1
|
Lam K, Kim YJ, Ong CM, Liu AZ, Zhou FJ, Sunshine MJ, Chua BA, Vicenzi S, Ford PW, Zhou JH, Hong Y, Bennett EJ, Crews LA, Ball ED, Signer RAJ. The Proteostasis Network is a Therapeutic Target in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614781. [PMID: 39386464 PMCID: PMC11463481 DOI: 10.1101/2024.09.24.614781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Oncogenic growth places great strain and dependence on the proteostasis network. This has made proteostasis pathways attractive therapeutic targets in cancer, but efforts to drug these pathways have yielded disappointing clinical outcomes. One exception is proteasome inhibitors, which are approved for frontline treatment of multiple myeloma. However, proteasome inhibitors are largely ineffective for treatment of other cancers, including acute myeloid leukemia (AML), although reasons for these differences are unknown. Here, we determined that proteasome inhibitors are ineffective in AML due to inability to disrupt proteostasis. In response to proteasome inhibition, AML cells activated HSF1 and autophagy, two key stem cell proteostasis pathways, to prevent unfolded protein accumulation. Inactivation of HSF1 sensitized human AML cells to proteasome inhibition, marked by unfolded protein accumulation, activation of the PERK-mediated integrated stress response, severe reductions in protein synthesis, proliferation and cell survival, and significant slowing of disease progression and extension of survival in vivo . Similarly, combined autophagy and proteasome inhibition suppressed proliferation, synergistically killed AML cells, and significantly reduced AML burden and extended survival in vivo . Furthermore, autophagy and proteasome inhibition preferentially suppressed protein synthesis and induced apoptosis in primary patient AML cells, including AML stem/progenitor cells, without severely affecting normal hematopoietic stem/progenitor cells. Combined autophagy and proteasome inhibition also activated the integrated stress response, but surprisingly this occurred in a PKR-dependent manner. These studies unravel how proteostasis pathways are co-opted to promote AML growth, progression and drug resistance, and reveal that disabling the proteostasis network is a promising strategy to therapeutically target AML.
Collapse
|
2
|
Tao Y, Ding X, Jia C, Wang C, Li C. Using protein turnover assay to explore the drug mechanism of Carfilzomib. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 38978505 DOI: 10.3724/abbs.2024104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Carfilzomib (CFZ) is the second-generation proteasome inhibitor that is approved by Food and Drug Administration (FDA) of USA for the treatment of relapsed and refractory multiple myeloma. Although the preclinical and clinical efficacy of CFZ is obvious, the mechanism by which CFZ leads to cell death has not been fully elucidated. Since CFZ primarily functions as a proteasome inhibitor, profiling CFZ-induced changes in protein turnover at the systematic level is sufficient and necessary. In this study, we characterize the effects of CFZ on the stability of 15,000 human proteins using Protein Turnover Assay (ProTA). CFZ affects fundamental cellular glycolysis, nitric oxide production and proteasome subunit homeostasis in multiple myeloma cells. In addition, LY294002 or KU-0063794 has synergistic effects with CFZ in multiple myeloma treatment. A profound understanding of how cells respond to chemotherapeutic agents provides insights into the basic mechanism of drug function and the rationale for CFZ combination therapy.
Collapse
Affiliation(s)
- Yonghui Tao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Ding
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Caiwei Jia
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengcheng Wang
- School of Medicine, Guizhou University, Guiyang 550025, China
| | - Chuanyin Li
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Liu Y, Li C, Liu H, Tan S. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress. Arch Pharm Res 2024; 47:442-464. [PMID: 38632167 DOI: 10.1007/s12272-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
The molecular chaperone heat shock protein 90 (HSP90) regulates multiple crucial signalling pathways in cancer by driving the maturation of key signalling components, thereby playing a crucial role in tumorigenesis and drug resistance in cancer. Inhibition of HSP90 results in metastable conformational collapse of its client proteins and their proteasomal degradation. Considerable efforts have been devoted to the development of small-molecule inhibitors targeting HSP90, and more than 20 inhibitors have been evaluated in clinical trials for cancer therapy. However, owing to disadvantages such as organ toxicity and drug resistance, only one HSP90 inhibitor has been approved for use in clinical settings. In recent years, HSP90 inhibitors used in combination with other anti-cancer therapies have shown remarkable potential in the treatment of cancer. HSP90 inhibitors work synergistically with various anti-cancer therapies, including chemotherapy, targeted therapy, radiation therapy and immunotherapy. HSP90 inhibitors can improve the pharmacological effects of the above-mentioned therapies and reduce treatment resistance. This review provides an overview of the use of combination therapy with HSP90 inhibitors and other anti-cancer therapies in clinical and preclinical studies reported in the past decade and summarises design strategies and prospects for these combination therapies. Altogether, this review provides a theoretical basis for further research and application of these combination therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Yajun Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Panjin, 124221, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
- Affiliated Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
4
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
5
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
6
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lewis E, McCulloch S, Mahe E, Bahlis N, Neri P, Tay J, Duggan P, Jimenez-Zepeda VH. Effect of the Presence of t(11;14) for Patients With AL Amyloidosis Treated With Bortezomib-Containing Regimens: Experience From the Amyloidosis Program of Calgary. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:e331-e334. [PMID: 37532664 DOI: 10.1016/j.clml.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Ellen Lewis
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada
| | - Sylvia McCulloch
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada
| | - Etienne Mahe
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada; Department of Pathology and Lab Medicine, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nizar Bahlis
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jason Tay
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada
| | - Peter Duggan
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada
| | - Victor H Jimenez-Zepeda
- Department of Medical Oncology and Hematology, Tom Baker Cancer Centre/University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. Dual RNase activity of IRE1 as a target for anticancer therapies. J Cell Commun Signal 2023:10.1007/s12079-023-00784-5. [PMID: 37721642 DOI: 10.1007/s12079-023-00784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a Street, 50-383, Wrocław, Poland.
| |
Collapse
|
9
|
Jahankhani K, Taghipour N, Mashhadi Rafiee M, Nikoonezhad M, Mehdizadeh M, Mosaffa N. Therapeutic effect of trace elements on multiple myeloma and mechanisms of cancer process. Food Chem Toxicol 2023; 179:113983. [PMID: 37567355 DOI: 10.1016/j.fct.2023.113983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
In the human body, trace elements and other micronutrients play a vital role in growth, health and immune system function. The trace elements are Iron, Manganese, Copper, Iodine, Zinc, Cobalt, Fluoride, and Selenium. Estimating the serum levels of trace elements in hematologic malignancy patients can determine the severity of the tumor. Multiple myeloma (MM) is a hematopoietic malignancy and is characterized by plasma cell clonal expansion in bone marrow. Despite the advances in treatment methods, myeloma remains largely incurable. In addition to conventional medicine, treatment is moving toward less expensive noninvasive alternatives. One of the alternative treatments is the use of dietary supplements. In this review, we focused on the effect of three trace elements including iron, zinc and selenium on important mechanisms such as the immune system, oxidative and antioxidant factors and cell cycle. Using some trace minerals in combination with approved drugs can increase patients' recovery speed. Trace elements can be used as not only a preventive but also a therapeutic tool, especially in reducing inflammation in hematological cancers such as multiple myeloma. We hope that the prospect of the correct use of trace element supplements in the future could be promising for the treatment of diseases.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nikoonezhad
- Department of Immunology, School of Medicine, Tarbiat Modarres University, Tehran, Iran
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Solia E, Dimopoulos MA, Kastritis E. Proteasome Inhibitor-Based Regimens in the Frontline Management of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2023; 37:689-705. [PMID: 37211495 DOI: 10.1016/j.hoc.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteasome inhibitors (PIs) have long been used in myeloma therapy but also for Waldenström macroglobulinemia. Their use has been successful and has also been investigated for the frontline management of the disease. Bortezomib was effective either as a single agent or in combination with other regimens with high response rates observed in most studies, despite its adverse effects, especially neurotoxicity, which remains a major concern. Clinical trials with second-generation PIs such as carfilzomib and ixazomib have also been conducted, always in combination with immunotherapy in previously untreated patients. They have been shown to be active and neuropathy-sparing treatment options.
