1
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Giulio RD, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607951. [PMID: 39185187 PMCID: PMC11343184 DOI: 10.1101/2024.08.14.607951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant and growing public health problem. Frequent, high dose exposures are likely to increase due to a warming climate and increased frequency of large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1A (CYP1A) gene in a population of wild Fundulus heteroclitus that has adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating that blunted induction is a non-genetic memory of prior exposure. To explore this possibility, we bred depurated wild fish from PAH-sensitive and - tolerant populations, manually fertilized exposure-naïve embryos, and challenged them with PAH. We observed epigenetic control of the reversible memory of generational PAH stress in F1 PAH-tolerant embryos. Specifically, we observed a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. Also, PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff and recovery to baseline. Since CYP1A expression is inversely correlated with cancer risk, these results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University
- Current address: Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | | | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University
| | | | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| |
Collapse
|
2
|
Baker JR, Gilbert J, O’Brien NS, Russell CC, McCluskey A, Sakoff JA. Next-generation of BBQ analogues that selectively target breast cancer. Front Chem 2024; 12:1396105. [PMID: 38974991 PMCID: PMC11224556 DOI: 10.3389/fchem.2024.1396105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
We previously reported on the interaction of 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ) with the Aryl hydrocarbon Receptor (AhR) and selective growth inhibition in breast cancer cell lines. We now report on a library of BBQ analogues with substituents on the phenyl and naphthyl rings for biological screening. Herein, we show that absence of the phenyl Cl of 10-Cl-BBQ to produce the simple BBQ molecule substantially enhanced the growth inhibitory effect with GI50 values of 0.001-2.1 μM in select breast cancer cell lines MCF-7, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, BT474 cells, while having modest effects of 2.1-7 μM in other cell lines including HT29, U87, SJ-G2, A2780, DU145, BE2-C, MIA, MDA-MB-231 or normal breast cells, MCF10A (3.2 μM). The most potent growth inhibitory effect of BBQ was observed in the triple negative cell line, MDA-MB-468 with a GI50 value of 0.001 μM, presenting a 3,200-fold greater response than in the normal MCF10A breast cells. Additions of Cl, CH3, CN to the phenyl ring and ring expansion from benzoimidazole to dihydroquinazoline hindered the growth inhibitory potency of the BBQ analogues by blocking potential sites of CYP1 oxidative metabolism, while addition of Cl or NO2 to the naphthyl rings restored potency. In a cell-based reporter assay all analogues induced 1.2 to 10-fold AhR transcription activation. Gene expression analysis confirmed the induction of CYP1 oxygenases by BBQ. The CYP1 inhibitor α-naphthoflavone, and the SULT1A1 inhibitor quercetin significantly reduced the growth inhibitory effect of BBQ, confirming the importance of both phase I and II metabolic activation for growth inhibition. Conventional molecular modelling/docking revealed no significant differences between the binding poses of the most and least active analogues. More detailed DFT analysis at the DSD-PBEP86/Def-TZVPP level of theory could not identify significant geometric or electronic changes which would account for this varied AhR activation. Generation of Fukui functions at the same level of theory showed that CYP1 metabolism will primarily occur at the phenyl head group of the analogues, and substituents within this ring lead to lower cytotoxicity.
Collapse
Affiliation(s)
- Jennifer R. Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Nicholas S. O’Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A. Sakoff
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| |
Collapse
|
3
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
4
|
Shi L, Shen W, Davis MI, Kong K, Vu P, Saha SK, Adil R, Kreuzer J, Egan R, Lee TD, Greninger P, Shrimp JH, Zhao W, Wei TY, Zhou M, Eccleston J, Sussman J, Manocha U, Weerasekara V, Kondo H, Vijay V, Wu MJ, Kearney SE, Ho J, McClanaghan J, Murchie E, Crowther GS, Patnaik S, Boxer MB, Shen M, Ting DT, Kim WY, Stanger BZ, Deshpande V, Ferrone CR, Benes CH, Haas W, Hall MD, Bardeesy N. SULT1A1-dependent sulfonation of alkylators is a lineage-dependent vulnerability of liver cancers. NATURE CANCER 2023; 4:365-381. [PMID: 36914816 PMCID: PMC11090616 DOI: 10.1038/s43018-023-00523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.
Collapse
Affiliation(s)
- Lei Shi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - William Shen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ke Kong
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Phuong Vu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Supriya K Saha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ramzi Adil
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Regina Egan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tobie D Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ting-Yu Wei
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason Eccleston
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Sussman
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vajira Weerasekara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Hiroshi Kondo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Vindhya Vijay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Meng-Ju Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Sara E Kearney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jeffrey Ho
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Joseph McClanaghan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ellen Murchie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giovanna S Crowther
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Deshpande
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Cancer Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Singh RD, Avadhesh A, Sharma G, Dholariya S, Shah RB, Goyal B, Gupta SC. Potential of cytochrome P450, a family of xenobiotic metabolizing enzymes, in cancer therapy. Antioxid Redox Signal 2022; 38:853-876. [PMID: 36242099 DOI: 10.1089/ars.2022.0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Targeted cancer therapy with minimal off-target consequences has shown promise for some cancer types. Although cytochrome P450 (CYP) consists of 18 families, CYP1-4 families play key role in metabolizing xenobiotics and cancer drugs. This eventually affects the process of carcinogenesis, treatment outcome, and cancer drug resistance. Differential overexpression of CYPs in transformed cells, together with phenotypic alterations in tumors, presents a potential for therapeutic intervention. RECENT ADVANCES Recent advances in molecular tools and information technology have helped utilize CYPs as cancer targets. The precise expression in various tumors, X-ray crystal structures, improved understanding of the structure-activity relationship, and new approaches in the development of prodrugs have supported the ongoing efforts to develop CYPs-based drugs with a better therapeutic index. CRITICAL ISSUES Narrow therapeutic index, off-target effects, drug resistance, and tumor heterogeneity limit the benefits of CYP-based conventional cancer therapies. In this review, we address the CYP1-4 families as druggable targets in cancer. An emphasis is given to the CYP expression, function, and the possible mechanisms that drive expression and activity in normal and transformed tissues. The strategies that inhibit or activate CYPs for therapeutic benefits are also discussed. FUTURE DIRECTIONS Efforts are needed to develop more selective tools that will help comprehend molecular and metabolic alterations in tumor tissues with biological end-points in relation to CYPs. This will eventually translate to developing more specific CYP inhibitors/inducers.
Collapse
Affiliation(s)
- Ragini D Singh
- AIIMS Rajkot, 618032, Biochemistry, Rajkot, Gujarat, India;
| | - Avadhesh Avadhesh
- Institute of Science, Banaras Hindu University, Biochemistry, Varanasi, Uttar Pradesh, India;
| | - Gaurav Sharma
- AIIMS Rajkot, 618032, Physiology, Rajkot, Gujarat, India;
| | | | - Rima B Shah
- AIIMS Rajkot, 618032, Pharmacology, Rajkot, Gujarat, India;
| | - Bela Goyal
- AIIMS Rishikesh, 442339, Biochemistry, Rishikesh, Uttarakhand, India;
| | - Subash Chandra Gupta
- Institute of Science, Banaras Hindu University, Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 221005;
| |
Collapse
|
6
|
A novel naphthalimide that selectively targets breast cancer via the arylhydrocarbon receptor pathway. Sci Rep 2020; 10:13978. [PMID: 32814815 PMCID: PMC7438328 DOI: 10.1038/s41598-020-70597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
We report that the naphthalimide analogue 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NAP-6) is a highly potent and selective breast cancer targeting molecule. These effects are mediated via the aryl hydrocarbon receptor (AHR) pathway and the subsequent induction of CYP1 metabolising monooxygenases in breast cancer cell line models. Indeed the triple negative breast cancer cell line MDA-MB-468 with a GI50 value of 100 nM is greater than 500-fold more sensitive to NAP-6 compared with other tumour derived cell models. Within 1 h exposure of these cells to NAP-6, CYP1A1 expression increases 25-fold, rising to 250-fold by 24 h. A smaller concurrent increase in CYP1A2 and CYP1B1 is also observed. Within 24 h these cells present with DNA damage as evident by enhanced H2AXγ expression, cell cycle checkpoint activation via increased CHK2 expression, S-phase cell cycle arrest and cell death. Specific small molecule inhibitors of the AHR and CYP1 family ameliorate these events. A positive luciferase reporter assay for NAP-6 induced XRE binding further confirms the role of the AHR in this phenomenon. Non-sensitive cell lines fail to show these biological effects. For the first time we identify 2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione as a new AHR ligand that selectively targets breast cancer.
