1
|
Bisht VS, Kumar D, Najar MA, Giri K, Kaur J, Prasad TSK, Ambatipudi K. Drug response-based precision therapeutic selection for tamoxifen-resistant triple-positive breast cancer. J Proteomics 2025; 310:105319. [PMID: 39299547 DOI: 10.1016/j.jprot.2024.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Breast cancer adaptability to the drug environment reduces the chemotherapeutic response and facilitates acquired drug resistance. Cancer-specific therapeutics can be more effective against advanced-stage cancer than standard chemotherapeutics. To extend the paradigm of cancer-specific therapeutics, clinically relevant acquired tamoxifen-resistant MCF-7 proteome was deconstructed to identify possible druggable targets (N = 150). Twenty-eight drug inhibitors were used against identified druggable targets to suppress non-resistant (NC) and resistant cells (RC). First, selected drugs were screened using growth-inhibitory response against NC and RC. Seven drugs were shortlisted for their time-dependent (10-12 days) cytotoxic effect and further narrowed to three effective drugs (e.g., cisplatin, doxorubicin, and hydroxychloroquine). The growth-suppressive effectiveness of selected drugs was validated in the complex spheroid model (progressive and regressive). In the progressive model, doxorubicin (RC: 83.64 %, NC: 54.81 %), followed by cisplatin (RC: 76.66 %, NC: 68.94 %) and hydroxychloroquine (RC: 68.70 %, NC: 61.78 %) showed a significant growth-suppressive effect. However, in fully grown regressive spheroid, after 4th drug treatment, cisplatin significantly suppressed RC (84.79 %) and NC (40.21 %), while doxorubicin and hydroxychloroquine significantly suppressed only RC (76.09 and 76.34 %). Our in-depth investigation effectively integrated the expression data with the cancer-specific therapeutic investigation. Furthermore, our three-step sequential drug-screening approach unbiasedly identified cisplatin, doxorubicin, and hydroxychloroquine as an efficacious drug to target heterogeneous cancer cell populations. SIGNIFICANCE STATEMENT: Hormonal-positive BC grows slowly, and hormonal-inhibitors effectively suppress the oncogenesis. However, development of drug-resistance not only reduces the drug-response but also increases the chance of BC aggressiveness. Further, alternative chemotherapeutics are widely used to control advanced-stage BC. In contrast, we hypothesized that, compared to standard chemotherapeutics, cancer-specific drugs can be more effective against resistant-cancer. Although cancer-specific treatment identification is an uphill battle, our work shows proteome data can be used for drug selection. We identified multiple druggable targets and, using ex-vivo methods narrowed multiple drugs to disease-condition-specific therapeutics. We consider that our investigation successfully interconnected the expression data with the functional disease-specific therapeutic investigation and selected drugs can be used for effective resistant treatment with higher therapeutic response.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Deepak Kumar
- Department of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jaismeen Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | | | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
2
|
Kotb MA, Abdelmawgood IA, Ibrahim IM. Pharmacophore-based virtual screening, molecular docking, and molecular dynamics investigation for the identification of novel, marine aromatase inhibitors. BMC Chem 2024; 18:235. [PMID: 39593184 PMCID: PMC11590544 DOI: 10.1186/s13065-024-01350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer remains a leading cause of mortality among women worldwide. Our current research focuses on identifying effective therapeutic agents by targeting the human aromatase enzyme. Aromatase inhibitors (AIs) have been effective in treating postmenopausal breast cancer but face challenges such as drug resistance and long-term side effects like cognitive decline and osteoporosis. Natural products, especially from marine organisms, are emerging as potential sources for new drug candidates due to their structural diversity and pharmacological properties. This study aims to discover marine natural products capable of inhibiting human aromatase by combining ligand-based and structure-based pharmacophore models for virtual screening against the Comprehensive Marine Natural Products Database. From the initial virtual screening of more than 31,000 compounds, 1,385 marine natural products were identified as possible candidates. Following initial molecular docking analysis, only four compounds managed to pass the criteria this research has introduced to confirm strong binding affinity to aromatase. All four compounds yielded acceptable binding affinities, with CMPND 27987 having the highest -10.1 kcal/mol. All four hits were subjected to molecular dynamics, and CMPND 27987 was further confirmed to be the most stable at the protein's active site, with an MM-GBSA free binding energy of -27.75 kcal/mol. Our in silico studies indicate that CMPND 27987 interacts effectively within the binding site of the human aromatase, maintaining high affinity and stability. Based on these findings, we propose that CMPND 27987 could hold significant potential for further lead optimization and drug development.
Collapse
Affiliation(s)
- Mohamed A Kotb
- 1Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Ibrahim M Ibrahim
- 2Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Kim KH, Kim SJ, Eccles JD, Ascoli C, Park GY. Tumor immunogenicity regulates host immune responses, and conventional dendritic cell type 2 uptakes the majority of tumor antigens in an orthotopic lung cancer model. Cancer Immunol Immunother 2024; 73:237. [PMID: 39358651 PMCID: PMC11447165 DOI: 10.1007/s00262-024-03828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequently, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), whereas cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating antitumor immune responses in an orthotopic murine lung cancer model.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St. CSB-920N, M/C719, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Kim KH, Park GY, Kim SJ, Eccles JD, Ascoli C. Tumor immunogenicity regulates host immune responses, and conventional dendritic cell type 2 uptakes the majority of tumor antigens in an orthotopic lung cancer model. RESEARCH SQUARE 2024:rs.3.rs-4438402. [PMID: 38853999 PMCID: PMC11160902 DOI: 10.21203/rs.3.rs-4438402/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Human lung cancer carries high genetic alterations, expressing high tumor-specific neoantigens. Although orthotopic murine lung cancer models recapitulate many characteristics of human lung cancers, genetically engineered mouse models have fewer somatic mutations than human lung cancer, resulting in scarce immune cell infiltration and deficient immune responses. The endogenous mouse lung cancer model driven by Kras mutation and Trp53 deletion (KP model) has minimal immune infiltration because of a scarcity of neoantigens. Fine-tuning tumor antigenicity to trigger the appropriate level of antitumor immunity would be key to investigating immune responses against human lung cancer. We engineered the KP model to express antigens of OVA peptides (minOVA) as neoantigens along with ZsGreen, a traceable fluorescent conjugate. The KP model expressing minOVA exhibited stronger immunogenicity with higher immune cell infiltration comprised of CD8+ T cells and CD11c+ dendritic cells (DCs). Consequentially, the KP model expressing minOVA exhibits suppressed tumor growth compared to its origin. We further analyzed tumor-infiltrated DCs. The majority of ZsGreen conjugated with minOVA was observed in the conventional type 2 DCs (cDC2), where cDC1 has minimal. These data indicate that tumor immunogenicity regulates host immune responses, and tumor neoantigen is mostly recognized by cDC2 cells, which may play a critical role in initiating anti-tumor immune responses in an orthotopic murine lung cancer model.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
5
|
Hussen BM, Abdullah KH, Abdullah SR, Majeed NM, Mohamadtahr S, Rasul MF, Dong P, Taheri M, Samsami M. New insights of miRNA molecular mechanisms in breast cancer brain metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:645-660. [PMID: 37818447 PMCID: PMC10560790 DOI: 10.1016/j.ncrna.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 10/12/2023] Open
Abstract
Brain metastases in breast cancer (BC) patients are often associated with a poor prognosis. Recent studies have uncovered the critical roles of miRNAs in the initiation and progression of BC brain metastasis, highlighting the disease's underlying molecular pathways. miRNA-181c, miRNA-10b, and miRNA-21, for example, are all overexpressed in BC patients. It has been shown that these three miRNAs help tumors grow and metastasize by targeting genes that control how cells work. On the other hand, miRNA-26b5p, miRNA-7, and miRNA-1013p are all downregulated in BC brain metastasis patients. They act as tumor suppressors by controlling the expression of genes related to cell adhesion, angiogenesis, and invasion. Therapeutic miRNA targeting has considerable promise in treating BC brain metastases. Several strategies have been proposed to modulate miRNA expression, including miRNA-Mimics, antagomirs, and small molecule inhibitors of miRNA biogenesis. This review discusses the aberrant expression of miRNAs and metastatic pathways that lead to the spread of BC cells to the brain. It also explores miRNA therapeutic target molecular mechanisms and BC brain metastasis challenges with advanced strategies. The targeting of certain miRNAs opens a new door for the development of novel therapeutic approaches for this devastating disease.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Khozga Hazhar Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | | | - Sayran Mohamadtahr
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Liu G, Xing Z, Guo C, Dai Q, Cheng H, Wang X, Tang Y, Wang Y. Identifying clinicopathological risk factors for regional lymph node metastasis in Chinese patients with T1 breast cancer: a population-based study. Front Oncol 2023; 13:1217869. [PMID: 37601676 PMCID: PMC10436470 DOI: 10.3389/fonc.2023.1217869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives To analyze clinicopathological risk factors and regular pattern of regional lymph node metastasis (LNM) in Chinese patients with T1 breast cancer and the effect on overall survival (OS) and disease-free survival (DFS). Materials and methods Between 1999 and 2020, breast cancer patients meeting inclusion criteria of unilateral, no distant metastatic site, and T1 invasive ductal carcinoma were reviewed. Clinical pathology characteristics were retrieved from medical records. Survival analysis was performed using Kaplan-Meier methods and an adjusted Cox proportional hazards model. Results We enrolled 11,407 eligible patients as a discovery cohort to explore risk factors for LNM and 3484 patients with stage T1N0 as a survival analysis cohort to identify the effect of those risk factors on OS and DFS. Compared with patients with N- status, patients with N+ status had a younger age, larger tumor size, higher Ki67 level, higher grade, higher HR+ and HER2+ percentages, and higher luminal B and HER2-positive subtype percentages. Logistic regression indicated that age was a protective factor and tumor size/higher grade/HR+ and HER2+ risk factors for LNM. Compared with limited LNM (N1) patients, extensive LNM (N2/3) patients had larger tumor sizes, higher Ki67 levels, higher grades, higher HR- and HER2+ percentages, and lower luminal A subtype percentages. Logistic regression indicated that HR+ was a protective factor and tumor size/higher grade/HER2+ risk factors for extensive LNM. Kaplan-Meier analysis indicated that grade was a predictor of both OS and DFS; HR was a predictor of OS but not DFS. Multivariate survival analysis using the Cox regression model demonstrated age and Ki67 level to be predictors of OS and grade and HER2 status of DFS in stage T1N0 patients. Conclusion In T1 breast cancer patients, there were several differences between N- and N+ patients, limited LNM and extensive LNM patients. Besides, HR+ plays a dual role in regional LNM. In patients without LNM, age and Ki67 level are predictors of OS, and grade and HER2 are predictors of DFS.
