1
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
2
|
Moskwa N, Mahmood A, Nelson DA, Altrieth AL, Forni PE, Larsen M. Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids. Development 2022; 149:dev200167. [PMID: 35224622 PMCID: PMC8977102 DOI: 10.1242/dev.200167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Stromal cells can direct the differentiation of epithelial progenitor cells during organ development. Fibroblast growth factor (FGF) signaling is essential for submandibular salivary gland development. Through stromal fibroblast cells, FGF2 can indirectly regulate proacinar cell differentiation in organoids, but the mechanisms are not understood. We performed single-cell RNA-sequencing and identified multiple stromal cell subsets, including Pdgfra+ stromal subsets expressing both Fgf2 and Fgf10. When combined with epithelial progenitor cells in organoids, magnetic-activated cell-sorted PDGFRα+ cells promoted proacinar cell differentiation similarly to total stroma. Gene expression analysis revealed that FGF2 increased the expression of multiple stromal genes, including Bmp2 and Bmp7. Both BMP2 and BMP7 synergized with FGF2, stimulating proacinar cell differentiation but not branching. However, stromal cells grown without FGF2 did not support proacinar organoid differentiation and instead differentiated into myofibroblasts. In organoids, TGFβ1 treatment stimulated myofibroblast differentiation and inhibited the proacinar cell differentiation of epithelial progenitor cells. Conversely, FGF2 reversed the effects of TGFβ1. We also demonstrated that adult salivary stromal cells were FGF2 responsive and could promote proacinar cell differentiation. These FGF2 signaling pathways may have applications in future regenerative therapies.
Collapse
Affiliation(s)
- Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ayma Mahmood
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Amber L. Altrieth
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
3
|
Liu X, Zhan T, Gao Y, Cui S, Liu W, Zhang C, Zhuang S. Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells via activated ERα and Wnt/β-catenin signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118370. [PMID: 34656677 DOI: 10.1016/j.envpol.2021.118370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Benzophenone-1 (BP-1) belongs to personal care product-related contaminants of emerging concern and has been recently reported to induce xenoestrogenic effects. However, the underlying mechanisms leading to the activation of target receptors and subsequent various adverse outcomes remain unclear, which is beneficial to safety and health risk assessment of benzophenone-type ultraviolet filters with their widespread occurrence. Herein, we investigated disrupting effects of BP-1 at environmentally relevant concentrations (10-9-10-6 M) on estrogen receptor (ER) α-associated signaling pathways. Molecular dynamics simulations together with yeast-based assays revealed the steady binding of BP-1 to ERα ligand binding domain (LBD) and hence the observed agonistic activity. BP-1 triggered interaction between ERα and β-catenin in human SKOV3 ovarian cancer cells and caused translocation of β-catenin from the cytoplasm to the nucleus, leading to aberrant activation of Wnt/β-catenin. BP-1 consequently induced dissemination of SKOV3 via regulating epithelial-mesenchymal transitions (EMT) biomarkers including minimally downregulating ZO-1 gene to 78.0 ± 10.1% and maximally upregulating MMP9 gene to 144.1 ± 29.7% and promoted 1.03-1.83 fold proliferation, migration and invasion of SKOV3. We provide the first evidence that the BP-1 activated ERα triggers crosstalk between ERα and Wnt/β-catenin pathway, leading to the abnormal stimulation and progression of SKOV3 cancer cells.
Collapse
Affiliation(s)
- Xujun Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingjie Zhan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX, 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021; 10:cells10112988. [PMID: 34831211 PMCID: PMC8616429 DOI: 10.3390/cells10112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.
Collapse
|
5
|
Matsuo K, Akiba J, Ogasawara S, Kondo R, Naito Y, Kusano H, Sanada S, Kakuma T, Kusukawa J, Yano H. Expression and significance of laminin receptor in squamous cell carcinoma of the tongue. J Oral Pathol Med 2021; 51:263-271. [PMID: 34581463 DOI: 10.1111/jop.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Laminin receptor is a non-integrin cell-surface receptor that binds laminin present on the basement membrane. It has been reported to be associated with infiltration and metastasis of various malignant tumors. However, no studies regarding tongue cancer have been reported. This study aimed to clarify the role of laminin receptor in squamous cell carcinoma of the tongue. METHODS We performed immunohistochemical staining of specimens from 66 patients with squamous cell carcinoma of the tongue and assessed laminin receptor expression and clinicopathological factors. As epithelial-mesenchymal transition has been shown to be associated with infiltration and metastasis of malignant tumors, staining for E-cadherin, vimentin, and N-cadherin were also performed. RESULTS Of 20 patients with postoperative recurrence, 14 exhibited high laminin receptor expression (p = 0.0025). Kaplan-Meier analysis revealed a significantly shorter time to postoperative recurrence for the high laminin receptor expression group than that for the low laminin receptor expression group (p = 0.0008). Based on multivariate analyses for postoperative recurrence, high laminin receptor expression was associated with poor prognosis (high expression vs. low expression; HR =3.19, 95% CI =0.92-11.08; p = 0.0682). There was a correlation between laminin receptor and N-cadherin (p = 0.0089) but not between laminin receptor and E-cadherin (p = 0.369) or vimentin (p = 0.4221). CONCLUSION These results suggest that high laminin receptor expression is a useful prognostic factor for postoperative recurrence and may be a target for molecular therapy to treat squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Katsuhisa Matsuo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Sakiko Sanada
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuyuki Kakuma
- Department of Biostatistics Center, Kurume University, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
6
|
Fujimoto T, Inoue-Mochita M, Iraha S, Tanihara H, Inoue T. Suberoylanilide hydroxamic acid (SAHA) inhibits transforming growth factor-beta 2-induced increases in aqueous humor outflow resistance. J Biol Chem 2021; 297:101070. [PMID: 34389355 PMCID: PMC8406002 DOI: 10.1016/j.jbc.2021.101070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
Transforming growth factor-beta 2 (TGF-β2) is highly concentrated in the aqueous humor of primary open-angle glaucoma patients. TGF-β2 causes fibrosis of outflow tissues, such as the trabecular meshwork (TM), and increases intraocular pressure by increasing resistance to aqueous humor outflow. Recently, histone deacetylase (HDAC) activity was investigated in fibrosis in various tissues, revealing that HDAC inhibitors suppress tissue fibrosis. However, the effect of HDAC inhibitors on fibrosis in the eye was not determined. Here, we investigated the effect of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on TGF-β2-induced increased resistance to aqueous humor outflow. We found that SAHA suppressed TGF-β2-induced outflow resistance in perfused porcine eyes. Moreover, SAHA cotreatment suppressed TGF-β2-induced ocular hypertension in rabbits. The permeability of monkey TM (MTM) and Schlemm’s canal (MSC) cell monolayers was decreased by TGF-β2 treatment. SAHA inhibited the effects of TGF-β2 on the permeability of these cells. TGF-β2 also increased the expression of extracellular matrix proteins (fibronectin and collagen type I or IV) in MTM, MSC, and human TM (HTM) cells, while SAHA inhibited TGF-β2-induced extracellular matrix protein expression in these cells. SAHA also inhibited TGF-β2-induced phosphorylation of Akt and ERK, but did not inhibit Smad2/3 phosphorylation, the canonical pathway of TGF-β signaling. Moreover, SAHA induced the expression of phosphatase and tensin homolog, a PI3K/Akt signaling factor, as well as bone morphogenetic protein 7, an endogenous antagonist of TGF-β. These results imply that SAHA prevents TGF-β2-induced increases in outflow resistance and regulates the non-Smad pathway of TGF-β signaling in TM and MSC cells.
Collapse
Affiliation(s)
- Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Miyuki Inoue-Mochita
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Tan B, Khattak A, Felip E, Kelly K, Rich P, Wang D, Helwig C, Dussault I, Ojalvo LS, Isambert N. Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Patients with Esophageal Adenocarcinoma: Results from a Phase 1 Cohort. Target Oncol 2021; 16:435-446. [PMID: 34009501 PMCID: PMC8266790 DOI: 10.1007/s11523-021-00809-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Esophageal adenocarcinoma patients have limited treatment options. TGF-β can be upregulated in esophageal adenocarcinoma, and blocking this pathway may enhance clinical response to PD-(L)1 inhibitors. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human IgG1 mAb blocking PD-L1. OBJECTIVE The objective of this study was to investigate the efficacy and safety of bintrafusp alfa in patients with advanced, post-platinum esophageal adenocarcinoma, unselected for PD-L1 expression. PATIENTS AND METHODS In this phase 1 study, patients with post-platinum, PD-L1-unselected esophageal adenocarcinoma received bintrafusp alfa 1200 mg every 2 weeks until disease progression, unacceptable toxicity, or withdrawal. The primary endpoint was confirmed best overall response per RECIST 1.1 by independent review committee (IRC). RESULTS By the database cutoff of 24 August 2018, 30 patients (80.0% had two or more prior anticancer regimens) received bintrafusp alfa for a median of 6.1 weeks. The confirmed objective response rate (ORR) per IRC was 20.0% (95% CI 7.7-38.6); responses lasted 1.3-8.3 months. Most responses (83.3%) occurred in tumors with an immune-excluded phenotype. Investigator-assessed confirmed ORR was 13.3% (95% CI 3.8-30.7). Nineteen patients (63.3%) had treatment-related adverse events: seven patients (23.3%) had grade 3 events; no grade 4 events or treatment-related deaths occurred. CONCLUSIONS Bintrafusp alfa showed signs of clinical efficacy with a manageable safety profile in patients with heavily pretreated, advanced esophageal adenocarcinoma. CLINICAL TRIALS REGISTRATION NCT02517398.