Collapse
|
7
|
Singh M, Zhou X, Chen X, Santos GS, Peuget S, Cheng Q, Rihani A, Arnér ESJ, Hartman J, Selivanova G. Identification and targeting of selective vulnerability rendered by tamoxifen resistance. Breast Cancer Res 2020; 22:80. [PMID: 32727562 PMCID: PMC7388523 DOI: 10.1186/s13058-020-01315-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.
Collapse
Affiliation(s)
- Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Xiaolei Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden
| | - Gema Sanz Santos
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ali Rihani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden.
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
8
|
Baker JR, Russell CC, Gilbert J, Sakoff JA, McCluskey A. Amino Alcohol Acrylonitriles as Activators of the Aryl Hydrocarbon Receptor Pathway: An Unexpected MTT Phenotypic Screening Outcome. ChemMedChem 2020; 15:490-505. [PMID: 32012442 DOI: 10.1002/cmdc.201900643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Lead (Z)-N-(4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl)acetamide, 1 showed MCF-7 GI50 =30 nM and 400-fold selective c.f. MCF10A (normal breast tissue). Acetamide moiety modification (13 a-g) to introduce additional hydrophobicity was favoured with MCF-7 breast cancer cell activity enhanced at 1.3 nM. Other analogues were potent against the HT29 colon cancer cell line at 23 nM. Textbook SAR data was observed in the MCF-7 cell line, in an MTT assay, via the ortho (17 a), meta (17 b) and para (13 f). The amino alcohol -OH moiety was pivotal, but no stereochemical preference noted. But, these data did not fit our homology modelling expectations. Aberrant MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) screening results and metabolic interference confirmed by sulforhodamine B (SRB) screening. Interfering analogues resulted in 120 and 80-fold CYP1A1 and CYP1A2 amplification, with no upregulation of SULT1A1. This is consistent with activation of the AhR pathway. Piperidine per-deuteration reduced metabolic inactivation. 3-OH / 4-OH piperidine analogues showed differential MTT and SRB activity supporting MTT assay metabolic inactivation. Data supports piperidine 3-OH, but not the 4-OH, as a CYP substrate. This family of β-amino alcohol substituted 3,4-dichlorophenylacetonitriles show broad activity modulated via the AhR pathway. By SRB analysis the most potent analogue was 23 b, (Z)-3-(4-(3-(4-phenylpiperidin-1-yl)-2-hydroxypropoxy)phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile.
Collapse
Affiliation(s)
- Jennifer R Baker
- Department of Chemistry, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
| | - Cecilia C Russell
- Department of Chemistry, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group Department of Medical Oncology, Calvary Mater Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group Department of Medical Oncology, Calvary Mater Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Adam McCluskey
- Department of Chemistry, The University of Newcastle University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
9
|
Baker JR, Sakoff JA, McCluskey A. The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev 2019; 40:972-1001. [PMID: 31721255 DOI: 10.1002/med.21645] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common cancer in women, with more than 1.7 million diagnoses worldwide per annum. Metastatic breast cancer remains incurable, and the presence of triple-negative phenotypes makes targeted treatment impossible. The aryl hydrocarbon receptor (AhR), most commonly associated with the metabolism of xenobiotic ligands, has emerged as a promising biological target for the treatment of this deadly disease. Ligands for the AhR can be classed as exogenous or endogenous and may have agonistic or antagonistic activity. It has been well reported that agonistic ligands may have potent and selective growth inhibition activity in a number of oncogenic cell lines, and one (aminoflavone) has progressed to phase I clinical trials for breast cancer sufferers. In this study, we examine the current state of the literature in this area and elucidate the promising advances that are being made in hijacking the cytosolic-to-nuclear pathway of the AhR for the possible future treatment of breast cancer.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A Sakoff
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, the University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
10
|
Peyser BD, Hermone A, Salamoun JM, Burnett JC, Hollingshead MG, McGrath CF, Gussio R, Wipf P. Specific RITA Modification Produces Hyperselective Cytotoxicity While Maintaining In Vivo Antitumor Efficacy. Mol Cancer Ther 2019; 18:1765-1774. [PMID: 31341033 PMCID: PMC6774898 DOI: 10.1158/1535-7163.mct-19-0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023]
Abstract
The preclinical antitumor agent RITA (2,5-bis[5-hydroxymethyl-2-thienyl] furan, NSC 652287), an analog of the natural product α-terthiophene, failed during the development phase due to acute pulmonary toxicity in animal models. A series of synthetic modifications to RITA's heterocyclic scaffold resulted in activity ranging from broadly cytotoxic to highly selective. In the NCI 60-cell line screen, these "hyperselective" agents (e.g., imatinib) are rare. A selectivity index (SI) was developed to quantify this desirable feature, which is 20 for imatinib, whereas RITA's SI is only 0.10. One of the described hyperselective RITA analogs (SI = 7.9) completely lost activity in the presence of a known SULT1A1 inhibitor. These results, coupled with previous evidence that RITA is a SULT1A1 substrate, suggest that carbinol modification by a sulfate leaving group and subsequent formation of a reactive carbocation may explain RITA's broad cytotoxicity. Although SULT1A1 expression is required for susceptibility, hyperselective analogs exhibited reduced association of activity with SULT1A1 mRNA expression compared with RITA, apparently requiring some additional target(s). In support of this hypothesis, there is a strong correlation (P < 0.01, r = 0.95) between quantum mechanically calculated energy barriers for carbocation formation from sulfonated analogs and SI, indicating that hyperselective RITA analogs generate reactive carbocations less readily after sulfate activation. Importantly, narrowing the cytotoxicity profile of RITA did not eliminate its analogs' in vivo antitumor activity, as several new hyperselective agents, NSC 773097 (1), 773392 (2), and 782846 (6), displayed impressive activity against A498 xenografts in mice.
Collapse
Affiliation(s)
- Brian D Peyser
- Computational Drug Development Group, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland.
| | - Ann Hermone
- Computational Drug Development Group, Developmental Therapeutics Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James C Burnett
- Computational Drug Development Group, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Connor F McGrath
- Computational Drug Development Group, Developmental Therapeutics Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rick Gussio
- Computational Drug Development Group, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Bianchi-Smiraglia A, Bagati A, Fink EE, Affronti HC, Lipchick BC, Moparthy S, Long MD, Rosario SR, Lightman SM, Moparthy K, Wolff DW, Yun DH, Han Z, Polechetti A, Roll MV, Gitlin II, Leonova KI, Rowsam AM, Kandel ES, Gudkov AV, Bergsagel PL, Lee KP, Smiraglia DJ, Nikiforov MA. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest 2018; 128:4682-4696. [PMID: 30198908 PMCID: PMC6159960 DOI: 10.1172/jci70712] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.