Collapse
Affiliation(s)
- Gang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changyuan Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qichen Dai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Cheng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Tang
- GCP center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yipeng Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Suarez AC, Hammel JH, Munson JM. Modeling lymphangiogenesis: Pairing in vitro and in vivo metrics. Microcirculation 2023; 30:e12802. [PMID: 36760223 PMCID: PMC10121924 DOI: 10.1111/micc.12802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Lymphangiogenesis is the mechanism by which the lymphatic system develops and expands new vessels facilitating fluid drainage and immune cell trafficking. Models to study lymphangiogenesis are necessary for a better understanding of the underlying mechanisms and to identify or test new therapeutic agents that target lymphangiogenesis. Across the lymphatic literature, multiple models have been developed to study lymphangiogenesis in vitro and in vivo. In vitro, lymphangiogenesis can be modeled with varying complexity, from monolayers to hydrogels to explants, with common metrics for characterizing proliferation, migration, and sprouting of lymphatic endothelial cells (LECs) and vessels. In comparison, in vivo models of lymphangiogenesis often use genetically modified zebrafish and mice, with in situ mouse models in the ear, cornea, hind leg, and tail. In vivo metrics, such as activation of LECs, number of new lymphatic vessels, and sprouting, mirror those most used in vitro, with the addition of lymphatic vessel hyperplasia and drainage. The impacts of lymphangiogenesis vary by context of tissue and pathology. Therapeutic targeting of lymphangiogenesis can have paradoxical effects depending on the pathology including lymphedema, cancer, organ transplant, and inflammation. In this review, we describe and compare lymphangiogenic outcomes and metrics between in vitro and in vivo studies, specifically reviewing only those publications in which both testing formats are used. We find that in vitro studies correlate well with in vivo in wound healing and development, but not in the reproductive tract or the complex tumor microenvironment. Considerations for improving in vitro models are to increase complexity with perfusable microfluidic devices, co-cultures with tissue-specific support cells, the inclusion of fluid flow, and pairing in vitro models of differing complexities. We believe that these changes would strengthen the correlation between in vitro and in vivo outcomes, giving more insight into lymphangiogenesis in healthy and pathological states.
Collapse
Affiliation(s)
- Aileen C. Suarez
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering & Mechanics, Virginia Tech, Blacksburg, VA
| | - Jennifer H. Hammel
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering & Mechanics, Virginia Tech, Blacksburg, VA
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering & Mechanics, Virginia Tech, Blacksburg, VA
| |
Collapse
|
8
|
Abstract
The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.
Collapse
|
9
|
Fukuoka M, Ichikawa Y, Osako T, Fujita T, Baba S, Takeuchi K, Tsunoda N, Ebata T, Ueno T, Ohno S, Saitoh N. The ELEANOR non-coding RNA expression contributes to cancer dormancy and predicts late recurrence of ER-positive breast cancer. Cancer Sci 2022; 113:2336-2351. [PMID: 35415910 PMCID: PMC9277265 DOI: 10.1111/cas.15373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
The recurrence risk of estrogen receptor (ER)-positive breast cancer remains high for a long period of time, unlike the other types of cancer. The late recurrence reflects the ability of cancer cells to remain dormant through various events, including cancer stemness acquisition, but the detailed mechanism is unknown. ESR1 locus enhancing and activating non-coding RNAs (ELEANORS) are a cluster of nuclear non-coding RNAs originally identified in a recurrent breast cancer cell model. Although their functions as chromatin regulators in vitro are well characterized, their roles in vivo remain elusive. In this study, we evaluated the clinicopathological features of ELEANORS, using primary and corresponding metastatic breast cancer tissues. The ELEANOR expression was restricted to ER-positive cases and well-correlated with the ER and progesterone receptor expression levels, especially at the metastatic sites. ELEANORS were detected in both primary and metastatic tumors (32% and 29%, respectively), and frequently in postmenopausal cases. Interestingly, after surgery, patients with ELEANOR-positive primary tumors exhibited increased relapse rates after, but not within, 5 years. Multivariate analysis showed that ELEANORS are independent recurrence risk factor. Consistently, analyses with cell lines, mouse xenografts and patient tissues revealed that ELEANORS upregulate a breast cancer stemness gene, CD44, and maintain the cancer stem cell population, which may facilitate tumor dormancy. Our findings highlight a new role of nuclear long non-coding RNAs and their clinical potential as predictive biomarkers and therapeutic targets for late recurrence of ER-positive breast cancer.
Collapse
Affiliation(s)
- Megumi Fukuoka
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan.,Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Ichikawa
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| | - Tomo Osako
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR
| | - Tomoko Fujita
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| | - Satoko Baba
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR.,Pathology Project for Molecular Targets, Cancer Institute
| | - Kengo Takeuchi
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR.,Pathology Project for Molecular Targets, Cancer Institute
| | - Nobuyuki Tsunoda
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Takayuki Ueno
- Breast Oncology Center, The Cancer Institute Hospital of JFCR
| | - Shinji Ohno
- Breast Oncology Center, The Cancer Institute Hospital of JFCR
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| |
Collapse
|
10
|
Liang Y, Besch-Williford C, Hyder SM. The estrogen receptor beta agonist liquiritigenin enhances the inhibitory effects of the cholesterol biosynthesis inhibitor RO 48-8071 on hormone-dependent breast-cancer growth. Breast Cancer Res Treat 2022; 192:53-63. [PMID: 35037188 DOI: 10.1007/s10549-021-06487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Most hormone-dependent human breast cancers develop resistance to anti-hormone therapy over time. Our goal was to identify novel treatment strategies to avoid this drug resistance and thereby control hormone-dependent breast cancer. METHODS Sulforhodamine B assays were used to measure viability of cultured human breast-cancer cells. BT-474 cell tumor xenografts in nude mice were used to evaluate tumor growth. Immunohistochemistry was used to assess estrogen-receptor and angiogenesis-marker expression, as well as apoptosis, in tumor-xenograft tissues. RESULTS MCF-7 and BT-474 breast-cancer cells treated with either RO 48-8071 <[4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate] [RO]; a small-molecule inhibitor of oxidosqualene cyclase, a key enzyme in cholesterol biosynthesis> or liquiritigenin [LQ; an estrogen receptor (ER) β agonist] exhibited significantly reduced viability in vitro. RO + LQ treatment further significantly reduced cell viability. Administration of RO, LQ, or RO + LQ significantly inhibited growth of BT-474 tumor xenografts in vivo. RO, LQ, or RO + LQ reduced ERα but induced ER β expression in tumor xenografts. Both compounds significantly reduced angiogenesis-marker expression and increased apoptosis in tumor xenografts; use of RO + LQ significantly enhanced the effects observed with a single agent. CONCLUSION The ERβ ligand LQ significantly enhanced the inhibition of breast-cancer cell viability and tumor-xenograft growth by RO. The anti-tumor properties of RO may in part be due to an off-target effect that reduces ERα and increases ERβ, the latter of which can then interact with LQ to promote anti-proliferative effects. The RO + LQ combination may have value when considering novel treatment strategies for hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yayun Liang
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO, 65211, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | | | - Salman M Hyder
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO, 65211, USA. .,Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
11
|
Zandonadi FS, Yokoo S, Granato DC, Rivera C, Macedo CCS, Soares CD, Carnielli CM, Domingues RR, Pauletti BA, Consonni SR, Colleta RD, Paes Leme AF. Follistatin-related protein 1 interacting partner of Syndecan-1 promotes an aggressive phenotype on Oral Squamous cell carcinoma (OSCC) models. J Proteomics 2022; 254:104474. [PMID: 34990821 DOI: 10.1016/j.jprot.2021.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Syndecans belong to the family of transmembrane heparan sulfate proteoglycans and are associated with many physiopathological processes, including oral cancer. As previously shown soluble syndecan-1 (SDC1) fragments and synthetic SDC1 peptide were able to induce cell migration in oral cancer cell lines. In order to explore the role of SDC1 in oral cancer, we have investigated SDC1 interacting partners and its functional role in oral cancer models. Here we have shown that SDC1 interacts with follistatin-related protein 1 (FSTL1) by its ectodomain (ectoSDC1) and extracellular juxtamembrane peptide (pepSDC1) and that their transcript levels can affect tumor events. Using orthotopic mouse model we identified that the knock-down for FSTL1 (shFSTL1) or for both FSTL1 and SDC1 (sh2KD) produced less aggressive and infiltrative tumors, with lower keratinization deposition, but with increased levels of epithelial-mesenchymal transition and proliferation compared to control and SDC1 knock-down. Based on cell culture assays, we suggest that the shFSTL1 effect on tumor tissues might be from significant increase of mRNA levels of Activin A (ActA) and its resceptors. This study shows for the first time two different complexes, SDC1 and FSTL1; pepSDC1 and FSTL1, exhibiting a close relationship in cell signaling events, as FSTL1 promotes a more aggressive phenotype. SIGNIFICANCE: This work contributes to the understanding of new SDC1 functions, based on the investigation of protein-protein complex formation in Oral Squamous cell carcinoma (OSCC) models. The FSTL1 identification, as an interacting partner of SDC1 ectodomain and of its derived peptide promotes molecular events that favors cancer development and progression, as highlighted by Activin A (ActA) and Epithelial-mesenchymal transition (EMT) gene expression and by changes in the phenotype of orthotopic OSCC mouse tumor tissues when SDC1-FSTL1 expression is modulated.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Sami Yokoo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Daniela Campos Granato
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - César Rivera
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Carolina Carneiro Soares Macedo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil; Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Ciro Dantas Soares
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Carolina Moretto Carnielli
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Romênia Ramos Domingues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Bianca A Pauletti
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Sílvio Roberto Consonni
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Ricardo D Colleta
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Adriana F Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Hampton JD, Peterson EJ, Katner SJ, Turner TH, Alzubi MA, Harrell JC, Dozmorov MG, Turner JBM, Gigliotti PJ, Kraskauskiene V, Shende M, Idowu MO, Puchallapalli M, Hu B, Litovchick L, Katsuta E, Takabe K, Farrell NP, Koblinski JE. Exploitation of sulfated glycosaminoglycan status for precision medicine of Triplatin in triple-negative breast cancer. Mol Cancer Ther 2021; 21:271-281. [PMID: 34815360 DOI: 10.1158/1535-7163.mct-20-0969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targetable biomarkers. TNBC is known to be most aggressive, and when metastatic is often drug resistant and uncurable. Biomarkers predicting response to therapy improve treatment decisions and allow personalized approaches for TNBC patients. This study explores sulfated glycosaminoglycan (sGAG) levels as a predictor of TNBC response to platinum therapy. sGAG levels were quantified in three distinct TNBC tumor models including cell line-derived, patient-derived xenograft (PDX) tumors, and isogenic models deficient in sGAG biosynthesis. The in vivo antitumor efficacy of Triplatin, a sGAG-directed platinum agent, was compared in these models to the clinical platinum agent, carboplatin. We determined that >40% of TNBC PDX tissue microarray samples have high levels of sGAGs. The in vivo accumulation of Triplatin in tumors as well as antitumor efficacy of Triplatin positively correlated with sGAG levels on tumor cells, whereas carboplatin followed the opposite trend. In carboplatin-resistant tumor models expressing high levels of sGAGs, Triplatin decreased primary tumor growth, reduced lung metastases, and inhibited metastatic growth in lungs, liver, and ovaries. sGAG levels served as a predictor of Triplatin sensitivity in TNBC. Triplatin may be particularly beneficial in treating patients with chemotherapy-resistant tumors who have evidence of residual disease after standard neoadjuvant chemotherapy. More effective neoadjuvant and adjuvant treatment will likely improve clinical outcome of TNBC.