Collapse
Affiliation(s)
- Eirini Solia
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
11
|
Karakala N, Juncos LA. High-Cutoff Hemodialysis Therapy for Patients with Light Chain Cast Nephropathy and AKI Requiring Dialysis: CON. KIDNEY360 2023; 4:1024-1026. [PMID: 37212742 PMCID: PMC10476674 DOI: 10.34067/kid.0000000000000150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 05/23/2023]
Affiliation(s)
- Nithin Karakala
- Department of Medicine, Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Luis A. Juncos
- Department of Medicine, Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Medicine, Division of Nephrology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
12
|
Vilaboa N, Lopez JA, de Mesa M, Escudero-Duch C, Winfield N, Bayford M, Voellmy R. Disruption of Proteostasis by Natural Products and Synthetic Compounds That Induce Pervasive Unfolding of Proteins: Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:ph16040616. [PMID: 37111374 PMCID: PMC10145903 DOI: 10.3390/ph16040616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure of many cancer cells, including multiple myeloma cells, to cytotoxic concentrations of natural products celastrol and withaferin A or synthetic compounds of the IHSF series resulted in denaturation of a luciferase reporter protein. Proteomic analysis of detergent-insoluble extract fractions from HeLa-derived cells revealed that withaferin A, IHSF058 and IHSF115 caused denaturation of 915, 722 and 991 of 5132 detected cellular proteins, respectively, of which 440 were targeted by all three compounds. Western blots showed that important fractions of these proteins, in some cases approaching half of total protein amounts, unfolded. Relatively indiscriminate covalent modification of target proteins was observed; 1178 different proteins were modified by IHSF058. Further illustrating the depth of the induced proteostasis crisis, only 13% of these proteins detectably aggregated, and 79% of the proteins that aggregated were not targets of covalent modification. Numerous proteostasis network components were modified and/or found in aggregates. Proteostasis disruption caused by the study compounds may be more profound than that mediated by proteasome inhibitors. The compounds act by a different mechanism that may be less susceptible to resistance development. Multiple myeloma cells were particularly sensitive to the compounds. Development of an additional proteostasis-disrupting therapy of multiple myeloma is suggested.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Juan Antonio Lopez
- Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Marco de Mesa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
| | - Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | - Natalie Winfield
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | - Melanie Bayford
- Domainex Ltd., Chesterford Research Park, Little Chesterford, Essex, Saffron Walden CB10 1XL, UK
| | | |
Collapse
|
13
|
Deng L, Xu G. Update on the Application of Monoclonal Antibody Therapy in Primary Membranous Nephropathy. Drugs 2023; 83:507-530. [PMID: 37017915 DOI: 10.1007/s40265-023-01855-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
When first introduced, rituximab (RTX), a chimeric anti-CD20 monoclonal antibody, brought about an alternative therapeutic paradigm for primary membranous nephropathy (PMN). Rituximab was shown to be effective and safe in PMN patients with kidney dysfunction, with. patients receiving second-line rituximab therapy achieving remission as effectively as those patients who had not previously received immunotherapy. No safety issues were reported. The B cell-driven protocol seems to be as efficient as the 375 mg/m2 × 4 regimen or 1 g × 2 regimen in achieving B cell depletion and remission, but patients with high M-type phospholipase A2 receptor (PLA2R) antibody levels may benefit from a higher dose of rituximab. While rituximab added another therapeutic option to the treatment regimen, it does have limitations as 20 to 40% of patients do not respond. Not all patients respond to RTX therapy for lymphoproliferative disorders either, therefore further novel anti-CD20 monoclonal antibodies have been developed and these may provide alternative therapeutic options for PMN. Ofatumumab, a fully human monoclonal antibody, specifically recognizes an epitope encompassing both the small and large extracellular loops of the CD20 molecule, resulting in increased complement-dependent cytotoxic activity. Ocrelizumab binds an alternative but overlapping epitope region to rituximab and displays enhanced antibody-dependent cellular cytotoxic (ADCC) activities. Obinutuzumab is designed to have a modified elbow-hinge amino acid sequence, leading to increased direct cell death induction and ADCC activities. In PMN clinical studies, ocrelizumab and obinutuzumab showed promising results, while ofatumumab displayed mixed results. However, there is a lack of randomized controlled trials with large samples, especially direct head-to-head comparisons. Alternative molecular mechanisms have been suggested in this context to explore novel therapeutic strategies. B cell activator-targeted, plasma cell-targeted and complement-directed treatments may lead to novel therapy paradigms for PMN. Exploratory strategies for the use of drugs with different mechanisms, such as a combination of rituximab and cyclophosphamide and a steroid, a combination of rituximab and a calcineurin inhibitor, may provide more rapid and efficient remission, but the combination of standard immunosuppression with rituximab could increase infection risk.
Collapse
Affiliation(s)
- Le Deng
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
14
|
Besse L, Kraus M, Besse A, Driessen C, Tarantino I. The cytotoxic activity of carfilzomib together with nelfinavir is superior to the bortezomib/nelfinavir combination in non-small cell lung carcinoma. Sci Rep 2023; 13:4411. [PMID: 36932175 PMCID: PMC10023769 DOI: 10.1038/s41598-023-31400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Chemotherapy resistance is still a major problem in the treatment of patients with non-small-cell-lung carcinoma (NSCLC), and novel concepts for the induction of cytotoxicity in NSCLC are highly warranted. Proteotoxicity, the induction of cytotoxicity by targeting the ubiquitin proteasome system, represents an appealing innovative strategy. The combination of the proteasome inhibitor bortezomib (BTZ) and the proteotoxic stress-inducing HIV drug nelfinavir (NFV) synergistically induces proteotoxicity and shows encouraging preclinical efficacy in NSCLC. The second-generation proteasome inhibitor carfilzomib (CFZ) is superior to BTZ and overcomes BTZ resistance in multiple myeloma patients. Here, we show that CFZ together with NFV is superior to the BTZ + NFV combination in inducing endoplasmic reticulum stress and proteotoxicity through the accumulation of excess proteasomal substrate protein in NSCLC in vitro and ex vivo. Interestingly, NFV increases the intracellular availability of CFZ through inhibition of CFZ export from NSCLC cells that express multidrug resistance (MDR) protein. Combining CFZ with NFV may therefore represent a future treatment option for NSCLC, which warrants further investigation.
Collapse
Affiliation(s)
- Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland.
- Cantonal Hospital St. Gallen, Rorschacherstrasse 95 Haus 09/218, 9007, St. Gallen, Switzerland.
| | - Marianne Kraus
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Andrej Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Christoph Driessen
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Cantonal Hospital St. Gallen, 9000, St. Gallen, Switzerland
| | - Ignazio Tarantino
- Department of General, Visceral, Endocrine and Transplant Surgery, Kantonsspital St. Gallen, 9000, St. Gallen, Switzerland
| |
Collapse
|
15
|
The cellular biology of plasma cells: Unmet challenges and opportunities. Immunol Lett 2023; 254:6-12. [PMID: 36646289 DOI: 10.1016/j.imlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Plasma cells and the antibodies they secrete are paramount for protection against infection but can also be implicated in diseases including autoantibody-mediated disease and multiple myeloma. Plasma cell terminal differentiation relies on a transcriptional switch and on important morphological changes. The cellular and molecular mechanisms underlying these processes are partly understood and how plasma cells manage to survive for long periods of time while secreting large quantities of antibodies remains unclear. In this review we aim to put in perspective what is known about plasma cell cellular biology to highlight the challenges faced by this field of research but also to illustrate how new opportunities may arise from the study of the fundamental mechanisms sustaining plasma cell survival and function.