Collapse
Affiliation(s)
- Benjamin Tan
- Washington University School of Medicine, St Louis, MO, USA
| | | | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | - Karen Kelly
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Patricia Rich
- Cancer Treatment Centers of America, Atlanta, GA, USA
- Piedmont Healthcare, Atlanta, GA, USA
| | - Ding Wang
- Henry Ford Cancer Institute, Detroit, MI, USA
| | | | - Isabelle Dussault
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
- An affiliate of Merck KGaA, Darmstadt, Germany
| | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA
- An affiliate of Merck KGaA, Darmstadt, Germany
| | - Nicolas Isambert
- Poitiers University Hospital, 2 rue de la Miléterie, BP 577, 86021, Poitiers, France.
| |
Collapse
|
8
|
Zhang MK, Shang QJ, Li SY, Wang B, Liu G, Wang ZL. TGF-β1: is it related to the stiffness of breast lesions and can it predict axillary lymph node metastasis? ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:870. [PMID: 34164504 PMCID: PMC8184473 DOI: 10.21037/atm-21-1705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background This study aimed to explore whether transforming growth factor β1 (TGF-β1) is correlated with the stiffness of breast lesions and if it can predict axillary lymph node (ALN) metastasis. Methods A retrospective analysis was performed in our hospital. A total of 135 breast lesions in 130 patients who were to undergo vacuum-assisted excisional biopsy (VAEB) or surgery were enrolled between April 2018 and October 2018. Ultrasound (US) and shear wave elastography (SWE) examinations were performed for every lesion before VAEB or surgery. Pathology results obtained by VAEB or surgery were regarded as gold criteria. The elastic parameters and TGF-β1 expression level of malignant breast lesions were compared with those of benign lesions; the relationship between TGF-β1 expression level in breast lesions and the elastic parameters was analyzed; the TGF-β1 expression level in breast lesions with or without ALN metastasis were compared; and the efficacy of TGF-β1 expression level in predicting ALN metastasis was analyzed. Results The malignant breast lesions were different from benign lesions in the maximum and mean elasticity (Emax, Emean), standard deviation of elasticity (ESD), elastic ratio of the lesions to the peripheral tissue (Eratio), and the occurrence rate of "stiff rim sign" (P<0.001). The expression level of TGF-β1 in benign breast lesions was significantly lower than that in malignant lesions (P<0.001), and the TGF-β1 expression level was positively correlated with Emax, Emean, ESD, and Eratio (r=0.869, 0.840, 0.834, and 0.734, respectively). The expression level of TGF-β1 in breast lesions with or without "stiff rim sign" was significantly different (P<0.001), and the TGF-β1 expression level in malignant breast lesions with ALN metastasis was significantly higher than that in malignant lesions without ALN metastasis (P=0.0009). When TGF-β1 expression level >0.3138 was taken as the cut-off value, its efficacy in predicting ALN metastasis was 0.853, with a sensitivity of 86.67%, and a specificity 83.33%. Conclusions The expression level of TGF-β1 was positively correlated with the elastic parameters of breast lesions, and it could be useful for predicting ALN metastasis, especially for negative ALN diagnosis clinically.
Collapse
Affiliation(s)
- Meng Ke Zhang
- Department of Ultrasound, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qiu Jing Shang
- Department of Ultrasound, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shi Yu Li
- Department of Ultrasound, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bo Wang
- Department of Ultrasound, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Gang Liu
- Department of Radiology, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhi Li Wang
- Department of Ultrasound, First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
9
|
Gotovac JR, Kader T, Milne JV, Fujihara KM, Lara-Gonzalez LE, Gorringe KL, Kalimuthu SN, Jayawardana MW, Duong CP, Phillips WA, Clemons NJ. Loss of SMAD4 Is Sufficient to Promote Tumorigenesis in a Model of Dysplastic Barrett's Esophagus. Cell Mol Gastroenterol Hepatol 2021; 12:689-713. [PMID: 33774196 PMCID: PMC8267443 DOI: 10.1016/j.jcmgh.2021.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Esophageal adenocarcinoma (EAC) develops from its precursor Barrett's esophagus through intermediate stages of low- and high-grade dysplasia. However, knowledge of genetic drivers and molecular mechanisms implicated in disease progression is limited. Herein, we investigated the effect of Mothers against decapentaplegic homolog 4 (SMAD4) loss on transforming growth factor β (TGF-β) signaling functionality and in vivo tumorigenicity in high-grade dysplastic Barrett's cells. METHODS An in vivo xenograft model was used to test tumorigenicity of SMAD4 knockdown or knockout in CP-B high-grade dysplastic Barrett's cells. RT2 polymerase chain reaction arrays were used to analyze TGF-β signaling functionality, and low-coverage whole-genome sequencing was performed to detect copy number alterations upon SMAD4 loss. RESULTS We found that SMAD4 knockout significantly alters the TGF-β pathway target gene expression profile. SMAD4 knockout positively regulates potential oncogenes such as CRYAB, ACTA2, and CDC6, whereas the CDKN2A/B tumor-suppressor locus was regulated negatively. We verified that SMAD4 in combination with CDC6-CDKN2A/B or CRYAB genetic alterations in patient tumors have significant predictive value for poor prognosis. Importantly, we investigated the effect of SMAD4 inactivation in Barrett's tumorigenesis. We found that genetic knockdown or knockout of SMAD4 was sufficient to promote tumorigenesis in dysplastic Barrett's esophagus cells in vivo. Progression to invasive EAC was accompanied by distinctive and consistent copy number alterations in SMAD4 knockdown or knockout xenografts. CONCLUSIONS Altogether, up-regulation of oncogenes, down-regulation of tumor-suppressor genes, and chromosomal instability within the tumors after SMAD4 loss implicates SMAD4 as a protector of genome integrity in EAC development and progression. Foremost, SMAD4 loss promotes tumorigenesis from dysplastic Barrett's toward EAC.
Collapse
Affiliation(s)
- Jovana R Gotovac
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Tanjina Kader
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Julia V Milne
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Kenji M Fujihara
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Luis E Lara-Gonzalez
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Kylie L Gorringe
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Sangeetha N Kalimuthu
- Anatomical Pathology, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Madawa W Jayawardana
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Cuong P Duong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Valenzano MC, Rybakovsky E, Chen V, Leroy K, Lander J, Richardson E, Yalamanchili S, McShane S, Mathew A, Mayilvaganan B, Connor L, Urbas R, Huntington W, Corcoran A, Trembeth S, McDonnell E, Wong P, Newman G, Mercogliano G, Zitin M, Etemad B, Thornton J, Daum G, Raines J, Kossenkov A, Fong LY, Mullin JM. Zinc Gluconate Induces Potentially Cancer Chemopreventive Activity in Barrett's Esophagus: A Phase 1 Pilot Study. Dig Dis Sci 2021; 66:1195-1211. [PMID: 32415564 PMCID: PMC7677901 DOI: 10.1007/s10620-020-06319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/02/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chemopreventive effects of zinc for esophageal cancer have been well documented in animal models. This prospective study explores if a similar, potentially chemopreventive action can be seen in Barrett's esophagus (BE) in humans. AIMS To determine if molecular evidence can be obtained potentially indicating zinc's chemopreventive action in Barrett's metaplasia. METHODS Patients with a prior BE diagnosis were placed on oral zinc gluconate (14 days of 26.4 mg zinc BID) or a sodium gluconate placebo, prior to their surveillance endoscopy procedure. Biopsies of Barrett's mucosa were then obtained for miRNA and mRNA microarrays, or protein analyses. RESULTS Zinc-induced mRNA changes were observed for a large number of transcripts. These included downregulation of transcripts encoding proinflammatory proteins (IL32, IL1β, IL15, IL7R, IL2R, IL15R, IL3R), upregulation of anti-inflammatory mediators (IL1RA), downregulation of transcripts mediating epithelial-to-mesenchymal transition (EMT) (LIF, MYB, LYN, MTA1, SRC, SNAIL1, and TWIST1), and upregulation of transcripts that oppose EMT (BMP7, MTSS1, TRIB3, GRHL1). miRNA arrays showed significant upregulation of seven miRs with tumor suppressor activity (-125b-5P, -132-3P, -548z, -551a, -504, -518, and -34a-5P). Of proteins analyzed by Western blot, increased expression of the pro-apoptotic protein, BAX, and the tight junctional protein, CLAUDIN-7, along with decreased expression of BCL-2 and VEGF-R2 were noteworthy. CONCLUSIONS When these mRNA, miRNA, and protein molecular data are considered collectively, a cancer chemopreventive action by zinc in Barrett's metaplasia may be possible for this precancerous esophageal tissue. These results and the extensive prior animal model studies argue for a future prospective clinical trial for this safe, easily-administered, and inexpensive micronutrient, that could determine if a chemopreventive action truly exists.
Collapse
Affiliation(s)
- M C Valenzano
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - E Rybakovsky
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - V Chen
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - K Leroy
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - J Lander
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - E Richardson
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S Yalamanchili
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S McShane
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - A Mathew
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - B Mayilvaganan
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - L Connor
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - R Urbas
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - W Huntington
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - A Corcoran
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S Trembeth
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - E McDonnell
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - P Wong
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Newman
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Mercogliano
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - M Zitin
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - B Etemad
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - J Thornton
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Daum
- The Department of Pathology, Lankenau Medical Center, Wynnewood, USA
| | - J Raines
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | - L Y Fong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Mullin
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA.
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wang J, Wang C, Li Q, Guo C, Sun W, Zhao D, Jiang S, Hao L, Tian Y, Liu S, Sun MZ. miR-429-CRKL axis regulates clear cell renal cell carcinoma malignant progression through SOS1/MEK/ERK/MMP2/MMP9 pathway. Biomed Pharmacother 2020; 127:110215. [PMID: 32413671 DOI: 10.1016/j.biopha.2020.110215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis and tumorigenesis of clear cell renal cell carcinoma (ccRCC) remain unclear. The deregulations of miR-429, a member of miR-200 family, and v-crk sarcoma virus CT10 oncogene homologue (avian)-like (CRKL), an adaptor protein of CRK family, are involved in the development, metastasis and prognosis of various cancers. Current study aimed to demonstrate the differential expressions of miR-429 and CRKL with their correlationship and molecular regulation mechanism in ccRCC malignancy. miR-429 and CRKL separately showed suppressing and promoting effects in ccRCC. Lower miR-429 expression and higher CRKL expression were negatively correlated in surgical cancerous tissues by promoting the advance of ccRCC. By binding to the 3'-UTR of CRKL, miR-429 reversely regulated CRKL for its functionalities in ccRCC cells. CRKL knockdown and overexpression separately decreased and increased the in vitro migration and invasion of 786-O cells, which were consistent with the influences of miR-429 overexpression and knockdown on 786-O through respectively downregulating and upregulating CRKL via SOS1/MEK/ERK/MMP2/MMP9 pathway. The enhancements of CRKL expression, migration and invasion abilities and SOS1/MEK/ ERK/MMP2/MMP9 activation induced by TGF-β stimulation in 786-O cells could be antagonized by miR-429 overexpression. Exogenous re-expression of CRKL abrogated miR-429 suppression on the migration and invasion of 786-O cells. Collectively, miR-429 deficiency negatively correlated with CRKL overexpression promoted the aggressiveness of cancer cells and advanced the clinical progression of ccRCC patients. miR-429-CRKL axial regulation provides new clues to the fundamental research, diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Jinxia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chengyi Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qian Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weibin Sun
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Dongting Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Sixiong Jiang
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Lihong Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yuxiang Tian
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Jiang W, Xu Z, Yu L, Che J, Zhang J, Yang J. MicroRNA-144-3p suppressed TGF-β1-induced lung cancer cell invasion and adhesion by regulating the Src-Akt-Erk pathway. Cell Biol Int 2020; 44:51-61. [PMID: 31038242 DOI: 10.1002/cbin.11158] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023]
Abstract
Lung cancer remains a leading cause to cancer-related death worldwide. The anti-cancer ability of microRNA-144-3p has been reported in many cancer types. This study focused on the mechanisms underlying miR-144-3p in inhibiting lung cancer. The expression levels of miR-144-3p and steroid receptor coactivator (Src) in different lung cancer cell lines and those in bronchial epithelial cells (16HBE) were compared. miR-144-3p mimic and siSrc were transfected into A549 cells. Under the conditions of transforming growth factor-β1 (TGF-β1). Small interfering transfection or TGF-β1 treatment, cell invasive and adhesive abilities were analyzed by Transwell and cell adhesion assays. miR-144-3p inhibitor and siSrc were co-transfected into A549 cells and the changes in cell invasion and adhesion were detected. The activation of Src-protein kinase B-extracellular-regulated protein kinases (Src-Akt-Erk) pathway was determined using Western blot. The downregulated miR-144-3p and upregulated Src were generally detected in lung cancer cell lines and were the most significant genes in A549 cells. Both miR-144-3p overexpression and Src inhibition could obviously inhibit the invasion and adhesion abilities of A549 cells in the presence or absence of the effects of TGF-β1. The inhibition of Src could block the promotive effects of miR-144-3p inhibitor and TGF-β1 on cell invasion and adhesion. Furthermore, we found that miR-144-3p could negatively regulate the phosphorylation levels of Akt and Erk. Our data indicated the essential role of Src in the mechanisms underlying TGF-β1-induced cell invasion and adhesion of lung cancer, and that miR-144-3p could effectively suppress TGF-β1-induced aggressive lung cancer cells by regulating Src expression.