Collapse
Affiliation(s)
| | | | - Samantha J Katner
- Biochemistry, Chemistry, and Geology, Minnesota State University, Mankato
| | | | | | | | | | | | | | | | | | - Michael O Idowu
- Pathology, Virginia Commonwealth University Massey Cancer Center
| | | | - Bin Hu
- Department of Pathology, Virginia Commonwealth University
| | | | | | - Kazuaki Takabe
- Surgical Oncology, Roswell Park Comprehensive Cancer Center
| | | | | |
Collapse
|
13
|
Seachrist DD, Anstine LJ, Keri RA. FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Cancers (Basel) 2021; 13:cancers13205205. [PMID: 34680352 PMCID: PMC8533709 DOI: 10.3390/cancers13205205] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pioneering function of FOXA1 establishes estrogen-responsive transcriptomes in luminal breast cancer. Dysregulated FOXA1 chromatin occupancy through focal amplification, mutation, or cofactor recruitment modulates estrogen receptor (ER) transcriptional programs and drives endocrine-resistant disease. However, ER is not the sole nuclear receptor (NR) expressed in breast cancers, nor is it the only NR for which FOXA1 serves as a licensing factor. Receptors for androgens, glucocorticoids, and progesterone are also found in the majority of breast cancers, and their functions are also impacted by FOXA1. These NRs interface with ER transcriptional programs and, depending on their activation level, can reprogram FOXA1-ER cistromes. Thus, NR interplay contributes to endocrine therapy response and resistance and may provide a vulnerability for future therapeutic benefit in patients. Herein, we review what is known regarding FOXA1 regulation of NR function in breast cancer in the context of cell identity, endocrine resistance, and NR crosstalk in breast cancer progression and treatment.
Collapse
Affiliation(s)
- Darcie D. Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Lindsey J. Anstine
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
14
|
Rakha E, Toss M, Quinn C. Specific cell differentiation in breast cancer: a basis for histological classification. J Clin Pathol 2021; 75:76-84. [PMID: 34321225 DOI: 10.1136/jclinpath-2021-207487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 11/03/2022]
Abstract
Breast parenchyma progenitor cells show a high degree of phenotypic plasticity reflected in the wide range of morphology observed in benign and malignant breast tumours. Although there is evidence suggesting that all breast cancer (BC) arises from a common epithelial progenitor or stem cell located at the terminal duct lobular units (TDLUs), BC shows a broad spectrum of morphology with extensive variation in histological type and grade. This is related to the complexity of BC carcinogenesis including initial genetic changes in the cell of origin, subsequent genetic and epigenetic alterations and reprogramming that occur at various stages of BC development and the interplay with the surrounding microenvironment, factors which influence the process of differentiation. Differentiation in BC determines the morphology, which can be measured using histological grade and tumour type. Histological grade, which measures the similarity to the TDLUs, reflects the degree of differentiation whereas tumour type reflects the type of differentiation. Understanding BC phenotypic differentiation facilitates the accurate diagnosis and histological classification of BC with corresponding clinical implications in terms of disease behaviour, prognosis and management plans. In this review, we highlight the potential pathways that BC stem cells follow resulting in the development of different histological types of BC and how knowledge of these pathways impacts our ability to classify BC in diagnostic practice. We also discuss the role of cellular differentiation in producing metaplastic and neuroendocrine carcinomas of the breast and how the latter differ from their counterparts in other organs, with emphasis on clinical relevance.
Collapse
Affiliation(s)
- Emad Rakha
- School of Medicine, The University of Nottingham, Nottingham, UK
| | - Michael Toss
- School of Medicine, The University of Nottingham, Nottingham, UK
| | - Cecily Quinn
- Histopathology, St. Vincent's Hospital, Dublin, Ireland.,Belfield, University College Dublin - National University of Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Božović A, Mandušić V, Todorović L, Krajnović M. Estrogen Receptor Beta: The Promising Biomarker and Potential Target in Metastases. Int J Mol Sci 2021; 22:ijms22041656. [PMID: 33562134 PMCID: PMC7914503 DOI: 10.3390/ijms22041656] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The discovery of the Estrogen Receptor Beta (ERβ) in 1996 opened new perspectives in the diagnostics and therapy of different types of cancer. Here, we present a review of the present research knowledge about its role in endocrine-related cancers: breast, prostate, and thyroid, and colorectal cancers. We also discuss the reasons for the controversy of its role in carcinogenesis and why it is still not in use as a biomarker in clinical practice. Given that the diagnostics and therapy would benefit from the introduction of new biomarkers, we suggest ways to overcome the contradictions in elucidating the role of ERβ.
Collapse
|
16
|
Abstract
Breast cancer is the most common malignancy in women. Basic and translational breast cancer research relies heavily on experimental animal models. Ideally, such models for breast cancer should have commonality with human breast cancer in terms of tumor etiology, biological behavior, pathology, and response to therapeutics. This review introduces current progress in different breast cancer experimental animal models and analyzes their characteristics, advantages, disadvantages, and potential applications. Finally, we propose future research directions for breast cancer animal models.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
17
|
Lyu L, Wang M, Zheng Y, Tian T, Deng Y, Xu P, Lin S, Yang S, Zhou L, Hao Q, Wu Y, Dai Z, Kang H. Overexpression of FAM234B Predicts Poor Prognosis in Patients with Luminal Breast Cancer. Cancer Manag Res 2020; 12:12457-12471. [PMID: 33299353 PMCID: PMC7721111 DOI: 10.2147/cmar.s280009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background Family with sequence similarity 234 member B (FAM234B), a protein-coding gene, is mainly expressed in brain tissues. Its clinical significance and biological function in tumors, especially in breast cancer (BC), have not been elucidated. Methods We firstly investigated the expression pattern of FAM234B at the mRNA and protein levels using Oncomine, TCGA portal, GEPIA, TIMER, HPA, and UALCAN databases, then applied bc-GenExMiner to assess the associations between expression level of FAM234B and clinicopathological features of BC. Besides, we also verified the expression of FAM234B expression in clinical BC samples using qRT-PCR. Subsequently, GEPIA, bc-GenExMiner, and TIMER databases were used to analyze the prognostic significance of FAM234B in all BC and different molecular subtypes. Finally, we conducted co-expression analysis and gene set enrichment analysis (GSEA). Additionally, we explored the regulatory mechanism of FAM234B in BC. Results Both bioinformatics analysis and experimental verification confirmed that the FAM234B expression was significantly higher at the mRNA and protein levels in luminal BC tissues than in adjacent normal tissues. High FAM234B expression was significantly correlated with older age, estrogen receptor-positive, progesterone receptor-positive, human epidermal growth factor receptor 2-negative, wild-type p53, low Nottingham prognostic index, low Scarff-Bloom-Richardson grade, lymph node metastasis positivity, and high tumor stage. Moreover, survival analysis indicated that high FAM234B expression was significantly related to a worse prognosis in patients with luminal BC. GSEA indicated that FAM234B was positively related to membrane transport process and negatively associated with immune response function. Besides, mechanism exploration indicated that pseudogene HTR7P1 might act as endogenous RNA to compete with has-miR-1271-5p or has-miR-381-3p for binding to FAM234B, thereby upregulating the expression of FAM234B in luminal BC. Conclusion Our results suggest that FAM234B may be a candidate therapeutic target or prognostic marker for luminal breast cancer.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Meng Wang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yi Zheng
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Tian Tian
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Yujiao Deng
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Peng Xu
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Shuai Lin
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Si Yang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Linghui Zhou
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Qian Hao
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Ying Wu
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Huafeng Kang
- Department of Oncology, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
18
|
Hakim S, Craig JM, Koblinski JE, Clevenger CV. Inhibition of the Activity of Cyclophilin A Impedes Prolactin Receptor-Mediated Signaling, Mammary Tumorigenesis, and Metastases. iScience 2020; 23:101581. [PMID: 33083747 PMCID: PMC7549119 DOI: 10.1016/j.isci.2020.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/27/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Prolactin (PRL) and its receptor (PRLr) play important roles in the pathogenesis of breast cancer. Cyclophilin A (CypA) is a cis-trans peptidyl-prolyl isomerase (PPI) that is constitutively associated with the PRLr and facilitates the activation of the tyrosine kinase Jak2. Treatment with the non-immunosuppressive prolyl isomerase inhibitor NIM811 or CypA short hairpin RNA inhibited PRL-stimulated signaling, breast cancer cell growth, and migration. Transcriptomic analysis revealed that NIM811 inhibited two-thirds of the top 50 PRL-induced genes and a reduction in gene pathways associated with cancer cell signaling. In vivo treatment of NIM811 in a TNBC xenograft lessened primary tumor growth and induced central tumor necrosis. Deletion of CypA in the MMTV-PyMT mouse model demonstrated inhibition of tumorigenesis with significant reduction in lung and lymph node metastasis. The regulation of PRLr/Jak2-mediated biology by NIM811 demonstrates that a non-immunosuppressive prolyl isomerase inhibitor can function as a potential breast cancer therapeutic. CypA inhibition or knockdown blocks breast cancer cell signaling, growth, and migration NIM811 inhibited PRL-induced genes and gene pathways relevant to cancer signaling Deletion of CypA has shown reduction in tumorigenesis and metastasis in mice
Collapse
Affiliation(s)
- Shawn Hakim
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA.,Wright Center for Clinical and Translational Sciences, Richmond, VA 23298, USA
| | - Jennifer E Koblinski
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA 23298, USA.,Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
19
|
Maroufi NF, Ashouri N, Mortezania Z, Ashoori Z, Vahedian V, Amirzadeh-Iranaq MT, Fattahi A, Kazemzadeh H, Bizzarri M, Akbarzadeh M, Nejabati HR, Faridvand Y, Rashidi MR, Nouri M. The potential therapeutic effects of melatonin on breast cancer: An invasion and metastasis inhibitor. Pathol Res Pract 2020; 216:153226. [PMID: 32987338 DOI: 10.1016/j.prp.2020.153226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 01/14/2023]
Abstract
Breast cancer is the most common cancer among women and its metastasis which generally observed at the last stage is the major cause of breast cancer-related death. Therefore, the agents that have the potential to prevent metastatic and invasive nature of breast cancer can open up new therapeutic strategies. Melatonin, a major hormone of pineal gland, is a powerful anti-cancer agent. There are growing evidence regarding the protective effect of melatonin against cancer invasion and metastasis. The anti-metastatic feature of melatonin accompanies with suppression of tumor proliferation, induction of tumor apoptosis, regulation of the cell cycle, modulating angiogenesis, impediment of invasion, and induction of cancer cells sensitivity to the chemotherapy agents. More recently, anti-metastatic effect of melatonin through affecting cancer stem cells and vascular mimicry has been identified. Thus, the aim of this review is to discuss the potential therapeutic effect of melatonin on breast cancer via modulating the cells invasion and metastasis.
