1
|
Xiong J, Dong L, Lv Q, Yin Y, Zhao J, Ke Y, Wang S, Zhang W, Wu M. Targeting senescence-associated secretory phenotypes to remodel the tumour microenvironment and modulate tumour outcomes. Clin Transl Med 2024; 14:e1772. [PMID: 39270064 PMCID: PMC11398298 DOI: 10.1002/ctm2.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 09/15/2024] Open
Abstract
Tumour cell senescence can be induced by various factors, including DNA damage, inflammatory signals, genetic toxins, ionising radiation and nutrient metabolism. The senescence-associated secretory phenotype (SASP), secreted by senescent tumour cells, possesses the capacity to modulate various immune cells, including macrophages, T cells, natural killer cells and myeloid-derived suppressor cells, as well as vascular endothelial cells and fibroblasts within the tumour microenvironment (TME), and this modulation can result in either the promotion or suppression of tumorigenesis and progression. Exploring the impact of SASP on the TME could identify potential therapeutic targets, yet limited studies have dissected its functions. In this review, we delve into the causes and mechanisms of tumour cell senescence. We then concentrate on the influence of SASP on the tumour immune microenvironment, angiogenesis, extracellular matrix and the reprogramming of cancer stem cells, along with their associated tumour outcomes. Last, we present a comprehensive overview of the diverse array of senotherapeutics, highlighting their prospective advantages and challenge for the treatment of cancer patients. KEY POINTS: Senescence-associated secretory phenotype (SASP) secretion from senescent tumour cells significantly impacts cancer progression and biology. SASP is involved in regulating the remodelling of the tumour microenvironment, including immune microenvironment, vascular, extracellular matrix and cancer stem cells. Senotherapeutics, such as senolytic, senomorphic, nanotherapy and senolytic vaccines, hold promise for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu Dong
- The Second Clinical College of Wuhan University, Wuhan, China
| | - Qiongying Lv
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yutong Yin
- The First Clinical College of Wuhan University, Wuhan, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Youning Ke
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Nagaoka Y, Oshiro K, Yoshino Y, Matsunaga T, Endo S, Ikari A. Activation of the TGF-β1/EMT signaling pathway by claudin-1 overexpression reduces doxorubicin sensitivity in small cell lung cancer SBC-3 cells. Arch Biochem Biophys 2024; 751:109824. [PMID: 37984759 DOI: 10.1016/j.abb.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Small-cell lung cancer (SCLC), which accounts for about 15 % of all lung cancers, progresses more rapidly than other histologic types and is rarely detected at an operable early stage. Therefore, chemotherapy, radiation therapy, or their combination are the primary treatments for this type of lung cancer. However, the tendency to acquire resistance to anticancer drugs is a severe problem. Recently, we found that an intercellular adhesion molecule, claudin (CLDN) 1, known to be involved in the migration and invasion of lung cancer cells, is involved in the acquisition of anticancer drug resistance. In the present study, we investigated the effect of CLDN1 on the anticancer-drug sensitivity of SCLC SBC-3 cells. Since epithelial-mesenchymal transition (EMT), which is involved in cancer cell migration and invasion, is well known for its involvement in anticancer-drug sensitivity via inhibition of apoptosis, we also examined EMT involvement in decreased anticancer-drug sensitivity by CLDN1. Sensitivity to doxorubicin (DOX) in SBC-3 cells was significantly decreased by CLDN1 overexpression. CLDN1 overexpression resulted in increased TGF-β1 levels, enhanced EMT induction, and increased migratory potency of SBC-3 cells. The decreased sensitivity of SBC-3 cells to anticancer drugs upon TGF-β1 treatment suggested that activation of the TGF-β1/EMT signaling pathway by CLDN1 causes the decreased sensitivity to anticancer drugs and increased migratory potency. Furthermore, treatments with antiallergic agents tranilast and zoledronic acid, known EMT inhibitors, significantly mitigated the decreased sensitivity of CLDN1-overexpressing SBC-3 cells to DOX. These results suggest that EMT inhibitors might effectively overcome reduced sensitivity to anticancer drugs in CLDN1-overexpressing SCLC cells.
Collapse
Affiliation(s)
- Yuri Nagaoka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Kotone Oshiro
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
3
|
Desai SR, Chakraborty S, Shastri A. Mechanisms of resistance to hypomethylating agents and BCL-2 inhibitors. Best Pract Res Clin Haematol 2023; 36:101521. [PMID: 38092478 DOI: 10.1016/j.beha.2023.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Myeloid malignancies such as myelodysplastic syndrome (MDS) & acute myeloid leukemia (AML) are clonal diseases that emerge and progress due to the expansion of disease-initiating aberrant hematopoietic stem cells, that are not eliminated by conventional cytotoxic therapies. Hypomethylating agents(HMA), azacytidine and decitabine are the first line agents for treatment of MDS and a combination with BCL-2 inhibitor, venetoclax, is approved for AML induction in patients above 75 years and is also actively being investigated for use in high risk MDS. Resistance to these drugs has become a significant clinical challenge in treatment of myeloid malignancies. In this review, we discuss molecular mechanisms underlying the development of resistance to HMA and venetoclax. Insights into these mechanisms can help identify potential biomarkers for resistance prediction, aid in the development of combination therapies and strategies to prevent resistance and advance the field of cancer therapeutics.
Collapse
Affiliation(s)
- Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samarpana Chakraborty
- Department of Medicine (Oncology), Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Aditi Shastri
- Department of Medicine (Oncology), Department of Molecular & Developmental Biology, Albert Einstein College of Medicine & Division of Hemato-Oncology, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Yuda J, Will C, Phillips DC, Abraham L, Alvey C, Avigdor A, Buck W, Besenhofer L, Boghaert E, Cheng D, Cojocari D, Doyle K, Hansen TM, Huang K, Johnson EF, Judd AS, Judge RA, Kalvass JC, Kunzer A, Lam LT, Li R, Martin RL, Mastracchio A, Mitten M, Petrich A, Wang J, Ward JE, Zhang H, Wang X, Wolff JE, Bell-McGuinn KM, Souers AJ. Selective MCL-1 inhibitor ABBV-467 is efficacious in tumor models but is associated with cardiac troponin increases in patients. COMMUNICATIONS MEDICINE 2023; 3:154. [PMID: 37880389 PMCID: PMC10600239 DOI: 10.1038/s43856-023-00380-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND MCL-1 is a prosurvival B-cell lymphoma 2 family protein that plays a critical role in tumor maintenance and survival and can act as a resistance factor to multiple anticancer therapies. Herein, we describe the generation and characterization of the highly potent and selective MCL-1 inhibitor ABBV-467 and present findings from a first-in-human trial that included patients with relapsed/refractory multiple myeloma (NCT04178902). METHODS Binding of ABBV-467 to human MCL-1 was assessed in multiple cell lines. The ability of ABBV-467 to induce tumor growth inhibition was investigated in xenograft models of human multiple myeloma and acute myelogenous leukemia. The first-in-human study was a multicenter, open-label, dose-escalation study assessing safety, pharmacokinetics, and efficacy of ABBV-467 monotherapy. RESULTS Here we show that administration of ABBV-467 to MCL-1-dependent tumor cell lines triggers rapid and mechanism-based apoptosis. In vivo, intermittent dosing of ABBV-467 as monotherapy or in combination with venetoclax inhibits the growth of xenografts from human hematologic cancers. Results from a clinical trial evaluating ABBV-467 in patients with multiple myeloma based on these preclinical data indicate that treatment with ABBV-467 can result in disease control (seen in 1 patient), but may also cause increases in cardiac troponin levels in the plasma in some patients (seen in 4 of 8 patients), without other corresponding cardiac findings. CONCLUSIONS The selectivity of ABBV-467 suggests that treatment-induced troponin release is a consequence of MCL-1 inhibition and therefore may represent a class effect of MCL-1 inhibitors in human patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Abraham Avigdor
- Institute of Hematology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Erwin Boghaert
- AbbVie Inc, North Chicago, IL, USA
- , Pleasant Prairie, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mike Mitten
- AbbVie Inc, North Chicago, IL, USA
- , Beach Park, IL, USA
| | - Adam Petrich
- AbbVie Inc, North Chicago, IL, USA
- Northwestern University, Chicago, IL, USA
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | - Jin Wang
- AbbVie Inc, North Chicago, IL, USA
| | - James E Ward
- AbbVie Inc, North Chicago, IL, USA
- Seagen Inc., Bothell, WA, USA
| | | | | | | | | | | |
Collapse
|
5
|
Lomovsky AI, Baburina YL, Fadeev RS, Lomovskaya YV, Kobyakova MI, Krestinin RR, Sotnikova LD, Krestinina OV. Melatonin Can Enhance the Effect of Drugs Used in the Treatment of Leukemia. BIOCHEMISTRY (MOSCOW) 2023; 88:73-85. [PMID: 37068876 DOI: 10.1134/s0006297923010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine, MEL), secreted by the pineal gland, plays an important role in regulation of various functions in the human body. There is evidence that MEL exhibits antitumor effect in various types of cancer. We studied the combined effect of MEL and drugs from different pharmacological groups, such as cytarabine (CYT) and navitoclax (ABT-737), on the state of the pool of acute myeloid leukemia (AML) tumor cell using the MV4-11 cell line as model. The combined action of MEL with CYT or ABT-737 contributed to the decrease in proliferative activity of leukemic cells, decrease in the membrane potential of mitochondria, and increase in the production of reactive oxygen species (ROS) and cytosolic Ca2+. We have shown that introduction of MEL together with CYT or ABT-737 increases expression of the C/EBP homologous protein (CHOP) and the autophagy marker LC3A/B and decreases expression of the protein disulfide isomerase (PDI) and binding immunoglobulin protein (BIP), and, therefore, could modulate endoplasmic reticulum (ER) stress and initiate autophagy. The findings support an early suggestion that MEL is able to provide benefits for cancer treatment and be considered as an adjunct to the drugs used in cancer therapy.
