1
|
Jang HJ, Park E, Jung HJ, Kwon TH. Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney. Am J Physiol Renal Physiol 2024; 326:F69-F85. [PMID: 37855039 PMCID: PMC11194055 DOI: 10.1152/ajprenal.00144.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, β-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of β-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with β-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. β-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.
Collapse
Affiliation(s)
- Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Euijung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- Epithelial Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
2
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance. Front Pharmacol 2023; 14:1230822. [PMID: 37601042 PMCID: PMC10433774 DOI: 10.3389/fphar.2023.1230822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays an important role in regulating the biological behavior of cancers, and many drugs targeting this signaling have been developed. Recently, a series of research have revealed that Wnt signaling could regulate DNA damage response (DDR) which is crucial for maintaining the genomic integrity in cells and closely related to cancer genome instability. Many drugs have been developed to target DNA damage response in cancers. Notably, different components of the Wnt and DDR pathways are involved in crosstalk, forming a complex regulatory network and providing new opportunities for cancer therapy. Here, we provide a brief overview of Wnt signaling and DDR in the field of cancer research and review the interactions between these two pathways. Finally, we also discuss the possibility of therapeutic agents targeting Wnt and DDR as potential cancer treatment strategies.
Collapse
Affiliation(s)
| | - Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Leung HW, Foo G, VanDongen A. Arc Regulates Transcription of Genes for Plasticity, Excitability and Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081946. [PMID: 36009494 PMCID: PMC9405677 DOI: 10.3390/biomedicines10081946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
The immediate early gene Arc is a master regulator of synaptic function and a critical determinant of memory consolidation. Here, we show that Arc interacts with dynamic chromatin and closely associates with histone markers for active enhancers and transcription in cultured rat hippocampal neurons. Both these histone modifications, H3K27Ac and H3K9Ac, have recently been shown to be upregulated in late-onset Alzheimer’s disease (AD). When Arc induction by pharmacological network activation was prevented using a short hairpin RNA, the expression profile was altered for over 1900 genes, which included genes associated with synaptic function, neuronal plasticity, intrinsic excitability, and signalling pathways. Interestingly, about 100 Arc-dependent genes are associated with the pathophysiology of AD. When endogenous Arc expression was induced in HEK293T cells, the transcription of many neuronal genes was increased, suggesting that Arc can control expression in the absence of activated signalling pathways. Taken together, these data establish Arc as a master regulator of neuronal activity-dependent gene expression and suggest that it plays a significant role in the pathophysiology of AD.
Collapse
Affiliation(s)
| | - Gabriel Foo
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Antonius VanDongen
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Correspondence:
| |
Collapse
|
5
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Chemical genetic methodologies for identifying protein substrates of PARPs. Trends Biochem Sci 2021; 47:390-402. [PMID: 34366182 DOI: 10.1016/j.tibs.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Poly-ADP-ribose-polymerases (PARPs) are a family of 17 enzymes that regulate a diverse range of cellular processes in mammalian cells. PARPs catalyze the transfer of ADP-ribose from NAD+ to target molecules, most prominently amino acids on protein substrates, in a process known as ADP-ribosylation. Identifying the direct protein substrates of individual PARP family members is an essential first step for elucidating the mechanism by which PARPs regulate a particular pathway in cells. Two distinct chemical genetic (CG) strategies have been developed for identifying the direct protein substrates of individual PARP family members. In this review, we discuss the design principles behind these two strategies and how target identification has provided novel insight into the cellular function of individual PARPs and PARP-mediated ADP-ribosylation.
Collapse
|
7
|
Genotoxic stress-triggered β-catenin/JDP2/PRMT5 complex facilitates reestablishing glutathione homeostasis. Nat Commun 2019; 10:3761. [PMID: 31434880 PMCID: PMC6704105 DOI: 10.1038/s41467-019-11696-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/30/2019] [Indexed: 01/17/2023] Open
Abstract
The mechanisms underlying how cells subjected to genotoxic stress reestablish reduction-oxidation (redox) homeostasis to scavenge genotoxic stress-induced reactive oxygen species (ROS), which maintains the physiological function of cellular processes and cell survival, remain unclear. Herein, we report that, via a TCF-independent mechanism, genotoxic stress induces the enrichment of β-catenin in chromatin, where it forms a complex with ATM phosphorylated-JDP2 and PRMT5. This elicits histone H3R2me1/H3R2me2s-induced transcriptional activation by the recruitment of the WDR5/MLL methyltransferase complexes and concomitant H3K4 methylation at the promoters of multiple genes in GSH-metabolic cascade. Treatment with OICR-9429, a small-molecule antagonist of the WDR5-MLL interaction, inhibits the β-catenin/JDP2/PRMT5 complex-reestablished GSH metabolism, leading to a lethal increase in the already-elevated levels of ROS in the genotoxic-agent treated cancer cells. Therefore, our results unveil a plausible role for β-catenin in reestablishing redox homeostasis upon genotoxic stress and shed light on the mechanisms of inducible chemotherapy resistance in cancer. It is known that genotoxic stress induces high levels of ROS and deplete cellular glutathione stores. Here, Cao et al. uncover a β-catenin-dependent TCF/LEF-independent mechanism that promotes histone-mediated transcriptional activation of glutathione synthesis.
Collapse
|
8
|
Mann M, Kumar S, Sharma A, Chauhan SS, Bhatla N, Kumar S, Bakhshi S, Gupta R, Kumar L. PARP-1 inhibitor modulate β-catenin signaling to enhance cisplatin sensitivity in cancer cervix. Oncotarget 2019; 10:4262-4275. [PMID: 31303961 PMCID: PMC6611509 DOI: 10.18632/oncotarget.27008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is a keystone for treatment of both recurring and locally advanced cervical cancer. However toxic side effects and acquired resistance limits its efficacy. Enhanced DNA repair is one of the mechanisms through which cancer cells acquire cisplatin resistance. Inhibitors of PARP, which is a DNA damage repair enzyme, have been approved for use in BRCA mutated cancers like breast and ovary cancer. However little is known about the therapeutic efficacy of PARP inhibitors in cervical cancer, either as a single agent or in combination with cisplatin. We hypothesized that PARP-1 inhibition might improve the sensitivity of cervical cancer cells to cisplatin by diminishing DNA repair. To ascertain this, we determined effect of PARP-1 inhibition on cisplatin cytotoxicity in HeLa and SiHa cell lines. Combination of cisplatin with PJ34, a phenanthridinone-derived PARP-1 inhibitor, augmented cisplatin toxicity in vitro by decreasing cell proliferation, enhancing cell cycle block and cell death, and decreasing invasion and metastasis, when compared with either of the single agent alone. We further show that PARP-1 inhibition inhibited β-catenin signaling and its downstream components such as c-Myc, cyclin D1 and MMPs indicating a possible link between single strand base damage repair and WNT signaling. In conclusion, PARP-1 inhibition might augment cisplatin cytotoxicity in cervical cancer cells by modulating β-catenin signaling pathway. Combining PARP-1 inhibitors with cisplatin might be a promising approach to overcome cisplatin resistance and to achieve a better therapeutic effect.
Collapse
Affiliation(s)
- Minakshi Mann
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunesh Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Overexpression of IRS-4 Correlates with Procaspase 3 Levels in Tumoural Tissue of Patients with Colorectal Cancer. JOURNAL OF ONCOLOGY 2018; 2018:3812581. [PMID: 30410539 PMCID: PMC6206579 DOI: 10.1155/2018/3812581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
We reported that insulin receptor substrate 4 (IRS-4) levels increased in tissue from colorectal cancer (CRC) patients and promoted retinoblastoma-cyclin-dependent kinase activation. The aim of the present study was to evaluate the effect of IRS-4 on IGF-1 receptor pathway and its impact on procaspase 3 and PARP expression in RKO and HepG2 cancer cell lines. The results obtained in vitro were compared with those obtained from biopsies of patients with CRC (n = 18), tubulovillous adenomas (TA) (n = 2) and in matched adjacent normal colorectal (MANC) tissue (n = 20). IRS-4 overexpression in cultured cells induced the overactivation of IGF-1/BRK/AKT/GSK-3/β-catenin/cyclin D1 pathways, which led to increased expression of procaspase 3 and PARP protein levels. Studies carried out on CRC and TA tissues revealed the overactivation of the IGF-1 receptor signalling pathway, as well as the overexpression of procaspase 3 and PARP in tumoural tissue with respect to MANC tissue. The upregulation of IRS-4 in tumoural samples correlated significantly with the increase in pIGF-1 receptor (Tyr 1165/1166) (r = 0.84; p < 0.0001), procaspase 3 (r = 0. 77; p < 0. 0005) and PARP (r = 0. 89; p < 0. 0005). Similarly, we observed an increase in the proteolysis of procaspase 3 in tumoural tissue with respect to MANC tissue, which correlated significantly with the degradation of PARP (r = 0.86; p < 0.0001), p53 (r = 0.84; p < 0.0001), and GSK-3 (r = 0.78; p < 0.0001). The stratification of patient samples using the TNM system revealed that procaspase 3 and caspase 3 increased gradually with T values, which suggests their involvement in the size and local invasion of primary tumours. Taken together, our findings suggest that IRS-4 overexpression promotes the activation of the IGF-1 receptor pathway, which leads to the increase in procaspase 3 levels in CRC.