Collapse
Affiliation(s)
- Nazila Fathi Maroufi
- Student Research Committee, Tabriz University of Medical Sciences, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Ashouri
- Department of Medicine, Faculty of Cellular and Molecular Biology, University of Shiraz, Iran
| | | | - Zahra Ashoori
- Department of Medical, Faculty of Medical, University of Shahid Beheshti, Iran
| | - Vahid Vahedian
- Department of Experimental Biomedicine, Dr. Vahid Vahedian Medical Diagnostic Laboratory Gorgan, Iran; Department of Medical Laboratory Sciences, Faculty of Medicine, Islamic Azad University (IAU), Sari, Iran
| | | | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Kazemzadeh
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Iran
| | - Mariano Bizzarri
- University La Sapienza, Department of Experimental Medicine, System Biology Group, Rome, Italy
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
To B, Isaac D, Andrechek ER. Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. J Mammary Gland Biol Neoplasia 2020; 25:191-203. [PMID: 33034778 DOI: 10.1007/s10911-020-09460-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 03/23/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and the second most common cause of cancer-related deaths in the United States. Although early detection has significantly decreased breast cancer mortality, patients diagnosed with distant metastasis still have a very poor prognosis. The most common site that breast cancer spreads to are local lymph nodes. Therefore, the presence of lymph node metastasis remains one of most important prognostic factors in breast cancer patients. Given its significant clinical implications, increased efforts have been dedicated to better understand the molecular mechanism governing lymph node metastasis in breast cancer. The identification of lymphatic-specific biomarkers, including podoplanin and LYVE-1, has propelled the field of lymphatic metastasis forward. In addition, several animal models such as cell line-derived xenografts, patient-derived xenografts, and spontaneous tumor models have been developed to recreate the process of lymphatic metastasis. Moreover, the incorporation of various -omic platforms have provided further insight into the genetic drivers facilitating lymphatic metastasis, as well as potential biomarkers and therapeutic targets. Here, we highlight various models of lymphatic metastasis, their potential pitfalls, and other tools available to study lymphatic metastasis including imaging modalities and -omic studies.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Isaac
- Division of Hematology and Oncology, MSU Breslin Cancer Center, Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
21
|
Jin M, Gao D, Wang R, Sik A, Liu K. Possible involvement of TGF‑β‑SMAD‑mediated epithelial‑mesenchymal transition in pro‑metastatic property of PAX6. Oncol Rep 2020; 44:555-564. [PMID: 32627030 PMCID: PMC7336511 DOI: 10.3892/or.2020.7644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 05/12/2020] [Indexed: 01/15/2023] Open
Abstract
Paired box 6 (PAX6) is a transcription factor that has oncogenic features. In breast cancer, PAX6 facilitates tumor progression; however, the underlying mechanism is largely unknown. The majority of breast cancer-related mortalities are associated with metastasis of cancer cells. Therefore, the present study aimed to investigate the role of PAX6 in breast tumor metastasis. PAX6 was stably overexpressed in breast cancer cells to perform tumor migration and metastasis assays in vitro and in vivo. In addition, the expression of PAX6 and transforming growth factor β (TGF-β)-SMAD signaling associated proteins on human breast cancer tissue array, as well as key factors involved in epithelial-mesenchymal transition (EMT) were assayed to explore the mechanism underlying metastasis of breast cancer cells. The expression levels of PAX6 were demonstrated to be increased in human breast cancer tissues and associated with poor clinical outcomes. Overexpression of PAX6 markedly promoted metastasis. Further investigation revealed that PAX6 overexpression increased TGF-β-SMAD signaling pathway and induced EMT. These results suggested that highly expressed PAX6 led to EMT through TGF-β-SMAD signaling pathway, thereby promoting cell metastasis and ultimately affecting survival in patients with breast cancer. Taken together, findings indicated that PAX6 may serve as a therapeutic target for the clinical treatment of breast cancer and the underlying mechanism could be used to overcome metastasis of cancer cells.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pécs, H‑7624 Pécs, Hungary
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250103, P.R. China
| |
Collapse
|
22
|
Montagner M, Sahai E. In vitro Models of Breast Cancer Metastatic Dormancy. Front Cell Dev Biol 2020; 8:37. [PMID: 32195244 PMCID: PMC7062644 DOI: 10.3389/fcell.2020.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Delayed relapses at distant sites are a common clinical observation for certain types of cancers after removal of primary tumor, such as breast and prostate cancer. This evidence has been explained by postulating a long period during which disseminated cancer cells (DCCs) survive in a foreign environment without developing into overt metastasis. Because of the asymptomatic nature of this phenomenon, isolation, and analysis of disseminated dormant cancer cells from clinically disease-free patients is ethically and technically highly problematic and currently these data are largely limited to the bone marrow. That said, detecting, profiling and treating indolent metastatic lesions before the onset of relapse is the imperative. To overcome this major limitation many laboratories developed in vitro models of the metastatic niche for different organs and different types of cancers. In this review we focus specifically on in vitro models designed to study metastatic dormancy of breast cancer cells (BCCs). We provide an overview of the BCCs employed in the different organotypic systems and address the components of the metastatic microenvironment that have been shown to impact on the dormant phenotype: tissue architecture, stromal cells, biochemical environment, oxygen levels, cell density. A brief description of the organ-specific in vitro models for bone, liver, and lung is provided. Finally, we discuss the strategies employed so far for the validation of the different systems.
Collapse
Affiliation(s)
- Marco Montagner
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padua, Padua, Italy
| | - Erik Sahai
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
23
|
Alzubi MA, Boyd DC, Harrell JC. The utility of the "Glowing Head" mouse for breast cancer metastasis research. Clin Exp Metastasis 2020; 37:241-246. [PMID: 31938954 DOI: 10.1007/s10585-020-10020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
The expression of cellular reporters to label cancer cells, such as green fluorescent protein (GFP) and luciferase, can stimulate immune responses and effect tumor growth. Recently, a mouse model that expresses GFP and luciferase in the anterior pituitary gland was generated to tolerize mice to these proteins; the "Glowing Head" mouse. Mice were obtained from a commercial vendor, bred, and then used for tumor growth and metastasis studies. The transgene expression of luciferase was assessed within tumor-naïve mice as well as mice with mammary tumors or metastases. Tumor-free mice with white fur, compared to black fur, allowed for stronger luciferase transgene expression to be observed in the pituitary, sternum, and femur. Growth of four different luciferase-expressing mouse cancer cell lines readily occurred in the mammary gland. Though sternum expression of the luciferase transgene occurred in cancer-free mice, growth or death of luciferase positive cancer cells in the lung could be observed. Liver metastases seeded by portal vein injections of luciferase positive cancer cell lines were completely distinct from luciferase transgene expression. Though lung and brain metastasis studies have limitations, the Glowing Head mouse can be useful to inhibit immune system rejection of luciferase or GFP expressing cancer cells. This mouse model is most beneficial for studies of mammary tumors and liver metastases.
Collapse
Affiliation(s)
- Mohammad A Alzubi
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - David C Boyd
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Integrative Life Sciences Program, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
24
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
25
|
Sayyad MR, Puchalapalli M, Vergara NG, Wangensteen SM, Moore M, Mu L, Edwards C, Anderson A, Kall S, Sullivan M, Dozmorov M, Singh J, Idowu MO, Koblinski JE. Syndecan-1 facilitates breast cancer metastasis to the brain. Breast Cancer Res Treat 2019; 178:35-49. [PMID: 31327090 DOI: 10.1007/s10549-019-05347-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Although survival rates for patients with localized breast cancer have increased, patients with metastatic breast cancer still have poor prognosis. Understanding key factors involved in promoting breast cancer metastasis is imperative for better treatments. In this study, we investigated the role of syndecan-1 (Sdc1) in breast cancer metastasis. METHODS To assess the role of Sdc1 in breast cancer metastasis, we silenced Sdc1 expression in the triple-negative breast cancer human MDA-MB-231 cell line and overexpressed it in the mouse mammary carcinoma 4T1 cell line. Intracardiac injections were performed in an experimental mouse metastasis model using both cell lines. In vitro transwell blood-brain barrier (BBB) and brain section adhesion assays were utilized to specifically investigate how Sdc1 facilitates brain metastasis. A cytokine array was performed to evaluate differences in the breast cancer cell secretome when Sdc1 is silenced. RESULTS Silencing expression of Sdc1 in breast cancer cells significantly reduced metastasis to the brain. Conversely, overexpression of Sdc1 increased metastasis to the brain. We found that silencing of Sdc1 expression had no effect on attachment of breast cancer cells to brain endothelial cells or astrocytes, but migration across the BBB was reduced as well as adhesion to the perivascular regions of the brain. Loss of Sdc1 also led to changes in breast cancer cell-secreted cytokines/chemokines, which may influence the BBB. CONCLUSIONS Taken together, our study demonstrates a role for Sdc1 in promoting breast cancer metastasis to the brain. These findings suggest that Sdc1 supports breast cancer cell migration across the BBB through regulation of cytokines, which may modulate the BBB. Further elucidating this mechanism will allow for the development of therapeutic strategies to combat brain metastasis.