Collapse
Affiliation(s)
- Alexey I Lomovsky
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yulia L Baburina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Roman R Krestinin
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Linda D Sotnikova
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia
| | - Olga V Krestinina
- Institute of Theoretical and Experimental Biophysics, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
6
|
Adamová B, Říhová K, Pokludová J, Beneš P, Šmarda J, Navrátilová J. Synergistic cytotoxicity of perifosine and ABT-737 to colon cancer cells. J Cell Mol Med 2022; 27:76-88. [PMID: 36523175 PMCID: PMC9806293 DOI: 10.1111/jcmm.17636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Barbora Adamová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kamila Říhová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| |
Collapse
|
7
|
Daressy F, Séguy L, Favre L, Corvaisier S, Apel C, Groo AC, Litaudon M, Dumontet V, Malzert-Fréon A, Desrat S, Roussi F, Robert A, Wiels J. NA1-115-7, from Zygogynum pancheri, is a new selective MCL-1 inhibitor inducing the apoptosis of hematological cancer cells but non-toxic to normal blood cells or cardiomyocytes. Biomed Pharmacother 2022; 154:113546. [PMID: 35988426 DOI: 10.1016/j.biopha.2022.113546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022] Open
Abstract
The overexpression of antiapoptotic members (BCL-2, BCL-xL, MCL-1, etc.) of the BCL-2 family contributes to tumor development and resistance to chemotherapy or radiotherapy. Synthetic inhibitors targeting these proteins have been developed, and some hematological malignancies are now widely treated with a BCL-2 inhibitor (venetoclax). However, acquired resistance to venetoclax or chemotherapy drugs due to an upregulation of MCL-1 has been observed, rendering MCL-1 an attractive new target for treatment. Six MCL-1 inhibitors (S64315, AZD-5991, AMG-176, AMG-397, ABBV-467 and PRT1419) have been evaluated in clinical trials since 2016, but some were affected by safety issues and none are currently used clinically. There is, therefore, still a need for alternative molecules. We previously described two drimane derivatives as the first covalent BH3 mimetics targeting MCL-1. Here, we described the characterization and biological efficacy of one of these compounds (NA1-115-7), isolated from Zygogynum pancheri, a plant belonging to the Winteraceae family. NA1-115-7 specifically induced the apoptosis of MCL-1-dependent tumor cells, with two hours of treatment sufficient to trigger cell death. The treatment of lymphoma cells with NA1-115-7 stabilized MCL-1, disrupted its interactions with BAK, and rapidly induced apoptosis through a BAK- and BAX-mediated process. Importantly, a similar treatment with NA1-115-7 was not toxic to erythrocytes, peripheral blood mononuclear cells, platelets, or cardiomyocytes. These results highlight the potential of natural products for use as specific BH3 mimetics non-toxic to normal cells, and they suggest that NA1-115-7 may be a promising tool for use in cancer treatment.
Collapse
Affiliation(s)
- Florian Daressy
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Line Séguy
- Normandie Université, UniCaen, CERMN, F-14000 Caen, France
| | - Loëtitia Favre
- Inserm U955, Université Paris-Est Créteil, F-94009 Créteil, France; AP-HP, CHU Henri Mondor, Département de Pathologie, F-94009 Créteil, France
| | | | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Vincent Dumontet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Sandy Desrat
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aude Robert
- Inserm UMR1279, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| | - Joëlle Wiels
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
8
|
Small cell lung cancer: novel treatments beyond immunotherapy. Semin Cancer Biol 2022; 86:376-385. [PMID: 35568295 DOI: 10.1016/j.semcancer.2022.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
Abstract
Small cell lung cancer (SCLC) arises in peribronchial locations and infiltrates the bronchial submucosa, including about 15% of lung cancer cases. Despite decades of research, the prognosis for SCLC patients remains poor because this tumor is characterized by an exceptionally high proliferative rate, strong tendency for early widespread metastasis and acquired chemoresistance. Omics profiling revealed that SCLC harbor extensive chromosomal rearrangements and a very high mutation burden. This led to the development of immune-checkpoint inhibitors as single agents or in combination with chemotherapy, which however resulted in a prolonged benefit only for a small subset of patients. Thus, the present review discusses the rationale and limitations of immunotherapeutic approaches, presenting the current biological understanding of aberrant signaling pathways that might be exploited with new potential treatments. In particular, new agents targeting DNA damage repair, cell cycle checkpoint, and apoptosis pathways showed several promising results in different preclinical models. Epigenetic alterations, gene amplifications and mutations can act as biomarkers in this context. Future research and improved clinical outcome for SCLC patients will depend on the integration between these omics and pharmacological studies with clinical translational research, in order to identify specific predictive biomarkers that will be hopefully validated using clinical trials with biomarker-selected targeted treatments.
Collapse
|
9
|
Feng J, Liu P, Li X, Zhang D, Lin H, Hou Z, Guo C, Niu Y, Dai B, Wang O, Qi M, Wang H, Zhou H. The deubiquitinating enzyme USP20 regulates the stability of the MCL1 protein. Biochem Biophys Res Commun 2022; 593:122-128. [DOI: 10.1016/j.bbrc.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 11/02/2022]
|
10
|
Paysant H, Hedir S, Justaud F, Weiswald LB, El Dine AN, Soulieman A, Hachem A, Elie N, Brotin E, Denoyelle C, Bignon J, Roussi F, Jouanne M, Tasseau O, Roisnel T, Voisin-Chiret AS, Grée R, Levoin N, Poulain L. Structural revision of the Mcl-1 inhibitor MIM1: synthesis and biological studies on ovarian cancer cells with evaluation of designed analogues. Org Biomol Chem 2021; 19:8968-8987. [PMID: 34596646 DOI: 10.1039/d1ob01521d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the area of cancer research, the development of new and potent inhibitors of anti-apoptotic proteins is a very active and promising topic. The small molecule MIM1 has been reported earlier as one of the first selective inhibitors of the anti-apoptotic protein Mcl-1. In the present paper, we first revised the structure of this molecule based on extensive physicochemical analyses. Then we designed and synthesized a focused library of analogues for the corrected structure of MIM1. Next, these molecules were subjected to a panel of in cellulo biological studies, allowing the identification of dual Bcl-xL/Mcl-1 inhibitors, as well as selective Mcl-1 inhibitors. These results have been complemented by fluorescence polarization assays with the Mcl-1 protein. Preliminary structure-activity relationships were discussed and extensive molecular modelling studies allowed us to propose a rationale for the biological activity of this series of new inhibitors, in particular for the selectivity of inhibition of Mcl-1 versus Bcl-xL.
Collapse
Affiliation(s)
- Hippolyte Paysant
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers", Caen, France
- UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Siham Hedir
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers", Caen, France
- UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Frédéric Justaud
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000, Rennes, France.
| | - Louis Bastien Weiswald
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers", Caen, France
- UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| | - Assaad Nasr El Dine
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000, Rennes, France.
- Laboratoire de Chimie Médicinale et de Produits Naturels, Université Libanaise, Faculté des Sciences et PRASE-EDST, Hadath, Beyrouth, Liban
| | - Ali Soulieman
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000, Rennes, France.
- Laboratoire de Chimie Médicinale et de Produits Naturels, Université Libanaise, Faculté des Sciences et PRASE-EDST, Hadath, Beyrouth, Liban
| | - Ali Hachem
- Laboratoire de Chimie Médicinale et de Produits Naturels, Université Libanaise, Faculté des Sciences et PRASE-EDST, Hadath, Beyrouth, Liban
| | - Nicolas Elie
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, Caen, France
| | - Emilie Brotin
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers", Caen, France
- UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, Caen, France
- Normandie Univ, UNICAEN, SF4206 ICORE, Plateforme ImpedanCELL, Caen, France
| | - Christophe Denoyelle
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers", Caen, France
- UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
- Normandie Univ, UNICAEN, SF 4206 ICORE, CMABIO3, Caen, France
- Normandie Univ, UNICAEN, SF4206 ICORE, Plateforme ImpedanCELL, Caen, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Marie Jouanne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Olivier Tasseau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000, Rennes, France.