Collapse
|
16
|
Bonsignore G, Martinotti S, Ranzato E. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy? Int J Mol Sci 2023; 24:ijms24021566. [PMID: 36675080 PMCID: PMC9865308 DOI: 10.3390/ijms24021566] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive response which is used for re-establishing protein homeostasis, and it is triggered by endoplasmic reticulum (ER) stress. Specific ER proteins mediate UPR activation, after dissociation from chaperone Glucose-Regulated Protein 78 (GRP78). UPR can decrease ER stress, producing an ER adaptive response, block UPR if ER homeostasis is restored, or regulate apoptosis. Some tumour types are linked to ER protein folding machinery disturbance, highlighting how UPR plays a pivotal role in cancer cells to keep malignancy and drug resistance. In this review, we focus on some molecules that have been revealed to target ER stress demonstrating as UPR could be a new target in cancer treatment.
Collapse
|
17
|
Kurata K, James-Bott A, Tye MA, Yamamoto L, Samur MK, Tai YT, Dunford J, Johansson C, Senbabaoglu F, Philpott M, Palmer C, Ramasamy K, Gooding S, Smilova M, Gaeta G, Guo M, Christianson JC, Payne NC, Singh K, Karagoz K, Stokes ME, Ortiz M, Hagner P, Thakurta A, Cribbs A, Mazitschek R, Hideshima T, Anderson KC, Oppermann U. Prolyl-tRNA synthetase as a novel therapeutic target in multiple myeloma. Blood Cancer J 2023; 13:12. [PMID: 36631435 PMCID: PMC9834298 DOI: 10.1038/s41408-023-00787-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.
Collapse
Affiliation(s)
- Keiji Kurata
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Anna James-Bott
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Mark A. Tye
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,Harvard Graduate School of Arts and Sciences, Cambridge, MA 02138 USA ,grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Leona Yamamoto
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Mehmet K. Samur
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA ,grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Yu-Tzu Tai
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - James Dunford
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Catrine Johansson
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Filiz Senbabaoglu
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Martin Philpott
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Charlotte Palmer
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Karthik Ramasamy
- grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK ,grid.4991.50000 0004 1936 8948Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LD UK
| | - Sarah Gooding
- grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK ,grid.421962.a0000 0004 0641 4431Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 7LD UK
| | - Mihaela Smilova
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Giorgia Gaeta
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - Manman Guo
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - John C. Christianson
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK
| | - N. Connor Payne
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,grid.38142.3c000000041936754XDepartment of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138 USA
| | - Kritika Singh
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,grid.261112.70000 0001 2173 3359Department of Bioengineering, Northeastern University, Boston, MA 02115 USA
| | - Kubra Karagoz
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Matthew E. Stokes
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Maria Ortiz
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Patrick Hagner
- grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Anjan Thakurta
- grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK ,grid.419971.30000 0004 0374 8313Bristol Myers Squibb, Summit, NJ 07901 USA
| | - Adam Cribbs
- grid.4991.50000 0004 1936 8948Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK ,grid.4991.50000 0004 1936 8948Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD UK
| | - Ralph Mazitschek
- grid.32224.350000 0004 0386 9924Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA ,grid.38142.3c000000041936754XHarvard T.H. Chan School of Public Health, Boston, MA 02115 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Kenneth C. Anderson
- grid.38142.3c000000041936754XJerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK. .,Oxford Centre for Translational Myeloma Research, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
18
|
Almaghrbi H, Elkardawy R, Udhaya Kumar S, Kuttikrishnan S, Abunada T, Kashyap MK, Ahmad A, Uddin S, George Priya Doss C, Zayed H. Analysis of signaling cascades from myeloma cells treated with pristimerin. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:147-174. [PMID: 36858733 DOI: 10.1016/bs.apcsb.2022.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple myeloma (MM) is the 2nd most frequently diagnosed blood cancer after non-Hodgkin's lymphoma. The present study aimed to identify the differentially expressed genes (DEGs) between the control and pristimerin-treated MM cell lines. We examined the GSE14011 microarray dataset and screened DEGs with GEO2R statistical tool using the inbuilt limma package. We used a bioinformatics pipeline to identify the differential networks, signaling cascades, and the survival of the hub genes. We implemented two different enrichment analysis including ClueGO and Metacore™, to get accurate annotation for most significant DEGs. We screened the most significant 408 DEGs from the dataset based on p-values and logFC values. Using protein network analysis, we found the genes UBC, HSP90AB1, HSPH1, HSPA1B, HSPA1L, HSPA6, HSPD1, DNAJB1, HSPE1, DNAJC10, BAG3, and DNAJC7 had higher node degree distribution. In contrast, the functional annotation provided that the DEGs were predominantly enriched in B-cell receptor signaling, unfolded protein response, positive regulation of phagocytosis, HSP70, and HSP40-dependent folding, and ubiquitin-proteasomal proteolysis. Using network algorithms, and comparing enrichment analysis, we found the hub genes enriched were INHBE, UBC, HSPA1A, HSP90AB1, IKBKB, and BAG3. These DEGs were further validated with overall survival and gene expression analysis between the tumor and control groups. Finally, pristimerin effects were validated independently in a cell line model consisting of IM9 and U266 MM cells. Pristimerin induced in vitro cytotoxicity in MM cells in a dose-dependent manner. Pristimerin inhibited NF-κB, induced accumulation of ubiquitinated proteins and inhibited HSP60 in the validation of bioinformatics findings, while pristimerin-induced caspase-3 and PARP cleavage confirmed cell death. Taken together, we found that the identified DEGs were strongly associated with the apoptosis induced in MM cell lines due to pristimerin treatment, and combinatorial therapy derived from pristimerin could act as novel anti-myeloma multifunctional agents.
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Rehab Elkardawy
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shilpa Kuttikrishnan
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Taghreed Abunada
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, India
| | - Aamir Ahmad
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
19
|
Wiedemann Á, Szita VR, Horváth R, Szederjesi A, Sebő A, Tóth AD, Masszi T, Varga G. Soluble B-cell maturation antigen as a monitoring marker for multiple myeloma. Pathol Oncol Res 2023; 29:1611171. [PMID: 37188125 PMCID: PMC10178067 DOI: 10.3389/pore.2023.1611171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Objective: Response to treatment in multiple myeloma (MM) is routinely measured by serum and urine M-protein and free light chain (FLC), as described by the International Myeloma Working Group (IMWG) consensus statement. A non-negligible subgroup of patients however present without measurable biomarkers, others become oligo or non-secretory during recurrent relapses. The aim of our research was to evaluate soluble B-cell maturation antigen (sBCMA) as a monitoring marker measured concurrent with the standard monitoring in MM patients at diagnosis, at relapse and during follow up, in order to establish its potential usefulness in oligo and non-secretory disease. Method: sBCMA levels were measured in 149 patients treated for plasma cell dyscrasia (3 monoclonal gammopathy of unknown significance, 5 smoldering myeloma, 7 plasmacytoma, 8 AL amyloidosis and 126 MM) and 16 control subjects using a commercial ELISA kit. In 43 newly diagnosed patients sBCMA levels were measured at multiple timepoints during treatment, and compared to conventional IMWG response and progression free survival (PFS). Results: sBCMA levels among control subjects were significantly lower than among newly diagnosed or relapsed MM patients [20.8 (14.7-38.7) ng/mL vs. 676 (89.5-1,650) and 264 (20.7-1,603) ng/mL, respectively]. Significant correlations were found between sBCMA and the degree of bone marrow plasma cell infiltration. Out of the 37 newly diagnosed patients who have reached partial response or better per IMWG criteria, 33 (89%) have had at least a 50% drop in sBCMA level by therapy week 4. Cohorts made similarly to IMWG response criteria-achieving a 50% or 90% drop in sBCMA levels compared to level at diagnosis-had statistically significant differences in PFS. Conclusion: Our results confirmed that sBCMA levels are prognostic at important decision points in myeloma, and the percentage of BCMA change is predictive for PFS. This highlights the great potential use of sBCMA in oligo- and non-secretory myeloma.