Collapse
|
10
|
Xia Q, Lu S, Ostrovsky J, McCormack SE, Falk MJ, Grant SFA. PARP-1 Inhibition Rescues Short Lifespan in Hyperglycemic C. Elegans And Improves GLP-1 Secretion in Human Cells. Aging Dis 2018; 9:17-30. [PMID: 29392078 PMCID: PMC5772855 DOI: 10.14336/ad.2017.0230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 01/12/2023] Open
Abstract
TCF7L2 is located at one of the most strongly associated type 2 diabetes loci reported to date. We previously reported that the most abundant member of a specific protein complex to bind across the presumed causal variant at this locus, rs7903146, was poly [ADP-ribose] polymerase type 1 (PARP-1). We analyzed the impact of PARP-1 inhibition on C. elegans health in the setting of hyperglycemia and on glucose-stimulated GLP-1 secretion in human intestinal cells. Given that high glucose concentrations progressively shorten the lifespan of C. elegans, in part by impacting key well-conserved insulin-modulated signaling pathways, we investigated the effect of PARP-1 inhibition with Olaparib on the lifespan of C. elegans nematodes under varying hyperglycemic conditions. Subsequently, we investigated whether Olaparib treatment had any effect on glucose-stimulated GLP-1 secretion in the human NCI-H716 intestinal cell line, a model system for the investigation of enteroendocrine function. Treatment with 100uM Olaparib in nematodes exposed to high concentrations of glucose led to significant lifespan rescue. The beneficial lifespan effect of Olaparib appeared to require both PARP-1 and TCF7L2, since treatment had no effect in hyperglycemic conditions in knock-out worm strains for either of these homologs. Further investigation using the NCI-H716 cells revealed that Olaparib significantly enhanced secretion of the incretin, GLP-1, plus the gene expression of TCF7L2, GCG and PC1. These data from studies in both C. elegans and a human cell line suggest that PARP-1 inhibition offers a novel therapeutic avenue to treat type 2 diabetes.
Collapse
Affiliation(s)
- Qianghua Xia
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sumei Lu
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- 2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marni J Falk
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Hsieh MH, Chen YT, Chen YT, Lee YH, Lu J, Chien CL, Chen HF, Ho HN, Yu CJ, Wang ZQ, Teng SC. PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells. Nucleic Acids Res 2017; 45:10492-10503. [PMID: 28985359 PMCID: PMC5737510 DOI: 10.1093/nar/gkx683] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Telomerase is highly expressed in cancer and embryonic stem cells (ESCs) and implicated in controlling genome integrity, cancer formation and stemness. Previous studies identified that Krüppel-like transcription factor 4 (KLF4) activates telomerase reverse transcriptase (TERT) expression and contributes to the maintenance of self-renewal in ESCs. However, little is known about how KLF4 regulates TERT expression. Here, we discover poly(ADP-ribose) polymerase 1 (PARP1) as a novel KLF4-interacting partner. Knockdown of PARP1 reduces TERT expression and telomerase activity not only in cancer cells, but also in human and mouse ESCs. Recruitment of KLF4 to TERT promoter is reduced in PARP1-suppressed cells. The poly(ADP-ribose) polymerase activity is dispensable, while the oligo(ADP-ribose) polymerase activity is required for the PARP1- and KLF4-mediated TERT activation. Repression of Parp1 in mouse ESCs decreases expression of pluripotent markers and induces differentiation. These results suggest that PARP1 recruits KLF4 to activate telomerase expression and stem cell pluripotency, indicating a positive regulatory role of the PARP1–KLF4 complex in telomerase expression in cancer and stem cells.
Collapse
Affiliation(s)
- Meng-Hsun Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Ting Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Hsuan Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Liang Chien
- Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology and Institute of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology and Institute of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei 100, Taiwan
| |
Collapse
|
12
|
Yamada T, Masuda M. Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci 2017; 108:818-823. [PMID: 28208209 PMCID: PMC5448614 DOI: 10.1111/cas.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
The outcome of patients with metastatic colorectal cancer remains unsatisfactory. To improve patient prognosis, it will be necessary to identify new drug targets based on molecules that are essential for colorectal carcinogenesis, and to develop therapeutics that target such molecules. The great majority of colorectal cancers (>90%) have mutations in at least one Wnt signaling pathway gene. Aberrant activation of Wnt signaling is a major force driving colorectal carcinogenesis. Several therapeutics targeting Wnt pathway molecules, including porcupine, frizzled receptors and tankyrases, have been developed, but none of them have yet been incorporated into clinical practice. Wnt signaling is most frequently activated by loss of function of the adenomatous polyposis coli (APC) tumor suppressor gene. Restoration of APC gene function does not seem to be a realistic therapeutic approach, and, therefore, only Wnt signaling molecules downstream of the APC gene product can be considered as targets for pharmacological intervention. Traf2 and Nck‐interacting protein kinase (TNIK) was identified as a regulatory component of the β‐catenin and T‐cell factor‐4 (TCF‐4) transcriptional complex. Several small‐molecule compounds targeting this protein kinase have been shown to have anti‐tumor effects against various cancers. An anthelmintic agent, mebendazole, was recently identified as a selective inhibitor of TNIK and is under clinical evaluation. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its pharmacological inhibition seems to be a promising therapeutic approach. We demonstrated the feasibility of this approach by developing a small‐molecule TNIK inhibitor, NCB‐0846.
Collapse
Affiliation(s)
- Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
13
|
Serebryannyy LA, Yemelyanov A, Gottardi CJ, de Lanerolle P. Nuclear α-catenin mediates the DNA damage response via β-catenin and nuclear actin. J Cell Sci 2017; 130:1717-1729. [PMID: 28348105 DOI: 10.1242/jcs.199893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
α-Catenin is an F-actin-binding protein widely recognized for its role in cell-cell adhesion. However, a growing body of literature indicates that α-catenin is also a nuclear protein. In this study, we show that α-catenin is able to modulate the sensitivity of cells to DNA damage and toxicity. Furthermore, nuclear α-catenin is actively recruited to sites of DNA damage. This recruitment occurs in a β-catenin-dependent manner and requires nuclear actin polymerization. These findings provide mechanistic insight into the WNT-mediated regulation of the DNA damage response and suggest a novel role for the α-catenin-β-catenin complex in the nucleus.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Yemelyanov
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cara J Gottardi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Jubin T, Kadam A, Gani AR, Singh M, Dwivedi M, Begum R. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Semin Cell Dev Biol 2017; 63:167-179. [PMID: 27476447 DOI: 10.1016/j.semcdb.2016.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Gene regulation mediates the processes of cellular development and differentiation leading to the origin of different cell types each having their own signature gene expression profile. However, the compact chromatin structure and the timely recruitment of molecules involved in various signaling pathways are of prime importance for temporal and spatial gene regulation that eventually contribute towards cell type and specificity. Poly (ADP-ribose) polymerase-1 (PARP-1), a 116-kDa nuclear multitasking protein is involved in modulation of chromatin condensation leading to altered gene expression. In response to activation signals, it adds ADP-ribose units to various target proteins including itself, thus regulating various key cellular processes like DNA repair, cell death, transcription, mRNA splicing etc. This review provides insights into the role of PARP-1 in gene regulation, cell differentiation and multicellular morphogenesis. In addition, the review also explores involvement of PARP-1 in immune cells development and therapeutic possibilities to treat various human diseases.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Amina Rafath Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, Gujarat 394350, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
15
|
The crosstalk between Wnt/β-catenin signaling pathway with DNA damage response and oxidative stress: Implications in cancer therapy. DNA Repair (Amst) 2017; 51:14-19. [PMID: 28108274 DOI: 10.1016/j.dnarep.2017.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.
Collapse
|
16
|
Hu L, Li X, Liu Q, Xu J, Ge H, Wang Z, Wang H, Wang Z, Shi C, Xu X, Huang J, Lin Z, Pieper RO, Weng C. UBE2S, a novel substrate of Akt1, associates with Ku70 and regulates DNA repair and glioblastoma multiforme resistance to chemotherapy. Oncogene 2016; 36:1145-1156. [PMID: 27593939 DOI: 10.1038/onc.2016.281] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain cancer in adults. However, the molecular events underlying carcinogenesis and their interplay remain elusive. Here, we report that the stability of Ubiquitin-conjugating enzyme E2S (UBE2S) is regulated by the PTEN/Akt pathway and that its degradation depends on the ubiquitin-proteasome system. Mechanistically, Akt1 physically interacted with and phosphorylated UBE2S at Thr 152, enhancing its stability by inhibiting proteasomal degradation. Additionally, accumulated UBE2S was found to be associated with the components of the non-homologous end-joining (NHEJ) complex and participated in the NHEJ-mediated DNA repair process. The association of Ku70 with UBE2S was enhanced, and the complex was recruited to double-stranded break (DSB) sites in response to etoposide treatment. Furthermore, knockdown of UBE2S expression inhibited NHEJ-mediated DSB repair and rendered glioblastoma cells more sensitive to chemotherapy. Overall, our findings provide a novel drug target that may serve as the rationale for the development of a new therapeutic approach.