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000, Rennes, France.
| | - Anne Sophie Voisin-Chiret
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - René Grée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000, Rennes, France.
| | - Nicolas Levoin
- Bioprojet-Biotech, 4 rue du Chesnay Beauregard, BP 96205, 35762, Saint Grégoire, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, Inserm U1086 ANTICIPE "Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers", Caen, France
- UNICANCER, Centre de Lutte Contre le Cancer F. Baclesse, 3 avenue du Général Harris, 14076, Caen, France
| |
Collapse
|
11
|
Hann CL. Small Cell Lung Cancer: Biology Advances. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhang X, Wang Z, Guo Z, Song T, He N, Zhu J, Cao K, Zhang Z. A "Three-in-One" Multifunctional Probe for Bcl-2/Mcl-1 Profiling and Visualizing in Situ. Chembiochem 2020; 22:326-329. [PMID: 32881291 DOI: 10.1002/cbic.202000441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/23/2020] [Indexed: 11/10/2022]
Abstract
Bcl-2 and Mcl-1, the two arms of the anti-apoptotic Bcl-2 family proteins, have been identified as key regulators of apoptosis and effective therapeutic targets of cancer. However, no small-molecular probe is capable of profiling and visualizing both Bcl-2 and Mcl-1 simultaneously in situ. Herein, we report a multifunctional molecular probe (BnN3 -OPD-Alk) by a "three-in-one" molecular designing strategy, which integrated the Bcl-2/Mcl-1 binding ligand, fluorescent reporter group and photoreactive group azido into the same scaffold. BnN3 -OPD-Alk exhibited sub-micromolar affinities to Bcl-2/Mcl-1 and bright green self-fluorescence. It was then successfully applied for Bcl-2/Mcl-1 labeling, capturing, enriching, and bioimaging both in vitro and in cells. This strategy could facilitate the precise early diagnosis and effective therapy of dual Bcl-2/Mcl-1-related diseases.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, 116023, P. R. China
| | - Ziqian Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, P. R. China
| | - Zongwei Guo
- School of Life Science and Technology, Dalian University of Technology, No. 2 LingGong Road, Dalian, P. R. China
| | - Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, 116023, P. R. China
| | - Nianzhe He
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, 116023, P. R. China.,Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs., Lyngby, Denmark
| | - Junjie Zhu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, 116023, P. R. China
| | - Keke Cao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, 116023, P. R. China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 LingGong Road, Dalian, 116023, P. R. China
| |
Collapse
|
13
|
Lu X, Liu YC, Orvig C, Liang H, Chen ZF. Discovery of a Copper-Based Mcl-1 Inhibitor as an Effective Antitumor Agent. J Med Chem 2020; 63:9154-9167. [PMID: 32794745 DOI: 10.1021/acs.jmedchem.9b02047] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myeloid cell leukemia 1 (Mcl-1), which belongs to the Bcl-2 family of prosurvival proteins, is a key regulator of cancer cell survival. To date, few drug-like Mcl-1 inhibitors have been reported. Herein, we report the preparation of 10 copper complexes with 9-substituted β-carboline ligands that act as metal-based Mcl-1 inhibitors. Complex 14 was identified as a potent and selective Mcl-1 inhibitor with strong in vitro antitumor activity. Mechanistic studies demonstrated that complex 14 disrupted Mcl-1-Bax/Bak heterodimerization and induced Bax/Bak-dependent apoptosis. In addition, complex 14 significantly (P < 0.001) inhibited tumor growth in vivo, induced tumor necrosis, and extended survival time in an NCI-H460 xenograft model. Furthermore, complex 14 showed no apparent toxicity in mice. Together, these findings indicate that complex 14 is a copper-based Mcl-1 inhibitor with high efficacy and low toxicity that could be developed for the treatment of Mcl-1-related cancers.
Collapse
Affiliation(s)
- Xing Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Chris Orvig
- Department of Chemistry, Faculty of Science, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
14
|
Ohgino K, Terai H, Yasuda H, Nukaga S, Hamamoto J, Tani T, Kuroda A, Arai D, Ishioka K, Masuzawa K, Ikemura S, Kawada I, Naoki K, Fukunaga K, Soejima K. Intracellular levels of reactive oxygen species correlate with ABT-263 sensitivity in non-small-cell lung cancer cells. Cancer Sci 2020; 111:3793-3801. [PMID: 32687646 PMCID: PMC7541018 DOI: 10.1111/cas.14569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
ABT‐263 (Navitoclax) is a BH3‐mimetic drugs targeting anti‐apoptotic B‐cell lymphoma‐2 (BCL‐2) family proteins, including BCL‐2, BCL‐xL, and BCL‐w, thereby inducing apoptosis. In small‐cell lung cancer (SCLC) cells, the response to ABT‐263 is associated with the expression of myeloid cell leukemia‐1 (MCL‐1) protein, however the efficacy of ABT‐263 in non‐small‐cell lung cancer (NSCLC) has not been thoroughly evaluated. There are currently no established biomarkers for predicting the efficacy of ABT‐263 treatment in NSCLC. We screened a panel of different NSCLC cell lines and found that ABT‐263 inhibited cell proliferation and induced apoptosis in Calu‐1, Calu‐3, and BID007 cells. Inconsistent with previous reports on SCLC, low levels of MCL‐1 did not predict the response to ABT‐263 in NSCLC cells, however we found that intracellular levels of reactive oxygen species (ROS) in cancer cells were associated with sensitivity to ABT‐263 in NSCLC cells. We also showed that increasing the level of intracellular ROS could enhance the sensitivity to ABT‐263 in NSCLC cells. In summary, we propose that the intracellular levels of ROS could be used as a potential novel biomarker for predicting a response to ABT‐263 in NSCLC. Furthermore, we show some evidence supporting the further assessment of ABT‐263 as a new therapeutic strategy in patients with NSCLC combined with agents regulating ROS levels. We believe that our findings and follow‐up studies on this matter would lead to novel diagnostic and treatment strategies in patients with NSCLC.
Collapse
Affiliation(s)
- Keiko Ohgino
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hideki Terai
- Division of Translational Research, Clinical and Translational Research Center, School of Medicine, Keio University, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Hiroyuki Yasuda
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shigenari Nukaga
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Hamamoto
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Tetsuo Tani
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Aoi Kuroda
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Daisuke Arai
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kota Ishioka
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Keita Masuzawa
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | - Ichiro Kawada
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Katsuhiko Naoki
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara-city, Japan
| | - Koichi Fukunaga
- Department of Pulmonary Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kenzo Soejima
- Division of Translational Research, Clinical and Translational Research Center, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
15
|
Song X, Shen L, Tong J, Kuang C, Zeng S, Schoen RE, Yu J, Pei H, Zhang L. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics 2020; 10:8098-8110. [PMID: 32724460 PMCID: PMC7381732 DOI: 10.7150/thno.45363] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Intrinsic and acquired resistance to targeted therapies is a significant clinical problem in cancer. We previously showed that resistance to regorafenib, a multi-kinase inhibitor for treating colorectal cancer (CRC) patients, can be caused by mutations in the tumor suppressor FBW7, which block degradation of the pro-survival Bcl-2 family protein Mcl-1. We tested if Mcl-1 inhibition can be used to develop a precision combination therapy for overcoming regorafenib resistance. METHODS Small-molecule Mcl-1 inhibitors were tested on CRC cells with knock-in (KI) of a non-degradable Mcl-1. Effects of Mcl-1 inhibitors on regorafenib sensitivity were determined in FBW7-mutant and -wild-type (WT) CRC cells and tumors, and in those with acquired regorafenib resistance due to enriched FBW7 mutations. Furthermore, translational potential was explored by establishing and analyzing FBW7-mutant and -WT patient-derived organoid (PDO) and xenograft (PDX) tumor models. RESULTS We found that highly potent and specific Mcl-1 inhibitors such as S63845 overcame regorafenib resistance by restoring apoptosis in multiple regorafenib-resistant CRC models. Mcl-1 inhibition re-sensitized CRC tumors with intrinsic and acquired regorafenib resistance in vitro and in vivo, including those with FBW7 mutations. Importantly, Mcl-1 inhibition also sensitized FBW7-mutant PDO and PDX models to regorafenib. In contrast, Mcl-1 inhibition had no effect in FBW7-WT CRCs. CONCLUSIONS Our results demonstrate that Mcl-1 inhibitors can overcome intrinsic and acquired regorafenib resistance in CRCs by restoring apoptotic response. FBW7 mutations might be a potential biomarker predicting for response to the regorafenib/Mcl-1 inhibitor combination.
Collapse
Affiliation(s)
- Xiangping Song
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Shen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Robert E. Schoen
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213. USA
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy. Eur J Med Chem 2020; 201:112446. [PMID: 32563811 DOI: 10.1016/j.ejmech.2020.112446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
B-cell lymphoma-2 (Bcl-2) proteins family is an essential checkpoint in apoptosis. Extensive evidences suggested that overexpression of anti-apoptotic Bcl-2 proteins can be observed in multiple cancer cell lines and primary tumor biopsy samples, which is an important reason for tumor cells to evade apoptosis and further acquire drug resistance for chemotherapy. Hence, down-regulation of anti-apoptotic Bcl-2 proteins is effective for the treatment of cancers. In view that Bcl-2 inhibitors and some other anti-tumor agents, such as HDAC inhibitors and Mdm2 inhibitors, exert synergy effects in tumor cells, it is pointed out that dual-targeting therapies based on these targets are regarded as rational strategies to enhance the effectiveness of single target agents for cancer treatment. This review briefly introduces the apoptosis, the structure of Bcl-2 family proteins, and focuses on the current status and recent advances of Bcl-2 inhibitors and the corresponding SARs of them. Moreover, we discuss the synergisms between Bcl-2 and other anti-tumor targets, and summarize the current dual-target agents.