Collapse
Affiliation(s)
- Wensheng Jiang
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Zhiying Xu
- Department of Nuclear Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai, Shandong Province, 264000, China
| | - Lili Yu
- Department of Breast Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Jianpeng Che
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Jie Zhang
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| | - Jun Yang
- Department of Cardiothoracic Surgery, Yantaishan Hospital of Yantai City, No. 91 Jiefang Road, Yantai, Shandong Province, 264000, China
| |
Collapse
|
13
|
Chei S, Oh HJ, Song JH, Seo YJ, Lee K, Lee BY. Magnolol Suppresses TGF-β-Induced Epithelial-to-Mesenchymal Transition in Human Colorectal Cancer Cells. Front Oncol 2019; 9:752. [PMID: 31632899 PMCID: PMC6779771 DOI: 10.3389/fonc.2019.00752] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023] Open
Abstract
Tumor metastasis is the end state of a multistep process that includes dissemination of tumor cells to distant organs and requires tumor cells to adapt to different tissue microenvironments. During metastasis, tumor cells undergo a morphological change known as transdifferentiation or the epithelial-to-mesenchymal transition (EMT). In normal embryonic development, the EMT occurs in the context of morphogenesis in a variety of tissues. Over the course of this process, epithelial cells lose their cell-cell adhesion and polarity properties. In this study, we investigated whether magnolol could suppress the EMT in human colorectal cancer cells. To this end, we examined the epithelial markers E-cadherin, ZO-1, and claudin and the mesenchymal markers N-cadherin, TWIST1, Slug, and Snail. Magnolol effectively inhibited EMT in human colon cancer cell lines by upregulating epithelial markers and downregulating mesenchymal markers. The EMT is induced by the TGF-β signaling pathway. To determine whether magnolol disrupts TGF-β signaling, we examined several mediators of this pathway, and found that magnolol decreased the levels of phosphorylated (i.e., active) ERK, GSK3β, and Smad. We conclude that magnolol blocks migration in HCT116 cells by suppressing TGF-β signaling.
Collapse
Affiliation(s)
- Sungwoo Chei
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Ji-Hyeon Song
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Young-Jin Seo
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Kippeum Lee
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Biomedical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
14
|
Caspa Gokulan R, Garcia-Buitrago MT, Zaika AI. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2019; 1872:37-48. [PMID: 31152823 PMCID: PMC6692203 DOI: 10.1016/j.bbcan.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest rising incidence rates in the U.S. and many other Western countries. One of the unique risk factors for EAC is gastroesophageal reflux disease (GERD), a chronic digestive condition in which acidic contents from the stomach, frequently mixed with duodenal bile, enter the esophagus resulting in esophageal tissue injury. At the cellular level, progression to EAC is underlined by continuous DNA damage caused by reflux and chronic inflammatory factors that increase the mutation rate and promote genomic instability. Despite recent successes in cancer diagnostics and treatment, EAC remains a poorly treatable disease. Recent research has shed new light on molecular alterations underlying progression to EAC and revealed novel treatment options. This review focuses on the genetic and molecular studies of EAC. The molecular changes that occur during the transformation of normal Barrett's esophagus to esophageal adenocarcinoma are also discussed.
Collapse
Affiliation(s)
| | | | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, United States of America.
| |
Collapse
|
15
|
Gladilin E, Ohse S, Boerries M, Busch H, Xu C, Schneider M, Meister M, Eils R. TGFβ-induced cytoskeletal remodeling mediates elevation of cell stiffness and invasiveness in NSCLC. Sci Rep 2019; 9:7667. [PMID: 31113982 PMCID: PMC6529472 DOI: 10.1038/s41598-019-43409-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Importance of growth factor (GF) signaling in cancer progression is widely acknowledged. Transforming growth factor beta (TGFβ) is known to play a key role in epithelial-to-mesenchymal transition (EMT) and metastatic cell transformation that are characterized by alterations in cell mechanical architecture and behavior towards a more robust and motile single cell phenotype. However, mechanisms mediating cancer type specific enhancement of cell mechanical phenotype in response to TGFβ remain poorly understood. Here, we combine high-throughput mechanical cell phenotyping, microarray analysis and gene-silencing to dissect cytoskeletal mediators of TGFβ-induced changes in mechanical properties of on-small-cell lung carcinoma (NSCLC) cells. Our experimental results show that elevation of rigidity and invasiveness of TGFβ-stimulated NSCLC cells correlates with upregulation of several cytoskeletal and motor proteins including vimentin, a canonical marker of EMT, and less-known unconventional myosins. Selective probing of gene-silenced cells lead to identification of unconventional myosin MYH15 as a novel mediator of elevated cell rigidity and invasiveness in TGFβ-stimulated NSCLC cells. Our experimental results provide insights into TGFβ-induced cytoskeletal remodeling of NSCLC cells and suggest that mediators of elevated cell stiffness and migratory activity such as unconventional cytoskeletal and motor proteins may represent promising pharmaceutical targets for restraining invasive spread of lung cancer.
Collapse
Affiliation(s)
- E Gladilin
- German Cancer Research Center, Div. Bioinformatics and Omics Data Analytics, Mathematikon - Berliner Str. 41, 69120, Heidelberg, Germany. .,University Heidelberg, BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben Corrensstrasse 3, 06466, Seeland, Germany.
| | - S Ohse
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - M Boerries
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department for Biometry, Epidemiology and Medical Bioinformatics and Comprehensive Cancer Center Freiburg (CCCF), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstrasse 153, 79110, Freiburg, Germany
| | - H Busch
- University of Freiburg, Institute of Molecular Medicine and Cell Research (IMMZ), Stefan-Meier-Str. 17, 79104, Freiburg, Germany.,University of Lübeck, Institute of Experimental Dermatology, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - C Xu
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany
| | - M Schneider
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - M Meister
- Thoraxklinik at Heidelberg University Hospital, Amalienstr. 5, 69126, Heidelberg, Germany
| | - R Eils
- Center for Digital Health, Berlin Institute of Health, and Charité Universitätsmedizin Berlin, Kapelle-Ufer 2, 10117, Berlin, Germany.,Health Data Science Unit, Heidelberg University Hospital, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Liu R, Li X, Hylemon PB, Zhou H. Conjugated Bile Acids Promote Invasive Growth of Esophageal Adenocarcinoma Cells and Cancer Stem Cell Expansion via Sphingosine 1-Phosphate Receptor 2-Mediated Yes-Associated Protein Activation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2042-2058. [PMID: 29963993 PMCID: PMC6105923 DOI: 10.1016/j.ajpath.2018.05.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) is the sixth leading cause of cancer deaths worldwide and has been dramatically increasing in incidence over the past decade. Gastroesophageal reflux and Barrett esophagus are well-established risk factors for disease progression. Conjugated bile acids (CBAs), including taurocholate (TCA), represent the major bile acids in the gastroesophageal refluxate of advanced Barrett esophagus and EAC patients. Our previous studies suggested that CBA-induced activation of sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in promoting cholangiocarcinoma cell invasive growth. However, the role of CBAs in EAC development and underlying mechanisms remains elusive. In the current study, we identified that the expression level of S1PR2 is correlated to invasiveness of EAC cells. TCA significantly promoted cell proliferation, migration, invasion, transformation, and cancer stem cell expansion in highly invasive EAC cells (OE-33 cells), but had less effect on the lower invasive EAC cells (OE-19 cells). Pharmacologic inhibition of S1PR2 with specific antagonist JTE-013 or knockdown of S1PR2 expression significantly reduced TCA-induced invasive growth of OE-33 cells, whereas overexpression of S1PR2 sensitized OE-19 cells to TCA-induced invasive growth. Furthermore, TCA-induced activation of S1PR2 was closely associated with YAP and β-catenin signaling pathways. In conclusion, CBA-induced activation of the S1PR2 signaling pathway is critically involved in invasive growth of EAC cells and represents a novel therapeutic target for EAC.
Collapse
Affiliation(s)
- Runping Liu
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiaojiaoyang Li
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
17
|
Dhawan U, Sue MW, Lan KC, Buddhakosai W, Huang PH, Chen YC, Chen PC, Chen WL. Nanochip-Induced Epithelial-to-Mesenchymal Transition: Impact of Physical Microenvironment on Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11474-11485. [PMID: 29557633 DOI: 10.1021/acsami.7b19467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a highly orchestrated process motivated by the nature of physical and chemical compositions of the tumor microenvironment (TME). The role of the physical framework of the TME in guiding cells toward EMT is poorly understood. To investigate this, breast cancer MDA-MB-231 and MCF-7 cells were cultured on nanochips comprising tantalum oxide nanodots ranging in diameter from 10 to 200 nm, fabricated through electrochemical approach and collectively referred to as artificial microenvironments. The 100 and 200 nm nanochips induced the cells to adopt an elongated or spindle-shaped morphology. The key EMT genes, E-cadherin, N-cadherin, and vimentin, displayed the spatial control exhibited by the artificial microenvironments. The E-cadherin gene expression was attenuated, whereas those of N-cadherin and vimentin were amplified by 100 and 200 nm nanochips, indicating the induction of EMT. Transcription factors, snail and twist, were identified for modulating the EMT genes in the cells on these artificial microenvironments. Localization of EMT proteins observed through immunostaining indicated the loss of cell-cell junctions on 100 and 200 nm nanochips, confirming the EMT induction. Thus, by utilizing an in vitro approach, we demonstrate how the physical framework of the TME may possibly trigger or assist in inducing EMT in vivo. Applications in the fields of drug discovery, biomedical engineering, and cancer research are expected.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Cheng Chen
- Department of Materials and Mineral Resources Engineering , National Taipei University of Technology , 1, Section 3, Zhongxiao E. Rd , Taipei , Taiwan 10608 , ROC
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering , National Taipei University of Technology , 1, Section 3, Zhongxiao E. Rd , Taipei , Taiwan 10608 , ROC
| | | |
Collapse
|
18
|
Abstract
RNA interference (RNAi) is a normal physiological mechanism in which a short effector antisense RNA molecule regulates target gene expression. It is a powerful tool to silence a particular gene of interest in a sequence-specific manner and can be used to target against various molecular pathways in esophageal adenocarcinoma by designing RNAi targeting key pathogenic genes. RNAi-based therapeutics against esophageal adenocarcinoma can be developed using different strategies including inhibition of overexpressed oncogenes, blocking cell division by interfering cyclins and related genes or enhancing apoptosis by suppressing anti-apoptotic genes. In addition, RNAi against multidrug resistance genes or chemo-resistance targets may provide promising cancer therapeutic options. Here, we describe RNAi technology using MET, a proto-oncogene in esophageal adenocarcinoma cells, as a model target. Lentiviral particles expressing MET shRNA was used to silence MET genes. Then, Western blot analysis was performed to confirm MET knockdown.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Australia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Australia.
| |
Collapse
|
19
|
Song F, Wang G, Ma Z, Ma Y, Wang Y. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer. Oncotarget 2017; 8:95392-95400. [PMID: 29221135 PMCID: PMC5707029 DOI: 10.18632/oncotarget.20726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.