Collapse
Affiliation(s)
- Megan R Sayyad
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Madhavi Puchalapalli
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.,Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Natasha G Vergara
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Sierra Mosticone Wangensteen
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Melvin Moore
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Liang Mu
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Chevaunne Edwards
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Aubree Anderson
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Stefanie Kall
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA.,McCormick School of Engineering, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Megan Sullivan
- Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jaime Singh
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael O Idowu
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer E Koblinski
- Department of Pathology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Pathology, Women's Cancer Research Program, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, IL, USA. .,Department of Pathology, School of Medicine, Virginia Commonwealth University, Sanger Hall 4-013, 1101 E. Marshall St, Box 980662, Richmond, VA, 23298, USA.
| |
Collapse
|
26
|
Chen N, Ritsma LMA, Vrisekoop N. In vivo characteristics of human and mouse breast tumor cell lines. Exp Cell Res 2019; 381:86-93. [PMID: 30980788 DOI: 10.1016/j.yexcr.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Although two- and three-dimensional in vitro studies of breast tumor cell lines have increased our knowledge on tumor growth and metastasis formation, the complex in vivo microenvironment is not taken into consideration. The goal of our study was to illustrate the in vivo morphology and motility of widely used breast tumor cell lines. Intravital microscopy allows real-time visualization of individual cells inside tissues of living animals. We used this technique to study breast cancer migration in the complex orthotopic microenvironment. More specifically, we characterized cell morphology, cell-cell interactions, polarity and motility of mouse tumor cell lines 4T1 and mILC-1 and human tumor cell lines MDA-MB-231 and T47D. Almost all measured parameters were remarkably heterogeneous even between positions within the same tumor. Migrating tumor cells were circular in all tumor models, indicating predominantly amoeboid motility. This overview of the in vivo characteristics of mouse and human breast tumor cell lines illustrates their heterogeneity and complexity in real life, and additionally exemplifies caution should be taken to extrapolate in vitro assays of tumor invasiveness.
Collapse
Affiliation(s)
- Na Chen
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands
| | - Laila M A Ritsma
- Department of Molecular Cell Biology, Leiden University Medical Center, the Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
27
|
Nushtaeva AA, Karpushina AA, Ermakov MS, Gulyaeva LF, Gerasimov AV, Sidorov SV, Gayner TA, Yunusova AY, Tkachenko AV, Richter VA, Koval OA. Establishment of primary human breast cancer cell lines using "pulsed hypoxia" method and development of metastatic tumor model in immunodeficient mice. Cancer Cell Int 2019; 19:46. [PMID: 30858763 PMCID: PMC6394017 DOI: 10.1186/s12935-019-0766-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background Among breast cancer (BC) patients the outcomes of anticancer therapy vary dramatically due to the highly heterogeneous molecular characteristics of BC. Therefore, an extended panel of BC cell lines are required for in vitro and in vivo studies to find out new characteristic of carcinogenesis and metastasis. The purpose of this study was to develop patient-derived BC cell cultures and metastatic tumor models representing a tool for personal therapy and translational research. Methods Breast cancer cells were prepared by optimizing technique from tumor samples. We used real-time RT-PCR, flow cytometry, western blotting, cytotoxicity assay, karyotyping and fluorescent and electron microscopy analyses to characterize the established cell lines. BC xenografts in scid mice were used for in vivo tumorigenicity studies. Results The technique of preparing primary cells was optimized and this resulted in a high output of viable and active proliferated cells of nine patient-derived breast cancer cell lines and one breast non-malignant cell line. High E-cadherine and EpCAM expression correlated positively with epithelial phenotype while high expression of N-cadherine and Vimentin were shown in cells with mesenchymal phenotype. All mesenchymal-like cell lines were high HER3-positive—up to 90%. More interesting than that, is that two cell lines under specific culturing conditions (pulsed hypoxia and conditioned media) progressively transformed from mesenchymal to epithelial phenotypes displaying the expression of respective molecular markers proving that the mesenchymal-to-epithelial transition occurred. Becoming epithelial, these cells have lost HER3 and decreased HER2 membrane receptors. Three of the established epithelial cancer cell lines were tumorigenic in SCID mice and the generated tumors exhibited lobules-like structures. Ultrastructure analysis revealed low-differentiate phenotype of tumorigenic cell lines. These cells were in near-triploid range with multiple chromosome rearrangements. Tumorigenic BrCCh4e cells, originated from the patient of four-course chemotherapy, initiated metastasis when they were grafted subcutaneous with colonization of mediastinum lymph nodes. Conclusions The developed BC cells metastasizing to mediastinum lymph nodes are a relevant model for downstream applications. Moreover, our findings demonstrate that pulsed hypoxia induces transformation of primary fibroblastoid breast cancer cells to epithelial-like cells and both of these cultures—induced and original—don’t show tumor initiating capacity. Electronic supplementary material The online version of this article (10.1186/s12935-019-0766-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna A Nushtaeva
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia
| | - Anastasia A Karpushina
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia
| | - Mikhail S Ermakov
- 2Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090 Russia
| | - Ludmila F Gulyaeva
- 2Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090 Russia.,3Institute of Molecular Biology and Biophysics, Siberian Branch, Russian Academy of Medical Sciences, Ac. Timakov Str. 2, Novosibirsk, 630117 Russia
| | - Alexey V Gerasimov
- National Novosibirsk Regional Oncology Dispensary, Plakhotnogo Str. 2, Novosibirsk, 630000 Russia
| | - Sergey V Sidorov
- Novosibirsk Municipal Budgetary Healthcare Institution "Municipal Clinical Hospital #1", Zalessky Str. 6, Novosibirsk, 630047 Russia
| | - Tatyana A Gayner
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia
| | - Anastasia Y Yunusova
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia
| | - Anastasia V Tkachenko
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia
| | - Vladimir A Richter
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia
| | - Olga A Koval
- 1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia.,2Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090 Russia
| |
Collapse
|
28
|
Strekalova E, Malin D, Rajanala H, Cryns VL. Preclinical Breast Cancer Models to Investigate Metabolic Priming by Methionine Restriction. Methods Mol Biol 2019; 1866:61-73. [PMID: 30725408 PMCID: PMC6571148 DOI: 10.1007/978-1-4939-8796-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
We have developed a novel therapeutic paradigm ("metabolic priming") for cancer whereby restriction of the essential amino acid methionine activates a number of cell-stress-response pathways that can be selectively targeted to enhance the therapeutic impact of methionine restriction. One example of metabolic priming is the combination of methionine restriction with proapoptotic TRAIL receptor-2 (TRAIL-R2) agonists. Methionine restriction enhances the cell surface expression of TRAIL-R2 selectively in transformed breast epithelial cells and renders them more susceptible to cell death induction by TRAIL-R2 agonists in cellular and murine models of breast cancer. This methods review focuses on preclinical models of breast cancer to investigate metabolic priming by methionine restriction. Multiple cell-based methods are detailed to measure cell viability, cell survival, caspase activity, apoptosis, and matrix detachment-induced cell death (anoikis). In addition, we describe an orthotopic model of metastatic breast cancer that utilizes mCherry-fluorescently-labeled human breast cancer cells. This model captures the entire metastatic cascade from the mammary gland to the lung and mimics key features of the human disease. These breast-cancer models can be readily adapted to other tumor types. Overall, we provide a stepwise, translationally-relevant approach to study metabolic priming in the context of cancer.
Collapse
Affiliation(s)
- Elena Strekalova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Dmitry Malin
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Harisha Rajanala
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
29
|
Kim SJ, Pham TH, Bak Y, Ryu HW, Oh SR, Yoon DY. Orientin inhibits invasion by suppressing MMP-9 and IL-8 expression via the PKCα/ ERK/AP-1/STAT3-mediated signaling pathways in TPA-treated MCF-7 breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:35-42. [PMID: 30466990 DOI: 10.1016/j.phymed.2018.09.172] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/08/2018] [Accepted: 09/17/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Orientin (luteolin 8-C-β-D-glucopyranoside), a glycosyl dietary flavonoid, has therapeutic effects such as anti-inflammation and antiadipogenesis. However, there is little known about the antimigratory and anti-invasive effects of orientin. Thus, we demonstrate the anti-invasive effects of orientin compared with well-known anticancer flavonoid, luteolin and luteolin 8-C-β-fucopyranoside (LU8C-FP). PURPOSE We investigated whether orientin would inhibit the migration and invasion of 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced MCF-7 breast cancer cells. METHODS We investigated the anti-invasive mechanism of orientin by using wound-healing assay, Matrigel invasion assay, gelatin zymography, qRT-PCR, ELISA, western blotting, nuclear, membrane and cytosolic fractionations, and immunofluorescence staining in MCF-7 cell line. RESULTS We demonstrated the antimigratory and anti-invasive effects of orientin in TPA-treated MCF-7 cells. TPA-induced membrane translocation of protein kinase C alpha (PKCα), phosphorylation of extracellular signal regulated kinase (ERK), and nuclear translocations of activator protein-1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) were downregulated by orientin. In addition, orientin also inhibited matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8) expression. CONCLUSION Orientin inhibits migratory and invasive responses by suppressing MMP-9 and IL-8 expression through mitigation of TPA-induced PKCα and ERK activation, as well as the nuclear translocation of AP-1 and STAT3. Therefore, orientin prevents tumor invasion and could be applied as a possible therapeutic agent for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience & Biotechnology, Ochang-eup, Cheongwon-gun, ChungBuk 363-883, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience & Biotechnology, Ochang-eup, Cheongwon-gun, ChungBuk 363-883, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
30
|
Mucin 2 (MUC2) modulates the aggressiveness of breast cancer. Breast Cancer Res Treat 2018; 173:289-299. [PMID: 30317423 DOI: 10.1007/s10549-018-4989-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/29/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Tumors that secrete large volumes of mucus are chemotherapy resistant, however, mechanisms underlying this resistance are unknown. One protein highly expressed in mucin secreting breast cancers is the secreted mucin, Mucin 2 (MUC2). While MUC2 is expressed in some breast cancers it is absent in normal breast tissue, implicating it in breast cancer. However, the effects of MUC2 on breast cancer are largely unknown. This study examined the role of MUC2 in modulating breast cancer proliferation, response to chemotherapy and metastasis. METHODS Using patient derived xenografts we developed two novel cell lines, called BCK4 and PT12, which express high levels of MUC2. To modulate MUC2 levels, BCK4 and PT12 cells were engineered to express shRNA targeted to MUC2 (shMUC2, low MUC2) or a non-targeting control (shCONT, high MUC2) and proliferation and apoptosis were measured in vitro and in vivo. BCK4 cells with shCONT or shMUC2 were labeled with GFP-luciferase and examined in an experimental metastasis model; disease burden and site specific dissemination were monitored by intravital imaging and fluorescence guided dissection, respectively. RESULTS Proliferation decreased in BCK4 and PT12 shMUC2 cells versus control cells both in vitro and in vivo. Chemotherapy induced minimal apoptosis in control cells expressing high MUC2 but increased apoptosis in shMUC2 cells containing low MUC2. An experimental metastasis model showed disease burden decreased when breast cancer cells contained low versus high MUC2. Treatment with Epidermal Growth Factor (EGF) increased MUC2 expression in BCK4 cells; this induction was abolished by the EGF-receptor inhibitor, Erlotinib. CONCLUSIONS MUC2 plays an important role in mediating proliferation, apoptosis and metastasis of breast cancer cells. MUC2 may be important in guiding treatment and predicting outcomes in breast cancer patients.