Collapse
|
17
|
Abstract
Significance: Mitochondria undergo constant morphological changes through fusion, fission, and mitophagy. As the key organelle in cells, mitochondria are responsible for numerous essential cellular functions such as metabolism, regulation of calcium (Ca2+), generation of reactive oxygen species, and initiation of apoptosis. Unsurprisingly, mitochondrial dysfunctions underlie many pathologies including cancer. Recent Advances: Currently, the gold standard for cancer treatment is chemotherapy, radiation, and surgery. However, the efficacy of these treatments varies across different cancer cells. It has been suggested that mitochondria may be at the center of these diverse responses. In the past decade, significant advances have been made in understanding distinct types of mitochondrial dysfunctions in cancer. Through investigations of underlying mechanisms, more effective treatment options are developed. Critical Issues: We summarize various mitochondria dysfunctions in cancer progression that have led to the development of therapeutic options. Current mitochondrial-targeted therapies and challenges are discussed. Future Directions: To address the "root" of cancer, utilization of mitochondrial-targeted therapy to target cancer stem cells may be valuable. Investigation of other areas such as mitochondrial trafficking may offer new insights into cancer therapy. Moreover, common antibiotics could be explored as mitocans, and synthetic lethality screens can be utilized to overcome the plasticity of cancer cells.
Collapse
Affiliation(s)
- Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Amin SA, Ghosh K, Mondal D, Jha T, Gayen S. Exploring indole derivatives as myeloid cell leukaemia-1 (Mcl-1) inhibitors with multi-QSAR approach: a novel hope in anti-cancer drug discovery. NEW J CHEM 2020. [DOI: 10.1039/d0nj03863f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In humans, the over-expression of Mcl-1 protein causes different cancers and it is also responsible for cancer resistance to different cytotoxic agents.
Collapse
Affiliation(s)
- Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery
- Department of Pharmaceutical Sciences
- Dr Harisingh Gour University
- Sagar
- India
| | - Dipayan Mondal
- Laboratory of Drug Design and Discovery
- Department of Pharmaceutical Sciences
- Dr Harisingh Gour University
- Sagar
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery
- Department of Pharmaceutical Sciences
- Dr Harisingh Gour University
- Sagar
- India
| |
Collapse
|
19
|
Hadji A, Schmitt GK, Schnorenberg MR, Roach L, Hickey CM, Leak LB, Tirrell MV, LaBelle JL. Preferential targeting of MCL-1 by a hydrocarbon-stapled BIM BH3 peptide. Oncotarget 2019; 10:6219-6233. [PMID: 31692812 PMCID: PMC6817437 DOI: 10.18632/oncotarget.27262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022] Open
Abstract
BCL-2 family proteins are central regulators of apoptosis and represent prime therapeutic targets for overcoming cell death resistance in malignancies. However, plasticity of anti-apoptotic members, such as MCL-1, often allows for a switch in cell death dependency patterns that lie outside the binding profile of targeted BH3-mimetics. Therefore discovery of therapeutics that effectively inactivate all anti-apoptotic members is a high priority. To address this we tested the potency of a hydrocarbon stapled BIM BH3 peptide (BIM SAHBA) to overcome both BCL-2 and MCL-1 apoptotic resistance given BIM’s naturally wide ranging affinity for all BCL-2 family multidomain members. BIM SAHBA effectively killed diffuse large B-cell lymphoma (DLBCL) cell lines regardless of their anti-apoptotic dependence. Despite BIM BH3’s ability to bind all BCL-2 anti-apoptotic proteins, BIM SAHBA’s dominant intracellular target was MCL-1 and this specificity was exploited in sequenced combination BH3-mimetic treatments targeting BCL-2, BCL-XL, and BCL-W. Extending this MCL-1 functional dependence, mouse embryonic fibroblasts (MEFs) deficient in MCL-1 were resistant to mitochondrial changes induced by BIM SAHBA. This study demonstrates the importance of understanding BH3 mimetic functional intracellular affinities for optimized use and highlights the diagnostic and therapeutic promise of a BIM BH3 peptide mimetic as a potential MCL-1 inhibitor.
Collapse
Affiliation(s)
- Abbas Hadji
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Greta K Schmitt
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mathew R Schnorenberg
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Lauren Roach
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Connie M Hickey
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Logan B Leak
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Wu L, Lin Y, Feng J, Qi Y, Wang X, Lin Q, Shi W, Zheng E, Wang W, Hou Z, Lin H, Yu C, He Y, Xu Y, Yang H, Lin L, Li L. The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Cancer Cell Int 2019; 19:222. [PMID: 31467488 PMCID: PMC6712616 DOI: 10.1186/s12935-019-0936-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/18/2019] [Indexed: 11/10/2022] Open
Abstract
Background Myeloid cell leukaemia 1 (MCL1) is a pro-survival Bcl-2 family protein that plays important roles in cell survival, proliferation, differentiation and tumourigenesis. MCL1 is a fast-turnover protein that is degraded via an ubiquitination/proteasome-dependent mechanism. Although several E3 ligases have been discovered to promote the ubiquitination of MCL1, the deubiquitinating enzyme (DUB) that regulates its stability requires further investigation. Methods The immunoprecipitation was used to determine the interaction between OTUD1 and MCL1. The ubiquitination assays was performed to determine the regulation of MCL1 by OTUD1. The cell viability was used to determine the regulation of BH3-mimetic inhibitor induced cell death by OTUD1. The survival analysis was used to determine the relationship between OTUD1 expression levels and the survival rate of cancer patients. Results By screening a DUB expression library, we determined that the deubiquitinating enzyme OTUD1 regulates MCL1 protein stability in an enzymatic-activity dependent manner. OTUD1 interacts with MCL1 and promotes its deubiquitination. Knockdown of OTUD1 increases the sensitivity of tumour cells to the BH3-mimetic inhibitor ABT-263, while overexpression of OTUD1 increases tumour cell tolerance of ABT-263. Furthermore, bioinformatics analysis data reveal that OTUD1 is a negative prognostic factor for liver cancer, ovarian cancer and specific subtypes of breast and cervical cancer. Conclusions The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Thus, OTUD1 could be considered as a therapeutic target for curing these cancers.
Collapse
Affiliation(s)
- Lanqin Wu
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yingying Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Jinan Feng
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yuanlin Qi
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Xinrui Wang
- 2State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaofa Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Wanyan Shi
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Enrun Zheng
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Wei Wang
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Zhenzhu Hou
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Hanbin Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Cheng Yu
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yan He
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Yan Xu
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Hong Yang
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Ling Lin
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China
| | - Lisheng Li
- 1The School of Basic Medical Sciences, Fujian Medical University, Minhou, Fuzhou China.,3Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou China
| |
Collapse
|
21
|
Zhang TY, Chen HY, Cao JL, Xiong HL, Mo XB, Li TL, Kang XZ, Zhao JH, Yin B, Zhao X, Huang CH, Yuan Q, Xue D, Xia NS, Yuan YA. Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Nat Commun 2019; 10:3192. [PMID: 31324803 PMCID: PMC6642116 DOI: 10.1038/s41467-019-11173-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) X protein, HBx, interacts with anti-apoptotic Bcl-2 and Bcl-xL proteins through its BH3-like motif to promote HBV replication and cytotoxicity. Here we report the crystal structure of HBx BH3-like motif in complex with Bcl-xL where the BH3-like motif adopts a short α-helix to snuggle into a hydrophobic pocket in Bcl-xL via its noncanonical Trp120 residue and conserved Leu123 residue. This binding pocket is ~2 Å away from the canonical BH3-only binding pocket in structures of Bcl-xL with proapoptotic BH3-only proteins. Mutations altering Trp120 and Leu123 in HBx impair its binding to Bcl-xL in vitro and HBV replication in vivo, confirming the importance of this motif to HBV. A HBx BH3-like peptide, HBx-aa113-135, restores HBV replication from a HBx-null HBV replicon, while a shorter peptide, HBx-aa118-127, inhibits HBV replication. These results provide crucial structural and functional insights into drug designs for inhibiting HBV replication and treating HBV patients.
Collapse
Affiliation(s)
- Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hong-Ying Chen
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Jia-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiao-Bing Mo
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Tian-Liang Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Xiao-Zhen Kang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Jing-Hua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Xiang Zhao
- School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, 100084, Beijing, China
| | - Cheng-Hao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA. .,School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, 100084, Beijing, China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - Y Adam Yuan
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China.,Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
22
|
The chemical biology of apoptosis: Revisited after 17 years. Eur J Med Chem 2019; 177:63-75. [PMID: 31129454 DOI: 10.1016/j.ejmech.2019.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
A balance of Bcl-2 family proteins dictates cell survival or death, as the interactions between these proteins regulate mitochondrial apoptotic signaling pathways. However, cancer cells frequently show upregulation of pro-survival Bcl-2 proteins and sequester activated pro-apoptotic BH3-only proteins driven by diverse cytotoxic stresses, resulting in tumor progression and chemoresistance. Synthetic molecules from either structure-based design or screening procedures to engage and inactivate pro-survival Bcl-2 proteins and restore apoptotic process represent a chemical biological means of selectively killing malignant cells. 17 years ago, one of us reviewed on the discovery of novel Bcl-2 targeted agents [1]. Here we revisit this area and examine the progress and current status of small molecule Bcl-2 inhibitor development, demonstrating the Bcl-2 family as a valid target for cancer therapy and providing successful examples for the discovery of inhibitors that target protein-protein interactions.