Collapse
Affiliation(s)
- L Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - X Li
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong University, Liaocheng, China
| | - Q Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - J Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - H Ge
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Wang
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, China
| | - H Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Wang
- Saint-Antoine Research Centre, University Pierre and Marie CURIE, Paris, France
| | - C Shi
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - X Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - J Huang
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Z Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - R O Pieper
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - C Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
17
|
Bouley J, Saad L, Grall R, Schellenbauer A, Biard D, Paget V, Morel-Altmeyer S, Guipaud O, Chambon C, Salles B, Maloum K, Merle-Béral H, Chevillard S, Delic J. A new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful DNA repair in cancer cell lines. Oncotarget 2016; 6:27980-8000. [PMID: 26337656 PMCID: PMC4695039 DOI: 10.18632/oncotarget.4735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70. In vitro in different cancer cell lines, Ku70 phosphorylation occurs in a heterodimer Ku70/Ku80 complex within minutes of genotoxic stress, necessitating its interaction with DNA damage-induced kinase pS2056-DNA-PKcs and/or pS1981-ATM. The mutagenic effects of phospho-Ku70 are documented by a defective S/G2 checkpoint, accelerated disappearance of γ-H2AX foci and kinetics of DNA repair resulting in an increased level of genotoxic stress-induced chromosomal aberrations. Together, these data unveil an involvement of phospho-Ku70 in fast but inaccurate DNA repair; a new paradigm linked to both the deregulation of c-NHEJ and the resistance of malignant cells.
Collapse
Affiliation(s)
- Julien Bouley
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France.,Laboratoire de Spectrométrie de Masse, Stallergens, 92160 Antony, France
| | - Lina Saad
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Denis Biard
- Institut de Maladies Emergentes et des Thérapies Innovantes (iMETI), Service d'Etude des Prions et des Infections Atypiques (SEPIA), CEA, 92265 Fontenay aux Roses, France
| | - Vincent Paget
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Sandrine Morel-Altmeyer
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Olivier Guipaud
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France.,Laboratoire de Radiopathologie et de Thérapies Expérimentales, Institut de Radioprotection et de Sureté Nucléaire (IRSN), 92265 Fontenay aux Roses, France
| | - Christophe Chambon
- Service de Spectrométrie de Masse, INRA Theix, 63122 St Genès Champanelle, France
| | - Bernard Salles
- UMR 1331 TOXALIM, INRA/INP/UPS, F-31027 Toulouse, France
| | - Karim Maloum
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, 75000 Paris, France
| | - Hélène Merle-Béral
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, 75000 Paris, France.,Université Pierre et Marie Curie, Paris VI, INSERM, UMR-S 872, Programmed Cell Death and Physiopathology of Tumor Cells, Centre de Recherche des Cordeliers 75000 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| | - Jozo Delic
- Laboratoire de Cancérologie Expérimentale, Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Commissariat à l'Energie Atomique et aux Energies Renouvelables (CEA), 92265 Fontenay aux Roses, France
| |
Collapse
|
18
|
Zhu B, Cheng D, Li S, Zhou S, Yang Q. High Expression of XRCC6 Promotes Human Osteosarcoma Cell Proliferation through the β-Catenin/Wnt Signaling Pathway and Is Associated with Poor Prognosis. Int J Mol Sci 2016; 17:ijms17071188. [PMID: 27455247 PMCID: PMC4964557 DOI: 10.3390/ijms17071188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023] Open
Abstract
Increasing evidences show that XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) was upregulated and involved in tumor growth in several tumor types. However, the correlation of XRCC6 and human osteosarcoma (OS) is still unknown. This study was conducted with the aim to reveal the expression and biological function of XRCC6 in OS and elucidate the potential mechanism. The mRNA expression level of XRCC6 was measured in osteosarcoma cells and OS samples by quantitative transcription-PCR (qRT-PCR). The expression of XRCC6 protein was measured using Western blot and immunohistochemical staining in osteosarcoma cell lines and patient samples. Cell Counting Kit 8 (CCK8), colony-forming and cell cycle assays were used to test cell survival capacity. We found that XRCC6 was overexpressed in OS cells and OS samples compared with the adjacent non-tumorous samples. High expression of XRCC6 was correlated with clinical stage and tumor size in OS. Reduced expression of XRCC6 inhibits OS cell proliferation through G2/M phase arrest. Most importantly, further experiments demonstrated that XRCC6 might regulate OS growth through the β-catenin/Wnt signaling pathway. In conclusion, these findings indicate that XRCC6 exerts tumor-promoting effects for OS through β-catenin/Wnt signaling pathway. XRCC6 may serve as a novel therapeutic target for OS patients.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Dongdong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Shijie Li
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Shumin Zhou
- Institute of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai 200233, China.
| |
Collapse
|
19
|
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif 2016; 49:421-37. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
PARP family members can be found spread across all domains and continue to be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) polymerase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular processes such as DNA repair and cell death. This review assesses current developments in PARP-1 biology and activation signals for PARP-1, other than conventional DNA damage activation. Moreover, many essential functions of PARP-1 still remain elusive. PARP-1 is found to be involved in a myriad of cellular events via conservation of genomic integrity, chromatin dynamics and transcriptional regulation. This article briefly focuses on its other equally important overlooked functions during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics and differentiation. Understanding the role of PARP-1, its multidimensional regulatory mechanisms in the cell and its dysregulation resulting in diseased states, will help in harnessing its true therapeutic potential.
Collapse
Affiliation(s)
- T Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - M Jariwala
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Bhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Sutariya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A R Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
20
|
Jiang BH, Tseng WL, Li HY, Wang ML, Chang YL, Sung YJ, Chiou SH. Poly(ADP-Ribose) Polymerase 1: Cellular Pluripotency, Reprogramming, and Tumorogenesis. Int J Mol Sci 2015; 16:15531-45. [PMID: 26184161 PMCID: PMC4519911 DOI: 10.3390/ijms160715531] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2023] Open
Abstract
Poly(ADP-ribos)ylation (PARylation) is the catalytic function of the Poly(ADP-ribose) polymerases (Parps) family for post-translational modification in cellular process. Being a major member of Parps, Parp1 is a crucial nuclear factor with biological significance in modulating DNA repair, DNA replication, transcription, DNA methylation and chromatin remodeling through PARylation of downstream proteins. In addition, high expression level and activity of Parp1 are correlated with pluripotent status, reprogramming, and cancer. Furthermore, epigenetic modulation of Parp1 is explored for regulating wide variety of gene expression. Genetic and pharmaceutical disruption of Parp1 further confirmed the importance of Parp1 in cell growth, DNA repair, and reprogramming efficiency. Taken together, the proximity toward the understanding of the modulation of Parp1 including interaction and modification in different fields will provide new insight for future studies. In this review, the biological significance of Parp1 in transcription and the epigenetic modulation of Parp1 in pluripotent status, reprogramming process and cancer will be summarized.
Collapse
Affiliation(s)
- Bo-Hua Jiang
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wei-Lien Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Hsin-Yang Li
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Mong-Lien Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- VGH-YM Genomic Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Lih Chang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Yen-Jen Sung
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
21
|
Sistigu A, Manic G, Obrist F, Vitale I. Trial watch - inhibiting PARP enzymes for anticancer therapy. Mol Cell Oncol 2015; 3:e1053594. [PMID: 27308587 DOI: 10.1080/23723556.2015.1053594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients.
Collapse
Affiliation(s)
| | - Gwenola Manic
- Regina Elena National Cancer Institute , Rome, Italy
| | - Florine Obrist
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France; INSERM, UMRS1138, Paris, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "TorVergata", Rome, Italy
| |
Collapse
|
22
|
Steinke FC, Xue HH. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res 2015; 59:45-55. [PMID: 24847765 DOI: 10.1007/s12026-014-8545-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors have recurring roles during T cell development and activation. Tcf1 and Lef1 are known to be essential for early stages of thymocyte maturation. Recent research has revealed several novel aspects of their functionality. Tcf1 is induced at the very earliest step of specifying hematopoietic progenitors to the T cell lineage as a key target gene downstream of Notch activation. In addition to promoting maturation of T-lineage-committed thymocytes, Tcf1 functions as a tumor suppressor in developing thymocytes, and this is mediated, paradoxically, by restraining Lef1 expression. After positive selection, Tcf1 and Lef1 act together to direct CD4(+)CD8(+) double positive thymocytes to a CD4(+) T cell fate. Although not required for CD8(+) T cell differentiation, Tcf1 and Lef1 cooperate with Runx factors to achieve stable silencing of the Cd4 gene in CD8(+) T cells. Tcf1 is also found to have versatile roles in innate immune cells, which partly mirror its functions in mature T helper cells. Discrepancy in requirements of Tcf1/Lef1 and β-catenin in T cells has been a long-standing enigma. We will review other protein factors interacting with Tcf1 and Lef1 and discuss their regulatory roles independent of β-catenin.