Collapse
Affiliation(s)
- Fei Song
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Geng Wang
- Department of Emergency, Laiwu City People's Hospital, Laiwu, Shandong, China
| | - Zhifang Ma
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuebing Ma
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yingying Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
20
|
Silencing of TGF-β1 in tumor cells impacts MMP-9 in tumor microenvironment. Sci Rep 2017; 7:8678. [PMID: 28819116 PMCID: PMC5561077 DOI: 10.1038/s41598-017-09062-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor (TGF)-β1 contributes to autocrine and paracrine functions in the tumor microenvironment (TME). The present study examined the effects of TGF-β1 crosstalk in TME and its role in mediating tumor formation and progression by targeted abrogation of TGF-β1 expression in metastatic cells in situ. Using species-specific primers, we found a significant increase in MMP-9 gene expression in the tumor-reactive stroma during late-stage metastasis in the lung. This effect was also confirmed in cancer-associated fibroblasts (CAFs) when co-cultured with the tumor cells. Knockdown of TGF-β1 expression in the tumor cells negatively affected matrix metalloproteinase (MMP)-9 gene expression. Fibroblasts, cultured in the presence of tumor cells with intact TGF-β1, showed a significant increase in proliferation rate, as well as expression of VEGF, bFGF, and SDF-1, which was not seen when TGF-β1 expression was abrogated in tumor cells. Absence of TGF-β1 in tumor cells also failed to result in myofibroblast differentiation. Co-implantation of CAFs and tumor cells with either intact TGF-β1 expression or devoid of TGF-β1 in vivo showed a significant increase in tumor growth kinetics in both cell types, suggesting a possible activation TGF-β receptor signaling in tumor cells in response to TGF-β from the TME.
Collapse
|
21
|
Liu Q, Cui X, Yu X, Bian BSJ, Qian F, Hu XG, Ji CD, Yang L, Ren Y, Cui W, Zhang X, Zhang P, Wang JM, Cui YH, Bian XW. Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer 2017; 16:81. [PMID: 28431580 PMCID: PMC5399850 DOI: 10.1186/s12943-017-0650-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is highly malignant with highly invasive and metastatic capabilities and poor prognosis. It is believed that the ESCC cancer stem-like cells (ECSLCs) are critical for tumorigenicity, invasion and metastasis of ESCC. However, the properties of ECSLCs vary with different markers used in isolation, so that new and more effective markers of ECSLCs need to be identified. This study aimed to estimate the potentiality of Cripto-1 (CR-1) as an ECSLC surface marker and investigate the clinical significance of CR-1 expression in ESCC. Methods ESCC cells with CR-1 high or CR-1low were obtained by flow cytometry then their self-renewal capability and tumorigenicity were compared by colony and limiting dilution sphere formation analysis in vitro and xenograft in nude mice in vivo, respectively. Knockdown of CR-1 expression in ESCC cells was conducted with short hairpin RNA. Cell migration and invasion were examined by scratch test and matrigel transwell assay, respectively. Metastatic capability of ESCC cells was assayed by a mouse tail vein metastasis model. The levels of CR-1 expression in cancerous and paired adjacent normal tissues were assessed by IHC and qRT-RCR. Results CR-1high subpopulation of ESCC cells isolated by FACS expressed high level of genes related to stemness and epithelial-mesenchymal transition (EMT), and possessed high capacities of self-renewal, tumorigenesis, invasion and metastasis. Suppression of CR-1 expression significantly reduced the expression of stemness- and EMT-related genes and the capabilities of self-renewal in vitro, tumorigenicity and metastasis in vivo in ESCC cells. In the clinical ESCC specimens, the expression levels of CR-1 in cancerous tissues were positively correlated to TNM stage, invasive depth, and lymph node metastasis. Cox regression analysis indicated that CR-1 was an independent indicator of prognosis. The expression of CR-1 was found overlapping with aldehyde dehydrogenase 1A1 (ALDH1A1), an intracellular marker for ESCLCs, in ESCC cell lines and specimens. Conclusions CR-1 is a functional and cell surface ECSLC marker, and an independent prognostic indicator as well as a potential therapeutic target for ESCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0650-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Liu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.,Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Yu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Bai-Shi-Jiao Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Feng Qian
- Department of General Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu-Gang Hu
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Cheng-Dong Ji
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lang Yang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yong Ren
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Wei Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Peng Zhang
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
Shao JB, Gao ZM, Huang WY, Lu ZB. The mechanism of epithelial-mesenchymal transition induced by TGF-β1 in neuroblastoma cells. Int J Oncol 2017; 50:1623-1633. [PMID: 28393230 PMCID: PMC5403264 DOI: 10.3892/ijo.2017.3954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is the second most common extracranial malignant solid tumor that occurs in childhood, and metastasis is one of the major causes of death in neuroblastoma patients. The epithelial-mesenchymal transition (EMT) is an important mechanism for both the initiation of tumor invasion and subsequent metastasis. Therefore, this study investigated the mechanism by which transforming growth factor (TGF)-β1 induces EMT in human neuroblastoma cells. Using quantitative RT-qPCR and western blot analyses, we found that the mRNA and protein expression levels of E-cadherin were significantly decreased, whereas that of α-SMA was significantly increased after neuroblastoma cells were treated with different concentrations of TGF-β1. A scratch test and Transwell migration assay revealed that cell migration significantly and directly correlated with the concentration of TGF-β1 indicating that TGF-β1 induced EMT in neuroblastoma cells and led to their migration. Inhibiting Smad2/3 expression did not affect the expression of the key molecules involved in EMT. Further investigation found that the expression of the glioblastoma transcription factor (Gli) significantly increased in TGF-β1-stimulated neuroblastoma cells undergoing EMT, accordingly, interfering with Gli1/2 expression inhibited TGF-β1-induced EMT in neuroblastoma cells. GANT61, which is a targeted inhibitor of Gli1 and Gli2, decreased cell viability and promoted cell apoptosis. Thus, TGF-β1 induced EMT in neuroblastoma cells to increase their migration. Specifically, EMT induced by TGF-β1 in neuroblastoma cells did not depend on the Smad signaling pathway, and the transcription factor Gli participated in TGF-β1-induced EMT independent of Smad signaling.
Collapse
Affiliation(s)
- Jing-Bo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, P.R. China
| | - Zhi-Mei Gao
- Department of Central Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, P.R. China
| | - Wen-Yan Huang
- Department of Nephrology, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, P.R. China
| | - Zhi-Bao Lu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200040, P.R. China
| |
Collapse
|
23
|
Ma Z, Feng J, Guo Y, Kong R, Ma Y, Sun L, Yang X, Zhou B, Li S, Zhang W, Jiang J, Zhang J, Qiao Z, Cheng Y, Zha D, Liu S. Knockdown of DDX5 Inhibits the Proliferation and Tumorigenesis in Esophageal Cancer. Oncol Res 2016; 25:887-895. [PMID: 28244855 PMCID: PMC7841059 DOI: 10.3727/096504016x14817158982636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DEAD (Asp-Glu-Ala-Asp) box protein 5 (DDX5), a prototypical member of the DEAD/H-box protein family, has been involved in several human malignancies. However, the expression and biological role of DDX5 in esophageal cancer (EC) remain largely unknown. In this study, we examined the role of DDX5 in regulating EC cell proliferation and tumorigenesis and explored its possible molecular mechanism. We found that DDX5 was overexpressed in human EC cell lines. In addition, knockdown of DDX5 significantly inhibited the proliferation of EC cells in vitro and the growth of EC xenografts in vivo. Knockdown of DDX5 also suppressed the migration/invasion and epithelial-to-mesenchymal transition (EMT) phenotype in EC cells. Furthermore, we observed that knockdown of DDX5 inhibited the expression of β-catenin, c-Myc, and cyclin D1 in EC cells. In conclusion, our findings provide the first evidence that siRNA-DDX5 inhibited the proliferation and invasion of EC cells through suppressing the Wnt/β-catenin signaling pathway. Therefore, DDX5 may be a novel potential therapeutic target for the prevention and treatment of EC.
Collapse
|
24
|
Hu M, Cui F, Liu F, Wang J, Wei X, Li Y. BMP signaling pathways affect differently migration and invasion of esophageal squamous cancer cells. Int J Oncol 2016; 50:193-202. [DOI: 10.3892/ijo.2016.3802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022] Open
|
25
|
Zeng J, Kelbauskas L, Rezaie A, Lee K, Ueberroth B, Gao W, Derkach D, Tran T, Smith D, Bussey KJ, Meldrum DR. Transcriptional regulation by normal epithelium of premalignant to malignant progression in Barrett's esophagus. Sci Rep 2016; 6:35227. [PMID: 27731371 PMCID: PMC5059688 DOI: 10.1038/srep35227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
In carcinogenesis, intercellular interactions within and between cell types are critical but remain poorly understood. We present a study on intercellular interactions between normal and premalignant epithelial cells and their functional relevance in the context of premalignant to malignant progression in Barrett's esophagus. Using whole transcriptome profiling we found that in the presence of normal epithelial cells, dysplastic cells but not normal cells, exhibit marked down-regulation of a number of key signaling pathways, including the transforming growth factor beta (TGFβ) and epithelial growth factor (EGF). Functional assays revealed both cell types showed repressed proliferation and significant changes in motility (speed, displacement and directionality) as a result of interactions between the two cell types. Cellular interactions appear to be mediated through both direct cell-cell contact and secreted ligands. The findings of this study are important in that they reveal, for the first time, the effects of cellular communication on gene expression and cellular function between premalignant (dysplastic) epithelial cells and their normal counterparts.