Collapse
Affiliation(s)
| | | | | | - Hayley C. Affronti
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Brittany C. Lipchick
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sudha Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark D. Long
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer R. Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Shivana M. Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kalyana Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Wolff
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Zhannan Han
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew V. Roll
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Aryn M. Rowsam
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | - Kelvin P. Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mikhail A. Nikiforov
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
12
|
Gilbert J, De Iuliis GN, Tarleton M, McCluskey A, Sakoff JA. ( Z)-2-(3,4-Dichlorophenyl)-3-(1 H-Pyrrol-2-yl)Acrylonitrile Exhibits Selective Antitumor Activity in Breast Cancer Cell Lines via the Aryl Hydrocarbon Receptor Pathway. Mol Pharmacol 2017; 93:168-177. [PMID: 29269419 DOI: 10.1124/mol.117.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
Abstract
We have previously reported the synthesis and breast cancer selectivity of (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile (ANI-7) in cancer cell lines. To further evaluate the selectivity of ANI-7, we have expanded upon the initial cell line panel to now include the breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, MDA-MB-231); normal breast cells (MCF-10A); and cell lines derived from colon (HT29), ovarian (A2780), lung (H460), skin (A431), neuronal (BE2C), glial (U87, SJG2), and pancreatic (MIA) cancers. We now show that ANI-7 is up to 263-fold more potent at inhibiting the growth of breast cancer cell lines (MCF7, MCF7/VP16, BT474, T47D, ZR-75-1, SKBR3, MDA-MB-468) than normal breast cells (MCF-10A) or cell lines derived from other tumor types. Measures of growth inhibition, cell cycle analysis, morphologic assessment, Western blotting, receptor binding, gene expression, small interfering RNA technology, reporter activity, and enzyme inhibition assays were exploited to define the mechanism of action of ANI-7. In this work, we report that ANI-7 mediates its effects via the activation of the aryl hydrocarbon receptor (AhR) pathway and the subsequent induction of CYP1-metabolizing mono-oxygenases. The metabolic conversion of ANI-7 induces DNA damage, checkpoint activation, S-phase cell cycle arrest, and cell death in sensitive breast cancer cell lines. Basal expression of AhR, the AhR nuclear translocator, and the CYP1 family members do not predict for sensitivity; however, inherent expression of the phase II-metabolizing enzyme sulfur transferase 1A1 does. For the first time, we identify (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile as a new AhR ligand.
Collapse
Affiliation(s)
- Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Tarleton
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| | - Jennette A Sakoff
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia (J.G., J.A.S.); and Priority Research Centre for Reproductive Science, Faculty of Science (G.N.D.I.), and Chemistry, School of Environmental and Life Sciences, Faculty of Science (M.T., A.M., J.A.S.), University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
13
|
Meng S, Liu G, Su L, Sun L, Wu D, Wang L, Zheng Z. Functional clusters analysis and research based on differential coexpression networks. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1358669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Shuai Meng
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Lingtao Su
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Liyan Sun
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Di Wu
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Lingwei Wang
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| | - Zhao Zheng
- College of Computer Science and Technology, Jilin University, Changchun, PR China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, PR China
| |
Collapse
|
14
|
Mameri H, Bièche I, Meseure D, Marangoni E, Buhagiar-Labarchède G, Nicolas A, Vacher S, Onclercq-Delic R, Rajapakse V, Varma S, Reinhold WC, Pommier Y, Amor-Guéret M. Cytidine Deaminase Deficiency Reveals New Therapeutic Opportunities against Cancer. Clin Cancer Res 2016; 23:2116-2126. [PMID: 27601591 DOI: 10.1158/1078-0432.ccr-16-0626] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/25/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022]
Abstract
Purpose: One of the main challenges in cancer therapy is the identification of molecular mechanisms mediating resistance or sensitivity to treatment. Cytidine deaminase (CDA) was reported to be downregulated in cells derived from patients with Bloom syndrome, a genetic disease associated with a strong predisposition to a wide range of cancers. The purpose of this study was to determine whether CDA deficiency could be associated with tumors from the general population and could constitute a predictive marker of susceptibility to antitumor drugs.Experimental Design: We analyzed CDA expression in silico, in large datasets for cancer cell lines and tumors and in various cancer cell lines and primary tumor tissues using IHC, PDXs, qRT-PCR, and Western blotting. We also studied the mechanism underlying CDA silencing and searched for molecules that might target specifically CDA-deficient tumor cells using in silico analysis coupled to classical cellular experimental approaches.Results: We found that CDA expression is downregulated in about 60% of cancer cells and tissues. We demonstrate that DNA methylation is a prevalent mechanism of CDA silencing in tumors. Finally, we show that CDA-deficient tumor cells can be specifically targeted with epigenetic treatments and with the anticancer drug aminoflavone.Conclusions: CDA expression status identifies new subgroups of cancers, and CDA deficiency appears to be a novel and relevant predictive marker of susceptibility to antitumor drugs, opening up new possibilities for treating cancer. Clin Cancer Res; 23(8); 2116-26. ©2016 AACR.
Collapse
Affiliation(s)
- Hamza Mameri
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Ivan Bièche
- Institut Curie, Genetic Department, 26, rue d'Ulm, 75005 Paris, France
| | - Didier Meseure
- Institut Curie, Platform of Investigative Pathology, 26, rue d'Ulm, 75005 Paris, France
| | - Elisabetta Marangoni
- Institut Curie, PSL Research University, Translational Research Department, 26, rue d'Ulm, 75005 Paris, France
| | - Géraldine Buhagiar-Labarchède
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - André Nicolas
- Institut Curie, Platform of Investigative Pathology, 26, rue d'Ulm, 75005 Paris, France.,Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Sophie Vacher
- Institut Curie, Genetic Department, 26, rue d'Ulm, 75005 Paris, France
| | - Rosine Onclercq-Delic
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS UMR 3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Vinodh Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Sudhir Varma
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - William C Reinhold
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France. .,CNRS UMR 3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| |
Collapse
|
15
|
Covey JM, Reid JM, Buhrow SA, Kuffel M, Walden C, Behrsing H, Ames MM. Comparative Metabolism of Batracylin (NSC 320846) and N-acetylbatracylin (NSC 611001) Using Human, Dog, and Rat Preparations In Vitro. ACTA ACUST UNITED AC 2016; 7. [PMID: 27441096 DOI: 10.4172/2157-7609.1000203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Batracylin is a heterocyclic arylamine topoisomerase inhibitor with preclinical anticancer activity. Marked species differences in sensitivity to the toxicity of batracylin were observed and attributed to differential formation of N-acetylbatracylin by N-acetyltransferase. A Phase I trial of batracylin in cancer patients with slow acetylator genotypes identified a dose-limiting toxicity of hemorrhagic cystitis. To further explore the metabolism of batracylin and N-acetylbatracylin across species, detailed studies using human, rat, and dog liver microsomal and hepatocyte preparations were conducted. METHODS Batracylin or N-acetylbatracylin was incubated with microsomes and hepatocytes from human, rat, and dog liver and with CYP-expressing human and rat microsomes. Substrates and metabolites were analyzed by HPLC with diode array, fluorescence, radiochemical, or mass spectrometric detection. Covalent binding of radiolabeled batracylin and N-acetylbatracylin to protein and DNA was measured in 3-methylcholanthrene-induced rat, human, and dog liver microsomes, and with recombinant human cytochromes P450. RESULTS In microsomal preparations, loss of batracylin was accompanied by formation of one hydroxylated metabolite in human liver microsomes and five hydroxylated metabolites in rat liver microsomes. Six mono- or di-hydroxy-N-acetylbatracylin metabolites were found in incubations of this compound with 3MC rat liver microsomes. Hydroxylation sites were identified for some of the metabolites using deuterated substrates. Incubation with recombinant cytochromes P450 identified rCYP1A1, rCYP1A2, hCYP1A1 and hCYP1B1 as the major CYP isoforms that metabolize batracylin and N-acetylbatracylin. Glucuronide conjugates of batracylin were also identified in hepatocyte incubations. NADPH-dependent covalent binding to protein and DNA was detected in all batracylin and most N-acetylbatracylin preparations evaluated. CONCLUSIONS Microsomal metabolism of batracylin and N-acetylbatracylin results in multiple hydroxylated products (including possible hydroxylamines) and glutathione conjugates. Incubation of batracylin with hepatocytes resulted in production primarily of glucuronides and other conjugates. There was no clear distinction in the metabolism of batracylin and N-acetylbatracylin across species that would explain the differential toxicity.