Collapse
Affiliation(s)
- Farrah C Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
23
|
Rahmutulla B, Matsushita K, Satoh M, Seimiya M, Tsuchida S, Kubo S, Shimada H, Ohtsuka M, Miyazaki M, Nomura F. Alternative splicing of FBP-interacting repressor coordinates c-Myc, P27Kip1/cyclinE and Ku86/XRCC5 expression as a molecular sensor for bleomycin-induced DNA damage pathway. Oncotarget 2015; 5:2404-17. [PMID: 24811221 PMCID: PMC4058014 DOI: 10.18632/oncotarget.1650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The far-upstream element-binding protein-interacting repressor (FIR) is a c-myc transcriptional suppressor. FIR is alternatively spliced to lack the transcriptional repression domain within exon 2 (FIRΔexon2) in colorectal cancers. FIR and FIRΔexon2 form homo- or heterodimers that complex with SAP155. SAP155, a subunit of the essential splicing factor 3b subcomplex in the spliceosome, is required for proper P27Kip1 pre-mRNA splicing, and P27Kip1 arrests cells at G1. In contrast, FIR was co-immunoprecipitated with Ku86 and DNA-PKcs. siRNA against Ku86/Ku70 decreased FIR and P27Kip1 expression, whereas siRNA against FIR decreased Ku86/XRCC5 and P27Kip1 expression. Thus the mechanical interaction of FIR/FIRΔexon2/SAP155 bridges c-myc and P27Kip1 expression, potentially integrates cell-cycle progression and c-myc transcription in cell. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. Because DNA breaks generate the recruitment of Ku86/Ku70 to bind to the broken DNA ends, the possible involvement of FIR and Ku86/Ku70 interaction in the BLM-induced DNA damage repair response was investigated in this study. First, BLM treatment reduced SAP155 expression and increased FIR and FIRΔexon2 mRNA expression as well as the ratio of FIRΔexon2:FIR in hepatoblastoma cells (HLE and HLF). Second, FIR or FIRΔexon2 adenovirus vectors (Ad-FIR or Ad-FIRΔexon2) increased Ku86/Ku70 and P27Kip1 expression in vitro. Third, BLM decreased P27Kip1 protein expression, whereas increased P27Kip1 and γH2AX expression with Ad-FIRΔexon2. Together, the interaction of FIR/SAP155 modulates FIR splicing and involves in cell-cycle control or cell fate via P27Kip1 and c-myc in BLM-induced DNA damage pathway. This novel function of FIR splicing will contribute to clinical studies of cancer management through elucidating the mechanical interaction of FIR/FIRΔexon2/SAP155 as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Bahityar Rahmutulla
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba City, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Green AR, Caracappa D, Benhasouna AA, Alshareeda A, Nolan CC, Macmillan RD, Madhusudan S, Ellis IO, Rakha EA. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat 2014; 149:353-62. [PMID: 25528020 PMCID: PMC4308637 DOI: 10.1007/s10549-014-3230-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/02/2014] [Indexed: 01/05/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a key facilitator of DNA repair. PARP inhibitors have gained recent attention as promising therapeutic agents for the treatment of solid tumours including breast cancer (BC). However, the biological and clinical significance of PARP1 expression in BC and its role in DNA-damage response (DDR) remain to be defined. We investigated the expression of PARP1 expression, cleaved (PARP1c) and non-cleaved (PAR1nc) forms, in a large and well-characterised cohort of clinically annotated stage I-III operable BCs (n = 1,269) and 43 BRCA1-mutated BCs using immunohistochemistry. PARP1 expression was correlated to clinicopathological variables, outcome and expression of other key DNA repair proteins (BRCA1, RAD51, Ku70/80, PIASγ and CHK1). Expression of PARP1 was exclusively nuclear. 49 and 85 % of sporadic BC showed expression PARP1nc and PARP1c, respectively. In BRCA1-mutated tumours, PARP1nc/PARP1c was highly expressed (95 and 79 %, respectively). PARP1nc expression was positively associated with premenopausal younger age patients, larger size and higher tumour grade. PARP1 was positively associated with DDR-proteins; RAD51, BRCA1, CHK1 and PIASγ (p < 0.001). Negative association was found between PARP1nc and Ki67. PARP1c was associated with ER (p < 0.001). Different associations between PARP1 and DDR-proteins were observed when stratified based on ER/BRCA1 status. PARP1 was not an independent predictor of outcome in sporadic or BRCA1-mutated BC. Our results demonstrate a potential biological role for PARP1c and PARP1nc in DNA repair in BC based on the significant association with other key DNA damage repair proteins. These associations were not restricted to ER-negative or triple-negative subgroup.
Collapse
Affiliation(s)
- Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
NR5A1 prevents centriole splitting by inhibiting centrosomal DNA-PK activation and β-catenin accumulation. Cell Commun Signal 2014; 12:55. [PMID: 25421435 PMCID: PMC4262199 DOI: 10.1186/s12964-014-0055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/31/2014] [Indexed: 11/16/2022] Open
Abstract
Background Adrenogonadal cell growth and differentiation are controlled by nuclear receptor NR5A1 (Ad4BP/SF-1) that regulates the expression of adrenal and gonadal genes. In addition, SF-1 also resides in the centrosome and controls centrosome homeostasis by restricting the activity of centrosomal DNA-PK and CDK2/cyclin A. Results Here we show that SF-1 depletion resulted in centriole splitting and amplification due to aberrant activation of DNA-PK in the centrosome of mouse adrenocortical Y1 cells. In the absence of SF-1, GSK3β was aberrantly phosphorylated during G1 phase and β-catenin was accumulated in the centrosome, but not in the nucleus. DNA-PK inhibitor vanillin reversed these phenomena. SF-1 overexpression led to inhibition of centrosomal DNA-PK activation caused by SF-1 depletion. Both full-length SF-1 and truncated SF-1 devoid of its DNA-binding domain rescued the multiple centrosome phenotype caused by SF-1 depletion, indicating that the effect of SF-1 in the centrosome is not contributed by its DNA-binding domain. Furthermore, SF-1 interacted with cyclin A in the centrosome, but not in the nucleus. Depletion of SF-1 also resulted in centriole splitting, genomic instability and reduced growth of mouse testicular Leydig MA10 cells. Conclusion Centrosomal DNA-PK signaling triggers the accumulation of β-catenin, leading to centrosome over-duplication and centriole splitting. This cascade of centrosomal events results in genomic instability and reduced cell numbers.
Collapse
|
26
|
Rajcevic U, Knol JC, Piersma S, Bougnaud S, Fack F, Sundlisaeter E, Søndenaa K, Myklebust R, Pham TV, Niclou SP, Jiménez CR. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Sci 2014; 12:39. [PMID: 25075203 PMCID: PMC4114130 DOI: 10.1186/1477-5956-12-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/09/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. RESULTS Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. CONCLUSIONS Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal and stem-like cells. This 3D tumor model in which tumor heterogeneity is preserved may represent an advantageous model system to investigate novel therapeutic approaches.
Collapse
Affiliation(s)
- Uros Rajcevic
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg ; Department of Research and Development, Blood Transfusion Center of Slovenia, Ljubljana, Slovenia ; Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sander Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sébastien Bougnaud
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | | | - Karl Søndenaa
- Department of Surgery, Haraldsplass Deaconal Hospital, University of Bergen, Bergen, Norway
| | | | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Connie R Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
27
|
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is an abundant, ubiquitously expressed NAD(+)-dependent nuclear enzyme that has prognostic value for a multitude of human cancers. PARP1 activity serves to poly (ADP-ribose)-ylate the vast majority of known client proteins and affects a number of cellular and biologic outcomes, by mediating the DNA damage response (DDR), base-excision repair (BER), and DNA strand break (DSB) pathways. PARP1 is also critically important for the maintenance of genomic integrity, as well as chromatin dynamics and transcriptional regulation. Evidence also indicates that PARP-directed therapeutics are "synthetic lethal" in BRCA1/2-deficient model systems. Strikingly, recent studies have unearthed exciting new transcriptional-regulatory roles for PARP1, which has profound implications for human malignancies and will be reviewed herein.