Collapse
|
31
|
Balasubramanyam P, Ashraf-Khorassani M, Josan JS. Separation of stereoisomers of 7-oxa-bicyclo[2.2.1]heptene sulfonate (OBHS), a Selective Estrogen Receptor Modulator (SERM), via chiral stationary phases using SFC/UV and SFC/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:279-285. [PMID: 29933221 DOI: 10.1016/j.jchromb.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/26/2022]
Abstract
The enantiomeric separation of a racemate of 7-oxa-bicyclo[2.2.1]heptene sulfonate (OBHS) derivatives, a Selective Estrogen Receptor Modulator (SERM), was obtained using supercritical fluid chromatography in tandem with UV and mass spectrometry (SFC/UV and SFC/MS, respectively). Supercritical CO2 modified with methanol or isopropyl alcohol was used with isopropylamine (IPAm), trimethylamine (TEA), or trifluoroacetic acid (TFA) as an additive to obtain the enantiomers separations. Both Chiralpak IC and IA were evaluated for the separation of enantiomers. Results showed enantiomers separation can be achieved in less than 5 min with a resolution greater than 1 and 0.9, respectively, for the different OBHS derivatives (compounds A and B) using supercritical CO2 modified with 40% isopropyl alcohol containing 0.25% IPAm and IC column applying isocratic conditions. Similar conditions were used with the semi-preparative Chiralpak IC column to isolate more than 50 mg of each enantiomer. SFC/MS and SFC/UV results showed pure enantiomers were isolated. Method development via SFC was much simpler than those reported in the literature using HPLC.
Collapse
Affiliation(s)
| | - Mehdi Ashraf-Khorassani
- Department of Chemistry, Chromatography and Mass Spectroscopy Center, Virginia Tech, Blacksburg, VA, USA.
| | | |
Collapse
|
32
|
Weitzenfeld P, Meshel T, Ben-Baruch A. Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget 2018; 7:81123-81143. [PMID: 27835603 PMCID: PMC5348381 DOI: 10.18632/oncotarget.13213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
The roles of the tumor microenvironment (TME) in generating intra-tumoral diversity within each specific breast cancer subtype are far from being fully elucidated. In this study, we exposed Luminal-A breast cancer cells in culture to combined “TME Stimulation”, representing three typical arms of the breast TME: hormonal (estrogen), inflammatory (tumor necrosis factor α) and growth-promoting (epidermal growth factor). In addition to enriching the tumor cell population with CD44+/β1+ cells (as we previously published), TME Stimulation selected for CD44+/CD24low/− stem-like cells, that were further enriched by doxorubicin treatment and demonstrated high plasticity in vitro and in vivo. Knock-down experiments revealed that CD44 and Zeb1 regulated CD24 and β1 expression and controlled differently cell spreading and formation of cellular protrusions. TME-enriched CD44+/CD24low/− stem-like cells promoted dissemination to bones and lymph nodes, whereas CD44+/β1+ cells had a low metastatic potential. Mixed co-injections of TME-enriched CD44+/CD24low/− and CD44+/β1+ sub-populations generated metastases populated mostly by CD44+/CD24low/−-derived cells. Thus, combined activities of several TME factors select for CD44+/CD24low/− stem-like cells that dictate the metastatic phenotype of Luminal-A breast tumor cells, suggesting that therapeutic modalities targeting the TME could be introduced as a potential strategy of inhibiting the detrimental stem-like sub-population in this disease subtype.
Collapse
Affiliation(s)
- Polina Weitzenfeld
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Haque I, Ghosh A, Acup S, Banerjee S, Dhar K, Ray A, Sarkar S, Kambhampati S, Banerjee SK. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway. BMC Cancer 2018; 18:99. [PMID: 29370782 PMCID: PMC5785848 DOI: 10.1186/s12885-018-3993-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Background In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. Methods We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Results Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. Conclusions These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.
Collapse
Affiliation(s)
- Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Acup
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Amitabha Ray
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Present Address: Syngene International Ltd, Clinical Development, Tower 1, Semicon Park, Phase II, Electronics City, Hosur Road, Bangalore, Karnataka, 560100, India.,Present Address: Saint James School of Medicine, Anguilla, British West Indies, USA
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA.,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, USA. .,Department of Medicine, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA. .,Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA.
| |
Collapse
|
34
|
Majumder A, Singh M, Tyagi SC. Post-menopausal breast cancer: from estrogen to androgen receptor. Oncotarget 2017; 8:102739-102758. [PMID: 29254284 PMCID: PMC5731994 DOI: 10.18632/oncotarget.22156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
In the United States, breast cancer is the second leading cause of death among women, and even though different therapies can treat primary breast tumors, most breast cancer-related deaths (>95%) occur due to metastasis. A majority (~70%) of breast tumors are found to express estrogen receptor, and a significant portion (~90%) of ER-positive (ER+) breast tumors are also androgen receptor-positive (AR+). Although ER is known to promote tumorigenesis, the role and underlying mechanism(s) of AR in these closely knit processes remain controversial. Endocrine therapies are the most commonly used treatment for patients with ER+ breast tumors; but, ~30%-50% of initially responsive patients develop resistance to these therapies. Whereas 70%–90% of all breast tumors are AR+ and AR overexpression is correlated with endocrine resistance, but the precise molecular mechanism(s) for this association is yet to be studied. Multiple mechanisms have been proposed to show AR and ER interactions, which indicate that AR may preferentially regulate expression of a subset of ER-responsive genes and that may be responsible for breast cancer and its progression in affected patients. On the other hand, most of the ER+ breast tumors found in post-menopausal women (~80%); and they have very low 17β-estradiol and high androgen levels, but how these hormonal changes make someone more prone to cancer phenotype has long been a disputed issue. In this study, we have discussed multiple molecular mechanisms that we believe are central to the understanding of the overall contributions of AR in breast cancer and its metastasis in post-menopausal women.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA.,Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville 40202, Kentucky, USA
| |
Collapse
|
35
|
Structural and functional identification of vasculogenic mimicry in vitro. Sci Rep 2017; 7:6985. [PMID: 28765613 PMCID: PMC5539303 DOI: 10.1038/s41598-017-07622-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Vasculogenic mimicry (VM) describes a process by which cancer cells establish an alternative perfusion pathway in an endothelial cell-free manner. Despite its strong correlation with reduced patient survival, controversy still surrounds the existence of an in vitro model of VM. Furthermore, many studies that claim to demonstrate VM fail to provide solid evidence of true hollow channels, raising concerns as to whether actual VM is actually being examined. Herein, we provide a standardized in vitro assay that recreates the formation of functional hollow channels using ovarian cancer cell lines, cancer spheres and primary cultures derived from ovarian cancer ascites. X-ray microtomography 3D-reconstruction, fluorescence confocal microscopy and dye microinjection conclusively confirm the existence of functional glycoprotein-rich lined tubular structures in vitro and demonstrate that many of structures reported in the literature may not represent VM. This assay may be useful to design and test future VM-blocking anticancer therapies.
Collapse
|
36
|
Sarkar S, Ghosh A, Banerjee S, Maity G, Das A, Larson MA, Gupta V, Haque I, Tawfik O, Banerjee SK. CCN5/WISP-2 restores ER-∝ in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen. Oncogenesis 2017; 6:e340. [PMID: 28530705 PMCID: PMC5569333 DOI: 10.1038/oncsis.2017.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
CCN5/WISP-2 is an anti-invasive molecule and prevents breast cancer (BC)
progression. However, it is not well understood how CCN5 prevents invasive phenotypes
of BC cells. CCN5 protein expression is detected in estrogen receptor-α
(ER-α) -positive normal breast epithelial cells as well as BC cells, which are
weakly invasive and rarely metastasize depending on the functional status of
ER-α. A unique molecular relation between CCN5 and ER-α has been
established as the components of the same signaling pathway that coordinate some
essential signals associated with the proliferation as well as delaying the disease
progression from a non-invasive to invasive phenotypes. Given the importance of this
connection, we determined the role of CCN5 in regulation of ER-α in different
cellular settings and their functional relationship. In a genetically engineered
mouse model, induced expression of CCN5 in the mammary ductal epithelial cells by
doxycycline promotes ER-α expression. Similarly, CCN5 regulates ER-α
expression and activity in normal and neoplastic breast cells, as documented in
various in vitro settings such as mouse mammary gland culture, human mammary
epithelial cell and different BC cell cultures in the presence or absence of human
recombinant CCN5 (hrCCN5) protein. Mechanistically, at least in the BC cells, CCN5 is
sufficient to induce ER-α expression at the transcription level via interacting
with integrins-α6β1 and suppressing Akt followed by activation of FOXO3a.