Collapse
Affiliation(s)
- Joseph M Covey
- Toxicology and Pharmacology Branch, Developmental Therapeutics Program, DCTD, NCI, Rockville, USA
| | - Joel M Reid
- Department of Oncology, Division of Oncology Research, Mayo Clinic and Foundation Rochester, MN, USA
| | - Sarah A Buhrow
- Department of Oncology, Division of Oncology Research, Mayo Clinic and Foundation Rochester, MN, USA
| | - Mary Kuffel
- Department of Oncology, Division of Oncology Research, Mayo Clinic and Foundation Rochester, MN, USA
| | - Chad Walden
- Department of Oncology, Division of Oncology Research, Mayo Clinic and Foundation Rochester, MN, USA
| | - Holger Behrsing
- Laboratory for Investigative Toxicology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, USA; Institute for In Vitro Sciences, 30 West Watkins Mill Road, Gaithersburg, USA
| | - Matthew M Ames
- Department of Oncology, Division of Oncology Research, Mayo Clinic and Foundation Rochester, MN, USA
| |
Collapse
|
16
|
Huang X, Cao M, Wang L, Wu S, Liu X, Li H, Zhang H, Wang RY, Sun X, Wei C, Baggerly KA, Roth JA, Wang M, Swisher SG, Fang B. Expression of sulfotransferase SULT1A1 in cancer cells predicts susceptibility to the novel anticancer agent NSC-743380. Oncotarget 2016; 6:345-54. [PMID: 25514600 PMCID: PMC4381599 DOI: 10.18632/oncotarget.2814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022] Open
Abstract
The small molecule anticancer agent NSC-743380 modulates functions of multiple cancer-related pathways and is highly active in a subset of cancer cell lines in the NCI-60 cell line panel. It also has promising in vivo anticancer activity. However, the mechanisms underlying NSC-743380's selective anticancer activity remain uncharacterized. To determine biomarkers that may be used to identify responders to this novel anticancer agent, we performed correlation analysis on NSC-743380's anticancer activity and the gene expression levels in NCI-60 cell lines and characterized the functions of the top associated genes in NSC-743380–mediated anticancer activity. We found sulfotransferase SULT1A1 is causally associated with NSC-743380's anticancer activity. SULT1A1 was expressed in NSC-743380–sensitive cell lines but was undetectable in resistant cancer cells. Ectopic expression of SULT1A1 in NSC743380 resistant cancer cells dramatically sensitized the resistant cells to NSC-743380. Knockdown of the SULT1A1 in the NSC-743380 sensitive cancer cell line rendered it resistance to NSC-743380. The SULT1A1 protein levels in cell lysates from 18 leukemia cell lines reliably predicted the susceptibility of the cell lines to NSC-743380. Thus, expression of SULT1A1 in cancer cells is required for NSC-743380's anticancer activity and can be used as a biomarker for identification of NSC-743380 responders.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mengru Cao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. The Fourth Department of Medicine Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoying Liu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongyu Li
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rui-Yu Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caimiao Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keith A Baggerly
- Department of Bioinformatics and Computation Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Wang
- Department of Lymphoma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Rothman D, Gao X, George E, Rasmusson T, Bhatia D, Alimov I, Wang L, Kamel A, Hatsis P, Feng Y, Tutter A, Michaud G, McDonald E, Venkatesan K, Farley D, Digan M, Ni Y, Harbinski F, Gunduz M, Wilson C, Buckler A, Labow M, Tallarico J, Myer V, Porter J, Wang S. Metabolic Enzyme Sulfotransferase 1A1 Is the Trigger for N-Benzyl Indole Carbinol Tumor Growth Suppression. ACTA ACUST UNITED AC 2015; 22:1228-37. [DOI: 10.1016/j.chembiol.2015.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
|
18
|
McLean LS, Watkins CN, Campbell P, Zylstra D, Rowland L, Amis LH, Scott L, Babb CE, Livingston WJ, Darwanto A, Davis WL, Senthil M, Sowers LC, Brantley E. Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells. Chem Res Toxicol 2015; 28:855-71. [PMID: 25781201 DOI: 10.1021/tx500485v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lawrence C Sowers
- ⊥Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | | |
Collapse
|
19
|
Fukasawa K, Kagaya S, Maruyama S, Kuroiwa S, Masuda K, Kameyama Y, Satoh Y, Akatsu Y, Tomura A, Nishikawa K, Horie S, Ichikawa YI. A novel compound, NK150460, exhibits selective antitumor activity against breast cancer cell lines through activation of aryl hydrocarbon receptor. Mol Cancer Ther 2014; 14:343-54. [PMID: 25522763 DOI: 10.1158/1535-7163.mct-14-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiestrogen agents are commonly used to treat patients with estrogen receptor (ER)-positive breast cancer. Tamoxifen has been the mainstay of endocrine treatment for patients with early and advanced breast cancer for many years. Following tamoxifen treatment failure, however, there are still limited options for subsequent hormonal therapy. We discovered a novel compound, NK150460, that inhibits 17β-estradiol (E2)-dependent transcription without affecting binding of E2 to ER. Against our expectations, NK150460 inhibited growth of not only most ER-positive, but also some ER-negative breast cancer cell lines, while never inhibiting growth of non-breast cancer cell lines. Cell-based screening using a random shRNA library, identified aryl hydrocarbon receptor nuclear translocator (ARNT) as a key gene involved in NK150460's antitumor mechanism. siRNAs against not only ARNT but also its counterpart aryl hydrocarbon receptor (AhR) and their target protein, CYP1A1, dramatically abrogated NK150460's growth-inhibitory activity. This suggests that the molecular cascade of AhR/ARNT plays an essential role in NK150460's antitumor mechanism. Expression of ERα was decreased by NK150460 treatment, and this was inhibited by an AhR antagonist. Unlike two other AhR agonists now undergoing clinical developmental stage, NK150460 did not induce histone H2AX phosphorylation or p53 expression, suggesting that it did not induce a DNA damage response in treated cells. Cell lines expressing epithelial markers were more sensitive to NK150460 than mesenchymal marker-expressing cells. These data indicate that NK150460 is a novel AhR agonist with selective antitumor activity against breast cancer cell lines, and its features differ from those of the other two AhR agonists.
Collapse
Affiliation(s)
- Kazuteru Fukasawa
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan. Department of Urology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan.
| | - Shigehide Kagaya
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Sakiko Maruyama
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Shunsuke Kuroiwa
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Kuniko Masuda
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Yoshio Kameyama
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Yoshitaka Satoh
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Yuichi Akatsu
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Arihiro Tomura
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Kiyohiro Nishikawa
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yuh-ichiro Ichikawa
- Pharmaceutical Research Laboratories, Research and Development Group, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo, Japan
| |
Collapse
|
20
|
Weng H, Huang H, Dong B, Zhao P, Zhou H, Qu L. Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S. Cancer Res 2014; 74:4409-19. [PMID: 24872388 DOI: 10.1158/0008-5472.can-13-1748] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cell chemoresistance arises in part through the acquisition of apoptotic resistance. Leukemia cells resistant to chemotherapy-induced apoptosis have been found to be sensitive to oridonin, a natural agent with potent anticancer activity. To investigate its mechanisms of action in reversing chemoresistance, we compared the response of human leukemia cells with oridonin and the antileukemia drugs Ara-C and VP-16. Compared with HL60 cells, K562 and K562/ADR cells displayed resistance to apoptosis stimulated by Ara-C and VP-16 but sensitivity to oridonin. Mechanistic investigations revealed that oridonin upregulated BIM-S by diminishing the expression of miR-17 and miR-20a, leading to mitochondria-dependent apoptosis. In contrast, neither Ara-C nor VP-16 could reduce miR-17 and miR-20a expression or could trigger BIM-S-mediated apoptosis. Notably, silencing miR-17 or miR-20a expression by treatment with microRNA (miRNA; miR) inhibitors or oridonin restored sensitivity of K562 cells to VP-16. Synergistic effects of oridonin and VP-16 were documented in cultured cells as well as mouse tumor xenograft assays. Inhibiting miR-17 or miR-20a also augmented the proapoptotic activity of oridonin. Taken together, our results identify a miRNA-dependent mechanism underlying the anticancer effect of oridonin and provide a rationale for its combination with chemotherapy drugs in addressing chemoresistant leukemia cells.