Collapse
Affiliation(s)
| | - Karen E Knudsen
- Kimmel Cancer Center, Departments of Cancer Biology, Urology, and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Chen X, Shen J, Li X, Wang X, Long M, Lin F, Wei J, Yang L, Yang C, Dong K, Zhang H. Rlim, an E3 ubiquitin ligase, influences the stability of Stathmin protein in human osteosarcoma cells. Cell Signal 2014; 26:1532-8. [PMID: 24686088 DOI: 10.1016/j.cellsig.2014.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022]
Abstract
Stathmin is an oncoprotein and is expressed at high levels in a wide variety of human malignancies, which plays important roles in maintenance of malignant phenotypes. The regulation of Stathmin gene overexpression has been wildly explored, but the exact mechanism still needs to be elucidated. It is believed that regulation of an oncogene protein abundance through post-translational modifications is essential for maintenance of malignant phenotypes. Here we identified the Rlim, a Ring H2 zinc finger protein with intrinsic ubiquitin ligase activity, as a Stathmin-interacting protein that could increase Stathmin turnover through binding with this targeted protein and then induce its degradation by proteasome in a ubiquitin-dependent manner. Inhibition of endogenous Rlim expression by siRNA could increase the level of Stathmin protein, which further led to cell proliferation and cell cycle changes in human osteosarcoma cell lines. On the other hand, forced overexpression of Rlim could decrease the level of Stathmin protein. These results demonstrate that Rlim is involved in the negative regulation of Stathmin protein level through physical interaction and ubiquitin-mediated proteolysis. Hence, Rlim is a novel regulator of Stathmin protein in a ubiquitin-dependent manner, and represents a new pathway for malignant phenotype turnover by modulating the level of Stathmin protein in human osteosarcomas.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianjun Shen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingyu Li
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, China
| | - Xi Wang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Long
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Junxia Wei
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Longfei Yang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chinglai Yang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, USA
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
29
|
Maiti AK, Kim-Howard X, Motghare P, Pradhan V, Chua KH, Sun C, Arango-Guerrero MT, Ghosh K, Niewold TB, Harley JB, Anaya JM, Looger LL, Nath SK. Combined protein- and nucleic acid-level effects of rs1143679 (R77H), a lupus-predisposing variant within ITGAM. Hum Mol Genet 2014; 23:4161-76. [PMID: 24608226 DOI: 10.1093/hmg/ddu106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
Collapse
Affiliation(s)
- Amit K Maiti
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Prasenjeet Motghare
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Kek Heng Chua
- Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - María Teresa Arango-Guerrero
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Timothy B Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center and the US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Juan-Manual Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Loren L Looger
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
30
|
Kobayashi E, Satow R, Ono M, Masuda M, Honda K, Sakuma T, Kawai A, Morioka H, Toyama Y, Yamada T. MicroRNA expression and functional profiles of osteosarcoma. Oncology 2014; 86:94-103. [PMID: 24457375 DOI: 10.1159/000357408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Osteosarcoma (OS) is the most frequent primary malignant bone tumor in children and young adults. Although the introduction of combined neoadjuvant chemotherapy has significantly prolonged survival, the outcome for OS patients showing a poor response to chemotherapy is still unfavorable. In order to develop new therapeutic approaches, elucidation of the entire molecular pathway regulating OS cell proliferation would be desirable. METHODS MicroRNA (miRNA) are highly conserved noncoding RNA that play important roles in the development and progression of various other cancers. Using miRNA microarrays capable of detecting a known number of 933 miRNA, 108 miRNA were found to be commonly expressed in 24 samples of OS tissue and subjected to a cell proliferation assay. RESULTS We found that inhibition of 5 let-7 family miRNA (hsa-let-7a, b, f, g and i) significantly suppressed the proliferation of OS cells. Using a quantitative shotgun proteomics approach, we also found that the let-7 family miRNA regulated the expression of vimentin and serpin H1 proteins. CONCLUSIONS Our present results indicate the involvement of let-7 family miRNA in regulation of the cell proliferation as well as epithelial-mesenchymal transition of OS. Thus, let-7 family miRNA may potentially provide novel targets for the development of therapeutic strategies against OS.
Collapse
Affiliation(s)
- Eisuke Kobayashi
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Deregulated activation of β-catenin in cancer has been correlated with genomic instability. During thymocyte development, β-catenin activates transcription in partnership with T-cell-specific transcription factor 1 (Tcf-1). We previously reported that targeted activation of β-catenin in thymocytes (CAT mice) induces lymphomas that depend on recombination activating gene (RAG) and myelocytomatosis oncogene (Myc) activities. Here we show that these lymphomas have recurring Tcra/Myc translocations that resulted from illegitimate RAG recombination events and resembled oncogenic translocations previously described in human T-ALL. We therefore used the CAT animal model to obtain mechanistic insights into the transformation process. ChIP-seq analysis uncovered a link between Tcf-1 and RAG2 showing that the two proteins shared binding sites marked by trimethylated histone-3 lysine-4 (H3K4me3) throughout the genome, including near the translocation sites. Pretransformed CAT thymocytes had increased DNA damage at the translocating loci and showed altered repair of RAG-induced DNA double strand breaks. These cells were able to survive despite DNA damage because activated β-catenin promoted an antiapoptosis gene expression profile. Thus, activated β-catenin promotes genomic instability that leads to T-cell lymphomas as a consequence of altered double strand break repair and increased survival of thymocytes with damaged DNA.
Collapse
|
32
|
Igarashi M, Hippo Y, Ochiai M, Fukuda H, Nakagama H. AKT is critically involved in cooperation between obesity and the dietary carcinogen amino-1-methyl-6-phenylimidazo [4,5-b] (PhIP) toward colon carcinogenesis in rats. Biochem Biophys Res Commun 2013; 443:852-7. [PMID: 24342614 DOI: 10.1016/j.bbrc.2013.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022]
Abstract
Obesity is highly associated with colon cancer development. Whereas it is generally attributed to pro-tumorigenic effects of high fat diet (HFD), we here show that a common genetic basis for predisposition to obesity and colon cancer might also underlie the close association. Comparison across multiple rat strains revealed that strains prone to colon tumorigenesis initiated by a dietary carcinogen amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) tended to develop obesity. Through transcriptome and extensive immunoblotting analyses, we identified the basal level of activated AKT in colonic crypts as a biomarker for the common predisposition. Notably, PhIP induced activation of AKT, which could persist for several weeks under a low fat diet (LFD), but not under HFD. On the other hand, PhIP and HFD independently induced Wnt pathway activation and inhibited apoptosis, through distinct mechanisms involving GSK-3β, caspase 3 and poly-ADP ribose polymerase (PARP). Taken together, these observations provide mechanistic insights into how PhIP-induced activation of AKT might cooperate with HFD at multiple levels toward development of colon cancer.
Collapse
Affiliation(s)
- Maki Igarashi
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshitaka Hippo
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Masako Ochiai
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirokazu Fukuda
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
33
|
Yamada T, Masuda M, Sawa M. Abstract A132: Development of a small-molecule inhibitor targeting the Wnt signaling pathway. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-a132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Wnt signaling is a major force driving colorectal carcinogenesis, but only a small number of druggable target molecules in the Wnt pathway have been found. Our recent series of proteomic studies has revealed that various classes of nuclear proteins participate in the β-catenin and T-cell factor-4 (TCF-4) complex and modulate the activity of Wnt signalling. Those included fusion/translocated in liposarcoma (FUS/TLS) (1), poly(ADP-ribose) polymerase-1 (PARP-1) (2), Ku70/Ku80 (3), DNA topoisomerase IIα (Topo IIα) (4), splicing factor-1 (SF1) (5), Ran (ras-related nuclear protein), RanBP2 (Ran binding protein-2), and RanGAP1 (Ran GTPase-activating protein-1) (6), Traf2- and Nck-interacting kinase (TNIK) (7). Among these proteins, TNIK protein kinase attracted our current interest because various small-molecule kinase inhibitors have been applied successfully to cancer treatment. TNIK was an activating kinase for TCF-4, and colorectal cancer cells are highly dependent upon the expression and catalytic activity of TNIK for proliferation (7). High-throughput screening of a kinase-focused compound library (>10,000 compounds) against recombinant TNIK identified a lead candidate that inhibited the kinase activity of TNIK with an IC50 value of 8.6 nM and the transcriptional activity of TCF-4. TNIK is a feasible drug target in the Wnt signaling pathway.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A132.
Citation Format: Tesshi Yamada, Mari Masuda, Masaaki Sawa. Development of a small-molecule inhibitor targeting the Wnt signaling pathway. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A132.