Collapse
|
20
|
The deubiquitinase OTUD1 regulates immunoglobulin production and proteasome inhibitor sensitivity in multiple myeloma. Nat Commun 2022; 13:6820. [PMID: 36357400 PMCID: PMC9649770 DOI: 10.1038/s41467-022-34654-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Serum monoclonal immunoglobulin (Ig) is the main diagnostic factor for patients with multiple myeloma (MM), however its prognostic potential remains unclear. On a large MM patient cohort (n = 4146), we observe no correlation between serum Ig levels and patient survival, while amount of intracellular Ig has a strong predictive effect. Focused CRISPR screen, transcriptional and proteomic analysis identify deubiquitinase OTUD1 as a critical mediator of Ig synthesis, proteasome inhibitor sensitivity and tumor burden in MM. Mechanistically, OTUD1 deubiquitinates peroxiredoxin 4 (PRDX4), protecting it from endoplasmic reticulum (ER)-associated degradation. In turn, PRDX4 facilitates Ig production which coincides with the accumulation of unfolded proteins and higher ER stress. The elevated load on proteasome ultimately potentiates myeloma response to proteasome inhibitors providing a window for a rational therapy. Collectively, our findings support the significance of the Ig production machinery as a biomarker and target in the combinatory treatment of MM patients.
Collapse
|
21
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
22
|
Wang G, Fan F, Sun C, Hu Y. Looking into Endoplasmic Reticulum Stress: The Key to Drug-Resistance of Multiple Myeloma? Cancers (Basel) 2022; 14:5340. [PMID: 36358759 PMCID: PMC9654020 DOI: 10.3390/cancers14215340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/22/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy, resulting from the clonal proliferation of malignant plasma cells within the bone marrow. Despite significant advances that have been made with novel drugs over the past two decades, MM patients often develop therapy resistance, especially to bortezomib, the first-in-class proteasome inhibitor that was approved for treatment of MM. As highly secretory monoclonal protein-producing cells, MM cells are characterized by uploaded endoplasmic reticulum stress (ERS), and rely heavily on the ERS response for survival. Great efforts have been made to illustrate how MM cells adapt to therapeutic stresses through modulating the ERS response. In this review, we summarize current knowledge on the mechanisms by which ERS response pathways influence MM cell fate and response to treatment. Moreover, based on promising results obtained in preclinical studies, we discuss the prospect of applying ERS modulators to overcome drug resistance in MM.
Collapse
Affiliation(s)
- Guangqi Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Fengjuan Fan
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
| | - Chunyan Sun
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Heme Oxygenase-1 Overexpression Promotes Uveal Melanoma Progression and Is Associated with Poor Clinical Outcomes. Antioxidants (Basel) 2022; 11:antiox11101997. [PMID: 36290720 PMCID: PMC9598584 DOI: 10.3390/antiox11101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/05/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor in adults. To date, the main strategies to counteract its progression consist of focal radiation on the tumor site and ocular enucleation. Furthermore, many UM patients develop liver metastasis within 10 years following diagnosis, eventually resulting in a poorer prognosis for those patients. Dissecting the molecular mechanism involved in UM progression may lead to identify novel prognostic markers with significative clinical applications. The aim of the present study was to evaluate the role of Heme Oxygenase 1 (HO-1) in regulating UM progression. UM cell lines (92.1) were treated with Hemin (CONC e time), a strong inducer of HO-1, and VP13/47, a selective inhibitor of its enzymatic activity. Interestingly, our results showed an enhanced 92.1 cellular proliferation and wound healing ability following an HO-1 increase, overall unveiling the role played by this protein in tumor progression. Similar results were obtained following treatment with two different CO releasing molecules (CORM-3 and CORM-A1). These results were further confirmed in a clinical setting using our UM cohort. Our results demonstrated an increased median HO-1 expression in metastasizing UM when compared to nonmetastasizing patients. Overall, our results showed that HO-1 derived CO plays a major role in UM progression and HO-1 protein expression may serve as a potential prognostic and therapeutical factor in UM patients.
Collapse
|
24
|
Sharma A, Nair R, Achreja A, Mittal A, Gupta P, Balakrishnan K, Edgar CL, Animasahun O, Dwivedi B, Barwick BG, Gupta VA, Matulis SM, Bhasin M, Lonial S, Nooka AK, Wiita AP, Boise LH, Nagrath D, Shanmugam M. Therapeutic implications of mitochondrial stress-induced proteasome inhibitor resistance in multiple myeloma. SCIENCE ADVANCES 2022; 8:eabq5575. [PMID: 36170375 PMCID: PMC9519052 DOI: 10.1126/sciadv.abq5575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs). Interrogation of ETC-suppressed MM reveals integrated stress response-dependent suppression of protein translation and ubiquitination, leading to PI resistance. ETC and protein translation gene expression signatures from the CoMMpass trial are down-regulated in patients with poor outcome and relapse, corroborating our in vitro findings. ETC-suppressed MM exhibits up-regulation of the cystine-glutamate antiporter SLC7A11, and analysis of patient single-cell RNA-seq shows that clusters with low ETC gene expression correlate with higher SLC7A11 expression. Furthermore, erastin or venetoclax treatment diminishes mitochondrial stress-induced PI resistance. In sum, our work demonstrates that mitochondrial stress promotes PI resistance and underscores the need for implementing combinatorial regimens in MM cognizant of mitochondrial metabolic state.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pulkit Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kamakshi Balakrishnan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Claudia L. Edgar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Olamide Animasahun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bhakti Dwivedi
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ajay K. Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arun P. Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA, USA
- Corresponding author.
| |
Collapse
|
25
|
Proteasome Inhibitors and Their Potential Applicability in Osteosarcoma Treatment. Cancers (Basel) 2022; 14:cancers14194544. [PMID: 36230467 PMCID: PMC9559645 DOI: 10.3390/cancers14194544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Bone cancer has seen minimal benefits in therapeutic options in the past 30 years. Proteasome inhibitors present a new avenue of research for the treatment of bone cancer. Proteasome inhibitors impair the function of the proteasome, a structure within the cell that removes unwanted and misfolded proteins. Bone cancer cells heavily rely on the proteasome to properly function and survive. Impairing the proteasome function can have detrimental consequences and lead to cell death. This review provides a thorough summary of the in vitro, in vivo, and clinical research that has explored proteasome inhibitors for the treatment of bone cancer. Abstract Osteosarcoma (OS) is the most common type of bone cancer, with ~30% of patients developing secondary/metastatic tumors. The molecular complexity of tumor metastasis and the lack of effective therapies for OS has cultivated interest in exploiting the proteasome as a molecular target for anti-cancer therapy. As our understanding towards the behavior of malignant cells expands, it is evident that cancerous cells display a greater reliance on the proteasome to maintain homeostasis and sustain efficient biological activities. This led to the development and approval of first- and second-generation proteasome inhibitors (PIs), which have improved outcomes for patients with multiple myeloma and mantle cell lymphoma. Researchers have since postulated the therapeutic potential of PIs for the treatment of OS. As such, this review aims to summarize the biological effects and latest findings from clinical trials investigating PI-based treatments for OS. Integrating PIs into current treatment regimens may better outcomes for patients diagnosed with OS.