Collapse
Affiliation(s)
- Hengyou Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Huilin Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Bowen Dong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Panpan Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Lianghu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
21
|
Brinkman AM, Wu J, Ersland K, Xu W. Estrogen receptor α and aryl hydrocarbon receptor independent growth inhibitory effects of aminoflavone in breast cancer cells. BMC Cancer 2014; 14:344. [PMID: 24885022 PMCID: PMC4037283 DOI: 10.1186/1471-2407-14-344] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/23/2014] [Indexed: 11/13/2022] Open
Abstract
Background Numerous studies have implicated the aryl hydrocarbon receptor (AhR) as a potential therapeutic target for several human diseases, including estrogen receptor alpha (ERα) positive breast cancer. Aminoflavone (AF), an activator of AhR signaling, is currently undergoing clinical evaluation for the treatment of solid tumors. Of particular interest is the potential treatment of triple negative breast cancers (TNBC), which are typically more aggressive and characterized by poorer outcomes. Here, we examined AF’s effects on two TNBC cell lines and the role of AhR signaling in AF sensitivity in these model cell lines. Methods AF sensitivity in MDA-MB-468 and Cal51 was examined using cell counting assays to determine growth inhibition (GI50) values. Luciferase assays and qPCR of AhR target genes cytochrome P450 (CYP) 1A1 and 1B1 were used to confirm AF-mediated AhR signaling. The requirement of endogenous levels of AhR and AhR signaling for AF sensitivity was examined in MDA-MB-468 and Cal51 cells stably harboring inducible shRNA for AhR. The mechanism of AF-mediated growth inhibition was explored using flow cytometry for markers of DNA damage and apoptosis, cell cycle analysis, and β-galactosidase staining for senescence. Luciferase data was analyzed using Student’s T test. Three-parameter nonlinear regression was performed for cell counting assays. Results Here, we report that ERα-negative TNBC cell lines MDA-MB-468 and Cal51 are sensitive to AF. Further, we presented evidence suggesting that neither endogenous AhR expression levels nor downstream induction of AhR target genes CYP1A1 and CYP1B1 is required for AF-mediated growth inhibition in these cells. Between these two ERα negative cell lines, we showed that the mechanism of AF action differs slightly. Low dose AF mediated DNA damage, S-phase arrest and apoptosis in MDA-MB-468 cells, while it resulted in DNA damage, S-phase arrest and cellular senescence in Cal51 cells. Conclusions Overall, this work provides evidence against the simplified view of AF sensitivity, and suggests that AF could mediate growth inhibitory effects in ERα-positive and negative breast cancer cells, as well as cells with impaired AhR expression and signaling. While AF could have therapeutic effects on broader subtypes of breast cancer, the mechanism of cytotoxicity is complex, and likely, cell line- and tumor-specific.
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- Molecular and Environmental Toxicology Center, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One 2013; 8:e74525. [PMID: 24058584 PMCID: PMC3772827 DOI: 10.1371/journal.pone.0074525] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/05/2013] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. METHODS In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. RESULTS Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. CONCLUSION The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.
Collapse
|
23
|
Nandekar PP, Sangamwar AT. Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings. Expert Opin Drug Discov 2012; 7:771-89. [PMID: 22716293 DOI: 10.1517/17460441.2012.698260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Target-specific drugs may offer fewer side/adverse effects in comparison with other anticancer agents and thus save normal healthy cells to a greater extent. The selective overexpression of cytochrome P450 1A1 (CYP1A1) in tumor cells induces the metabolism of benzothiazole and aminoflavone compounds to their reactive species, which are responsible for DNA adduct formation and cell death. This review encompasses the novelty of CYP1A1 as an anticancer drug target and explores the possible in silico strategies that would be applicable in the discovery and development of future antitumor compounds. AREAS COVERED This review highlights the various ligand-based and target-based in silico methodologies that were efficiently used in exploration of CYP1A1 as a novel antitumor target. These methodologies include electronic structure analysis, CoMFA studies, homology modeling, molecular docking, molecular dynamics analysis, pharmacophore mapping and quantitative structure activity relationship (QSAR) studies. It also focuses on the various approaches used in the development of the lysyl amide prodrug of 5F-203 (NSC710305) and dimethanesulfonate salt of 5-aminoflavone (NSC710464) as clinical candidates from their less potent analogues. EXPERT OPINION Selective overexpression of CYP1A1 in cancer cells offers tumor-specific drug design to ameliorate the current adverse effects associated with existing antitumor agents. Medicinal chemistry and in vitro driven approaches, in combination with knowledge-based drug design and by using the currently available tools of in silico methodologies, would certainly make it possible to design and develop novel anticancer compounds targeting CYP1A1.
Collapse
Affiliation(s)
- Prajwal P Nandekar
- National Institute of Pharmaceutical Education and Research (NIPER), Department of Pharmacoinformatics, S.A.S. Nagar (Mohali), Punjab-160062, India
| | | |
Collapse
|
24
|
|
25
|
Touil YS, Auzeil N, Boulinguez F, Saighi H, Regazzetti A, Scherman D, Chabot GG. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. Biochem Pharmacol 2011; 82:1731-9. [PMID: 21840301 DOI: 10.1016/j.bcp.2011.07.097] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 12/21/2022]
Abstract
Although the natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has been recently identified as an anticancer agent with antiangiogenic properties in mice, its in vivo pharmacokinetics and metabolism are presently not characterized. Our purpose was to determine the pharmacokinetics and metabolism of fisetin in mice and determine the biological activity of a detected fisetin metabolite. After fisetin administration of an efficacious dose of 223 mg/kg i.p. in mice, the maximum fisetin concentration reached 2.5 μg/ml at 15 min and the plasma concentration declined biphasically with a rapid half-life of 0.09 h and a terminal half-life of 3.1h. Three metabolites were detected, one of which was a glucuronide of fisetin (M1), whereas another glucuronide (M2) was a glucuronide of a previously unknown fisetin metabolite (M3). HPLC-MS/MS analysis indicated that M3 was a methoxylated metabolite of fisetin (MW=300 Da). The UV spectrum of M3 was identical to that of fisetin and standard 3,4',7-trihydroxy-3'-methoxyflavone (geraldol). In addition, because M3 co-eluted with standard geraldol in 4 different chromatographic ternary gradient conditions, M3 was therefore assigned to geraldol. Of interest, this metabolite was shown to achieve higher concentrations than fisetin in Lewis lung tumors. We also compared the cytotoxic and antiangiogenic activities of fisetin and geraldol in vitro and it was found that the latter was more cytotoxic than the parent compound toward tumor cells, and that it could also inhibit endothelial cells migration and proliferation. In conclusion, these results suggest that fisetin metabolism plays an important role in its in vivo anticancer activities.
Collapse
Affiliation(s)
- Yasmine S Touil
- Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Institut National de Santé et de Recherche Médicale (Inserm U1022), Centre National de Recherche Scientifique (CNRS UMR8151), Chimie ParisTech, Laboratoire de pharmacologie chimique, génétique & imagerie, Paris F-75006, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, Ziche M, Melillo G. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res 2010; 70:6837-48. [PMID: 20736373 DOI: 10.1158/0008-5472.can-10-1075] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1beta/AhR, which is shared with HIF-1alpha, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacologic activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1alpha transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1alpha by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1alpha expression in Ah(R100) cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1alpha in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1alpha mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to downregulate HIF-1alpha mRNA, indicating that active transcription was required for the inhibition of HIF-1alpha expression. Finally, AF inhibited HIF-1alpha protein accumulation and the expression of HIF-1 target genes in MCF-7 xenografts. These results show that AF inhibits HIF-1alpha in an AhR-independent fashion, and they unveil additional activities of AF that may be relevant for its further clinical development.