Collapse
Affiliation(s)
| | - Mari Masuda
- 1National Cancer Ctr. Research Inst., Tokyo, Japan
| | | |
Collapse
|
34
|
Tavana O, Puebla-Osorio N, Kim J, Sang M, Jang S, Zhu C. Ku70 functions in addition to nonhomologous end joining in pancreatic β-cells: a connection to β-catenin regulation. Diabetes 2013; 62:2429-38. [PMID: 23474484 PMCID: PMC3712041 DOI: 10.2337/db12-1218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genesis of β-cells predominantly occurs through self-replication; therefore, understanding the regulation of cell proliferation is essential. We previously showed that the lack of nonhomologous end joining (NHEJ) DNA repair factor ligase IV leads to an accumulation of DNA damage that permanently halts β-cell proliferation and dramatically decreases insulin production, causing overt diabetes in a hypomorphic p53(R172P) background. In the present study, to further delineate the function of NHEJ, we analyzed mice deficient for another key NHEJ factor, Ku70, to discover the effect of cellular responses to DNA damage in pancreatic β-cells on cellular proliferation and glucose homeostasis. Analysis of Ku70(-/-) pancreatic β-cells revealed an accumulation of DNA damage and activation of p53-dependent cellular senescence similar to the results found in our earlier ligase IV deficiency study. To our surprise, Ku70(-/-) mice had significantly increased β-cell proliferation and islet expansion, heightened insulin levels, and decreased glycemia. This augmented β-cell proliferation was accompanied by an increased β-catenin level, which we propose to be responsible for this phenotype. This study highlights Ku70 as an important player not only in maintaining genomic stability through NHEJ-dependent functions, but also in regulating pancreatic β-cell proliferation, a novel NHEJ-independent function.
Collapse
Affiliation(s)
- Omid Tavana
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Nahum Puebla-Osorio
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiseong Kim
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mei Sang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stella Jang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chengming Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Corresponding author: Chengming Zhu,
| |
Collapse
|
35
|
Masutani M, Fujimori H. Poly(ADP-ribosyl)ation in carcinogenesis. Mol Aspects Med 2013; 34:1202-16. [PMID: 23714734 DOI: 10.1016/j.mam.2013.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022]
Abstract
Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Japan.
| | | |
Collapse
|
36
|
Shimomura A, Takasaki A, Nomura R, Hayashi N, Senda T. Identification of DNA-dependent protein kinase catalytic subunit as a novel interaction partner of lymphocyte enhancer factor 1. Med Mol Morphol 2013; 46:14-9. [PMID: 23325550 DOI: 10.1007/s00795-012-0002-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/24/2011] [Indexed: 02/08/2023]
Abstract
Lymphocyte enhancer factor 1 (LEF1), a member of the LEF/T-cell-specific factor (TCF) family of the high mobility group domain transcription factors, acts downstream in canonical Wnt signaling. Aberrant transactivation of LEF1 contributes to the tumorigenesis of colonic neoplasms, sebaceous skin tumors, and lymphoblastic leukemia. LEF1-associated proteins are crucial for regulating its transcriptional activity. In this study, glutathione-S-transferase pull-down assay and mass spectrometry enabled identification of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a novel interaction partner for LEF1. The interaction between LEF1 and DNA-PKcs was confirmed using in vivo co-immunoprecipitation. Furthermore, double immunofluorescence observations showed that LEF1 and DNA-PKcs colocalized in the nuclei of colon adenocarcinoma cell lines. Identification of the interaction between LEF1 and DNA-PKcs may provide clues for a novel therapy for cancer treatment as well as for understanding LEF1-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Atsushi Shimomura
- Department of Anatomy I, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan.
| | | | | | | | | |
Collapse
|
37
|
Satow R, Shitashige M, Jigami T, Fukami K, Honda K, Kitabayashi I, Yamada T. β-catenin inhibits promyelocytic leukemia protein tumor suppressor function in colorectal cancer cells. Gastroenterology 2012; 142:572-81. [PMID: 22155184 DOI: 10.1053/j.gastro.2011.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/19/2011] [Accepted: 11/25/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Loss of promyelocytic leukemia protein (PML) nuclear body (NB) formation has been reported in colorectal and other solid tumors. However, genetic alteration of PML is rarely observed in these tumors; the exact mechanisms that mediate loss of PML function are not known. METHODS We previously used a comprehensive shotgun mass spectrometry approach to identify PML as 1 of 70 proteins that coimmunoprecipitate with anti-T-cell factor 4 in DLD-1 and HCT116 colorectal cancer cell lines; we investigated the effects of altered β-catenin expression on PML function in these cells. RESULTS β-catenin specifically interacted with the product of PML transcript variant IV (PML-IV) through the armadillo repeat domain of β-catenin. Overexpression of β-catenin in colorectal cancer cells disrupted the subcellular compartmentalization of PML-IV, whereas knockdown of β-catenin restored formation of PML-NB. Modification of PML by the small ubiquitin-related modifier (SUMO) is required for proper assembly of PML-NB. β-catenin inhibited Ran-binding protein 2-mediated SUMOylation of PML-IV. CONCLUSIONS β-catenin interacts with PML isoform IV and disrupts PML-IV function and PML-NB formation by inhibiting Ran-binding protein 2-mediated SUMO modification of PML-IV. These findings indicate the involvement of a posttranslational mechanism in disruption of PML-NB organization in cancer cells and provide more information about the oncogenic functions of β-catenin.
Collapse
Affiliation(s)
- Reiko Satow
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kashima L, Idogawa M, Mita H, Shitashige M, Yamada T, Ogi K, Suzuki H, Toyota M, Ariga H, Sasaki Y, Tokino T. CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. J Biol Chem 2012; 287:12975-84. [PMID: 22337872 DOI: 10.1074/jbc.m111.321828] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.
Collapse
Affiliation(s)
- Lisa Kashima
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S. Transcription factor Zic2 inhibits Wnt/β-catenin protein signaling. J Biol Chem 2011; 286:37732-40. [PMID: 21908606 DOI: 10.1074/jbc.m111.242826] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Zic transcription factors play critical roles during embryonic development. Mutations in the ZIC2 gene are associated with human holoprosencephaly, but the etiology is still unclear. Here, we report a novel function for ZIC2 as a regulator of β-catenin·TCF4-mediated transcription. We show that ZIC2 can bind directly to the DNA-binding high mobility group box of TCF4 via its zinc finger domain and inhibit the transcriptional activity of the β-catenin·TCF4 complex. However, the binding of TCF4 to DNA was not affected by ZIC2. Zic2 RNA injection completely inhibited β-catenin-induced axis duplication in Xenopus embryos and strongly blocked the ability of β-catenin to induce expression of known Wnt targets in animal caps. Moreover, Zic2 knockdown in transgenic Xenopus Wnt reporter embryos led to ectopic Wnt signaling activity mainly at the midbrain-hindbrain boundary. Together, our results demonstrate a previously unknown role for ZIC2 as a transcriptional regulator of the β-catenin·TCF4 complex.
Collapse
Affiliation(s)
- Rasoul Pourebrahim
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Balaz P, Plaschke J, Krüger S, Görgens H, Schackert HK. TCF-3, 4 protein expression correlates with beta-catenin expression in MSS and MSI-H colorectal cancer from HNPCC patients but not in sporadic colorectal cancers. Int J Colorectal Dis 2010; 25:931-9. [PMID: 20532534 DOI: 10.1007/s00384-010-0959-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2010] [Indexed: 02/04/2023]
Abstract
PURPOSE The beta-catenin-T-cell factor-4 (TCF-4) complex is the main control switch of cell proliferation and differentiation of normal and malignant intestinal cells. The aim of our study was to analyze the protein expression of components of the Wnt pathway in microsatellite stable (MSS) and highly unstable (MSI-H) sporadic and hereditary nonpolyposis colorectal cancer (HNPCC) in human colorectal cancers. METHODS Sixty seven colorectal tumors comprising of 15 sporadic MSS, 12 sporadic microsatellite instability colorectal tumors and 40 tumors from HNPCC patients, of which 20 were MSS and 20 MSI-H, were analyzed for the expression of APC, beta-catenin, and TCF-3, 4 proteins by immunohistochemistry. RESULTS We found a significant difference in cytoplasmic APC expression frequency between sporadic MSS (52%) and HNPCC tumors (78%), whereas no difference was detected between MSI-H and MSS or HNPCC tumors. All tumor groups showed a similar pattern of decreased membranous staining and increased cytoplasmic and nuclear staining for beta-catenin compared to normal cells. Moreover, the TCF-3, 4 protein expression was higher (43%) in HNPCC-associated MSS tumors compared to sporadic tumors (14%; analysis of variance (ANOVA) p < 0.05). For HNPCC tumors, the subcellular beta-catenin expression (membranous, cytoplasmic, and nuclear) correlated with the nuclear TCF-3, 4 signal in MSS tumors (Spearman correlation p < 0.0007) and MSI-H tumors (Spearman correlation p < 0.0001). CONCLUSION We have shown a previously unknown difference in TCF-3, 4 protein expression between sporadic and HNPCC MSS tumors. In addition, we found no difference in nuclear beta-catenin signal intensity, which may be caused by an alteration in Wnt pathway in MSS sporadic tumors by unknown mechanisms leading to lower TCF-3, 4 protein expression. This hypothesis has to be tested in future investigations.
