mediated hepatocarcinogenesis. Hepatology 2013; 58:192-204. [PMID: 23423643 DOI: 10.1002/hep.26335] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/10/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Chronic inflammation is strongly associated with an increased risk for hepatocellular carcinoma (HCC) development. The multidrug resistance 2 (Mdr2)-knockout (KO) mouse (adenosine triphosphate-binding cassette b4(-/-) ), a model of inflammation-mediated HCC, develops chronic cholestatic hepatitis at an early age and HCC at an adult age. To delineate factors contributing to hepatocarcinogenesis, we compared the severity of early chronic hepatitis and late HCC development in two Mdr2-KO strains: Friend virus B-type/N (FVB) and C57 black 6 (B6). We demonstrated that hepatocarcinogenesis was significantly less efficient in the Mdr2-KO/B6 mice versus the Mdr2-KO/FVB mice; this difference was more prominent in males. Chronic hepatitis in the Mdr2-KO/B6 males was more severe at 1 month of age but was less severe at 3 months of age in comparison with age-matched Mdr2-KO/FVB males. A comparative genome-scale gene expression analysis of male livers of both strains at 3 months of age revealed both common and strain-specific aberrantly expressed genes, including genes associated with the regulation of inflammation, the response to oxidative stress, and lipid metabolism. One of these regulators, galectin-1 (Gal-1), possesses both anti-inflammatory and protumorigenic activities. To study its regulatory role in the liver, we transferred the Gal-1-KO mutation (lectin galactoside-binding soluble 1(-/-) ) from the B6 strain to the FVB strain, and we demonstrated that endogenous Gal-1 protected the liver against concanavalin A-induced hepatitis with the B6 genetic background but not the FVB genetic background. CONCLUSION Decreased chronic hepatitis in Mdr2-KO/B6 mice at the age of 3 months correlated with a significant retardation of liver tumor development in this strain versus the Mdr2-KO/FVB strain. We found candidate factors that may determine strain-specific differences in the course of chronic hepatitis and HCC development in the Mdr2-KO model, including inefficient anti-inflammatory activity of the endogenous lectin Gal-1 in the FVB strain.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Concanavalin A
- Galectin 1/physiology
- Hepatitis, Chronic/complications
- Hepatitis, Chronic/etiology
- Hepatitis, Chronic/pathology
- Liver/metabolism
- Liver Neoplasms/etiology
- Liver Neoplasms/pathology
- Male
- Methionine Adenosyltransferase/biosynthesis
- Mice
- Mice, Inbred Strains/genetics
- Mice, Knockout
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Tamara Potikha
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene 2013; 33:2836-45. [PMID: 23792447 DOI: 10.1038/onc.2013.243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 04/25/2013] [Indexed: 12/13/2022]
Abstract
High malignancy and early metastasis are the hallmarks of hepatocellular carcinoma (HCC). Here, we report that Cezanne2 expression is downregulated in HCC cells and in HCC patients' tumorous tissues and that Cezanne2 is inversely associated with Snail1 expression in HCC patients' tumorous tissues. Chromatin immunoprecipitation assays and the reporter gene assay showed that Snail1 binds to the promoter of the Cezanne2 gene and mediates the direct consequence of Cezanne2 repression. Enhanced expression of Cezanne2 could suppress proliferation, migration and invasion in HCC cells. Further, Cezanne2 could regulate MMP (matrix metalloproteinase)2, MMP9 and ICAM1 (intercellular adhesion molecule) levels through modulation of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cell) signaling cascade. Co-immunoprecipitation and in vivo deubiquitination assay indicated that Cezanne2 interacts with TNF receptor-associated factor (TRAF)6 and cleaves the polyubiquitin from TRAF6 substrates. Our data reveal that Snail1-mediated suppression of Cezanne2 may have a key role in HCC malignancy.
Collapse
|
49
|
Rhomboid domain-containing protein 3 is a negative regulator of TLR3-triggered natural killer cell activation. Proc Natl Acad Sci U S A 2013; 110:7814-9. [PMID: 23610400 DOI: 10.1073/pnas.1220466110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rhomboid domain-containing protein 3 (Rhbdd3), which belongs to a family of proteins with rhomboid domain, is widely expressed in immune cells; however, the roles of the Rhbdd members, including Rhbdd3, in immunity remain unknown. Natural killer (NK) cells are critical for host immune defense and also can mediate inflammatory diseases such as hepatitis. Although much is known about how NK cells are activated, the detailed mechanisms for negative regulation of NK cell activation remain to be fully understood. Using Rhbdd3-deficient mice, we reveal that Rhbdd3, selectively up-regulated in NK cells upon Toll-like receptor 3 (TLR3) stimulation, negatively regulates TLR3-mediated NK cell activation in a feedback manner. Rhbdd3 inhibits TLR3-triggered IFN-γ and granzyme B expression of NK cells in cell-cell contact dependence of accessory cells such as dendritic cells and Kupffer cells. Rhbdd3 interacts with DNAX activation protein of 12 kDa and promotes its degradation, inhibiting MAPK activation in TLR3-triggered NK cells. Furthermore, Rhbdd3 plays a critical role in attenuating TLR3-triggered acute inflammation by controlling NK cell activation and accumulation in liver and disrupting NK cell-Kupffer cell interaction. Therefore, Rhbdd3 is a feedback inhibitor of TLR3-triggered NK cell activation. Our study outlines a mechanism for the negative regulation of NK cell activation and also provides clues for the function of the rhomboid proteins in immunity.
Collapse
|
50
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.
Collapse
|