Collapse
Affiliation(s)
- Jia Zeng
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Laimonas Kelbauskas
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Aida Rezaie
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Kristen Lee
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Benjamin Ueberroth
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Weimin Gao
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Dmitry Derkach
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Thai Tran
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Dean Smith
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Kimberly J. Bussey
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, P.O. Box 876501, Tempe, AZ 85287-6501, United States
| |
Collapse
|
26
|
Lee HJ, Park JM, Han YM, Gil HK, Kim J, Chang JY, Jeong M, Go EJ, Hahm KB. The role of chronic inflammation in the development of gastrointestinal cancers: reviewing cancer prevention with natural anti-inflammatory intervention. Expert Rev Gastroenterol Hepatol 2016; 10:129-39. [PMID: 26524133 DOI: 10.1586/17474124.2016.1103179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammatory mediators alter the local environment of tumors, known as the tumor microenvironment. Mechanistically, chronic inflammation induces DNA damage, but understanding this hazard may help in the search for new chemopreventive agents for gastrointestinal (GI) cancer which attenuate inflammation. In the clinic, GI cancer still remains a major cause of cancer-associated mortality, chemoprevention with anti-inflammatory agents is thought to be a realistic approach to reduce GI cancer. Proton pump inhibitors, monoclonal antibodies targeting tumor necrosis factor-alpha, anti-sense targeted smad7 and non-steroidal anti-inflammatory agents have been investigated for their potential to prevent inflammation-based GI cancer. Besides these, a wide variety of natural products have also shown potential for the prevention of GI cancer. In this review, the authors will provide insights to explain the mechanistic connection between inflammation and GI cancer, as well as describe a feasible cancer prevention strategy based on anti-inflammatory treatments.
Collapse
Affiliation(s)
- Ho-Jae Lee
- a Laboratory of Chemoprevention, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Korea
| | - Jong-Min Park
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Young Min Han
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Hong Kwon Gil
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Jinhyung Kim
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Ji Young Chang
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Migyeong Jeong
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Eun-Jin Go
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea
| | - Ki Baik Hahm
- b CHA Cancer Prevention Research Center , CHA Cancer Institute, CHA University , Seongnam , Korea.,c Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|
27
|
Cassar L, Nicholls C, Pinto AR, Chen R, Wang L, Li H, Liu JP. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence. Protein Cell 2016; 8:39-54. [PMID: 27696331 PMCID: PMC5233610 DOI: 10.1007/s13238-016-0322-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/03/2016] [Indexed: 01/09/2023] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
Collapse
Affiliation(s)
- Lucy Cassar
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Craig Nicholls
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Alex R Pinto
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Ruping Chen
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China
| | - Lihui Wang
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China
| | - He Li
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia
| | - Jun-Ping Liu
- Molecular Signaling Laboratory, Department of Immunology, Central Eastern Clinical School, Monash University, Prahran, VIC, 3181, Australia. .,Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang Province, China.
| |
Collapse
|
28
|
Mlcochova H, Machackova T, Rabien A, Radova L, Fabian P, Iliev R, Slaba K, Poprach A, Kilic E, Stanik M, Redova-Lojova M, Svoboda M, Dolezel J, Vyzula R, Jung K, Slaby O. Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. Sci Rep 2016; 6:31852. [PMID: 27549611 PMCID: PMC4994011 DOI: 10.1038/srep31852] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
Clear-cell renal cell carcinomas (ccRCCs) are genetically heterogeneous tumors presenting diverse clinical courses. Epithelial-mesenchymal transition (EMT) is a crucial process involved in initiation of metastatic cascade. The aim of our study was to identify an integrated miRNA/mRNA signature associated with metastasis and prognosis in ccRCC through targeted approach based on analysis of miRNAs/mRNAs associated with EMT. A cohort of 230 ccRCC was included in our study and further divided into discovery, training and validation cohorts. EMT markers were evaluated in ccRCC tumor samples, which were grouped accordingly to EMT status. By use of large-scale miRNA/mRNA expression profiling, we identified miRNA/mRNA with significantly different expression in EMT-positive tumors and selected 41 miRNAs/mRNAs for training phase of the study to evaluate their diagnostic and prognostic potential. Fifteen miRNAs/mRNAs were analyzed in the validation phase, where all evaluated miRNA/mRNA candidates were confirmed to be significantly deregulated in tumor tissue. Some of them significantly differed in metastatic tumors, correlated with clinical stage, with Fuhrman grade and with overall survival. Further, we established an EMT-based stage-independent prognostic scoring system enabling identification of ccRCC patients at high-risk of cancer-related death. Finally, we confirmed involvement of miR-429 in EMT regulation in RCC cells in vitro.
Collapse
Affiliation(s)
- Hana Mlcochova
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic.,Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Tana Machackova
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic
| | - Anja Rabien
- University Hospital Charite, Humboldt University, Department of Urology, Schumannstrasse 20/21, D-10117 Berlin, Germany.,Berlin Institute for Urologic Research, Robert-Koch Platz 7, 10115 Berlin, Germany
| | - Lenka Radova
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Fabian
- Masaryk Memorial Cancer Institute, Department of Diagnostic and Experimental Pathology, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robert Iliev
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic
| | - Katerina Slaba
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Alexandr Poprach
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Ergin Kilic
- University Hospital Charite, Humboldt University, Institute of Pathology, Schumannstrasse 20/21, D-10117 Berlin, Germany
| | - Michal Stanik
- Masaryk Memorial Cancer Institute, Department of Urologic Oncology, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Redova-Lojova
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic
| | - Marek Svoboda
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic.,Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jan Dolezel
- Masaryk Memorial Cancer Institute, Department of Urologic Oncology, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Rostislav Vyzula
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Klaus Jung
- University Hospital Charite, Humboldt University, Department of Urology, Schumannstrasse 20/21, D-10117 Berlin, Germany.,Berlin Institute for Urologic Research, Robert-Koch Platz 7, 10115 Berlin, Germany
| | - Ondrej Slaby
- Masaryk University, Central European Institute of Technology (CEITEC), Kamenice 5, 625 00, Brno, Czech Republic.,Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Zluty kopec 7, 656 53, Brno, Czech Republic
| |
Collapse
|
29
|
Ge F, Zhang H, Wang DD, Li L, Lin PP. Enhanced detection and comprehensive in situ phenotypic characterization of circulating and disseminated heteroploid epithelial and glioma tumor cells. Oncotarget 2016; 6:27049-64. [PMID: 26267323 PMCID: PMC4694973 DOI: 10.18632/oncotarget.4819] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022] Open
Abstract
Conventional strategy of anti-EpCAM capture and immunostaining of cytokeratins (CKs) to detect circulating tumor cells (CTCs) is limited by highly heterogeneous and dynamic expression or absence of EpCAM and/or CKs in CTCs. In this study, a novel integrated cellular and molecular approach of subtraction enrichment (SE) and immunostaining-FISH (iFISH) was successfully developed. Both large or small size CTCs and circulating tumor microemboli (CTM) in various biofluid samples including cerebrospinal fluid (CSF) of cancer patients and patient-derived-xenograft (PDX) mouse models were efficiently enriched and comprehensively identified and characterized by SE-iFISH. Non-hematopoietic CTCs with heteroploid chromosome 8 were detected in 87–92% of lung, esophageal and gastric cancer patients. Characterization of CTCs performed by CK18-iFISH showed that CK18, the dual epithelial marker and tumor biomarker, was strong positive in only 14% of lung and 24% of esophageal CTCs, respectively. Unlike conventional methodologies restricted only to the large and/or both EpCAM and CK positive CTCs, SE-iFISH enables efficient enrichment and performing in situ phenotypic and karyotypic identification and characterization of the highly heterogeneous CTC subtypes classified by both chromosome ploidy and the expression of various tumor biomarkers. Each CTC subtype may possess distinct clinical significance relative to tumor metastasis, relapse, therapeutic drug sensitivity or resistance, etc.
Collapse
Affiliation(s)
- Feng Ge
- Department of Thoracic Surgery, Capital Medical University School of Oncology and Chaoyang Hospital, Beijing, China
| | - Haishi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Linda Li
- Cytelligen, San Diego, California, USA
| | | |
Collapse
|
30
|
Activin a signaling regulates cell invasion and proliferation in esophageal adenocarcinoma. Oncotarget 2016; 6:34228-44. [PMID: 26447543 PMCID: PMC4741448 DOI: 10.18632/oncotarget.5349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/24/2015] [Indexed: 12/29/2022] Open
Abstract
TGFβ signaling has been implicated in the metaplasia from squamous epithelia to Barrett's esophagus and, ultimately, esophageal adenocarcinoma. The role of the family member Activin A in Barrett's tumorigenesis is less well established. As tumorigenesis is influenced by factors in the tumor microenvironment, such as fibroblasts and the extracellular matrix, we aimed to determine if epithelial cell-derived Activin affects initiation and progression differently than Activin signaling stimulation from a mimicked stromal source. Using Barrett's esophagus cells, CPB, and the esophageal adenocarcinoma cell lines OE33 and FLO-1, we showed that Activin reduces colony formation only in CPB cells. Epithelial cell overexpression of Activin increased cell migration and invasion in Boyden chamber assays in CPB and FLO-1 cells, which exhibited mesenchymal features such as the expression of the CD44 standard form, vimentin, and MT1-MMP. When grown in organotypic reconstructs, OE33 cells expressed E-cadherin and Keratin 8. As mesenchymal characteristics have been associated with the acquisition of stem cell-like features, we analyzed the expression and localization of SOX9, showing nuclear localization of SOX9 in esophageal CPB and FLO-1 cells.In conclusion, we show a role for autocrine Activin signaling in the regulation of colony formation, cell migration and invasion in Barrett's tumorigenesis.
Collapse
|
31
|
Kolijn K, Verhoef EI, van Leenders GJLH. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget 2016; 6:24488-98. [PMID: 26041890 PMCID: PMC4695200 DOI: 10.18632/oncotarget.4177] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/02/2015] [Indexed: 12/22/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process known to be associated with aggressive tumor behavior, metastasis and treatment resistance. It is characterized by coincidental upregulation of mesenchymal markers such as vimentin, fibronectin and N-cadherin concurrent with E-cadherin downregulation. Studies on EMT are generally performed in cell lines and mouse models, while the histopathological and phenotypical properties in clinical prostate cancer (PCa) are still unclear. The objective of this study was to identify EMT in PCa patients. We demonstrated that N-cadherin, vimentin and fibronectin were generally not co-expressed in corresponding tumor regions. Immunofluorescent double stainings confirmed that co-expression of mesenchymal markers was uncommon, as we found no prostate cancer cells that co-expressed N-cadherin with fibronectin and only rare (<1%) cells that co-expressed N-cadherin with vimentin. Downregulation of E-cadherin was demonstrated in all N-cadherin positive tumor cells, but not in vimentin or fibronectin positive tumor cells. We further analyzed N-cadherin expression in morphologically distinct PCa growth patterns in a radical prostatectomy cohort (n = 77) and found that N-cadherin is preferentially expressed in ill-defined Gleason grade 4 PCa. In conclusion, we demonstrate that N-cadherin is the most reliable marker for EMT in clinical PCa and is preferentially expressed in ill-defined Gleason grade 4 growth pattern.