Collapse
Affiliation(s)
- Peter Balaz
- Department of Surgical Research, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
41
|
Satow R, Shitashige M, Jigami T, Honda K, Ono M, Hirohashi S, Yamada T. Traf2- and Nck-interacting kinase is essential for canonical Wnt signaling in Xenopus axis formation. J Biol Chem 2010; 285:26289-94. [PMID: 20566648 DOI: 10.1074/jbc.m109.090597] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling pathways play important roles in various stages of developmental events and several aspects of adult homeostasis. Aberrant activation of Wnt signaling has also been associated with several types of cancer. We have recently identified Traf2- and Nck-interacting kinase (TNIK) as a novel activator of Wnt signaling through a comprehensive proteomic approach in human colorectal cancer cell lines. TNIK is an activating kinase for T-cell factor-4 (TCF4) and essential for the beta-catenin-TCF4 transactivation and colorectal cancer growth. Here, we report the essential role of TNIK in Wnt signaling during Xenopus development. We found that Xenopus TNIK (XTNIK) was expressed maternally and that the functional knockdown of XTNIK by catalytically inactive XTNIK (K54R) or antisense morpholino oligonucleotides resulted in significant malformations with a complete loss of head and axis structures. XTNIK enhanced beta-catenin-induced axis duplication and the expression of beta-catenin-TCF target genes, whereas knockdown of XTNIK inhibited it. XTNIK was recruited to the promoter region of beta-catenin-TCF target genes in a beta-catenin-dependent manner. These results demonstrate that XTNIK is an essential factor for the transcriptional activity of the beta-catenin-TCF complex and dorsal axis determination in Xenopus embryos.
Collapse
Affiliation(s)
- Reiko Satow
- Chemotherapy Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Shitashige M, Satow R, Jigami T, Aoki K, Honda K, Shibata T, Ono M, Hirohashi S, Yamada T. Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 2010; 70:5024-33. [PMID: 20530691 DOI: 10.1158/0008-5472.can-10-0306] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
T-cell factor-4 (TCF4) is a transcription factor essential for maintaining the undifferentiated status and self-renewal of intestinal epithelial cells. It has therefore been considered that constitutive activation of TCF4 by aberrant Wnt signaling is a major force driving colorectal carcinogenesis. We previously identified Traf2- and Nck-interacting kinase (TNIK) as one of the proteins that interact with TCF4 in colorectal cancer cells, but its functional significance has not been elucidated. Here, we report that TNIK is an activating kinase for TCF4 and essential for colorectal cancer growth. TNIK, but not its catalytically inactive mutant, phosphorylated the conserved serine 154 residue of TCF4. Small interfering RNA targeting TNIK inhibited the proliferation of colorectal cancer cells and the growth of tumors produced by injecting colorectal cancer cells s.c. into immunodeficient mice. The growth inhibition was abolished by restoring the catalytic domain of TNIK, thus confirming that its enzyme activity is essential for the maintenance of colorectal cancer growth. Several ATP-competing kinase inhibitors have been applied to cancer treatment and have shown significant activity. Our findings suggest TNIK as a feasible target for pharmacologic intervention to ablate aberrant Wnt signaling in colorectal cancer.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M, Honda K, Yamaguchi U, Shoji A, Tochigi N, Morioka H, Toyama Y, Hirohashi S, Kawai A, Yamada T. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther 2010; 9:535-44. [PMID: 20159990 DOI: 10.1158/1535-7163.mct-09-0774] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary metastasis is the most significant prognostic determinant for osteosarcoma, but methods for its prediction and treatment have not been established. Using oligonucleotide microarrays, we compared the global gene expression of biopsy samples between seven osteosarcoma patients who developed pulmonary metastasis within 4 years after neoadjuvant chemotherapy and curative resection, and 12 patients who did not relapse. We identified argininosuccinate synthetase (ASS) as a gene differentially expressed with the highest statistical significance (Welch's t test, P = 2.2 x 10(-5)). Immunohistochemical analysis of an independent cohort of 62 osteosarcoma cases confirmed that reduced expression of ASS protein was significantly correlated with the development of pulmonary metastasis after surgery (log-rank test, P < 0.05). Cox regression analysis revealed that ASS was the sole significant predictive factor (P = 0.039; hazard ratio, 0.319; 95% confidence interval, 0.108-0.945). ASS is one of the enzymes required for the production of a nonessential amino acid, arginine. We showed that osteosarcoma cells lacking ASS expression were auxotrophic for arginine and underwent G(0)-G(1) arrest in arginine-free medium, suggesting that an arginine deprivation therapy could be effective in patients with osteosarcoma. Recently, phase I and II clinical trials in patients with melanoma and hepatocellular carcinoma have shown the safety and efficacy of plasma arginine depletion by stabilized arginine deiminase. Our data indicate that in patients with osteosarcoma, reduced expression of ASS is not only a novel predictive biomarker for the development of metastasis, but also a potential target for pharmacologic intervention.
Collapse
Affiliation(s)
- Eisuke Kobayashi
- Chemotherapy Division, National Cancer Centre Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Activation of PARP-1 in response to bleomycin depends on the Ku antigen and protein phosphatase 5. Oncogene 2010; 29:2093-103. [PMID: 20101203 DOI: 10.1038/onc.2009.492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) has an important role in the cellular response to a broad spectrum of DNA lesions. PARP-1 is strongly activated in response to double-stranded DNA breaks (DSBs), yet its contribution to the DSB response is poorly understood. Here we used bleomycin, a radiomimetic that generates DSBs with high specificity to focus on the response of PARP-1 to DSBs. We report that the induction of PARP-1 activity by bleomycin depends on the Ku antigen, a nonhomologous-DNA-End-Joining factor and protein phosphatase 5 (PP5). PARP-1 activation in response to bleomycin was reduced over 10-fold in Ku-deficient cells, whereas its activation in response to U.V. was unaffected. PARP-1 activation was rescued by reexpression of Ku, but was refractory to manipulation of DNA-dependent protein kinase or ATM. Similarly, PARP-1 activation subsequent to bleomycin was reduced 2-fold on ablation of PP5 and was increased 5-fold when PP5 was overexpressed. PP5 seemed to act directly on PARP-1, as its basal phosphorylation was reduced on overexpression of PP5, and PP5 dephosphorylated PARP-1 in vitro. These results highlight the functional importance of Ku antigen and PP5 for PARP-1 activity subsequent to DSBs.
Collapse
|
45
|
Nolens G, Pignon JC, Koopmansch B, Elmoualij B, Zorzi W, De Pauw E, Winkler R. Ku proteins interact with activator protein-2 transcription factors and contribute to ERBB2 overexpression in breast cancer cell lines. Breast Cancer Res 2009; 11:R83. [PMID: 19906305 PMCID: PMC2815545 DOI: 10.1186/bcr2450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 10/07/2009] [Accepted: 11/11/2009] [Indexed: 02/01/2023] Open
Abstract
Introduction Activator protein-2 (AP-2) α and AP-2γ transcription factors contribute to ERBB2 gene overexpression in breast cancer. In order to understand the mechanism by which the ERBB2 gene is overexpressed we searched for novel AP-2 interacting factors that contribute to its activity. Methods Ku proteins were identified as AP-2α interacting proteins by glutathione serine transferase (GST)-pull down followed by mass spectrometry. Transfection of the cells with siRNA, expression vectors and reporter vectors as well as chromatin immunoprecipitation (ChIP) assay were used to ascertain the implication of Ku proteins on ERBB2 expression. Results Nuclear proteins from BT-474 cells overexpressing AP-2α and AP-2γ were incubated with GST-AP2 or GST coated beads. Among the proteins retained specifically on GST-AP2 coated beads Ku70 and Ku80 proteins were identified by mass spectrometry. The contribution of Ku proteins to ERBB2 gene expression in BT-474 and SKBR3 cell lines was investigated by downregulating Ku proteins through the use of specific siRNAs. Depletion of Ku proteins led to downregulation of ERBB2 mRNA and protein levels. Furthermore, reduction of Ku80 in HCT116 cell line decreased the AP-2α activity on a reporter vector containing an AP-2 binding site linked to the ERBB2 core promoter, and transfection of Ku80 increased the activity of AP-2α on this promoter. Ku siRNAs also inhibited the activity of this reporter vector in BT-474 and SKBR3 cell lines and the activity of the ERBB2 promoter was further reduced by combining Ku siRNAs with AP-2α and AP-2γ siRNAs. ChIP experiments with chromatin extracted from wild type or AP-2α and AP-2γ or Ku70 siRNA transfected BT-474 cells demonstrated Ku70 recruitment to the ERBB2 proximal promoter in association with AP-2α and AP-2γ. Moreover, Ku70 siRNA like AP-2 siRNAs, greatly reduced PolII recruitment to the ERBB2 proximal promoter. Conclusions Ku proteins in interaction with AP-2 (α and γ) contribute to increased ERBB2 mRNA and protein levels in breast cancer cells.