Collapse
|
27
|
Patterson AD, Gonzalez FJ, Idle JR. Xenobiotic metabolism: a view through the metabolometer. Chem Res Toxicol 2010; 23:851-60. [PMID: 20232918 DOI: 10.1021/tx100020p] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of advanced ultraperformance liquid chromatography coupled with mass spectrometry, chemometrics, and genetically modified mice provide an attractive raft of technologies with which to examine the metabolism of xenobiotics. Here, a reexamination of the metabolism of the food mutagen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), the suspect carcinogen areca alkaloids (arecoline, arecaidine, and arecoline 1-oxide), the hormone supplement melatonin, and the metabolism of the experimental cancer therapeutic agent aminoflavone is presented. In all cases, the metabolic maps of the xenobiotics were considerably enlarged, providing new insights into their toxicology. The inclusion of transgenic mice permitted unequivocal attribution of individual and often novel metabolic pathways to particular enzymes. Last, a future perspective for xenobiotic metabolomics is discussed and its impact on the metabolome is described. The studies reviewed here are not specific to the mouse and can be adapted to study xenobiotic metabolism in any animal species, including humans. The view through the metabolometer is unique and visualizes a metabolic space that contains both established and unknown metabolites of a xenobiotic, thereby enhancing knowledge of their modes of toxic action.
Collapse
Affiliation(s)
- Andrew D Patterson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
28
|
Zheng Q, Sha X, Liu J, Heath E, Lorusso P, Li J. Association of human cytochrome P450 1A1 (CYP1A1) and sulfotransferase 1A1 (SULT1A1) polymorphisms with differential metabolism and cytotoxicity of aminoflavone. Mol Cancer Ther 2010; 9:2803-13. [PMID: 20713530 DOI: 10.1158/1535-7163.mct-10-0597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoflavone (AF), a clinically investigational novel anticancer agent, requires sequential metabolic activation by CYP1A1 and SULT1A1 to exert its antitumor activities. The purpose of this study was to determine the functional significance of common polymorphisms of human CYP1A1 and SULT1A1 on the metabolism and cytotoxicity of AF. To this end, Chinese Hamster V79 cells were genetically engineered to stably express human CYP1A1*1 (wild-type), CYP1A1*2C (I462V), or CYP1A1*4 (T461N) and coexpress human CYP1A1*1 with human SULT1A1*1 (wild-type), SULT1A1*2 (R213H), or SULT1A1*3 (M223V). The metabolism and cytotoxicity of AF were evaluated in these cellular models. All common variants of CYP1A1 and SULT1A1 were actively involved in the metabolic activation of AF, but with a varying degree of activity. Whereas CYP1A1 I462V variant exhibited a superior activity (mainly caused by a significantly higher V(max)) for hydroxylations of AF, expression of different CYP1A1 variants did not confer cell differential sensitivity to AF. The cells coexpressing CYP1A1*1 with SULT1A1*1, SULT1A1*2, or SULT1A1*3 displayed SULT1A1 allele-specific sensitivity to AF: SULT1A1*3 exhibited the highest sensitivity (IC(50), 0.01 μmol/L), followed by SULT1A1*1 (IC(50), 0.5 μmol/L), and SULT1A1*2 showed the lowest sensitivity (IC(50), 4.4 μmol/L). These data suggest that the presence of low-activity SULT1A1*2 may predict poor response to AF, whereas the presence of high-activity CYP1A1/SULT1A1 alleles, especially combination of CYP1A1*2C and SULT1A1*3 or SULT1A1*1, may be beneficial to patients receiving AF. The present study provides a foundation for future clinical investigations of potential genetic biomarkers that may enable selection of patients for the greatest potential benefit from AF treatment.
Collapse
Affiliation(s)
- Qiang Zheng
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
29
|
Flavonoids in Cancer Prevention and Therapy: Chemistry, Pharmacology, Mechanisms of Action, and Perspectives for Cancer Drug Discovery. ALTERNATIVE AND COMPLEMENTARY THERAPIES FOR CANCER 2010. [PMCID: PMC7120123 DOI: 10.1007/978-1-4419-0020-3_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Among the numerous products available from plants, the flavonoid superfamily plays a central role by its large number of molecules (over 6000) and also by the role these products occupy in the normal physiology of plants. Flavonoids are secondary plant metabolites involved in several biological processes (e.g., germination, UV protection, insecticides) and are also involved in the attraction of pollinating agents via the vivid colors of the anthocyanin pigments found in flowers (e.g., blue, purple, yellow, orange, and red) [1–3]. Flavonoids are found in the normal human diet composed of green vegetables, onions, fruits (apples, grapes, strawberries, etc.), beverages (coffee, tea, beer, red wine) [4, 5], and isoflavonoids are mainly found in soya bean-derived products [6].
Collapse
|
30
|
Chen G, Yang N, Wang X, Zheng SY, Chen Y, Tong LJ, Li YX, Meng LH, Ding J. Identification of p27/KIP1 expression level as a candidate biomarker of response to rapalogs therapy in human cancer. J Mol Med (Berl) 2010; 88:941-52. [DOI: 10.1007/s00109-010-0635-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/26/2010] [Accepted: 05/05/2010] [Indexed: 01/05/2023]
|
31
|
Lu JJ, Meng LH, Shankavaram UT, Zhu CH, Tong LJ, Chen G, Lin LP, Weinstein JN, Ding J. Dihydroartemisinin accelerates c-MYC oncoprotein degradation and induces apoptosis in c-MYC-overexpressing tumor cells. Biochem Pharmacol 2010; 80:22-30. [PMID: 20206143 DOI: 10.1016/j.bcp.2010.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
Artemisinin and its derivatives (ARTs) are effective antimalarial drugs and also possess profound anticancer activity. However, the mechanism accounted for its distinctive activity in tumor cells remains unelucidated. We computed Pair wise Pearson correlation coefficients to identify genes that show significant correlation with ARTs activity in NCI-55 cell lines using data obtained from studies with HG-U133A Affymetrix chip. We found c-myc is one of the genes that showed the highest positive correlation coefficients among the probe sets analyzed (r=0.585, P<0.001). Dihydroartemisinin (DHA), the main active metabolite of ARTs, induced significant apoptosis in HL-60 and HCT116 cells that express high levels of c-MYC. Stable knockdown of c-myc abrogated DHA-induced apoptosis in HCT116 cells. Conversely, forced expression of c-myc in NIH3T3 cells sensitized these cells to DHA-induced apoptosis. Interestingly, DHA irreversibly down-regulated the protein level of c-MYC in DHA-sensitive HCT116 cells, which is consistent to persistent G1 phase arrest induced by DHA. Further studies demonstrated that DHA accelerated the degradation of c-MYC protein and this process was blocked by pretreatment with the proteasome inhibitor MG-132 or GSK 3beta inhibitor LiCl in HCT116 cells. Taken together, ARTs might be useful in the treatment of c-MYC-overexpressing tumors. We also suggest that c-MYC may potentially be a biomarker candidate for prediction of the antitumor efficacies of ARTs.