Collapse
|
26
|
Trudu M, Oliva L, Orfanelli U, Romano A, Di Raimondo F, Sanvito F, Ponzoni M, Cenci S. Preclinical evidence of a direct pro-survival role of arginine deprivation in multiple myeloma. Front Oncol 2022; 12:968208. [PMID: 36172163 PMCID: PMC9512038 DOI: 10.3389/fonc.2022.968208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma grows by establishing multiple interactions with bone marrow cells. These include expansion of myeloid-derived suppressor cells, which drive immunoevasion via mechanisms that include arginase-1-driven depletion of L-arginine, thus indirectly promoting myeloma cell survival and tumor progression. The peculiar biology of malignant plasma cells postulates that arginine depletion may benefit their fitness also directly, e.g., by engaging the integrated stress response, or by stimulating autophagy through mTORC1 inhibition. We thus investigated the direct impact of arginine deprivation on myeloma cells and challenged its pathophysiological relevance in vitro and in vivo. First, we found that partial arginine depletion spared proliferation of human multiple myeloma cells at concentrations that arrest human T cells. Next, we asked if arginine shortage activates putative adaptive pathways in myeloma cells. Low arginine failed to activate the integrated stress response, as indicated by unmodified phosphorylation of the eukaryotic initiation factor 2α, but sizably inhibited mTORC1, as revealed by reduced phosphorylation of ribosomal protein S6. Notably, depressed mTORC1 activity was not sufficient to increase autophagy, as assessed by the lysosomal digestion rate of the autophagosome-associated protein, LC3-II. Rather, it stimulated mTORC2, resulting in increased phosphatidylinositol-3 kinase-dependent AKT phosphorylation and activity, leading to heightened inhibitory phosphorylation of the pro-apoptotic BAD protein. We then tested whether arginine depletion-activated AKT may protect malignant plasma cells from cell death. Indeed, culturing myeloma cells in low arginine medium significantly reduced the apoptotic effect of the first-in-class proteasome inhibitor, bortezomib, an outcome prevented by pharmacological inhibition of AKT phosphorylation. Finally, we challenged the relevance of the identified circuit in vivo. To gauge the pathophysiologic relevance of low arginine to myeloma growth independently of immunoevasion, we xenotransplanted human myeloma cells subcutaneously into T cell-deficient Rag2–/–γc–/– recipient mice and treated palpable tumor-bearing mice with the clinical-grade arginase inhibitor CB1158. Arginase inhibition significantly raised serum arginine concentration, reduced tumor growth by caliper assessment, and decreased intra-tumor AKT phosphorylation in vivo. Altogether, our results reveal a novel direct pro-survival effect of arginine deprivation on myeloma cells, with potential therapeutic implications.
Collapse
Affiliation(s)
- Matteo Trudu
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Laura Oliva
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Ugo Orfanelli
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Romano
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | | | - Maurilio Ponzoni
- University Vita-Salute San Raffaele, Milano, Italy
- Pathology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Simone Cenci
- Age Related Diseases, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
- *Correspondence: Simone Cenci,
| |
Collapse
|
27
|
Roman-Trufero M, Auner HW, Edwards CM. Multiple myeloma metabolism - a treasure trove of therapeutic targets? Front Immunol 2022; 13:897862. [PMID: 36072593 PMCID: PMC9441940 DOI: 10.3389/fimmu.2022.897862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma is an incurable cancer of plasma cells that is predominantly located in the bone marrow. Multiple myeloma cells are characterized by distinctive biological features that are intricately linked to their core function, the assembly and secretion of large amounts of antibodies, and their diverse interactions with the bone marrow microenvironment. Here, we provide a concise and introductory discussion of major metabolic hallmarks of plasma cells and myeloma cells, their roles in myeloma development and progression, and how they could be exploited for therapeutic purposes. We review the role of glucose consumption and catabolism, assess the dependency on glutamine to support key metabolic processes, and consider metabolic adaptations in drug-resistant myeloma cells. Finally, we examine the complex metabolic effects of proteasome inhibitors on myeloma cells and the extracellular matrix, and we explore the complex relationship between myeloma cells and bone marrow adipocytes.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Holger W. Auner
- Department of Immunology and Inflammation, Cancer Cell Protein Metabolism, The Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Downey-Kopyscinski SL, Srinivasa S, Kisselev AF. A clinically relevant pulse treatment generates a bortezomib-resistant myeloma cell line that lacks proteasome mutations and is sensitive to Bcl-2 inhibitor venetoclax. Sci Rep 2022; 12:12788. [PMID: 35896610 PMCID: PMC9329464 DOI: 10.1038/s41598-022-17239-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Proteasome inhibitors bortezomib and carfilzomib are the backbones of treatments of multiple myeloma, which remains incurable despite many recent advances. With many patients relapsing despite high initial response rates to proteasome inhibitor-containing regimens, it is critical to understand the process of acquired resistance. In vitro generated resistant cell lines are important tools in this process. The majority of previously developed bortezomib-resistant cell lines bear mutations in the proteasome PSMB5 sites, the prime target of bortezomib and carfilzomib, which are rarely observed in patients. Here we present a novel bortezomib-resistant derivative of the KMS-12-BM multiple myeloma cell line, KMS-12-BM-BPR. Unlike previously published bortezomib-resistant cell lines, it was created using clinically relevant twice-weekly pulse treatments with bortezomib instead of continuous incubation. It does not contain mutations in the PSMB5 site and retains its sensitivity to carfilzomib. Reduced load on proteasome due to decreased protein synthesis appears to be the main cause of resistance. In addition, KMS-12-BM-BPR cells are more sensitive to Bcl-2 inhibitor venetoclax. Overall, this study demonstrates the feasibility of creating a proteasome inhibitor resistant myeloma cell lines by using clinically relevant pulse treatments and provides a novel model of acquired resistance.
Collapse
Affiliation(s)
- Sondra L Downey-Kopyscinski
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- SLDK-Rancho Biosciences, San Diego, CA, USA
| | - Sriraja Srinivasa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA.
| |
Collapse
|
29
|
Ahmadian E, Khatibi SMH, Vahed SZ, Ardalan M. Novel treatment options in rituximab-resistant membranous nephropathy patients. Int Immunopharmacol 2022; 107:108635. [DOI: 10.1016/j.intimp.2022.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
|
30
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
31
|
Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer 2022; 127:788-799. [PMID: 35501388 PMCID: PMC9428165 DOI: 10.1038/s41416-022-01829-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.
Collapse
Affiliation(s)
- Vito Spataro
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Via Gallino, 6500, Bellinzona, Switzerland.