Collapse
Affiliation(s)
- Kimberley Kolijn
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
32
|
BMP4 Signaling Is Able to Induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett's Esophagus and Esophageal Adenocarcinoma through Induction of SNAIL2. PLoS One 2016; 11:e0155754. [PMID: 27191723 PMCID: PMC4871520 DOI: 10.1371/journal.pone.0155754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
Background Bone morphogenetic protein 4 (BMP4) signaling is involved in the development of Barrett’s esophagus (BE), a precursor of esophageal adenocarcinoma (EAC). In various cancers, BMP4 has been found to induce epithelial-mesenchymal transition (EMT) but its function in the development of EAC is currently unclear. Aim To investigate the expression of BMP4 and several members of the BMP4 pathway in EAC. Additionally, to determine the effect of BMP4 signaling in a human Barrett’s esophagus (BAR-T) and adenocarcinoma (OE33) cell line. Methods Expression of BMP4, its downstream target ID2 and members of the BMP4 pathway were determined by Q-RT-PCR, immunohistochemistry and Western blot analysis using biopsy samples from EAC patients. BAR-T and OE33 cells were incubated with BMP4 or the BMP4 antagonist, Noggin, and cell viability and migration assays were performed. In addition, expression of factors associated with EMT (SNAIL2, CDH1, CDH2 and Vimentin) was evaluated by Q-RT-PCR and Western blot analysis. Results Compared to squamous epithelium (SQ), BMP4 expression was significantly upregulated in EAC and BE. In addition, the expression of ID2 was significantly upregulated in EAC and BE compared to SQ. Western blot analysis confirmed our results, showing an upregulated expression of BMP4 and ID2 in both BE and EAC. In addition, more phosphorylation of SMAD1/5/8 was observed. BMP4 incubation inhibited cell viability, but induced cell migration in both BAR-T and OE33 cells. Upon BMP4 incubation, SNAIL2 expression was significantly upregulated in BAR-T and OE33 cells while CDH1 expression was significantly downregulated. These results were confirmed by Western blot analysis. Conclusion Our results indicate active BMP4 signaling in BE and EAC and suggest that this results in an invasive phenotype by inducing an EMT-like response through upregulation of SNAIL2 and subsequent downregulation of CDH1.
Collapse
|
33
|
Six family of homeobox genes and related mechanisms in tumorigenesis protocols. TUMORI JOURNAL 2016; 2016:236-43. [PMID: 27056337 DOI: 10.5301/tj.5000495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
In recent years, the homeobox gene superfamily has been introduced as a master regulator in downstream target genes related to cell development and proliferation. An indispensable role of this family involved in organogenesis development has been widely demonstrated since expression of Six family led to a distinct increase in development of various organs. These functions of Six family genes are primarily based on structure as well as regulatory role in response to external or internal stimuli. In addition to these roles, mutation or aberrant expression of Six family plays a fundamental role in initiation of carcinogenesis, a multistep process including transformation, proliferation, angiogenesis, migration, and metastasis. This suggests that the Six superfamily members can be considered as novel target molecules to inhibit tumor growth and progression. This review focuses on the structure, function, and mechanisms of the Six family in cancer processes and possible strategies to apply these family members for diagnostic, prognostic, and therapeutic purposes.
Collapse
|
34
|
Zhang F, Dong W, Zeng W, Zhang L, Zhang C, Qiu Y, Wang L, Yin X, Zhang C, Liang W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res 2016; 18:38. [PMID: 27036297 PMCID: PMC4818388 DOI: 10.1186/s13058-016-0698-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting the TGF-β1 pathway for breast cancer metastasis therapy has become an attractive strategy. We have previously demonstrated that naringenin significantly reduced TGF-β1 levels in bleomycin-induced lung fibrosis and effectively prevented pulmonary metastases of tumors. This raised the question of whether naringenin can block TGF-β1 secretion from breast cancer cells and inhibit their pulmonary metastasis. METHODS We transduced a lentiviral vector encoding the mouse Tgf-β1 gene into mouse breast carcinoma (4T1-Luc2) cells and inoculated the transformant cells (4T1/TGF-β1) into the fourth primary fat pat of Balb/c mice. Pulmonary metastases derived from the primary tumors were monitored using bioluminescent imaging. Spleens, lungs and serum (n = 18-20 per treatment group) were analyzed for immune cell activity and TGF-β1 level. The mechanism whereby naringenin decreases TGF-β1 secretion from breast cancer cells was investigated at different levels, including Tgf-β1 transcription, mRNA stability, translation, and extracellular release. RESULTS In contrast to the null-vector control (4T1/RFP) tumors, extensive pulmonary metastases derived from 4T1/TGF-β1 tumors were observed. Administration of the TGF-β1 blocking antibody 1D11 or naringenin showed an inhibition of pulmonary metastasis for both 4T1/TGF-β1 tumors and 4T1/RFP tumors, resulting in increased survival of the mice. Compared with 4T1/RFP bearing mice, systemic immunosuppression in 4T1/TGF-β1 bearing mice was observed, represented by a higher proportion of regulatory T cells and myeloid-derived suppressor cells and a lower proportion of activated T cells and INFγ expression in CD8(+) T cells. These metrics were improved by administration of 1D11 or naringenin. However, compared with 1D11, which neutralized secreted TGF-β1 but did not affect intracellular TGF-β1 levels, naringenin reduced the secretion of TGF-β1 from the cells, leading to an accumulation of intracellular TGF-β1. Further experiments revealed that naringenin had no effect on Tgf-β1 transcription, mRNA decay or protein translation, but prevented TGF-β1 transport from the trans-Golgi network by inhibiting PKC activity. CONCLUSIONS Naringenin blocks TGF-β1 trafficking from the trans-Golgi network by suppressing PKC activity, resulting in a reduction of TGF-β1 secretion from breast cancer cells. This finding suggests that naringenin may be an attractive therapeutic candidate for TGF-β1 related diseases.
Collapse
Affiliation(s)
- Fayun Zhang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjuan Dong
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenfeng Zeng
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Zhang
- Department of Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Chao Zhang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuqi Qiu
- Department of Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
| | - Luoyang Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaozhe Yin
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunling Zhang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
35
|
Lin PP. Integrated EpCAM-independent subtraction enrichment and iFISH strategies to detect and classify disseminated and circulating tumors cells. Clin Transl Med 2015; 4:38. [PMID: 26718583 PMCID: PMC4696935 DOI: 10.1186/s40169-015-0081-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/17/2015] [Indexed: 12/23/2022] Open
Abstract
Application of tumor cell surface adhesion molecule Anti-epithelial cell adhesion molecule (EpCAM)-dependent antibody capture, and intracellular cytokeratins (CKs)-dependent immunostaining strategies to detect disseminated or circulating tumor cells (DTCs or CTCs), is limited by highly heterogeneous and dynamic expression or absence of EpCAM and/or CKs in CTCs and DTCs, particularly in their capturing and identifying CTCs/DTCs shed from diverse types of solid tumor, thus being biased and restricted to the only both EpCAM and CK positive cancer cells. Moreover, heterogeneity of chromosome and tumor biomarker of CTCs/DTCs cannot be co-examined by conventional CK/EpCAM-dependent techniques. Accordingly, a novel integrated cellular and molecular approach of EpCAM-independent subtraction enrichment (SE) and immunostaining-FISH (iFISH(®)) has recently been successfully developed. SE-iFISH(®) is able to effectively enrich, comprehensively identify and characterize both large and small size non-hematopoietic heteroploid CTCs, DTCs and circulating tumor microemboli in various biofluid specimens of either cancer patients or patient-derived-xenograft mice. Obtained tumor cells, free of anti-EpCAM perturbing and hypotonic damage, are eligible for primary tumor cell culture as well as a series of downstream analyses. Highly heterogeneous CTCs and DTCs could be classified into subtypes by in situ phenotyping protein expression of various tumor biomarkers and karyotyping of chromosome aneuploidy performed by iFISH(®). Each CTC subtype may correlate with distinct clinical significance in terms of tumor metastasis, relapse, therapeutic drug sensitivity or resistance, respectively.
Collapse
|
36
|
He X, Qian Y, Cai H, Yang S, Cai J, Wang Z. RhoC is essential in TGF-β1 induced epithelial-mesenchymal transition in cervical cancer cells. Oncol Lett 2015; 10:985-989. [PMID: 26622610 DOI: 10.3892/ol.2015.3287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 04/17/2015] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process in the promotion of epithelial tumor progression and metastasis. The present study aimed to investigate the role of Ras homolog gene family, member C (RhoC) guanosine triphosphatase (GTPase) in transforming growth factor (TGF)-β1 induced EMT. EMT occurred in human cervical carcinoma SiHa cells following TGF-β1 stimulation for 4 days, as demonstrated by the appearance of mesenchymal morphology, reorganization of the actin cytoskeleton, reduced E-cadherin expression and increased Vimentin expression, which was associated with increased RhoC expression and activity. However, EMT was not observed in cells that were pretreated with RhoC siRNA prior to TGF-β1 stimulation. Downregulation of RhoC 4 days following TGF-β1 stimulation was not able to reverse the existing EMT. In addition, TGF-β1 promoted the invasion of the control SiHa cells but not that of the cells in which RhoC was downregulated. In conclusion, RhoC expression is activated by TGF-β1, and sufficient RhoC expression levels are essential for TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Xiaoqi He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ying Qian
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Huilan Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shouhua Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
37
|
Woods LT, Camden JM, El-Sayed FG, Khalafalla MG, Petris MJ, Erb L, Weisman GA. Increased Expression of TGF-β Signaling Components in a Mouse Model of Fibrosis Induced by Submandibular Gland Duct Ligation. PLoS One 2015; 10:e0123641. [PMID: 25955532 PMCID: PMC4425516 DOI: 10.1371/journal.pone.0123641] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/21/2015] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multi-functional cytokine with a well-described role in the regulation of tissue fibrosis and regeneration in the liver, kidney and lung. Submandibular gland (SMG) duct ligation and subsequent deligation in rodents is a classical model for studying salivary gland damage and regeneration. While previous studies suggest that TGF-β may contribute to salivary gland fibrosis, the expression of TGF-β signaling components has not been investigated in relation to mouse SMG duct ligation-induced fibrosis and regeneration following ductal deligation. Following a 7 day SMG duct ligation, TGF-β1 and TGF-β3 were significantly upregulated in the SMG, as were TGF-β receptor 1 and downstream Smad family transcription factors in salivary acinar cells, but not in ductal cells. In acinar cells, duct ligation also led to upregulation of snail, a Smad-activated E-cadherin repressor and regulator of epithelial-mesenchymal transition, whereas in ductal cells upregulation of E-cadherin was observed while snail expression was unchanged. Upregulation of these TGF-β signaling components correlated with upregulation of fibrosis markers collagen 1 and fibronectin, responses that were inhibited by administration of the TGF-β receptor 1 inhibitors SB431542 or GW788388. After SMG regeneration following a 28 day duct deligation, TGF-β signaling components and epithelial-mesenchymal transition markers returned to levels similar to non-ligated controls. The results from this study indicate that increased TGF-β signaling contributes to duct ligation-induced changes in salivary epithelium that correlate with glandular fibrosis. Furthermore, the reversibility of enhanced TGF-β signaling in acinar cells of duct-ligated mouse SMG after deligation indicates that this is an ideal model for studying TGF-β signaling mechanisms in salivary epithelium as well as mechanisms of fibrosis initiation and their resolution.