Collapse
|
23
|
Clinical candidates modulating protein-protein interactions: The fragment-based experience. Eur J Med Chem 2019; 167:76-95. [DOI: 10.1016/j.ejmech.2019.01.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/23/2022]
|
24
|
By reducing global mRNA translation in several ways, 2-deoxyglucose lowers MCL-1 protein and sensitizes hemopoietic tumor cells to BH3 mimetic ABT737. Cell Death Differ 2018; 26:1766-1781. [PMID: 30538285 PMCID: PMC6748140 DOI: 10.1038/s41418-018-0244-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023] Open
Abstract
Drugs targeting various pro-survival BCL-2 family members (‘‘BH3 mimetics’’) have efficacy in hemopoietic malignancies, but the non-targeted pro-survival family members can promote resistance. Pertinently, the sensitivity of some tumor cell lines to BH3 mimetic ABT737, which targets BCL-2, BCL-XL, and BCL-W but not MCL-1, is enhanced by 2-deoxyglucose (2DG). We found that 2DG augmented apoptosis induced by ABT737 in 3 of 8 human hemopoietic tumor cell lines, most strongly in pre-B acute lymphocytic leukemia cell line NALM-6, the focus of our mechanistic studies. Although 2DG can lower MCL-1 translation, how it does so is incompletely understood, in part because 2DG inhibits both glycolysis and protein glycosylation in the endoplasmic reticulum (ER). Its glycolysis inhibition lowered ATP and, through the AMPK/mTORC1 pathway, markedly reduced global protein synthesis, as did an ER integrated stress response. A dual reporter assay revealed that 2DG impeded not only cap-dependent translation but also elongation or cap-independent translation. MCL-1 protein fell markedly, whereas 12 other BCL-2 family members were unaffected. We ascribe the MCL-1 drop to the global fall in translation, exacerbated for mRNAs with a structured 5′ untranslated region (5′UTR) containing potential regulatory motifs like those in MCL-1 mRNA and the short half-life of MCL-1 protein. Pertinently, 2DG downregulated two other short-lived oncoproteins, MYC and MDM2. Thus, our results support MCL-1 as a critical 2DG target, but also reveal multiple effects on global translation that may well also affect its promotion of apoptosis.
Collapse
|
25
|
Tong J, Zheng X, Tan X, Fletcher R, Nikolovska-Coleska Z, Yu J, Zhang L. Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Cancer Res 2018; 78:4704-4715. [PMID: 29895675 DOI: 10.1158/0008-5472.can-18-0399] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022]
Abstract
Mcl-1, a prosurvival Bcl-2 family protein, is frequently overexpressed in cancer cells and plays a critical role in therapeutic resistance. It is well known that anticancer agents induce phosphorylation of Mcl-1, which promotes its binding to E3 ubiquitin ligases and subsequent proteasomal degradation and apoptosis. However, other functions of Mcl-1 phosphorylation in cancer cell death have not been well characterized. In this study, we show in colon cancer cells that histone deacetylase inhibitors (HDACi) induce GSK3β-dependent Mcl-1 phosphorylation, but not degradation or downregulation. The in vitro and in vivo anticancer effects of HDACi were dependent on Mcl-1 phosphorylation and were blocked by genetic knock-in of a Mcl-1 phosphorylation site mutant. Phosphorylation-dead Mcl-1 maintained cell survival by binding and sequestering BH3-only Bcl-2 family proteins PUMA, Bim, and Noxa, which were upregulated and necessary for apoptosis induction by HDACi. Resistance to HDACi mediated by phosphorylation-dead Mcl-1 was reversed by small-molecule Mcl-1 inhibitors that liberated BH3-only proteins. These results demonstrate a critical role of Mcl-1 phosphorylation in mediating HDACi sensitivity through a novel and degradation-independent mechanism. These results provide new mechanistic insights on how Mcl-1 maintains cancer cell survival and suggest that Mcl-1-targeting agents are broadly useful for overcoming therapeutic resistance in cancer cells.Significance: These findings present a novel degradation-independent function of Mcl-1 phosphorylation in anticancer therapy that could be useful for developing new Mcl-1-targeting agents to overcome therapeutic resistance. Cancer Res; 78(16); 4704-15. ©2018 AACR.
Collapse
Affiliation(s)
- Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xingnan Zheng
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiao Tan
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rochelle Fletcher
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Tan SF, Liu X, Fox TE, Barth BM, Sharma A, Turner SD, Awwad A, Dewey A, Doi K, Spitzer B, Shah MV, Morad SAF, Desai D, Amin S, Zhu J, Liao J, Yun J, Kester M, Claxton DF, Wang HG, Cabot MC, Schuchman EH, Levine RL, Feith DJ, Loughran TP. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget 2018; 7:83208-83222. [PMID: 27825124 PMCID: PMC5347763 DOI: 10.18632/oncotarget.13079] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
There is an urgent unmet need for new therapeutics in acute myeloid leukemia (AML) as standard therapy has not changed in the past three decades and outcome remains poor for most patients. Sphingolipid dysregulation through decreased ceramide levels and elevated sphingosine 1-phosphate (S1P) promotes cancer cell growth and survival. Acid ceramidase (AC) catalyzes ceramide breakdown to sphingosine, the precursor for S1P. We report for the first time that AC is required for AML blast survival. Transcriptome analysis and enzymatic assay show that primary AML cells have high levels of AC expression and activity. Treatment of patient samples and cell lines with AC inhibitor LCL204 reduced viability and induced apoptosis. AC overexpression increased the expression of anti-apoptotic Mcl-1, significantly increased S1P and decreased ceramide. Conversely, LCL204 induced ceramide accumulation and decreased Mcl-1 through post-translational mechanisms. LCL204 treatment significantly increased overall survival of C57BL/6 mice engrafted with leukemic C1498 cells and significantly decreased leukemic burden in NSG mice engrafted with primary human AML cells. Collectively, these studies demonstrate that AC plays a critical role in AML survival through regulation of both sphingolipid levels and Mcl-1. We propose that AC warrants further exploration as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Su-Fern Tan
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xin Liu
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Brian M Barth
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Arati Sharma
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Stephen D Turner
- Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andy Awwad
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Alden Dewey
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Kenichiro Doi
- Department of Pathology, Osaka City University Medical School, Osaka, Japan
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithun Vinod Shah
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA.,Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Junjia Zhu
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Jason Liao
- Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Jong Yun
- Penn State Hershey Cancer Institute, Hershey, PA, USA.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Hong-Gang Wang
- Penn State Hershey Cancer Institute, Hershey, PA, USA.,Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David J Feith
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Thomas P Loughran
- Department of Medicine, University of Virginia, Charlottesville, VA, USA.,University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
27
|
Whiting E, Raje MR, Chauhan J, Wilder PT, Van Eker D, Hughes SJ, Bowen NG, Vickers GEA, Fenimore IC, Fletcher S. Discovery of Mcl-1 inhibitors based on a thiazolidine-2,4-dione scaffold. Bioorg Med Chem Lett 2017; 28:523-528. [PMID: 29329659 DOI: 10.1016/j.bmcl.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Inspired by a rhodanine-based dual inhibitor of Bcl-xL and Mcl-1, a focused library of analogues was prepared wherein the rhodanine core was replaced with a less promiscuous thiazolidine-2,4-dione scaffold. Compounds were initially evaluated for their abilities to inhibit Mcl-1. The most potent compound 12b inhibited Mcl-1 with a Ki of 155 nM. Further investigation revealed comparable inhibition of Bcl-xL (Ki = 90 nM), indicating that the dual inhibitory profile of the initial rhodanine lead had been retained upon switching the heterocycle core.