| | - Antoine Buetti-Dinh
- Institute of Microbiology, Department of Environmental Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015, Lausanne, Switzerland
| |
Collapse
|
32
|
Robinson RM, Basar AP, Reyes L, Duncan RM, Li H, Dolloff NG. PDI inhibitor LTI6426 enhances panobinostat efficacy in preclinical models of multiple myeloma. Cancer Chemother Pharmacol 2022; 89:643-653. [PMID: 35381875 PMCID: PMC9054865 DOI: 10.1007/s00280-022-04425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
The histone deacetylase inhibitor (HDACi), panobinostat (Pano), is approved by the United States Food and Drug Administration (FDA) and European Medicines Agency (EMA) for treatment of relapsed/refractory multiple myeloma (MM). Despite regulatory approvals, Pano is used on a limited basis in MM due largely to an unfavorable toxicity profile. The MM treatment landscape continues to evolve, and for Pano to maintain a place in that paradigm it will be necessary to identify treatment regimens that optimize its effectiveness, particularly those that permit dose reductions to eliminate unwanted toxicity. Here, we propose such a regimen by combining Pano with LTI6426, a first-in-class orally bioavailable protein disulfide isomerase (PDI) inhibitor. We show that LTI6426 dramatically enhances the anti-MM activity of Pano in vitro and in vivo using a proteasome inhibitor resistant mouse model of MM and a low dose of Pano that exhibited no signs of toxicity. We go on to characterize a transcriptional program that is induced by the LTI6426/Pano combination, demonstrating a convergence of the two drugs on endoplasmic reticulum (ER) stress pathway effectors ATF3 (Activating Transcription Factor 3), DDIT3/CHOP (DNA Damage Inducible Transcript 3, a.k.a. C/EBP Homologous Protein), and DNAJB1 (DnaJ homolog subfamily B member 1, a.k.a. HSP40). We conclude that LTI6426 may safely enhance low-dose Pano regimens and that ATF3, DDIT3/CHOP, and DNAJB1 are candidate pharmacodynamic biomarkers of response to this novel treatment regimen.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Ashton P Basar
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Leticia Reyes
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Ravyn M Duncan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA
| | - Hong Li
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan G Dolloff
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave, MSC509, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
33
|
A drug repurposing strategy for overcoming human multiple myeloma resistance to standard-of-care treatment. Cell Death Dis 2022; 13:203. [PMID: 35246527 PMCID: PMC8897388 DOI: 10.1038/s41419-022-04651-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Despite several approved therapeutic modalities, multiple myeloma (MM) remains an incurable blood malignancy and only a small fraction of patients achieves prolonged disease control. The common anti-MM treatment targets proteasome with specific inhibitors (PI). The resulting interference with protein degradation is particularly toxic to MM cells as they typically accumulate large amounts of toxic proteins. However, MM cells often acquire resistance to PIs through aberrant expression or mutations of proteasome subunits such as PSMB5, resulting in disease recurrence and further treatment failure. Here we propose CuET—a proteasome-like inhibitor agent that is spontaneously formed in-vivo and in-vitro from the approved alcohol-abuse drug disulfiram (DSF), as a readily available treatment effective against diverse resistant forms of MM. We show that CuET efficiently kills also resistant MM cells adapted to proliferate under exposure to common anti-myeloma drugs such as bortezomib and carfilzomib used as the first-line therapy, as well as to other experimental drugs targeting protein degradation upstream of the proteasome. Furthermore, CuET can overcome also the adaptation mechanism based on reduced proteasome load, another clinically relevant form of treatment resistance. Data obtained from experimental treatment-resistant cellular models of human MM are further corroborated using rather unique advanced cytotoxicity experiments on myeloma and normal blood cells obtained from fresh patient biopsies including newly diagnosed as well as relapsed and treatment-resistant MM. Overall our findings suggest that disulfiram repurposing particularly if combined with copper supplementation may offer a promising and readily available treatment option for patients suffering from relapsed and/or therapy-resistant multiple myeloma.
Collapse
|
34
|
Kundu S, Jha SB, Rivera AP, Flores Monar GV, Islam H, Puttagunta SM, Islam R, Sange I. Multiple Myeloma and Renal Failure: Mechanisms, Diagnosis, and Management. Cureus 2022; 14:e22585. [PMID: 35371791 PMCID: PMC8958144 DOI: 10.7759/cureus.22585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/05/2022] Open
|
35
|
Lan H, Gao Y, Zhao Z, Mei Z, Wang F. Ferroptosis: Redox Imbalance and Hematological Tumorigenesis. Front Oncol 2022; 12:834681. [PMID: 35155264 PMCID: PMC8826956 DOI: 10.3389/fonc.2022.834681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023] Open
Abstract
Ferroptosis is a novel characterized form of cell death featured with iron-dependent lipid peroxidation, which is distinct from any known programmed cell death in the biological processes and morphological characteristics. Recent evidence points out that ferroptosis is correlated with numerous metabolic pathways, including iron homeostasis, lipid metabolism, and redox homeostasis, associating with the occurrence and treatment of hematological malignancies, such as multiple myeloma, leukemia, and lymphoma. Nowadays, utilizing ferroptosis as the target to prevent and treat hematological malignancies has become an active and challenging topic of research, and the regulatory network and physiological function of ferroptosis also need to be further elucidated. This review will summarize the recent progress in the molecular regulation of ferroptosis and the physiological roles and therapeutic potential of ferroptosis as the target in hematological malignancies.
Collapse
Affiliation(s)
- Hongying Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Gao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhengyang Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
36
|
Ciano-Petersen NL, Muñiz-Castrillo S, Vogrig A, Joubert B, Honnorat J. Immunomodulation in the acute phase of autoimmune encephalitis. Rev Neurol (Paris) 2022; 178:34-47. [PMID: 35000790 DOI: 10.1016/j.neurol.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
Autoimmune encephalitides constitute an emerging group of diseases for which the diagnosis and management may be challenging, and are usually associated with antibodies against neuroglial antigens used as biomarkers. In this review, we aimed to clarify the diagnostic approach to patients with encephalitis of suspected autoimmune origin in order to initiate early immunotherapy, and to summarize the evidence of current immunotherapies and alternative options assessed for refractory cases. Currently, the general therapeutic approach consists of steroids, IVIG, and/or plasma exchange as first-line medications, which should be prescribed once a diagnosis of possible autoimmune encephalitis is established. For patients not responding to these treatments, rituximab and cyclophosphamide are used as second-line immunotherapy. Additionally, alternative therapies, chiefly tocilizumab and bortezomib, have been reported to be useful in particularly refractory cases. Although the aforementioned approach with first and second-line immunotherapy is widely accepted, the best therapeutic strategy is still unclear since most available evidence is gathered from retrospective non-controlled studies. Moreover, several predictors of good long-term prognosis have been proposed such as response to first-line therapies, modified Rankin score lesser than 4 at the worst neurologic status, no need for admission in intensive care unit, and early escalation to second-line immunotherapy. Thus, the lack of solid evidence underlines the necessity of future well-conducted trials addressing both the best therapeutic regimen and the outcome predictors, but since autoimmune encephalitides have a relatively low incidence, international collaborations seem imperative to reach a reasonable study population size.
Collapse
Affiliation(s)
- N L Ciano-Petersen
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; Inserm U1217/CNRS UMR 5310, SynatAc Team, Institute NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Biomedical Research Institute of Málaga-IBIMA, Málaga, Spain; Neurology Department, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - S Muñiz-Castrillo
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; Inserm U1217/CNRS UMR 5310, SynatAc Team, Institute NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - A Vogrig
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; Inserm U1217/CNRS UMR 5310, SynatAc Team, Institute NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - B Joubert
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; Inserm U1217/CNRS UMR 5310, SynatAc Team, Institute NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - J Honnorat
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France; Inserm U1217/CNRS UMR 5310, SynatAc Team, Institute NeuroMyoGène, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
37
|
Moscvin M, Ho M, Bianchi G. Overcoming drug resistance by targeting protein homeostasis in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1028-1046. [PMID: 35265794 PMCID: PMC8903187 DOI: 10.20517/cdr.2021.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains. Although incurable, a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades, significantly improving patient outcomes. Proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies are among the most effective anti-MM drugs, targeting not only the cancerous cells, but also the bone marrow microenvironment. However, de novo resistance has been reported, and acquired resistance is inevitable for most patients over time, leading to relapsed/refractory disease and poor outcomes. Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis, offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes. This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Matthew Ho
- Department of Medicine, Mayo Clinic, Rochester, MN 240010, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
38
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
39
|
Klausz K, Kellner C, Gehlert CL, Krohn S, Wilcken H, Floerkemeier I, Günther A, Bauerschlag DO, Clement B, Gramatzki M, Peipp M. The Novel Dual Topoisomerase Inhibitor P8-D6 Shows Anti-myeloma Activity In Vitro and In Vivo. Mol Cancer Ther 2021; 21:70-78. [PMID: 34725192 DOI: 10.1158/1535-7163.mct-21-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
P8-D6 is a novel dual inhibitor of human topoisomerase I (TOP1) and II (TOP2) with broad pro-apoptotic antitumor activity. NCI-60 screening revealed markedly improved cytotoxicity of P8-D6 against solid and leukemia cell lines compared with other single and dual topoisomerase inhibitors, for example, irinotecan, doxorubicin, or pyrazoloacridine. In this study, we investigated the capacity of P8-D6 to inhibit myeloma cell growth in vitro and in vivo Growth inhibition assays demonstrated significant anti-myeloma effects against different myeloma cell lines with IC50 values in the low nanomolar range. Freshly isolated plasma cells of patients with multiple myeloma were killed by P8-D6 with similar doses. P8-D6 activated caspase 3/7 and induced significant apoptosis of myeloma cells. Supportive effects of bone marrow stromal cells on IL6-dependent INA-6 myeloma cells were abrogated by P8-D6 and apoptosis occurred in a time- and dose-dependent manner. Of note, healthy donor peripheral blood mononuclear cells and human umbilical vein endothelial cells were not affected at concentrations toxic for malignant plasma cells. Treatment of myeloma xenografts in immunodeficient SCID/beige mice by intravenous and, notably, also oral application of P8-D6 markedly inhibited tumor growths, and significantly prolonged survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany.