Collapse
Affiliation(s)
- Grégory Nolens
- Laboratory of Molecular Oncology, GIGA Cancer, University of Liège, B34, avenue de l'hopital, Liege, 4000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol 2009; 29:6294-308. [PMID: 19805521 DOI: 10.1128/mcb.00939-09] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF-4alpha) is a transcription factor which is highly expressed in the intestinal epithelium from duodenum to colon and from crypt to villus. The homeostasis of this constantly renewing epithelium relies on an integrated control of proliferation, differentiation, and apoptosis, as well as on the functional architecture of the epithelial cells. In order to determine the consequences of HNF-4alpha loss in the adult intestinal epithelium, we used a tamoxifen-inducible Cre-loxP system to inactivate the Hnf-4a gene. In the intestines of adult mice, loss of HNF-4alpha led to an increased proliferation in crypts and to an increased expression of several genes controlled by the Wnt/beta-catenin system. This control of the Wnt/beta-catenin signaling pathway by HNF-4alpha was confirmed in vitro. Cell lineage was affected, as indicated by an increased number of goblet cells and an impairment of enterocyte and enteroendocrine cell maturation. In the absence of HNF-4alpha, cell-cell junctions were destabilized and paracellular intestinal permeability increased. Our results showed that HNF-4alpha modulates Wnt/beta-catenin signaling and controls intestinal epithelium homeostasis, cell function, and cell architecture. This study indicates that HNF-4alpha regulates the intestinal balance between proliferation and differentiation, and we hypothesize that it might act as a tumor suppressor.
Collapse
|
47
|
Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008; 26:2839-45. [PMID: 18539962 DOI: 10.1200/jco.2007.15.1829] [Citation(s) in RCA: 527] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In an increasing number of cancers, tumor populations called cancer stem cells (CSCs), or tumor-initiating cells, have been defined in functional assays of self-renewal and tumor initiation. Moreover, recent work in several different cancers has suggested the CSC population as a source of chemotherapy and radiation-therapy resistance within tumors. Work in glioblastoma and breast cancers supports the idea that CSCs may possess innate resistance mechanisms against radiation- and chemotherapy-induced cancer cell death, allowing them to survive and initiate tumor recurrence. Several resistance mechanisms have been proposed, including amplified checkpoint activation and DNA damage repair as well as increased Wnt/beta-catenin and Notch signaling. Novel targeted therapies against the DNA damage checkpoint or stem-cell maintenance pathways may sensitize CSCs to radiation or other therapies. Another important category of cancer therapies are antiangiogenic and vascular targeting agents, which are also becoming integrated in the treatment paradigm of an increasing number of cancers. Recent results from our laboratory and others support a role for CSCs in the angiogenic drive as well as the mechanism of antiangiogenic agents. Identifying and targeting the molecular mechanisms responsible for CSC therapeutic resistance may improve the efficacy of current cancer therapies.
Collapse
Affiliation(s)
- Christine E Eyler
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 2900, Durham, NC 27710, USA
| | | |
Collapse
|
48
|
Shitashige M, Satow R, Honda K, Ono M, Hirohashi S, Yamada T. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 2008; 134:1961-71, 1971.e1-4. [PMID: 18439914 DOI: 10.1053/j.gastro.2008.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/26/2008] [Accepted: 03/07/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The function of beta-catenin as a transcriptional coactivator of T-cell factor-4 (TCF-4) is crucial for colorectal carcinogenesis. However, beta-catenin has no nuclear localization signal, and the mechanisms by which beta-catenin is imported into the nucleus and forms a complex with the TCF-4 nuclear protein are poorly understood. METHODS Proteins of 2 colorectal cancer cell lines, HCT-116 and DLD1, were immunoprecipitated with anti-TCF-4 antibody and analyzed directly by nanoflow liquid chromatography and mass spectrometry. The functional significance of nuclear pore complex (NPC) proteins in Wnt signaling was evaluated by in vitro and in vivo sumoylation, luciferase reporter, and colony formation assays. RESULTS TCF-4 interacted with a large variety of NPC proteins including ras-related nuclear protein (Ran), Ran binding protein-2 (RanBP2), and Ran GTPase-activating protein-1 (RanGAP1). The NPC protein RanBP2 functioned as the small ubiquitin-related modifier (SUMO) E3 ligase of TCF-4, and sumoylation of TCF-4 enhanced the interaction between TCF-4 and beta-catenin. The overexpression of NPC proteins increased the nuclear import of the TCF-4 and beta-catenin proteins and enhanced the transcriptional activity. NPC proteins increased the growth of colorectal cancer cells, whereas sentrin-specific protease-2 inhibited it. CONCLUSIONS Through a comprehensive proteomics approach, we revealed that NPC functions as a novel regulator of Wnt signaling and is possibly involved in colorectal carcinogenesis. A new drug targeting the interactions of TCF-4 with NPC proteins as well as their sumoylation activity might be effective for suppressing aberrant Wnt signaling and the proliferation of colorectal cancer cells.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Shitashige M, Hirohashi S, Yamada T. Wnt signaling inside the nucleus. Cancer Sci 2008; 99:631-7. [PMID: 18177486 PMCID: PMC11158179 DOI: 10.1111/j.1349-7006.2007.00716.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 12/31/2022] Open
Abstract
Accumulation of the beta-catenin protein and transactivation of a certain set of T-cell factor (TCF)-4 target genes by accumulated beta-catenin have been considered crucial in colorectal carcinogenesis. In the present review, we summarize nuclear proteins that interact with, and regulate, the beta-catenin and TCF and lymphoid enhancer factor (LEF) transcriptional complexes. Our recent series of proteomic studies has also revealed that various classes of nuclear proteins participate in the beta-catenin-TCF-4 complex and modulate its transcriptional activity. Furthermore, the protein composition of the TCF-4-containing nuclear complex is not fixed, but is regulated dynamically by endogenous programs associated with intestinal epithelial cell differentiation and exogenous stimuli. Restoration of the loss-of-function mutation of the adenomatous polyposis coli (APC) gene in colorectal cancer cells does not seem to be a realistic approach with currently available medical technologies, and only signaling molecules downstream of the APC gene product can be considered as targets of pharmacological intervention. Nuclear proteins associated with the beta-catenin-TCF-4 complex may include feasible targets for molecular therapy against colorectal cancer. Recently, an inhibitor of the interaction between CREB-binding protein and beta-catenin was shown to efficiently shut down the transcriptional activity of TCF-4 and induce apoptosis of colorectal cancer cells. We also summarize current strategies in the development of drugs against Wnt signaling.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuoh-ku, Tokyo 104-0045, Japan
| | | | | |
Collapse
|
50
|
Shitashige M, Satow R, Honda K, Ono M, Hirohashi S, Yamada T. Increased susceptibility of Sf1(+/-) mice to azoxymethane-induced colon tumorigenesis. Cancer Sci 2007; 98:1862-7. [PMID: 17900258 PMCID: PMC11159411 DOI: 10.1111/j.1349-7006.2007.00629.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/25/2022] Open
Abstract
Aberrant transactivation of a certain set of target genes by the beta-catenin and T-cell factor-4 nuclear complex has been considered crucial for the initiation of colorectal carcinogenesis. We previously identified splicing factor-1 (SF1) as a novel component of the beta-catenin and T-cell factor-4 complex, and showed that the overexpression of SF1 inhibited the gene transactivational activity of the complex and markedly suppressed beta-catenin-evoked colony formation by human embryonic kidney 293 cells. However, the involvement of SF1 in the process of carcinogenesis in vivo remains unclear. In the present study, we established SF1-knockout mice using the gene trapping method. Homozygous mice (Sf1(-/-)) died during embryonic development before embryonic day (E)8.5, whereas heterozygous (Sf1(+/-)) mice were born alive and developed normally. Azoxymethane (AOM) was given at a dose of 10 mg/kg body weight once a week for 6 weeks to 7-week-old Sf1(+/-) and Sf1(+/+) mice. At 23 weeks after the start of AOM the average number (5.5 +/- 0.6 versus 2.2 +/- 0.2 in females [P = 0.003, Mann-Whitney U-test], 3.7 +/- 0.2 versus 1.7 +/- 0.7 in males [P = 0.014]) and volume of colon tumors per mouse (8.7 +/- 1.6 versus 2.2 +/- 0.5 mm(3) per female [P = 0.0008], 11.3 +/- 3.4 versus 0.6 +/- 0.2 mm(3) per male [P = 0.001]) were significantly higher in Sf1(+/-) than in Sf1(+/+) mice. The increased susceptibility of Sf1(+/-) mice to AOM-induced colon tumorigenesis indicates the crucial involvement of SF1 in the beta-catenin-mediated regulation of proliferation and differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Miki Shitashige
- Chemotherapy Division and Cancer Proteomics Project, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|