Collapse
Affiliation(s)
- Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Farid G. El-Sayed
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Michael J. Petris
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Nutritional Sciences and Exercise Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Laurie Erb
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Brychtova V, Mohtar A, Vojtesek B, Hupp TR. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin Cancer Biol 2015; 33:16-24. [PMID: 25937245 DOI: 10.1016/j.semcancer.2015.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.
Collapse
Affiliation(s)
- Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Aiman Mohtar
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Ted R Hupp
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
39
|
Midgley AC, Duggal L, Jenkins R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J Biol Chem 2015; 290:11218-34. [PMID: 25716319 PMCID: PMC4416830 DOI: 10.1074/jbc.m114.625939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) promotes transforming growth factor (TGF)-β1-driven myofibroblast phenotype. However, HA can also have disease-limiting activity. Bone morphogenetic protein-7 (BMP7) is an antifibrotic cytokine that antagonizes TGF-β1, and isolated studies have demonstrated that HA can both mediate and modulate BMP7 responses. In this study, we investigated whether BMP7 can modulate HA in a manner that leads to prevention/reversal of TGF-β1-driven myofibroblast differentiation in human lung fibroblasts. Results demonstrated that BMP7 prevented and reversed TGF-β1-driven myofibroblast differentiation through a novel mechanism. BMP7 promoted the dissolution and internalization of cell-surface HA into cytoplasmic endosomes. Endosomal HA co-localized with the HA-degrading enzymes, hyaluronidase-1 and hyaluronidase-2 (Hyal2). Moreover, BMP7 showed differential regulation of CD44 standard and variant isoform expression, when compared with TGF-β1. In particular, BMP7 increased membrane expression of CD44v7/8. Inhibiting CD44v7/8 as well as blocking Hyal2 and the Na+/H+ exchanger-1 at the cell-surface prevented BMP7-driven HA internalization and BMP7-mediated prevention/reversal of myofibroblast phenotype. In summary, a novel mechanism of TGF-β1 antagonism by BMP7 is shown and identifies alteration in HA as critical in mediating BMP7 responses. In addition, we identify Hyal2 and CD44v7/8 as new potential targets for manipulation in prevention and reversal of fibrotic pathology.
Collapse
Affiliation(s)
- Adam C Midgley
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Lucy Duggal
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Robert Jenkins
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Vincent Hascall
- the Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Robert Steadman
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Aled O Phillips
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Soma Meran
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| |
Collapse
|
40
|
Pang L, Li Q, Wei C, Zou H, Li S, Cao W, He J, Zhou Y, Ju X, Lan J, Wei Y, Wang C, Zhao W, Hu J, Jia W, Qi Y, Liu F, Jiang J, Li L, Zhao J, Liang W, Xie J, Li F. TGF-β1/Smad signaling pathway regulates epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: in vitro and clinical analyses of cell lines and nomadic Kazakh patients from northwest Xinjiang, China. PLoS One 2014; 9:e112300. [PMID: 25464508 PMCID: PMC4251902 DOI: 10.1371/journal.pone.0112300] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 10/07/2014] [Indexed: 12/02/2022] Open
Abstract
Invasion and metastasis are the major causes of death in patients with esophageal squamous cell carcinoma (ESCC). Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression and transforming growth factor-β1 (TGF-β1) signaling has been shown to play an important role in EMT. In this study, we investigated how TGF-β1 signaling pathways contributed to EMT in three ESCC cell lines as well as 100 patients of nomadic ethnic Kazakhs residing in northwest Xinjiang Province of China. In vitro analyses included Western blotting to detect the expression of TGF-β1/Smad and EMT-associated proteins in Eca109, EC9706 and KYSE150 cell lines following stimulation with recombinant TGF-β1 and SB431542, a potent inhibitor of ALK5 that also inhibits TGF-β type II receptor. TGF-β-activated Smad2/3 signaling in EMT was significantly upregulated as indicated by mesenchymal markers of N-cadherin and Vimentin, and in the meantime, epithelial marker, E-cadherin, was markedly downregulated. In contrast, SB431542 addition downregulated the expression of N-cadherin and Vimentin, but upregulated the expression of E-cadherin. Moreover, the TGF-β1-induced EMT promoted invasion capability of Eca109 cells. Tumor cells undergoing EMT acquire fibroblastoid-like phenotype. Expressed levels of TGF-β1/Smad signaling molecules and EMT-associated proteins were examined using immunohistochemical analyses in 100 ESCC tissues of Kazakh patients and 58 matched noncancerous adjacent tissues. The results showed that ESCC tissues exhibited upregulated expression of TGF-β1/Smad. We also analyzed the relationship between the above proteins and the patients' clinicopathological characteristics. The TGF-β1/Smad signaling pathway in human Eca109 ESCC cells may carry similar features as in Kazakh ESCC patients, suggesting that TGF-β1/Smad signaling pathway may be involved in the regulation of EMT in ethnic Kazakh patients with ESCC from Xinjiang, China.
Collapse
Affiliation(s)
- Lijuan Pang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Qiuxiang Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Oncology, People's Hospital of Lianyuan, Lianyuan, Hunan Province, China
| | - Cuilei Wei
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weiwei Cao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianwei He
- Department of Clinical Diagnosis Laboratory, First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yang Zhou
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xinxin Ju
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jiaojiao Lan
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, Hospital of Xingjian Production and Construction Corps, Wulumuqi, Xinjiang, China
| | - Chengyan Wang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Zhao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Jia
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yan Qi
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Fudong Liu
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Oncology, People's Hospital of Lianyuan, Lianyuan, Hunan Province, China
| | - Jinfang Jiang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Li Li
- Department of Pathology, First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Zhao
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weihua Liang
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jianxin Xie
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- * E-mail: (F. Li); (JX)
| | - Feng Li
- Department of Pathology and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
- * E-mail: (F. Li); (JX)
| |
Collapse
|
41
|
Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2014; 111:15526-31. [PMID: 25313085 DOI: 10.1073/pnas.1407717111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) is an alternatively spliced variant of the pyruvate kinase gene that is preferentially expressed during embryonic development and in cancer cells. PKM2 alters the final rate-limiting step of glycolysis, resulting in the cancer-specific Warburg effect (also referred to as aerobic glycolysis). Although previous reports suggest that PKM2 functions in nonmetabolic transcriptional regulation, its significance in cancer biology remains elusive. Here we report that stimulation of epithelial-mesenchymal transition (EMT) results in the nuclear translocation of PKM2 in colon cancer cells, which is pivotal in promoting EMT. Immunoprecipitation and LC-electrospray ionized TOF MS analyses revealed that EMT stimulation causes direct interaction of PKM2 in the nucleus with TGF-β-induced factor homeobox 2 (TGIF2), a transcriptional cofactor repressor of TGF-β signaling. The binding of PKM2 with TGIF2 recruits histone deacetylase 3 to the E-cadherin promoter sequence, with subsequent deacetylation of histone H3 and suppression of E-cadherin transcription. This previously unidentified finding of the molecular interaction of PKM2 in the nucleus sheds light on the significance of PKM2 expression in cancer cells.
Collapse
|
42
|
Hamabe A, Yamamoto H, Konno M, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Nishida N, Kawamoto K, Koseki J, Doki Y, Mori M, Ishii H. Combined evaluation of hexokinase 2 and phosphorylated pyruvate dehydrogenase-E1α in invasive front lesions of colorectal tumors predicts cancer metabolism and patient prognosis. Cancer Sci 2014; 105:1100-8. [PMID: 25060325 PMCID: PMC4462394 DOI: 10.1111/cas.12487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/22/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
Although numerous studies have shown the significance of cancer-specific aerobic glycolysis, how glycolysis contributes to tumor invasion, a critical phenomenon in metastasis, remains unclear. With regard to colorectal cancer (CRC), we studied two critical gate enzymes, hexokinase 2 (HK2), which is involved in glycolysis, and phosphorylated pyruvate dehydrogenase-E1α (p-PDH), which is involved in oxidative phosphorylation (OxPhos). Immunohistochemical analyses using anti-HK2 and p-PDH antibodies were performed on surgically resected CRC samples (n = 104), and the expression in invasive front lesions of tumors was assessed. Positive HK2 expression correlated with extensive tumor diameter (P = 0.0460), advanced tumor depth (P = 0.0395), and presence of lymph node metastasis (P = 0.0409). Expression of p-PDH tended to be higher in right-sided CRCs than in left-sided CRCs (P = 0.0883). In survival analysis, the combined evaluation of positive HK2 and negative p-PDH was associated with reduced recurrence-free survival (RFS) (P = 0.0169 in all stages and P = 0.0238 in Stage II and III patients, respectively). This evaluation could predict RFS more precisely than the independent evaluation. The present study indicated that high HK2 expression combined with low p-PDH expression in the invasive front lesions of CRC tumors is predictive of tumor aggressiveness and survival of CRC cases.
Collapse
Affiliation(s)
- Atsushi Hamabe
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Naohiro Nishida
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Jun Koseki
- Department ofCancer Profiling Discovery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Department ofCancer Profiling Discovery, Graduate School of Medicine, Osaka UniversityOsaka, Japan
- Correspondence Hideshi Ishii, Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Yamadaoka 2-2, Osaka 565-0871, Japan., Tel: +81-(0)6-6879-2641, 2640; Fax: +81-(0)6-6879-2639;, E-mail:
| |
Collapse
|
43
|
Du ZP, Wu BL, Wang SH, Shen JH, Lin XH, Zheng CP, Wu ZY, Qiu XY, Zhan XF, Xu LY, Li EM. Shortest Path Analyses in the Protein-Protein Interaction Network of NGAL (Neutrophil Gelatinase-associated Lipocalin) Overexpression in Esophageal Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2014; 15:6899-904. [DOI: 10.7314/apjcp.2014.15.16.6899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Duangkumpha K, Techasen A, Loilome W, Namwat N, Thanan R, Khuntikeo N, Yongvanit P. BMP-7 blocks the effects of TGF-β-induced EMT in cholangiocarcinoma. Tumour Biol 2014; 35:9667-76. [PMID: 24969562 DOI: 10.1007/s13277-014-2246-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/18/2014] [Indexed: 01/12/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is characterized by the loss of epithelial markers and the gain of mesenchymal markers. EMT is believed to be a major mechanism supporting cancer cell metastasis. The activation of EMT can be induced by various types of inflammatory cytokines including transforming growth factor β (TGF-β) whereas bone morphogenetic protein-7 (BMP-7) can inhibit this process. In this study, the up-regulation of Twist transcription factor and N-cadherin, mesenchymal marker in CCA tissues, has been demonstrated and it has been found that the high expression of Twist was significantly associated with poor prognosis of CCA patients (P = 0.010). Moreover, CCA samples showing Twist nuclear expression were significantly correlated with the up-regulation of N-cadherin (P = 0.024). These results also showed that the inflammatory mediator TGF-β induces CCA cell migration, one of the metastatic processes possibly via stimulation of Twist, N-cadherin and vimentin expression. Additionally, it has been shown that BMP-7 inhibits TGF-β-induced CCA cell migration, through inhibition of TGF-β-mediated Twist and N-cadherin expressions. These data reinforce the rationale to use BMP-7 as an EMT inhibitor to suppress the progression of CCA and might be a therapeutic approach to improve efficiency for CCA treatment.