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Hauke Wilcken
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Inken Floerkemeier
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Günther
- Helios Clinics Schwerin, Hematology/Oncology/Stem Cell Transplantation, Schwerin, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
40
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
41
|
Reversal of Bortezomib-Induced Neurotoxicity by Suvecaltamide, a Selective T-Type Ca-Channel Modulator, in Preclinical Models. Cancers (Basel) 2021; 13:cancers13195013. [PMID: 34638498 PMCID: PMC8507761 DOI: 10.3390/cancers13195013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Chemotherapy-induced peripheral neurotoxicity (CIPN) is a side-effect of anti-cancer medications, which can lead to pain, disruptions to movement, and eventually results in the need to interrupt or stop chemotherapy. This study sought to test whether the drug suvecaltamide could help to reduce the impact of the chemotherapy agent bortezomib (BTZ) on symptoms of CIPN using animal models and human cells. Suvecaltamide did reverse negative changes in nerve conduction velocity and intraepidermal nerve fiber density indicative of CIPN in rats, and did not interfere with the anti-cancer effect of BTZ. These results indicate that suvecaltamide could potentially be useful for patients experiencing CIPN, although further mechanistic and molecular studies in vitro and in vivo are required before clinical trials. Abstract This study evaluated suvecaltamide, a selective T-type calcium channel modulator, on chemotherapy-induced peripheral neurotoxicity (CIPN) and anti-cancer activity associated with bortezomib (BTZ). Rats received BTZ (0.2 mg/kg thrice weekly) for 4 weeks, then BTZ alone (n = 8) or BTZ+suvecaltamide (3, 10, or 30 mg/kg once daily; each n = 12) for 4 weeks. Nerve conduction velocity (NCV), mechanical threshold, β-tubulin polymerization, and intraepidermal nerve fiber (IENF) density were assessed. Proteasome inhibition was evaluated in peripheral blood mononuclear cells. Cytotoxicity was assessed in human multiple myeloma cell lines (MCLs) exposed to BTZ alone (IC50 concentration), BTZ+suvecaltamide (10, 30, 100, 300, or 1000 nM), suvecaltamide alone, or vehicle. Tumor volume was estimated in athymic nude mice bearing MCL xenografts receiving vehicle, BTZ alone (1 mg/kg twice weekly), or BTZ+suvecaltamide (30 mg/kg once daily) for 28 days, or no treatment (each n = 8). After 4 weeks, suvecaltamide 10 or 30 mg/kg reversed BTZ-induced reduction in NCV, and suvecaltamide 30 mg/kg reversed BTZ-induced reduction in IENF density. Proteasome inhibition and cytotoxicity were similar between BTZ alone and BTZ+suvecaltamide. BTZ alone and BTZ+suvecaltamide reduced tumor volume versus the control (day 18), and BTZ+suvecaltamide reduced tumor volume versus BTZ alone (day 28). Suvecaltamide reversed CIPN without affecting BTZ anti-cancer activity in preclinical models.
Collapse
|
42
|
Burger R, Otte A, Brdon J, Peipp M, Gramatzki M. Dual intracellular targeting by ruxolitinib and the Mcl-1 inhibitor S63845 in interleukin-6-dependent myeloma cells blocks. Haematologica 2021; 106:2507-2510. [PMID: 33882638 PMCID: PMC8409037 DOI: 10.3324/haematol.2020.276865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel.
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel
| | - Jan Brdon
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, University Medical Center Schleswig-Holstein and University of Kiel, Kiel
| |
Collapse
|
43
|
Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: review and update. J Drug Target 2021; 29:848-862. [PMID: 33615933 DOI: 10.1080/1061186x.2021.1894435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotoxins (ITs) are protein-based drugs that compose of targeting and cytotoxic moieties. After binding the IT to the specific cell-surface antigen, the IT internalises into the target cell and kills it. Targeting and cytotoxic moieties usually include monoclonal antibodies and protein toxins with bacterial or plant origin, respectively. ITs have been successful in haematologic malignancies treatment. However, ITs penetrate poorly into solid tumours because of their large size. Use of camelid antibody fragments known as nanobodies (Nbs) as a targeting moiety may overcome this problem. Nbs are the smallest fragment of antibodies with excellent tumour tissue penetration. The ability to recognise cryptic (immuno-evasive) target antigens, low immunogenicity, and high-affinity are other fundamental characteristics of Nbs that make them suitable candidates in targeted therapy. Here, we reviewed and discussed the structure and function of ITs, Nbs, and nanobody-based ITs. To gain sound insight into the issue at hand, we focussed on nanobody-based ITs.
Collapse
Affiliation(s)
- Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Dias MH, Bernards R. Playing cancer at its own game: activating mitogenic signaling as a paradoxical intervention. Mol Oncol 2021; 15:1975-1985. [PMID: 33955157 PMCID: PMC8333773 DOI: 10.1002/1878-0261.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
In psychotherapy, paradoxical interventions are characterized by a deliberate reinforcement of the pathological behavior to improve the clinical condition. Such a counter-intuitive approach can be considered when more conventional interventions fail. The development of targeted cancer therapies has enabled the selective inhibition of activated oncogenic signaling pathways. However, in advanced cancers, such therapies, on average, deliver modest benefits due to the development of resistance. Here, we review the perspective of a 'paradoxical intervention' in cancer therapy: rather than attempting to inhibit oncogenic signaling, the proposed therapy would further activate mitogenic signaling to disrupt the labile homeostasis of cancer cells and overload stress response pathways. Such overactivation can potentially be combined with stress-targeted drugs to kill overstressed cancer cells. Although counter-intuitive, such an approach exploits intrinsic and ubiquitous differences between normal and cancer cells. We discuss the background underlying this unconventional approach and how such intervention might address some current challenges in cancer therapy.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular CarcinogenesisOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - René Bernards
- Division of Molecular CarcinogenesisOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
45
|
Gay F, Günther A, Offidani M, Engelhardt M, Salvini M, Montefusco V, Patriarca F, Aquino S, Pönisch W, Spada S, Schub N, Gentili S, Wäsch R, Corradini P, Straka C, Palumbo A, Einsele H, Boccadoro M, Sonneveld P, Gramatzki M. Carfilzomib, bendamustine, and dexamethasone in patients with advanced multiple myeloma: The EMN09 phase 1/2 study of the European Myeloma Network. Cancer 2021; 127:3413-3421. [PMID: 34181755 DOI: 10.1002/cncr.33647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Combined therapy with carfilzomib, bendamustine, and dexamethasone was evaluated in this multicenter phase 1/2 trial conducted within the European Myeloma Network (EMN09 trial). METHODS Sixty-three patients with relapsed/refractory multiple myeloma who had received ≥2 lines of prior therapy were included. The phase 1 portion of the study determined the maximum tolerated dose of carfilzomib with bendamustine set at 70 mg/m2 on days 1 and 8. After 8 cycles, responding patients received maintenance therapy with carfilzomib and dexamethasone until progression. RESULTS On the basis of the phase 1 results, the recommended phase 2 dose for carfilzomib was 27 mg/m2 twice weekly in weeks 1, 2, and 3. Fifty-two percent of patients achieved a partial response or better, and 32% reached a very good partial response or better. The clinical benefit rate was 93%. After a median follow-up of 21.9 months, the median progression-free survival was 11.6 months, and the median overall survival was 30.4 months. The reported grade ≥3 hematologic adverse events (AEs) were lymphopenia (29%), neutropenia (25%), and thrombocytopenia (22%). The main nonhematologic grade ≥3 AEs were pneumonia, thromboembolic events (10%), cardiac AEs (8%), and hypertension (2%). CONCLUSIONS In heavily pretreated patients who have relapsed/refractory multiple myeloma, combined carfilzomib, bendamustine, and dexamethasone is an effective treatment option administered in the outpatient setting. Infection prophylaxis and attention to patients with cardiovascular predisposition are required.