Collapse
Affiliation(s)
- Ellis Whiting
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | - Mithun R Raje
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St., Baltimore, MD 21201, United States
| | - Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St., Baltimore, MD 21201, United States
| | - Paul T Wilder
- Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States; University of Maryland Marlene and Stewart Greenebaum Comprehesive Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA
| | - Daniel Van Eker
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | - Samuel J Hughes
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | - Nathan G Bowen
- School of Chemistry, University of Cardiff, Cardiff CF10 3AT, UK
| | | | - Ian C Fenimore
- Eberly College of Science, Penn State University, 517 Thomas St., State College, PA 16803, United States
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St., Baltimore, MD 21201, United States; University of Maryland Marlene and Stewart Greenebaum Comprehesive Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Gilormini M, Malesys C, Armandy E, Manas P, Guy JB, Magné N, Rodriguez-Lafrasse C, Ardail D. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget 2017; 7:16731-44. [PMID: 26934442 PMCID: PMC4941347 DOI: 10.18632/oncotarget.7744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are common human malignancies with poor clinical outcomes. The 5-year survival rates for patients with advanced stage HNSCC have not changed appreciably in the past few decades, underscoring a dire need for improved therapeutic options. HNSCC is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. The aim of this study was to evaluate combined effects of radiation and ABT-737, a BH3-mimetic molecule, in HNSCC. Although ABT-737, as a single agent, was largely ineffective at promoting HNSCC cell death, we found that combining ABT-737 and radiation induced strong synergistic apoptosis in HNSCC cell lines and delayed tumoral growth in vivo. Moreover, we demonstrated for the first time that ABT-737, alone or in combination with radiation, can efficiently eliminate cancer stem cells (CSCs). Altogether, our results indicate that therapy targeting anti-apoptotic Bcl-2 family members could be a highly effective potential adjuvant to radiotherapy capable of targeting CSCs in HNSCC and therefore overcoming cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Marion Gilormini
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France
| | - Céline Malesys
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France
| | - Emma Armandy
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France
| | - Patrick Manas
- UMS3444 BioSciences Gerland-Lyon Sud, PBES, Lyon, France
| | - Jean-Baptiste Guy
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France
| | - Nicolas Magné
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France.,Institut de Cancérologie L. Neuwirth, St Etienne, France
| | - Claire Rodriguez-Lafrasse
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France.,Hospices-Civils-de-Lyon, CHLS, Pierre-Bénite, France
| | - Dominique Ardail
- Université Lyon I, Faculté de Médecine-Lyon-Sud, Oullins, France.,Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Oullins, France.,Hospices-Civils-de-Lyon, CHLS, Pierre-Bénite, France
| |
Collapse
|
29
|
Leverson JD, Sampath D, Souers AJ, Rosenberg SH, Fairbrother WJ, Amiot M, Konopleva M, Letai A. Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax. Cancer Discov 2017; 7:1376-1393. [PMID: 29146569 PMCID: PMC5728441 DOI: 10.1158/2159-8290.cd-17-0797] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax.Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Martine Amiot
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
30
|
Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget 2017; 7:11500-11. [PMID: 26862853 PMCID: PMC4905489 DOI: 10.18632/oncotarget.7204] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
One of the hallmarks of cancer is a resistance to the induction of programmed cell death that is mediated by selection of cells with elevated expression of anti-apoptotic members of the BCL-2 family. To counter this resistance, new therapeutic agents known as BH3-mimetic small molecules are in development with the goal of antagonizing the function of anti-apoptotic molecules and promoting the induction of apoptosis. To facilitate the testing and modeling of BH3-mimetic agents, we have developed a powerful system for evaluation and screening of agents both in culture and in immune competent animal models by engineering mouse leukemic cells and re-programming them to be dependent on exogenously expressed human anti-apoptotic BCL-2 family members. Here we demonstrate that this panel of cell lines can determine the specificity of BH3-mimetics to individual anti-apoptotic BCL-2 family members (BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1), demonstrate whether cell death is due to the induction of apoptosis (BAX and BAK-dependent), and faithfully assess the efficacy of BH3-mimetic small molecules in pre-clinical mouse models. These cells represent a robust and valuable pre-clinical screening tool for validating the efficacy, selectivity, and on-target action of BH3-mimetic agents.
Collapse
|
31
|
Kim SW, Kyung Lee Y, Yeon Lee J, Hee Hong J, Khang D. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. NANOTECHNOLOGY 2017; 28:465102. [PMID: 29053471 DOI: 10.1088/1361-6528/aa8c31] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Demethylzeylasteral inhibits cell proliferation and induces apoptosis through suppressing MCL1 in melanoma cells. Cell Death Dis 2017; 8:e3133. [PMID: 29072681 PMCID: PMC5682691 DOI: 10.1038/cddis.2017.529] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022]
Abstract
Demethylzeylasteral is one of the extracts of Tripterygium wilfordii Hook F, which plays important roles in multiple biological processes such as inflammation inhibition, as well as immunosuppression. However, anti-cancer function and the underlying mechanisms of demethylzeylasteral in melanoma cells remain unclear. In this study, we demonstrate that demethylzeylasteral has an anti-tumor property in melanoma cells. Demethylzeylasteral not only inhibits cell proliferation through cell cycle arrest at S phase, but also induces cell apoptosis in melanoma cells. MCL1 is an anti-apoptotic protein in BCL2 family, and amplifies frequently in multiple human cancers. MCL1 is also known as a potential contributor for the resistance of BCL2 inhibitors, as well as various chemotherapeutic drugs. MCL1 is, therefore, regarded as a potential target for cancer therapy. Here, for the first time, we unveil that demethylzeylasteral suppresses the expression of MCL1. Interestingly, MCL1 interacts with S phase-related protein CDK2, and thereby inhibits it’s ubiquitin-dependent degradation. Together, demethylzeylasteral is a promising anti-tumor compound in melanoma cells. Demethylzeylasteral is also a potential inhibitor of MCL1.
Collapse
|
33
|
The BET-Bromodomain Inhibitor JQ1 synergized ABT-263 against colorectal cancer cells through suppressing c-Myc-induced miR-1271-5p expression. Biomed Pharmacother 2017; 95:1574-1579. [PMID: 28950657 DOI: 10.1016/j.biopha.2017.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) cells undergo apoptosis in the presence of the small-molecule inhibitor ABT-263 by up-regulating antiapoptotic Bcl-2 family members. However, the resistance to ABT-263 gradually developed in most solid tumors due to its low affinity to Mcl-1. Here, we found the BET-Bromodomain inhibitor JQ1, when combined with ABT-263, synergistically reduced Mcl-1 protein level, induced apoptosis, and decreased cell viability in the CRC HCT-15, HT-29 and SW620 cells. The subsequent mechanism study revealed that a pathway of c-Myc/miR-1271-5p/Noxa/Mcl-1 underlies the synergistic effect of such combination treatment. We discovered that miR-1271-5p, the key mediator for the synergistic effect, is transcriptionally activated by c-Myc, and binds to the 3'-UTR of noxa to inhibit its protein production. The combination treatment of JQ1 and ABT-263 inhibited c-Myc protein level and also c-Myc-driven expression of miR-1271-5p, subsequently increased the protein level of Noxa, and finally promotes the degradation of Mcl-1. Our findings provide an alternative strategy to resolve the resistance during treatment of CRC by JQ1, and also discovered a novel miR-1271-5p-dependent regulatory mechanism for gene expression of noxa.
Collapse
|
34
|
Yang H, Lee MH, Park I, Jeon H, Choi J, Seo S, Kim SW, Koh GY, Park KS, Lee DH. HSP90 inhibitor (NVP-AUY922) enhances the anti-cancer effect of BCL-2 inhibitor (ABT-737) in small cell lung cancer expressing BCL-2. Cancer Lett 2017; 411:19-26. [PMID: 28987383 DOI: 10.1016/j.canlet.2017.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 12/13/2022]
Abstract
Small cell lung cancer (SCLC) cannot be efficiently controlled using existing chemotherapy and radiotherapy approaches, indicating the need for new therapeutic strategies. Although ABT-737, a B-cell lymphoma-2 (BCL-2) inhibitor, exerts anticancer effects against BCL-2-expressing SCLC, monotherapy with ABT-737 is associated with limited clinical activity because of the development of resistance and toxicity. Here, we examined whether combination therapy with ABT-737 and heat shock protein 90 (HSP90) inhibitor NVP-AUY922 exerted synergistic anticancer effects on SCLC. We found that the combination of ABT-737 and NVP-AUY922 synergistically induced the apoptosis of BCL-2-expressing SCLC cells. NVP-AUY922 downregulated the expression of AKT and ERK, which activate MCL-1 to induce resistance against ABT-737. The synergistic effect was also partly due to blocking NF-κB activation, which induces anti-apoptosis protein expressions. However, interestingly, targeting BCL-2 and MCL-1 or BCL2 and NF-κB did not induce the cytotoxicity. In conclusion, our study showed that combination of BCL2 inhibitor with HSP90 inhibitor increased activity in in vitro and in vivo study in only BCL-2 expressing SCLC compared to either single BCL2 inhibitor or HSP inhibitor. The enhanced activity might be led by blocking several apoptotic pathways simultaneously rather than a specific pathway.
Collapse
Affiliation(s)
- Hannah Yang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mi-Hee Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Intae Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanwool Jeon
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Junyoung Choi
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seyoung Seo
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Gou Young Koh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kang-Seo Park
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Dae Ho Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| |
Collapse
|
35
|
Kamath PR, Sunil D, Joseph MM, Abdul Salam AA, T.T. S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur J Med Chem 2017; 136:442-451. [DOI: 10.1016/j.ejmech.2017.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
|
36
|
Retracted
: Bisindole-oxadiazole hybrids, T3P mediated®
-synthesis and appraisal of their apoptotic, antimetastatic and computational Bcl-2 binding potential. J Biochem Mol Toxicol 2017; 31. [PMID: 28724188 DOI: 10.1002/jbt.21962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
|
37
|
Pedley R, Gilmore AP. Mitosis and mitochondrial priming for apoptosis. Biol Chem 2017; 397:595-605. [PMID: 27016149 DOI: 10.1515/hsz-2016-0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
Cell division is a period of danger for cells, as inaccurate segregation of chromosomes can lead to loss of cell viability or aneuploidy. In order to protect against these dangers, cells ultimately initiate mitochondrial apoptosis if they are unable to correctly exit mitosis. A number of important chemotherapeutics exploit this response to delayed mitotic exit, but despite this, the molecular mechanism of the apoptotic timer in mitosis has proved elusive. Some recent studies have now shed light on this, showing how passage through the cell cycle fine-tunes a cell's apoptotic sensitivity such that it can respond appropriately when errors arise.