Collapse
Affiliation(s)
- Jin-Jian Lu
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Rd., Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Synergistic interactions between aminoflavone, paclitaxel and camptothecin in human breast cancer cells. Cancer Chemother Pharmacol 2009; 66:575-83. [PMID: 20012292 DOI: 10.1007/s00280-009-1198-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Aminoflavone is a unique DNA damaging agent currently undergoing phase I evaluation in a prodrug form (AFP464). In anticipation of combination regimens, interactions between aminoflavone and several anticancer drugs were investigated in MCF-7 breast cancer cells to determine whether synergistic cancer cell killing effects were observed. METHODS Colony formation assays were performed to assess the effect of combining aminoflavone with a variety of anticancer drugs. Changes in initial uptake, retention or efflux of aminoflavone and the second agent were compared to the behavior of drugs alone. Key features required for aminoflavone activity in cell culture models were also explored, focusing on the obligatory induction of CYP1A1/1A2 and binding of reactive aminoflavone metabolites to tumor cell total macromolecules and DNA. RESULTS Aminoflavone was synergistic when co-incubated with paclitaxel, camptothecin or SN38. Uptake of neither aminoflavone nor any of the other three compounds was altered in combination incubations. Paclitaxel did not inhibit DNA binding of aminoflavone metabolites, while camptothecin did. Aminoflavone-induced CYP1A1 induction was observed in the presence of camptothecin or paclitaxel. CONCLUSIONS Aminoflavone is a promising therapeutic agent for breast cancer due to its unique mechanism of action compared to commonly used drugs. Combined treatments utilizing aminoflavone in conjunction with paclitaxel or camptothecin may provide an even greater cytotoxic effect than achieved with aminoflavone alone.
Collapse
|
33
|
Bradshaw TD, Bell DR. Relevance of the aryl hydrocarbon receptor (AhR) for clinical toxicology. Clin Toxicol (Phila) 2009; 47:632-42. [PMID: 19640236 DOI: 10.1080/15563650903140423] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The aryl hydrocarbon receptor (AhR) is a cellular signaling molecule infamous for mediating the toxicity of dioxins and related compounds. AIM The aim of this review is to provide a background of AhR and to examine critically its role in chemical toxicity, in physiological systems, and its interaction with drugs and other compounds. TOXICITY The AhR is essential for the toxicity of dioxins and related chemicals. The AhR mediates the exquisite sensitivity of animals to dioxins, where as little as 2 ng/kg/day can yield striking adverse effects. PHYSIOLOGICAL ROLE OF AHR: The wide variety of adverse effects of dioxin argues for an important role of the AhR in a variety of physiological systems. Recent investigations have highlighted the role of AhR in the development of the brain and vasculature. DRUGS AND OTHER CHEMICAL ACTIVATORS OF AHR: The development of AhR agonists during drug development programs is sometimes inadvertent, but sometimes the target of development, and is yet further confirmation of the likely importance of AhR signaling in constitutive physiology. The presence of AhR agonists in the diet such as indolo-(3,2-b)-carbazole and 3,3'-diindolylmethane (metabolized from indole 3-carbinol), flavonoids, and sulforaphane and of endogenous activators of this signaling system such as eicosanoids, indirubin, bilirubin, cAMP, and tryptophan are suggestive that AhR activation is a normal physiological process and that it is the persistent and high-level stimulation of AhR by dioxins that is responsible for toxicity. CONCLUSIONS AhR-mediated toxicity and physiology are highly relevant to clinical toxicology and drug development.
Collapse
|
34
|
Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, Reinhold WC, Pommier Y, Weinstein JN. CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics 2009; 10:277. [PMID: 19549304 PMCID: PMC2709662 DOI: 10.1186/1471-2164-10-277] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 06/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Advances in the high-throughput omic technologies have made it possible to profile cells in a large number of ways at the DNA, RNA, protein, chromosomal, functional, and pharmacological levels. A persistent problem is that some classes of molecular data are labeled with gene identifiers, others with transcript or protein identifiers, and still others with chromosomal locations. What has lagged behind is the ability to integrate the resulting data to uncover complex relationships and patterns. Those issues are reflected in full form by molecular profile data on the panel of 60 diverse human cancer cell lines (the NCI-60) used since 1990 by the U.S. National Cancer Institute to screen compounds for anticancer activity. To our knowledge, CellMiner is the first online database resource for integration of the diverse molecular types of NCI-60 and related meta data. Description CellMiner enables scientists to perform advanced querying of molecular information on NCI-60 (and additional types) through a single web interface. CellMiner is a freely available tool that organizes and stores raw and normalized data that represent multiple types of molecular characterizations at the DNA, RNA, protein, and pharmacological levels. Annotations for each project, along with associated metadata on the samples and datasets, are stored in a MySQL database and linked to the molecular profile data. Data can be queried and downloaded along with comprehensive information on experimental and analytic methods for each data set. A Data Intersection tool allows selection of a list of genes (proteins) in common between two or more data sets and outputs the data for those genes (proteins) in the respective sets. In addition to its role as an integrative resource for the NCI-60, the CellMiner package also serves as a shell for incorporation of molecular profile data on other cell or tissue sample types. Conclusion CellMiner is a relational database tool for storing, querying, integrating, and downloading molecular profile data on the NCI-60 and other cancer cell types. More broadly, it provides a template to use in providing such functionality for other molecular profile data generated by academic institutions, public projects, or the private sector. CellMiner is available online at .
Collapse
Affiliation(s)
- Uma T Shankavaram
- Genomics & Bioinformatics Group, Laboratory of Molecular Pharmacology, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 2009; 9:187. [PMID: 19531241 PMCID: PMC2703651 DOI: 10.1186/1471-2407-9-187] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/16/2009] [Indexed: 02/08/2023] Open
Abstract
CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Department of Medicine, Division of Forensic Sciences and Toxicology, University of Crete, Crete, Greece.
| | | | | |
Collapse
|
36
|
Wiegand R, Wu J, Sha X, LoRusso P, Heath E, Li J. Validation and implementation of a liquid chromatography/tandem mass spectrometry assay to quantitate aminoflavone (NSC 686288) in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:1460-4. [PMID: 19349217 DOI: 10.1016/j.jchromb.2009.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/18/2022]
Abstract
A reverse-phase liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) method was developed and validated for determination of aminoflavone (AF) in human plasma. Sample preparation involved a liquid-liquid extraction by the addition of 0.25 mL of plasma with 1.0 mL ethyl acetate containing 50 ng/mL of the internal standard zileuton. The analytes were separated on a Waters X-Terra MS C(18) column using a mobile phase consisting of methanol/water containing 0.45% formic acid (70:30, v/v) and isocratic flow at 0.2 mL/min for 6 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the AF concentration range of 5-2000 ng/mL in human plasma. The lower limit of quantitation (LLOQ) was 5 ng/mL for AF in human plasma. The accuracy and within- and between-day precisions were within the generally accepted criteria for bioanalytical method (<15%). This method was successfully applied to characterize AF plasma concentration-time profile in the cancer patients in a phase I trial.
Collapse
Affiliation(s)
- Richard Wiegand
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
37
|
McLean L, Soto U, Agama K, Francis J, Jimenez R, Pommier Y, Sowers L, Brantley E. Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer 2008; 122:1665-74. [PMID: 18059023 DOI: 10.1002/ijc.23244] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aminoflavone (5-amino-2-(4-amino-3-fluorophenyl)-6,8-difluoro-7-methylchromen-4-one; AF; NSC 686288), a novel anticancer candidate agent, is undergoing clinical evaluation. AF induces DNA-protein cross-links (DPCs), Gamma-H2AX phosphorylation, aryl hydrocarbon receptor (AhR) signaling, apoptosis and its own metabolism via cytochrome P4501A1 and 1A2 (CYP1A1/1A2) activation in sensitive estrogen receptor positive (ER+) MCF7 breast cancer cells. Estrogen receptor negative (ER-) breast cancer is typically more aggressive with a poorer prognosis. In this investigation, we evaluated the ability of AF to induce reactive oxygen species (ROS) formation, oxidative DNA damage and apoptosis in ER- MDA-MB-468 breast cancer cells. The antioxidant, N-acetyl-L-cysteine (NAC), attenuated the cytotoxic effects of AF in MDA-MB-468 cells; an effect is also observed in ER+ T47D breast cancer cells. Nonmalignant MCF10A breast epithelial cells were resistant to the cytotoxic effects of AF. AF increased intracellular ROS, an effect blocked by NAC and the CYP1A1/1A2 inhibitor, alpha-Naphthoflavone (alpha-NF). AF induced oxidative DNA damage as evidenced by increased 8-oxo-7,8-dihydroguanine (8-oxodG) levels and DPC formation in these cells. AF caused S-phase arrest corresponding to an increase in p21((waf1/cip1)) protein expression. AF induced caspase 3, 8 and 9 activation, caspase-dependent apoptotic body formation and poly [ADP-ribose] polymerase (PARP) cleavage. Pretreatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-DL-Asp(OMe)-fluoromethylketone inhibited apoptosis and partially inhibited ROS formation and oxidative DNA damage. Pretreatment with NAC attenuated AF-induced apoptotic body formation and caspase 3 activation. These studies suggest AF inhibits the growth of breast cancer cells in part, by inducing ROS production, oxidative DNA damage and apoptosis and has the potential to treat hormone-independent breast cancer.