Moreover, in vitro and in vivo functional assays indicate that CCN5
treatment promotes response to tamoxifen in triple-negative BC (TNBC) cells possibly
via restoring ER-α. Collectively, these studies implicates that the combination
treatments of CCN5 (via activation of CCN5 or hrCCN5 treatment) and tamoxifen as
potential therapies for TNBC.
Collapse
Affiliation(s)
- S Sarkar
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Ghosh
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - S Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - G Maity
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Das
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - M A Larson
- Transgenic and Gene-targeting Institutional Facilities, University of Kansas Medical Centre, Kansas City, KS, USA
| | - V Gupta
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - I Haque
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA
| | - O Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - S K Banerjee
- Cancer Research Unit, Kansas City VA Medical Center, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Division of Hematology and Oncology, Department of Medicine, University of Kansas Medical Centre, Kansas City, KS, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
37
|
Fan S, Liao Y, Liu C, Huang Q, Liang H, Ai B, Fu S, Zhou S. Estrogen promotes tumor metastasis via estrogen receptor beta-mediated regulation of matrix-metalloproteinase-2 in non-small cell lung cancer. Oncotarget 2017; 8:56443-56459. [PMID: 28915603 PMCID: PMC5593574 DOI: 10.18632/oncotarget.16992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
In non–small cell lung cancer (NSCLC), estrogen significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). However, the effects by which ERβ contributes to metastasis in NSCLC have not been previously reported. This study aims at defining whether the stimulation of ERβ promotes NSCLC metastasis in vitro and in vivo. Here, Our results showed that estrogen and ERβ agonist enhanced aggressiveness of two lung cancer cell lines (A549 and H1793) and promoted murine lung metastasis formation. ER-inhibitor Fulvestrant treatment or ERβ-knockdown significantly suppressed the migration, invasion and nodule formation of NSCLC cells. The expression level of ERβ protein was analyzed in matched samples of metastatic lymph node and primary tumor tissues from the same individuals, and we found significantly higher levels of ERβ were expressed in lymph node compared to primary tumor tissues. Moreover, Studies on both surgical biopsies and on lung cancer cells revealed that the expression level of ERβ and matrix-metalloproteinase-2 (MMP-2) were associated. Furthermore, inhibition of ERβ resulted in down-regulation of MMP-2 expression. Taken together, our results demonstrate that activation of ERβ in lung cancer cells promotes tumor metastasis through increasing expression of invasiveness-associated MMP-2. These results also highlight the therapeutic potential of inhibition of ERβin the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shegnling Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
38
|
Wahdan-Alaswad R, Harrell JC, Fan Z, Edgerton SM, Liu B, Thor AD. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. Cell Cycle 2017; 15:1046-59. [PMID: 26919310 DOI: 10.1080/15384101.2016.1152432] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis.
Collapse
Affiliation(s)
- Reema Wahdan-Alaswad
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - J Chuck Harrell
- b Department of Pathology , Virginia Commonwealth University , 1101 E Marshall St., PO Box 980662, Richmond VA , USA
| | - Zeying Fan
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Susan M Edgerton
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Bolin Liu
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Ann D Thor
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| |
Collapse
|
39
|
Zhang Y, Wang J, Cheng J, Qiao Y, Huang G, Zhu J, He D. Progress of Lymph-Targeted Contrast Agents and Their Application in Diagnosis of Tumor Lymphatic Metastasis. ACTA ACUST UNITED AC 2017. [DOI: 10.21127/yaoyigc20160003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M, Sayyad MR, Mosticone Wangensteen S, Clevenger CV, Koblinski JE. NSG Mice Provide a Better Spontaneous Model of Breast Cancer Metastasis than Athymic (Nude) Mice. PLoS One 2016; 11:e0163521. [PMID: 27662655 PMCID: PMC5035017 DOI: 10.1371/journal.pone.0163521] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Metastasis is the most common cause of mortality in breast cancer patients worldwide. To identify improved mouse models for breast cancer growth and spontaneous metastasis, we examined growth and metastasis of both estrogen receptor positive (T47D) and negative (MDA-MB-231, SUM1315, and CN34BrM) human breast cancer cells in nude and NSG mice. Both primary tumor growth and spontaneous metastases were increased in NSG mice compared to nude mice. In addition, a pattern of metastasis similar to that observed in human breast cancer patients (metastases to the lungs, liver, bones, brain, and lymph nodes) was found in NSG mice. Furthermore, there was an increase in the metastatic burden in NSG compared to nude mice that were injected with MDA-MB-231 breast cancer cells in an intracardiac experimental metastasis model. This data demonstrates that NSG mice provide a better model for studying human breast cancer metastasis compared to the current nude mouse model.
Collapse
Affiliation(s)
- Madhavi Puchalapalli
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Xianke Zeng
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Liang Mu
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Aubree Anderson
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Laura Hix Glickman
- Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Ming Zhang
- Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Megan R. Sayyad
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sierra Mosticone Wangensteen
- Department of Pathology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Charles V. Clevenger
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
| | - Jennifer E. Koblinski
- Department of Pathology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Institute, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
41
|
Carroll JS. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer. Eur J Endocrinol 2016; 175:R41-9. [PMID: 26884552 PMCID: PMC5065078 DOI: 10.1530/eje-16-0124] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 12/24/2022]
Abstract
Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology.
Collapse
Affiliation(s)
- J S Carroll
- Cancer Research UKCambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
Medler TR, Craig JM, Fiorillo AA, Feeney YB, Harrell JC, Clevenger CV. HDAC6 Deacetylates HMGN2 to Regulate Stat5a Activity and Breast Cancer Growth. Mol Cancer Res 2016; 14:994-1008. [PMID: 27358110 DOI: 10.1158/1541-7786.mcr-16-0109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022]
Abstract
Stat5a is a transcription factor utilized by several cytokine/hormone receptor signaling pathways that promotes transcription of genes associated with proliferation, differentiation, and survival of cancer cells. However, there are currently no clinically approved therapies that directly target Stat5a, despite ample evidence that it contributes to breast cancer pathogenesis. Here, deacetylation of the Stat5a coactivator and chromatin-remodeling protein HMGN2 on lysine residue K2 by HDAC6 promotes Stat5a-mediated transcription and breast cancer growth. HDAC6 inhibition both in vitro and in vivo enhances HMGN2 acetylation with a concomitant reduction in Stat5a-mediated signaling, resulting in an inhibition of breast cancer growth. Furthermore, HMGN2 is highly acetylated at K2 in normal human breast tissue, but is deacetylated in primary breast tumors and lymph node metastases, suggesting that targeting HMGN2 deacetylation is a viable treatment for breast cancer. Together, these results reveal a novel mechanism by which HDAC6 activity promotes the transcription of Stat5a target genes and demonstrate utility of HDAC6 inhibition for breast cancer therapy. IMPLICATIONS HMGN2 deacetylation enhances Stat5a transcriptional activity, thereby regulating prolactin-induced gene transcription and breast cancer growth. Mol Cancer Res; 14(10); 994-1008. ©2016 AACR.
Collapse
Affiliation(s)
- Terry R Medler
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois. Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Justin M Craig
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Alyson A Fiorillo
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois
| | - Yvonne B Feeney
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Charles V Clevenger
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois. Department of Pathology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
43
|
CD44 increases the efficiency of distant metastasis of breast cancer. Oncotarget 2016; 6:11465-76. [PMID: 25888636 PMCID: PMC4484469 DOI: 10.18632/oncotarget.3410] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/19/2015] [Indexed: 11/25/2022] Open
Abstract
Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients.
Collapse
|
44
|
Sudo H, Tsuji AB, Sugyo A, Takuwa H, Masamoto K, Tomita Y, Suzuki N, Imamura T, Koizumi M, Saga T. Establishment and evaluation of a new highly metastatic tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and green fluorescent protein. Int J Oncol 2015; 48:525-32. [PMID: 26691676 DOI: 10.3892/ijo.2015.3300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is the most common cancer in women. Although advances in diagnostic imaging for early detection, surgical techniques and chemotherapy have improved overall survival, the prognosis of patients with metastatic breast cancer remains poor. Understanding cancer cell dynamics in the metastatic process is important to develop new therapeutic strategies. Experimental animal models and imaging would be powerful tools for understanding of the molecular events of multistep process of metastasis. In the present study, to develop a new cancer cell line that is applicable to bioluminescence and fluorescence imaging, we transfected the expression vector of a green fluorescent protein ZsGreen1 into a metastatic cell line 5a-D-Luc, which is a subclone of the MDA-MB-231 breast cancer cell line expressing luciferase, and established a new tumor cell line 5a-D-Luc-ZsGreen expressing both luciferase and ZsGreen1. The 5a-D-Luc-ZsGreen cells proliferate more rapidly and have a more invasive phenotype compared with 5a-D-Luc cells following intracardiac injection. Metastasis sites were easily detected in the whole body by bioluminescence imaging and in excised tissues by ex vivo fluorescence imaging. The fluorescence of 5a-D-Luc-ZsGreen cells was not lost after formalin fixation and decalcification. It enabled us to easily evaluate tumor spread and localization at the cellular level in microscopic analysis. The strong fluorescence of 5a-D-Luc-ZsGreen cells allowed for real-time imaging of circulating tumor cells in cerebral blood vessels of live animals immediately after intracardiac injection of cells using two-photon laser-scanning microscopy. These findings suggest that the 5a-D-Luc-ZsGreen cells would be a useful tool for research on mechanisms of metastatic process in animal models.