Collapse
Affiliation(s)
- Kassaporn Duangkumpha
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | |
Collapse
|
45
|
Akt-mediated transforming growth factor-β1-induced epithelial-mesenchymal transition in cultured human esophageal squamous cancer cells. Cancer Gene Ther 2014; 21:238-45. [PMID: 24874843 DOI: 10.1038/cgt.2014.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/19/2014] [Indexed: 12/28/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has a crucial role during embryonic development and has also come under intense scrutiny as a mechanism through which esophageal squamous cell cancer (ESCC) progresses to become metastatic. Transforming growth factor beta (TGF-β)-mediated EMT has been observed in a variety of cell types and has been identified as the main inducer of EMT in many types of cancer. Akt activity is involved in TGF-β-mediated EMT; however, its precise relationship and role in EMT in ESCC has not been well explained to date. Our data demonstrated that in human ESCC tissues Akt and its activated form, phosphorylated-Akt (p-Akt), were overexpressed; in addition, Akt and p-Akt were negatively correlated with epithelial cadherin (E-cadherin). In EC-9706 cells, exogenous TGF-β1 could induce EMT and at the same time could increase the EC-9706 cell invasive and metastatic ability. Moreover, Akt knockdown by small-interfering RNA could attenuate the EMT induced by TGF-β1 by increasing the epithelial marker E-cadherin and decreasing the mesenchymal marker Vimentin. Silencing Akt expression could decrease the migration ability of EC-9706 cells efficiently. In short, Akt is likely to have a more important role in the EMT induced by TGF-β1 in EC-9706 and may contribute to the invasive and metastatic ability of EC-9706. Akt may be an effective therapeutic in advanced and metastatic ESCC.
Collapse
|
46
|
Nilsson GMA, Akhtar N, Kannius-Janson M, Baeckström D. Loss of E-cadherin expression is not a prerequisite for c-erbB2-induced epithelial-mesenchymal transition. Int J Oncol 2014; 45:82-94. [PMID: 24807161 PMCID: PMC4079157 DOI: 10.3892/ijo.2014.2424] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/11/2014] [Indexed: 12/02/2022] Open
Abstract
Recent research into the mechanisms of tumour cell invasiveness has highlighted the parallels between carcinogenesis and epithelial-mesenchymal transition (EMT), originally described as a developmental transdifferentiation program but also implicated in fibrosis and cancer. In a model system for mammary carcinogenesis, we previously observed that induced signalling from a homodimer of the c-erbB2 (HER2) receptor tyrosine kinase in an initially non-malignant mammary cell line caused EMT where i) cell scattering occurred before downregulation of the cell-cell adhesion molecule E-cadherin and ii) the progress of EMT was dramatically delayed when cells were grown at high density. Here, we have further analysed these phenomena. Ectopic expression of E-cadherin concomitant with c-erbB2 signalling was unable to impede the progression of EMT, suggesting that E-cadherin downregulation is not required for EMT. Furthermore, fibroblast-like cells isolated after EMT induced in the presence or absence of ectopic E-cadherin expression showed highly similar morphology and vimentin expression. E-cadherin expressed in these fibroblastic cells had a subcellular localisation similar to that found in epithelial cells, but it exhibited a much weaker attachment to the cytoskeleton, suggesting cytoskeletal rearrangements as an important mechanism in EMT-associated cell scattering. We also investigated whether density-dependent inhibition of EMT is mediated by E-cadherin as a sensor for cell-cell contact, by expressing dominant-negative E-cadherin. While expression of this mutant weakened cell-cell adhesion, it failed to facilitate EMT at high cell densities. These results indicate that loss of E-cadherin expression is a consequence rather than a cause of c-erbB2-induced EMT and that density-dependent inhibition of EMT is not mediated by E-cadherin signalling.
Collapse
Affiliation(s)
- Gisela M A Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Noreen Akhtar
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dan Baeckström
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
Fang WT, Fan CC, Li SM, Jang TH, Lin HP, Shih NY, Chen CH, Wang TY, Huang SF, Lee AYL, Liu YL, Tsai FY, Huang CT, Yang SJ, Yen LJ, Chuu CP, Chen CY, Hsiung CA, Chang JY, Wang LH, Chang IS, Jiang SS. Downregulation of a putative tumor suppressor BMP4 by SOX2 promotes growth of lung squamous cell carcinoma. Int J Cancer 2014; 135:809-19. [PMID: 24477565 DOI: 10.1002/ijc.28734] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/13/2014] [Indexed: 01/29/2023]
Abstract
SOX2 is a transcription factor essential for self-renewal and pluripotency of embryonic stem cells. Recently, SOX2 was found overexpressed in the majority of the lung squamous cell carcinoma (SQC), in which it acts as a lineage-survival oncogene. However, downstream targets/pathways of SOX2 in lung SQC cells remain to be identified. Here, we show that BMP4 is a downstream target of SOX2 in lung SQC. We found that SOX2-silencing-mediated inhibition of cell growth was accompanied by upregulation of BMP4 mRNA and its protein expression. Meta-analysis with 293 samples and qRT-PCR validation with 73 clinical samples revealed an inversely correlated relationship between levels of SOX2 and BMP4 mRNA, and significantly lower mRNA levels in tumor than in adjacent normal tissues. This was corroborated by immunohistochemistry analysis of 35 lung SQC samples showing lower BMP4 protein expression in tumor tissues. Cell-based experiments including siRNA transfection, growth assay and flow cytometry assay, further combined with a xenograft tumor model in mice, revealed that reactivation of BMP4 signaling could partially account for growth inhibition and cell cycle arrest in lung SQC cells upon silencing SOX2. Finally, chromatin immunoprecipitation analysis and luciferase reporter assay revealed that SOX2 could negatively regulate BMP4 promoter activity, possibly through binding to the promoter located in the first intron region of BMP4. Collectively, our findings suggest that BMP4 could act as a tumor suppressor and its downregulation by elevated SOX2 resulting in enhanced growth of lung SQC cells.
Collapse
Affiliation(s)
- Wen-Tsen Fang
- National Institute of Cancer Research, NHRI, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sugimachi K, Yokobori T, Iinuma H, Ueda M, Ueo H, Shinden Y, Eguchi H, Sudo T, Suzuki A, Maehara Y, Mori M, Mimori K. Aberrant expression of plastin-3 via copy number gain induces the epithelial-mesenchymal transition in circulating colorectal cancer cells. Ann Surg Oncol 2013; 21:3680-90. [PMID: 24217791 DOI: 10.1245/s10434-013-3366-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 11/18/2022]
Abstract
PURPOSE Plastin-3 (PLS3) is a novel marker for circulating tumor cells (CTCs) in colorectal cancer (CRC). We sought to investigate the mechanisms mediating the aberrant expression of PLS3, the role of PLS3 in the epithelial-mesenchymal transition (EMT), and its association with the acquisition of invasive and metastatic abilities in human CRC. METHODS The expression levels of PLS3 messenger RNA in the tumor drainage venous blood (TDB) were examined in 177 CRC cases, and the associations between PLS3 expression and Xq23 copy numbers were analyzed in 132 CRC samples. We then established a stable PLS3-expressing CRC cell line and assessed the role of PLS3 in the EMT. RESULTS In clinical CRC cases, high expression of PLS3 in CTCs of TDB as well as peripheral blood was established as an independent prognostic factor of overall survival (p < 0.001), and the copy number gain of Xq23, which is the locus of the PLS3 gene, was significantly related to PLS3 overexpression. PLS3 induced the EMT via transforming growth factor (TGF)-β signaling and resulted in the acquisition of invasive ability in CRC cells. CONCLUSIONS The aberrant expression of PLS3 was associated with copy number gain in CTCs from primary tumors and was involved in the regulation of the EMT, contributing to a poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hou J, Liao LD, Xie YM, Zeng FM, Ji X, Chen B, Li LY, Zhu MX, Yang CX, Qing-Zhao, Chen T, Xu XE, Shen J, Guo MZ, Li EM, Xu LY. DACT2 is a candidate tumor suppressor and prognostic marker in esophageal squamous cell carcinoma. Cancer Prev Res (Phila) 2013; 6:791-800. [PMID: 23803417 DOI: 10.1158/1940-6207.capr-12-0352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In animals ranging from fish to mice, the function of DACT2 as a negative regulator of the TGF-β/Nodal signal pathway is conserved in evolution, indicating that it might play an important role in human cancer. In this study, we showed that tumors with higher DACT2 protein level were correlated with better differentiation and better survival rate in patients with esophageal squamous cell carcinoma. Restored expression of DACT2 significantly inhibited growth, migration, and invasion of ESCC cells in vitro, and reduced tumorigenicity in vivo. Furthermore, when DACT2 expression was restored, the activity of TGF-β/SMAD2/3 was suppressed via both proteasome and lysosomal degradation pathways, leading to F-actin rearrangement that might depend on the involvement of cofilin and ezrin-redixin-moesin (ERM) proteins. Taken together, we propose here that DACT2 serves as a prognostic marker that reduces tumor cell malignancy by suppressing TGF-β signaling and promotes actin rearrangement in ESCC.
Collapse
Affiliation(s)
- Jian Hou
- Institute of Oncologic Pathology, Medical College of Shantou University, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Clemons NJ, Phillips WA, Lord RV. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol Ther 2013; 14:782-95. [PMID: 23792587 PMCID: PMC3909547 DOI: 10.4161/cbt.25362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Esophageal adenocarcinoma develops in response to severe gastroesophageal reflux disease through the precursor lesion Barrett esophagus, in which the normal squamous epithelium is replaced by a columnar lining. The incidence of esophageal adenocarcinoma in the United States has increased by over 600% in the past 40 years and the overall survival rate remains less than 20% in the community. This review highlights some of the signaling pathways for which there is some evidence of a role in the development of esophageal adenocarcinoma. An increasingly detailed understanding of the biology of this cancer has emerged recently, revealing that in addition to the well-recognized alterations in single genes such as p53, p16, APC, and telomerase, there are interactions between the components of the reflux fluid, the homeobox gene Cdx2, and the Wnt, Notch, and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Nicholas J Clemons
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne, Australia; Sir Peter MacCallum Department of Oncology; University of Melbourne, Melbourne, Australia; Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne, Australia
| | - Wayne A Phillips
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne, Australia; Sir Peter MacCallum Department of Oncology; University of Melbourne, Melbourne, Australia; Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne, Australia
| | - Reginald V Lord
- St. Vincent's Centre for Applied Medical Research; Sydney, Australia; Notre Dame University School of Medicine; Sydney, Australia
| |
Collapse
|