Collapse
Affiliation(s)
- Lancelot McLean
- Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Meng LH, Meng Z, Miao ZH, Veenstra TD, Pommier Y. Cytokeratin-RNA Cross-Linking Mediated by the Antitumor Aminoflavone, 5-Amino-2,3-fluorophenyl-6,8-difluoro-7-methyl-4H-1-benzopyran-4-one. J Pharmacol Exp Ther 2008; 325:674-80. [DOI: 10.1124/jpet.108.137802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Bruno RD, Njar VC. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg Med Chem 2007; 15:5047-60. [PMID: 17544277 PMCID: PMC1958998 DOI: 10.1016/j.bmc.2007.05.046] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 11/25/2022]
Abstract
Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e., inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of vitamin D(3) and vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer.
Collapse
Affiliation(s)
- Robert D. Bruno
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, U.S.A
| | - Vincent C.O. Njar
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, U.S.A
- The University of Maryland Marlene and Stewart Greenebaum Cancer Center, School of Medicine, Baltimore, MD 21201-1559, U.S.A
| |
Collapse
|
40
|
Pham MH, Auzeil N, Regazzetti A, Dauzonne D, Dugay A, Menet MC, Scherman D, Chabot GG. Identification of New Flavone-8-Acetic Acid Metabolites Using Mouse Microsomes and Comparison with Human Microsomes. Drug Metab Dispos 2007; 35:2023-34. [PMID: 17664249 DOI: 10.1124/dmd.107.017012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flavone-8-acetic acid (FAA) is a potent anticancer agent in mouse but has not shown activity in humans. Because FAA metabolism could play a role in this interspecies difference, our aim was to identify the metabolites formed in vitro using mouse microsomes compared with those in human microsomes. Mouse microsomes produced six metabolites as detected by reversed-phase high-performance liquid chromatography-mass spectrometry (MS). Three metabolites were identified as the 3'-, 4'-, or 6-hydroxy-FAA, by comparison with retention times and UV and MS spectra of standards. Two metabolites presented a molecular weight of 296 (FAA = 280) indicating the presence of one oxygen but did not correspond to any monohydroxylated FAA derivative. These two metabolites were identified as epoxides because they were sensitive to epoxide hydrolase. The position of the oxygen was determined by the formation of the corresponding phenols under soft acidic conditions: one epoxide yielded the 3'- and 4'-hydroxy-FAA, thus corresponding to the 3',4'-epoxy-FAA, whereas the other epoxide yielded 5- and 6-hydroxy-FAA, thus identifying the 5,6-epoxy-FAA. The last metabolite was assigned to the 3',4'-dihydrodiol-FAA because of its molecular weight (314) and sulfuric acid dehydration that indicated that the 3'- and 4'-positions were involved. Compared with mouse microsomes, human microsomes (2 pools and 15 individual microsomes) were unable to metabolize FAA to a significant extent. In conclusion, we have identified six new FAA metabolites formed by mouse microsomes, whereas human microsomes could not metabolize this flavonoid to a significant extent. The biological importance of the new metabolites identified herein remains to be evaluated.
Collapse
Affiliation(s)
- Minh Hien Pham
- Institut National de la Santé et de la Recherche Médicale U640, Centre National de la Recherche Scientifique UMR8151, Université Paris Descartes, Faculté de Pharmacie, Laboratoire de Pharmacologie Chimique et Génétique, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Meng LH, Kohn KW, Pommier Y. Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288). Oncogene 2007; 26:4806-16. [PMID: 17297446 DOI: 10.1038/sj.onc.1210283] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aminoflavone (AF, NSC 686,288) is beginning clinical trials. It induces replication-mediated histone H2AX phosphorylation, DNA-protein crosslinks and activates p53. Here, we studied p21(CIP1/WAF1) and Mdm2 responses to AF. Although p53 stabilization and phosphorylation at serine 15 increased with dose and time of exposure, Mdm2 and p21(CIP1/WAF1) protein levels displayed a biphasic response, as they accumulated at submicromolar doses and then decreased with increasing AF. As both Mdm2 and p21(CIP1/WAF1) mRNA levels increased with AF concentration without reduction at higher concentrations, we measured the half-lives of Mdm2 and p21(CIP1/WAF1) proteins. Mdm2 and p21(CIP1/WAF1) half-lives were shortened with increasing AF concentrations. Proteasomal degradation appears responsible for the decrease of both Mdm2 and p21(CIP1/WAF1), as MG-132 prevented their degradation and revealed AF-induced Mdm2 polyubiquitylation. AF also induced protein kinase B (Akt) activation, which was reduced with increasing AF concentrations. Suppression of Akt by small interfering RNA was associated with downregulation of Mdm2 and p21(CIP1/WAF1) and with enhanced apoptosis. These results suggest that the cellular responses to AF are determined at least in part by Mdm2 and p21(CIP1/WAF1) protein levels, as well as by Akt activity, leading either to cell cycle arrest when Mdm2 and p21(CIP1/WAF1) are elevated, or to apoptosis when Mdm2 and p21(CIP1/WAF1) are degraded by the proteasome and Akt insufficiently activated to protect against apoptosis.
Collapse
Affiliation(s)
- L-H Meng
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | |
Collapse
|
42
|
Chen C, Meng L, Ma X, Krausz KW, Pommier Y, Idle JR, Gonzalez FJ. Urinary metabolite profiling reveals CYP1A2-mediated metabolism of NSC686288 (aminoflavone). J Pharmacol Exp Ther 2006; 318:1330-42. [PMID: 16775196 PMCID: PMC1551906 DOI: 10.1124/jpet.106.105213] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
NSC686288 [aminoflavone (AF)], a candidate chemotherapeutic agent, possesses a unique antiproliferative profile against tumor cells. Metabolic bioactivation of AF by drug-metabolizing enzymes, especially CYP1A monooxygenases, has been implicated as an underlying mechanism for its selective cytotoxicity in several cell culture-based studies. However, in vivo metabolism of AF has not been investigated in detail. In this study, the structural identities of 13 AF metabolites (12 of which are novel) in mouse urine or from microsomal incubations, including three monohydroxy-AFs, two dihydroxy-AFs and their sulfate and glucuronide conjugates, as well as one N-glucuronide, were determined by accurate mass measurements and liquid chromatography-tandem mass spectrometry fragmentation patterns, and a comprehensive map of the AF metabolic pathways was constructed. Significant differences between wild-type and Cyp1a2-null mice, within the relative composition of urinary metabolites of AF, demonstrated that CYP1A2-mediated regioselective oxidation was a major contributor to the metabolism of AF. Comparisons between wild-type and CYP1A2-humanized mice further revealed interspecies differences in CYP1A2-mediated catalytic activity. Incubation of AF with liver microsomes from all three mouse lines and with pooled human liver microsomes confirmed the observations from urinary metabolite profiling. Results from enzyme kinetic analysis further indicated that in addition to CYP1A P450s, CYP2C P450s may also play some role in the metabolism of AF.
Collapse
Affiliation(s)
- Chi Chen
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|