Collapse
Affiliation(s)
- Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Hiroyuki Takuwa
- Biophysics Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | - Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
45
|
González-Ballesteros N, Pérez-Álvarez D, Henriques M, Nascimento B, Laranjo M, Santos K, Casalta-Lopes J, Abrantes A, Botelho M, Pineiro M, Paixão J, Rodríguez-Argüelles M. Copper(I) complexes of methyl 4-aryl-6-methyl-3,4-dihydropyrimidine-2(1H)-thione-5-carboxylates. Synthesis, characterization and activity in human breast cancer cells. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Pratap UP, Sharma HR, Mohanty A, Kale P, Gopinath S, Hima L, Priyanka HP, ThyagaRajan S. Estrogen upregulates inflammatory signals through NF-κB, IFN-γ, and nitric oxide via Akt/mTOR pathway in the lymph node lymphocytes of middle-aged female rats. Int Immunopharmacol 2015; 29:591-598. [PMID: 26440402 DOI: 10.1016/j.intimp.2015.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/02/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022]
Abstract
The alterations in the secretion of sex steroids, especially estrogen, in females throughout reproductive life and its decline with age alters the functions of the neuroendocrine-immune network and renders them susceptible to age-related diseases and cancers. This study investigates the mechanisms of estrogen-induced alterations in cell-mediated immune and inflammatory responses in the lymphocytes from lymph nodes (axillary and inguinal) of ovariectomized (OVX) middle-aged female rats. Ovariectomized middle-aged (MA) Sprague-Dawley female rats (n=8) were implanted with 17β-estradiol (E2) 30-day release pellets (0.6 and 300μg). At the end of the treatment period, lymph nodes (axillary and inguinal) were isolated and examined for serum 17β-estradiol, lymphoproliferation, cytokine production, expression of p-Akt, p-mTOR, p-IκB-α and p-NF-κB (p50 and p65), extent of lipid peroxidation, nitric oxide (NO) production, cytochrome c oxidase activity and reactive oxygen species (ROS) production. There was an OVX-related decline in serum 17β-estradiol level, Con A-induced lymphoproliferation, p-Akt and p-mTOR expression, and cytochrome c oxidase (COX) activity. E2 supplementation increased serum 17β-estradiol level, lymphoproliferation, expression of p-Akt, p-mTOR, p-IκB-α and p-NF-κB (p50 and p65), lipid peroxidation, IFN-γ, TNF-α, ROS and NO production, while it decreased IL-6 production. E2 mediates inflammatory responses by increasing the levels of NO and TNF-α by up regulating IFN-γ and simultaneously promotes aging through the generation of free radicals as reflected by increased lipid peroxidation and ROS production in lymph nodes. These findings may have wide implications to immunity and inflammatory disorders including autoimmune diseases predominantly prevalent in females.
Collapse
Affiliation(s)
- Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Himanshu R Sharma
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Aparna Mohanty
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Prathamesh Kale
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinivasan Gopinath
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
47
|
Ogba N, Manning NG, Bliesner BS, Ambler SK, Haughian JM, Pinto MP, Jedlicka P, Joensuu K, Heikkilä P, Horwitz KB. Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Breast Cancer Res 2014; 16:489. [PMID: 25475897 PMCID: PMC4303198 DOI: 10.1186/s13058-014-0489-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Luminal, estrogen receptor-positive (ER+) breast cancers can metastasize but lie dormant for years before recurrences prove lethal. Understanding the roles of estrogen (E) or progestin (P) in development of luminal metastases or in arousal from dormancy is hindered by few preclinical models. We have developed such models. Methods Immunocompromised, ovariectomized (ovx’d) mice were intracardiac-injected with luminal or basal human breast cancer cells. Four lines were tested: luminal ER+PR+ cytokeratin 5-negative (CK5−) E3 and MCF-7 cells, basal ER−PR−CK5+ estrogen withdrawn-line 8 (EWD8) cells, and basal ER−PR−CK5− MDA-MB-231 cells. Development of micrometastases or macrometastases was quantified in ovx’d mice and in mice supplemented with E or P or both. Metastatic deposits were analyzed by immunohistochemistry for luminal, basal, and proliferation markers. Results ER−PR− cells generated macrometastases in multiple organs in the absence or presence of hormones. By contrast, ovx’d mice injected with ER+PR+ cells appeared to be metastases-free until they were supplemented with E or E+P. Furthermore, unlike parental ER+PR+CK5− cells, luminal metastases were heterogeneous, containing a significant (6% to 30%) proportion of non-proliferative ER−PR−CK5+ cells that would be chemotherapy-resistant. Additionally, because these cells lack receptors, they would also be endocrine therapy-resistant. With regard to ovx’d control mice injected with ER+PR+ cells that appeared to be metastases-free, systematic pathologic analysis of organs showed that some harbor a reservoir of dormant micrometastases that are ER+ but PR−. Such cells may also be endocrine therapy- and chemotherapy-resistant. Their emergence as macrometastases can be triggered by E or E+P restoration. Conclusions We conclude that hormones promote development of multi-organ macrometastases in luminal disease. The metastases display a disturbing heterogeneity, containing newly emergent ER−PR− subpopulations that would be resistant to endocrine therapy and chemotherapy. Similar cells are found in luminal metastases of patients. Furthermore, lack of hormones is not protective. While no overt metastases form in ovx’d mice, luminal tumor cells can seed distant organs, where they remain dormant as micrometastases and sheltered from therapies but arousable by hormone repletion. This has implications for breast cancer survivors or women with occult disease who are prescribed hormones for contraception or replacement purposes. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ndiya Ogba
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - Nicole G Manning
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - Brian S Bliesner
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - S Kelly Ambler
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - James M Haughian
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - Mauricio P Pinto
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - Paul Jedlicka
- Department of Pathology, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| | - Kristiina Joensuu
- Department of Pathology, University of Helsinki, 12801 E. 7th Avenue, Helsinki, 00014, Finland.
| | - Päivi Heikkilä
- Department of Pathology, University of Helsinki, 12801 E. 7th Avenue, Helsinki, 00014, Finland.
| | - Kathryn B Horwitz
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA. .,Department of Pathology, University of Colorado Anschutz Medical Campus, 12801 E. 7th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
48
|
Knox AJ, Scaling AL, Pinto MP, Bliesner BS, Haughian JM, Abdel-Hafiz HA, Horwitz KB. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease. Breast Cancer Res 2014; 16:418. [PMID: 25116921 PMCID: PMC4187339 DOI: 10.1186/s13058-014-0418-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/22/2014] [Indexed: 12/27/2022] Open
Abstract
Introduction Many Luminal breast cancers are heterogeneous, containing substantial numbers of estrogen (ER) and progesterone (PR) receptor-negative cells among the ER+ PR+ ones. One such subpopulation we call “Luminobasal” is ER-, PR- and cytokeratin 5 (CK5)-positive. It is not targeted for treatment. Methods To address the relationships between ER+PR+CK5– and ER–PR–CK5+ cells in Luminal cancers and tightly control their ratios we generated isogenic pure Luminal (pLUM) and pure Luminobasal (pLB) cells from the same parental Luminal human breast cancer cell line. We used high-throughput screening to identify pLB-specific drugs and examined their efficacy alone and in combination with hormone therapy in mixed-cell tumor models. Results We show that pLUM and MCF7 cells suppress proliferation of pLB cells in mixed-cell 3D colonies in vitro and that pLUM cells suppress growth of pLB cells in mixed-cell xenografts in vivo. High-throughput screening of 89 FDA-approved oncology drugs shows that pLB cells are sensitive to monotherapy with the epidermal growth factor receptor (EGFR) inhibitors gefitinib and erlotinib. By exploiting mixed-cell 3D colonies and mixed-cell solid mouse tumors models we demonstrate that combination therapy with gefitinib plus the anti-estrogen fulvestrant constitutes a robust treatment strategy. Conclusions We propose that response to combination endocrine/EGFR inhibitor therapies in heterogeneous Luminal cancers may improve long-term survival in patients whose primary tumors have been preselected for appropriate biomarkers, including ER, PR, CK5 and EGFR. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0418-6) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Liang Y, Besch-Williford C, Aebi JD, Mafuvadze B, Cook MT, Zou X, Hyder SM. Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor RO 48-8071. Breast Cancer Res Treat 2014; 146:51-62. [PMID: 24878988 PMCID: PMC11121502 DOI: 10.1007/s10549-014-2996-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
Abstract
In most human breast cancers, tumor cell proliferation is estrogen dependent. Although hormone-responsive tumors initially respond to anti-estrogen therapies, most of them eventually develop resistance. Our goal was to identify alternative targets that might be regulated to control breast cancer progression. Sulforhodamine B assay was used to measure the viability of cultured human breast cancer cell lines exposed to various inhibitors. Protein expression in whole-cell extracts was determined by Western blotting. BT-474 tumor xenografts in nude mice were used for in vivo studies of tumor progression. RO 48-8071 ([4'-[6-(Allylmethylamino)hexyloxy]-4-bromo-2'-fluorobenzophenone fumarate]; RO), a small-molecule inhibitor of oxidosqualene cyclase (OSC, a key enzyme in cholesterol biosynthesis), potently reduced breast cancer cell viability. In vitro exposure of estrogen receptor (ER)-positive human breast cancer cells to pharmacological levels of RO or a dose close to the IC50 for OSC (nM) reduced cell viability. Administration of RO to mice with BT-474 tumor xenografts prevented tumor growth, with no apparent toxicity. RO degraded ERα while concomitantly inducing the anti-proliferative protein ERβ. Two other cholesterol-lowering drugs, Fluvastatin and Simvastatin, were less effective in reducing breast cancer cell viability and were found not to induce ERβ. ERβ inhibition or knockdown prevented RO-dependent loss of cell viability. Importantly, RO had no effect on the viability of normal human mammary cells. RO is a potent inhibitor of hormone-dependent human breast cancer cell proliferation. The anti-tumor properties of RO appear to be in part due to an off-target effect that increases the ratio of ERβ/ERα in breast cancer cells.
Collapse
Affiliation(s)
- Yayun Liang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci 2014; 71:1549. [PMID: 25031550 PMCID: PMC3962223 DOI: 10.1007/s00018-013-1376-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Estrogen and estrogen receptors (ERs) are critical regulators of breast epithelial cell proliferation, differentiation, and apoptosis. Compromised signaling vis-à-vis the estrogen receptor is believed to be a major contributing factor in the malignancy of breast cells. Targeting the ER signaling pathway has been a focal point in the development of breast cancer therapy. Although approximately 75 % of breast cancer patients are classified as luminal type (ER(+)), which predicts for response to endocrine-based therapy; however, innate or acquired resistance to endocrine-based drugs remains a serious challenge. The complexity of regulation for estrogen signaling coupled with the crosstalk of other oncogenic signaling pathways is a reason for endocrine therapy resistance. Alternative strategies that target novel molecular mechanisms are necessary to overcome this current and urgent gap in therapy. A thorough analysis of estrogen-signaling regulation is critical. In this review article, we will summarize current insights into the regulation of estrogen signaling as related to breast carcinogenesis and breast cancer therapy.
Collapse
|