Collapse
Affiliation(s)
- Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Andreas Günther
- Division of Stem Cell Transplantation and Immunotherapy, University of Kiel, Kiel, Germany
| | - Massimo Offidani
- Hematology Clinic, AOU Ospedali Riuniti di Ancona, Ancona, Italy
| | - Monika Engelhardt
- Department for Hematology and Oncology, University of Freiburg, Faculty of Freiburg, Freiburg, Germany
| | - Marco Salvini
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Vittorio Montefusco
- Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Sara Aquino
- Ematologia e Centro Trapianti, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Wolfram Pönisch
- Department of Hematology, University of Leipzig, Leipzig, Germany
| | - Stefano Spada
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Natalie Schub
- Division of Stem Cell Transplantation and Immunotherapy, University of Kiel, Kiel, Germany
| | | | - Ralph Wäsch
- Department for Hematology and Oncology, University of Freiburg, Faculty of Freiburg, Freiburg, Germany
| | - Paolo Corradini
- Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Christian Straka
- Department of Hematology and Oncology, Munich Clinic Schwabing, Munich, Germany
| | - Antonio Palumbo
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Hermann Einsele
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Torino, Italy
| | - Pieter Sonneveld
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, University of Kiel, Kiel, Germany
| |
Collapse
|
46
|
Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity. J Biotechnol 2021; 337:35-45. [PMID: 34171439 DOI: 10.1016/j.jbiotec.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 06/19/2021] [Indexed: 11/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the leading mammalian cell expression platform for biotherapeutic recombinant molecules yet some proteins remain difficult to express (DTE) in this, and other, systems. In recombinant cell lines expressing DTE proteins, cellular processes to restore proteostasis can be triggered when the folding and modification capabilities are exceeded, including the unfolded protein response and ER-associated degradation (ERAD) and proteasomal degradation. We therefore investigated whether the proteasome activity of CHO cells was linked to their ability to produce recombinant proteins. We found cell lines with diverse monoclonal antibody (mAb) productivity show different susceptibilities to inhibitors of proteasome activity. Subsequently, we applied selective pressure using proteasome inhibitors on mAb producing cells to determine the impact on cell growth and recombinant protein production, and to apply proteasome selective pressure above that of a metabolic selection marker during recombinant cell pool construction. The presence of proteasome inhibitors during cell pool construction expressing two different model molecules, including a DTE Fc-fusion protein, resulted in the generation of cell pools with enhanced productivity. The increased productivities, and ability to select for higher producing cells, has potential to improve clonal selection during upstream processes of DTE proteins.
Collapse
|
47
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Meenakshi‐Sundaram S, Sankaranarayanan M, Jeyaraman M, Ayyappan C, Karthik SN, Pandi S. Super refractory status in a case of Febrile Infection-Related Epilepsy Syndrome due to hemophagocytic lymphocytic histiocytosis. Epilepsia Open 2021; 6:22-27. [PMID: 33681644 PMCID: PMC7918320 DOI: 10.1002/epi4.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 11/06/2022] Open
Abstract
A 14-year-old boy presented with a prodromal respiratory infection followed by super refractory status epilepticus. A diagnosis of Febrile Infection-Related Epilepsy Syndrome (FIRES) was made. Initial MRI study and CSF analysis were normal. He required multiple anticonvulsants owing to the refractory nature of the seizures. The course of the illness was rather stormy, laced with various medical problems viz. hepatic dysfunction, sepsis, hemodynamic, and hematological abnormalities which posed several challenges in the management. Hemophagocytic lymphocytic histiocytosis (HLH) was identified as the etiology of the illness and was treated but without success. The case report highlights the several immunomodulatory strategies that were employed to treat the disease, despite which the outcome was unfavorable.
Collapse
Affiliation(s)
| | | | | | - Chitra Ayyappan
- Department of PediatricsApollo Speciality HospitalsMaduraiIndia
| | | | - Suresh Pandi
- Department of NeurosciencesApollo Speciality HospitalsMaduraiIndia
| |
Collapse
|
49
|
Wang T, Wang B, Zeng Z, Li H, Zhang F, Ruan X, Wang C, Guo S. Efficacy and safety of bortezomib in rituximab-resistant anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis as well as the clinical characteristics: An observational study. J Neuroimmunol 2021; 354:577527. [PMID: 33652303 DOI: 10.1016/j.jneuroim.2021.577527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/15/2023]
Abstract
Treatment resistance leads to physiological, psychological, and economical effects among patients with anti-N-methyl d-aspartate receptor (anti-NMDAR) encephalitis, and the clinical and immune characteristics of these patients remain to be described. According to our clinical experience, bortezomib may be effective due to its plasma-cells depletion ability. Herein, the clinical presentations and immune parameters, including B cell and antibody secreting cell (ASC) abundance, of 5 enrolled treatment-resistant patients are described. When compared with 5 treatment-sensitive cases, the patients had serious clinical presentations but comparable B cells and ASCs. After receiving bortezomib, the ASC count and anti-NMDAR antibody titers decreased effectively. All 5 patients had a favorable prognosis (mRS ≤ 2) with a median follow-up of 31 months without severe side effects or relapse.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baojie Wang
- Department of Neurology, Shandong Provincial ENT Hospital Affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ziling Zeng
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Honghao Li
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fusheng Zhang
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiyun Ruan
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Shougang Guo
- Department of Neurology, Shandong Provincial Hospital affiliated to Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
50
|
Gu Y, Barwick BG, Shanmugam M, Hofmeister CC, Kaufman J, Nooka A, Gupta V, Dhodapkar M, Boise LH, Lonial S. Downregulation of PA28α induces proteasome remodeling and results in resistance to proteasome inhibitors in multiple myeloma. Blood Cancer J 2020; 10:125. [PMID: 33318477 PMCID: PMC7736847 DOI: 10.1038/s41408-020-00393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Protein homeostasis is critical for maintaining eukaryotic cell function as well as responses to intrinsic and extrinsic stress. The proteasome is a major portion of the proteolytic machinery in mammalian cells and plays an important role in protein homeostasis. Multiple myeloma (MM) is a plasma cell malignancy with high production of immunoglobulins and is especially sensitive to treatments that impact protein catabolism. Therapeutic agents such as proteasome inhibitors have demonstrated significant benefit for myeloma patients in all treatment phases. Here, we demonstrate that the 11S proteasome activator PA28α is upregulated in MM cells and is key for myeloma cell growth and proliferation. PA28α also regulates MM cell sensitivity to proteasome inhibitors. Downregulation of PA28α inhibits both proteasomal load and activity, resulting in a change in protein homeostasis less dependent on the proteasome and leads to cell resistance to proteasome inhibitors. Thus, our findings suggest an important role of PA28α in MM biology, and also provides a new approach for targeting the ubiquitin-proteasome system and ultimately sensitivity to proteasome inhibitors.
Collapse
Affiliation(s)
- Yanyan Gu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Craig C Hofmeister
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Jonathan Kaufman
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Ajay Nooka
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Vikas Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Madhav Dhodapkar
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1365 Clifton Road, Atlanta, GA, 30322, USA. .,Winship Cancer Institute, Emory University, 1365 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|