Collapse
|
38
|
Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, Leverson JD, Lam LT. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017; 17:399. [PMID: 28578655 PMCID: PMC5457565 DOI: 10.1186/s12885-017-3383-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
Background Venetoclax (ABT-199), a first-in-class orally bioavailable BCL-2-selective inhibitor, was recently approved by the FDA for use in patients with 17p-deleted chronic lymphocytic leukemia who have received prior therapy. It is also being evaluated in numerous clinical trials for treating patients with various hematologic malignancies. As with any targeted cancer therapy, it is critically important to identify potential mechanisms of resistance, both for patient stratification and developing strategies to overcome resistance, either before it develops or as it emerges. Methods In order to gain a more comprehensive insight into the nature of venetoclax resistance mechanisms, we evaluated the changes in the BCL-2 family members at the genetic and expression levels in seven different venetoclax-resistant derived leukemia and lymphoma cell lines. Results Gene and protein expression analyses identified a number of different alterations in the expression of pro- and anti-apoptotic BCL-2 family members. In the resistant derived cells, an increase in either or both the anti-apoptotic proteins BCL-XL or MCL-1, which are not targeted by venetoclax was observed, and either concomitant or exclusive with a decrease in one or more pro-apoptotic proteins. In addition, mutational analysis also revealed a mutation in the BH3 binding groove (F104L) that could potentially interfere with venetoclax-binding. Not all changes may be causally related to venetoclax resistance and may only be an epiphenomenon. For resistant cell lines showing elevations in BCL-XL or MCL-1, strong synergistic cell killing was observed when venetoclax was combined with either BCL-XL- or MCL-1-selective inhibitors, respectively. This highlights the importance of BCL-XL- and MCL-1 as causally contributing to venetoclax resistance. Conclusions Overall our study identified numerous changes in multiple resistant lines; the changes were neither mutually exclusive nor universal across the cell lines tested, thus exemplifying the complexity and heterogeneity of potential resistance mechanisms. Identifying and evaluating their contribution has important implications for both patient selection and the rational development of strategies to overcome resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3383-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen K Tahir
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Morey L Smith
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Paul Hessler
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Lisa Roberts Rapp
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Kenneth B Idler
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Chang H Park
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Joel D Leverson
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Lloyd T Lam
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA.
| |
Collapse
|
39
|
Gunda V, Sarosiek KA, Brauner E, Kim YS, Amin S, Zhou Z, Letai A, Parangi S. Inhibition of MAPKinase pathway sensitizes thyroid cancer cells to ABT-737 induced apoptosis. Cancer Lett 2017; 395:1-10. [DOI: 10.1016/j.canlet.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
|
40
|
Lam LT, Lin X, Faivre EJ, Yang Z, Huang X, Wilcox DM, Bellin RJ, Jin S, Tahir SK, Mitten M, Magoc T, Bhathena A, Kati WM, Albert DH, Shen Y, Uziel T. Vulnerability of Small-Cell Lung Cancer to Apoptosis Induced by the Combination of BET Bromodomain Proteins and BCL2 Inhibitors. Mol Cancer Ther 2017; 16:1511-1520. [PMID: 28468776 DOI: 10.1158/1535-7163.mct-16-0459] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/24/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Ten percent to 15% of all lung cancers are small-cell lung cancer (SCLC). SCLC usually grows and metastasizes before it is diagnosed and relapses rapidly upon treatment. Unfortunately, no new targeted agent has been approved in the past 30 years for patients with SCLC. The BET (bromodomain and extraterminal) proteins bind acetylated histones and recruit protein complexes to promote transcription initiation and elongation. BET proteins have been shown to regulate expression of key genes in oncogenesis, such as MYC, CCND2, and BCL2L1 Here, we demonstrate that approximately 50% of SCLC cell lines are exquisitely sensitive to growth inhibition by the BET inhibitor, ABBV-075. The majority of these SCLC cell lines underwent apoptosis in response to ABBV-075 treatment via induction of caspase-3/7 activity. ABBV-075 enhanced the expression of proapoptotic protein BIM and downregulated antiapoptotic proteins BCL2 and BCLxl to a lesser extent. Furthermore, BET inhibition increased BCL2-BIM complex, thus priming the cells for apoptosis. Indeed, strong synergy was observed both in vitro and in vivo when cotreating the cells with BET inhibitor and the BH3-mimetic, BCL2 inhibitor venetoclax (ABT-199). ABBV-075 interaction with venetoclax positively correlated with BCL2 expression. Taken together, our studies provide a rationale for treating SCLC with BET and BCL2 inhibitors in tumors with high BCL2 protein expression. Mol Cancer Ther; 16(8); 1511-20. ©2017 AACR.
Collapse
Affiliation(s)
- Lloyd T Lam
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois.
| | - Xiaoyu Lin
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | - Emily J Faivre
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | - Ziping Yang
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | - Xiaoli Huang
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | | | | | - Sha Jin
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | | | - Michael Mitten
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | - Terry Magoc
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | | | - Warren M Kati
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | | | - Yu Shen
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| | - Tamar Uziel
- Oncology Discovery, AbbVie, Inc., North Chicago, Illinois
| |
Collapse
|
41
|
Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 2017; 16:273-284. [DOI: 10.1038/nrd.2016.253] [Citation(s) in RCA: 508] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Tong J, Wang P, Tan S, Chen D, Nikolovska-Coleska Z, Zou F, Yu J, Zhang L. Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells. Cancer Res 2017; 77:2512-2521. [PMID: 28202514 DOI: 10.1158/0008-5472.can-16-3242] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023]
Abstract
The Bcl-2 family protein Mcl-1 is often degraded in cancer cells subjected to effective therapeutic treatment, and defective Mcl-1 degradation has been associated with intrinsic and acquired drug resistance. However, a causal relationship between Mcl-1 degradation and anticancer drug responses has not been directly established, especially in solid tumor cells where Mcl-1 inhibition alone is insufficient to trigger cell death. In this study, we present evidence that Mcl-1 participates directly in determining effective therapeutic responses in colon cancer cells. In this setting, Mcl-1 degradation was induced by a variety of multikinase inhibitor drugs, where it relied upon GSK3β phosphorylation and FBW7-dependent ubiquitination. Specific blockade by genetic knock-in (KI) abolished apoptotic responses and conferred resistance to kinase inhibitors. Mcl-1-KI also suppressed the antiangiogenic and anti-hypoxic effects of kinase inhibitors in the tumor microenvironment. Interestingly, these same inhibitors also induced the BH3-only Bcl-2 family protein PUMA, which is required for apoptosis. Degradation-resistant Mcl-1 bound and sequestered PUMA from other prosurvival proteins to maintain cell survival, which was abolished by small-molecule Mcl-1 inhibitors. Our findings establish a pivotal role for Mcl-1 degradation in the response of colon cancer cells to targeted therapeutics, and they provide a useful rational platform to develop Mcl-1-targeting agents that can overcome drug resistance. Cancer Res; 77(9); 2512-21. ©2017 AACR.
Collapse
Affiliation(s)
- Jingshan Tong
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peng Wang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shuai Tan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Dongshi Chen
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jian Yu
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lin Zhang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Adams CM, Kim AS, Mitra R, Choi JK, Gong JZ, Eischen CM. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J Clin Invest 2017; 127:635-650. [PMID: 28094768 DOI: 10.1172/jci89486] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022] Open
Abstract
Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Burkitt Lymphoma/diagnosis
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mice
- Mice, Knockout
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
Collapse
|
44
|
Improved binding affinities of pyrrolidine derivatives as Mcl-1 inhibitors by modifying amino acid side chains. Bioorg Med Chem 2017; 25:138-152. [DOI: 10.1016/j.bmc.2016.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
|
45
|
Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem Soc Trans 2016; 44:371-6. [PMID: 27068942 DOI: 10.1042/bst20150253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/15/2022]
Abstract
Chimaeric antigen receptor (CAR) T-cells have shown impressive results in patients with B-cell leukaemia. Yet, in patients with lymphoma durable responses are still rare and heavy preconditioning required. Apoptosis resistance is considered a hallmark of cancer, often conveyed by a halted apoptosis signalling. Tumours regularly skew the balance of the components of the apoptotic machinery either through up-regulating anti-apoptotic proteins or silencing pro-apoptotic ones. Malignant B-cells frequently up-regulate anti-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins leading to therapy resistance. CAR T-cells kill tumour cells via apoptosis induction and their efficacy may be affected by the level of Bcl-2 family proteins. Hence, there is an interesting possibility to increase the effect of CAR T-cell therapy by combining it with apoptosis inhibitor blockade agents. Compounds that inhibit Bcl-2, B-cell lymphoma extra large (Bcl-xL) and Bcl-2-like protein 2 (Bcl-w), can restore execution of apoptosis in tumour cells or sensitize them to other apoptosis-dependent treatments. Hence, there is a great interest to combine such agents with CAR T-cell therapy to potentiate the effect of CAR T-cell killing. This review will focus on the potential of targeting the apoptotic machinery to sensitize tumour cells to CAR T-cell killing.
Collapse
|
46
|
Combined antitumor effect of γ-secretase inhibitor and ABT-737 in Notch-expressing non-small cell lung cancer. Int J Clin Oncol 2016; 22:257-268. [PMID: 27816990 DOI: 10.1007/s10147-016-1060-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inhibition of Notch by γ-secretase inhibitor (GSI) has been shown to have an antitumor effect in Notch-expressing non-small cell lung cancer (NSCLC) and to induce apoptosis through modulation of Bcl-2 family proteins. In particular, Bim, a BH3-only member of the Bcl-2 family of proteins, has an important role in the induction of apoptosis in NSCLC when cells are treated with GSI. ABT-737, a BH3-only mimetic, targets the pro-survival Bcl-2 family and also induces apoptosis. METHODS The Notch-expressing NSCLC cell lines H460, A549, H1793, and HCC2429 were used. The combined antitumor effect of GSI and ABT-737 was evaluated using the MTT proliferation assay in vitro and in xenograft mouse models. The expression of the Notch pathway and Bcl-2 family was analyzed using Western blotting analysis when cells were treated with a single drug treatment or a combination treatment. RESULTS GSI XX or ABT-737 alone inhibited cell proliferation in a dose-dependent manner, and combination drug treatment showed a synergistic antitumor effect in vitro. In vivo, this drug combination significantly suppressed tumor proliferation compared to the single drug treatment. Phospho-Bcl-2 was downregulated and Bax was upregulated by both the single and combination drug treatments. Bim was induced by a single drug treatment and was enhanced by combination treatment. Combination treatment-induced apoptosis was decreased by Bim inhibition, suggesting that the antitumor effect of the drug combination was dependent on Bim. CONCLUSION Based on our data, we propose that the combination treatment is a promising strategy for NSCLC therapy.
Collapse
|
47
|
Potter DS, Letai A. To Prime, or Not to Prime: That Is the Question. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:131-140. [PMID: 27811212 DOI: 10.1101/sqb.2016.81.030841] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondrial priming is regulated by the B-cell lymphoma 2 (BCL-2) family of proteins and determines a cell's "readiness" for apoptosis. A highly primed cell will undergo apoptosis more easily than an unprimed cell in response to apoptotic stimuli via the intrinsic apoptotic pathway. Priming can be measured via BH3 profiling, which uses BH3 peptides derived from the BH3 domain of pro-apoptotic BH3-only BCL-2 family members to provoke a response from viable mitochondria. BH3 profiling can be performed on tumor cells and can identify mechanisms a cell uses to evade apoptosis and anti-apoptotic dependency to the anti-apoptotic BCL-2 family members. Priming correlates with chemosensitivity of patients in multiple cancers. Therapeutics that enhances priming of patient tumor cells ex vivo could be used to aid therapeutic decisions for patients in the future.
Collapse
Affiliation(s)
- Danielle S Potter
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215
| | - Anthony Letai
- Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
48
|
Nakajima W, Sharma K, Hicks MA, Le N, Brown R, Krystal GW, Harada H. Combination with vorinostat overcomes ABT-263 (navitoclax) resistance of small cell lung cancer. Cancer Biol Ther 2016; 17:27-35. [PMID: 26575826 DOI: 10.1080/15384047.2015.1108485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive tumor type with high mortality. One promising approach for SCLC treatment would be to utilize agents targeting molecular abnormalities regulating resistance to apoptosis. BH3 mimetic antagonists, such as ABT-737 and its orally available derivative ABT-263 (navitoclax) have been developed to block the function of pro-survival BCL-2 family members. The sensitivity of SCLC to these drugs varies over a broad range in vitro and in clinical trials. We have previously shown that the expression of Noxa, a BH3-only pro-apoptotic BCL-2 family protein, is a critical determinant of sensitivity to ABT-737. Thus, pharmacological up-regulation of Noxa could enhance cell death induced by the BH3 mimetics. We find that the combination of ABT-263 and a HDAC inhibitor, vorinostat, efficiently induces apoptosis in a variety of SCLC cell lines, including ABT-263 resistant cell lines. Cell death induced by combined treatment is Noxa- and/or BIM-dependent in some cell lines but in others appears to be mediated by down-regulation of BCL-XL and release of BAK from BCL-XL and MCL-1. These results suggest that combination of HDAC inhibitors and BCL-2 inhibitors could be an alternative and effective regimen for SCLC treatment.
Collapse
Affiliation(s)
- Wataru Nakajima
- a Department of Oral and Craniofacial Molecular Biology , School of Dentistry, Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia , USA
| | - Kanika Sharma
- a Department of Oral and Craniofacial Molecular Biology , School of Dentistry, Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia , USA
| | - Mark A Hicks
- a Department of Oral and Craniofacial Molecular Biology , School of Dentistry, Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia , USA
| | - Ngoc Le
- a Department of Oral and Craniofacial Molecular Biology , School of Dentistry, Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia , USA
| | - Rikiara Brown
- a Department of Oral and Craniofacial Molecular Biology , School of Dentistry, Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia , USA
| | - Geoffrey W Krystal
- b Department of Internal Medicine , Virginia Commonwealth University, McGuire Veterans Affairs Medical Center , Richmond , Virginia , USA
| | - Hisashi Harada
- a Department of Oral and Craniofacial Molecular Biology , School of Dentistry, Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia , USA
| |
Collapse
|
49
|
Zhang J, Gao G, Begum G, Wang J, Khanna AR, Shmukler BE, Daubner GM, de los Heros P, Davies P, Varghese J, Bhuiyan MIH, Duan J, Zhang J, Duran D, Alper SL, Sun D, Elledge SJ, Alessi DR, Kahle KT. Functional kinomics establishes a critical node of volume-sensitive cation-Cl - cotransporter regulation in the mammalian brain. Sci Rep 2016; 6:35986. [PMID: 27782176 PMCID: PMC5080614 DOI: 10.1038/srep35986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation - a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl--sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl- uptake and stimulation of KCC3-mediated Cl- extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought "Cl-/volume-sensitive kinase" of the cation-Cl- cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.
Collapse
Affiliation(s)
- Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Geng Gao
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, SGM 628, Boston, MA 02115, USA
| | - Arjun R. Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Boris E. Shmukler
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Gerrit M. Daubner
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paola de los Heros
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Joby Varghese
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | - Jinjing Duan
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Jin Zhang
- Department of Cardiology, Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts 02115, USA
| | - Daniel Duran
- Departments of Neurosurgery and Pediatrics, Yale School of Medicine, New Haven, CT 06511 USA
| | - Seth L. Alper
- Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA -022154 USA
- Department of Medicine, Harvard Medical School, Boston, MA -022154, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, USA
| | - Stephen J. Elledge
- Department of Genetics, Harvard University Medical School, Howard Hughes Medical Institute, Boston, Massachusetts 02115 USA
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Kristopher T. Kahle
- Departments of Pediatrics and Cellular & Molecular Physiology; Interdepartmental Neuroscience Program; and Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
50
|
Polley E, Kunkel M, Evans D, Silvers T, Delosh R, Laudeman J, Ogle C, Reinhart R, Selby M, Connelly J, Harris E, Fer N, Sonkin D, Kaur G, Monks A, Malik S, Morris J, Teicher BA. Small Cell Lung Cancer Screen of Oncology Drugs, Investigational Agents, and Gene and microRNA Expression. J Natl Cancer Inst 2016; 108:djw122. [PMID: 27247353 PMCID: PMC6279282 DOI: 10.1093/jnci/djw122] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/29/2016] [Accepted: 03/23/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Small cell lung carcinoma (SCLC) is an aggressive, recalcitrant cancer, often metastatic at diagnosis and unresponsive to chemotherapy upon recurrence, thus it is challenging to treat. METHODS Sixty-three human SCLC lines and three NSCLC lines were screened for response to 103 US Food and Drug Administration-approved oncology agents and 423 investigational agents. The investigational agents library was a diverse set of small molecules that included multiple compounds targeting the same molecular entity. The compounds were screened in triplicate at nine concentrations with a 96-hour exposure time using an ATP Lite endpoint. Gene expression was assessed by exon array, and microRNA expression was derived by direct digital detection. Activity across the SCLC lines was associated with molecular characteristics using pair-wise Pearson correlations. RESULTS Results are presented for inhibitors of targets: BCL2, PARP1, mTOR, IGF1R, KSP/Eg5, PLK-1, AURK, and FGFR1. A relational map identified compounds with similar patterns of response. Unsupervised microRNA clustering resulted in three distinct SCLC subgroups. Associating drug response with micro-RNA expression indicated that lines most sensitive to etoposide and topotecan expressed high miR-200c-3p and low miR-140-5p and miR-9-5p. The BCL-2/BCL-XL inhibitors produced similar response patterns. Sensitivity to ABT-737 correlated with higher ASCL1 and BCL2. Several classes of compounds targeting nuclear proteins regulating mitosis produced a response pattern distinct from the etoposide response pattern. CONCLUSIONS Agents targeting nuclear kinases appear to be effective in SCLC lines. Confirmation of SCLC line findings in xenografts is needed. The drug and compound response, gene expression, and microRNA expression data are publicly available at http://sclccelllines.cancer.gov.
Collapse
Affiliation(s)
- Eric Polley
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Mark Kunkel
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - David Evans
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Thomas Silvers
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Rene Delosh
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Julie Laudeman
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Chad Ogle
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Russell Reinhart
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Michael Selby
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - John Connelly
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Erik Harris
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Nicole Fer
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Dmitriy Sonkin
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Gurmeet Kaur
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Anne Monks
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Shakun Malik
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Joel Morris
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| | - Beverly A. Teicher
- Affiliations of authors:
Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (DE, TS, RD, JL, CO, RR, MS, JC, EH, NF, AM); Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis (MK, GK, JM, BAT), Biometric Research Program, Division of Cancer Treatment and Diagnosis (EP, DS), and Cancer Therapy Evaluation Program (SM), National Cancer Institute, Rockville, MD
| |
Collapse
|