1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Shen D, Wu C, Chen M, Zhou Z, Li H, Tong X, Chen Z, Guo Y. Prognosis prediction and drug guidance of ovarian serous cystadenocarcinoma through mitochondria gene-based model. Cancer Genet 2024; 292-293:1-13. [PMID: 39754905 DOI: 10.1016/j.cancergen.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Mitochondrial dysregulation contributes to the chemoresistance of multiple cancer types. Yet, the functions of mitochondrial dysregulation in Ovarian serous cystadenocarcinoma (OSC) remain largely unknown. AIM We sought to investigate the function of mitochondrial dysregulation in OSC from the bioinformatics perspective. We aimed to establish a model for prognosis prediction and chemosensitivity evaluation of the OSC patients by targeting mitochondrial dysregulation. METHODS Differentially expressed genes (DEGs) were screened from the Cancer Genome Atlas (TCGA)-OV dataset and the mitochondrial-related DEGs were identified from the Human MitoCarta 3.0 database. Prognosis-related mitochondria-related genes (MRGs) were screened to establish the MRGs-based risk score model for prognosis prediction. To validate the risk score model, the risk score model was then evaluated by IHC staining intensity and survival curves from clinical specimens of OSC patients. Migration and proliferation assays were performed to elucidate the role of carcinogenic gene ACSS3 in serous ovarian cancer cell lines. RESULTS Using consensus clustering algorithm, we identified 341 MRGs and two subtypes of OSC patients. Moreover, we established a novel prognostic risk score model by combining the transcription level, intensity and extent scores of MRGs for prognosis prediction purpose. The model was established using 7 MRGs (ACOT13, ACSS3, COA6, HINT2, MRPL14, NDUFC2, and NDUFV2) significantly correlated to the prognosis of OSC. Importantly, by performing the drug sensitivity analysis, we found that the OSC patients in the low-risk group were more sensitive to cisplatin, paclitaxel and docetaxel than those in the high-risk group, while the latter ones were more sensitive to VEGFR inhibitor Axitinib and BRAF inhibitors Vemurafenib and SB590885. In addition, patients in the low-risk group were predicted to have better response in anti-PD-1 immunotherapy than those in the high-risk group. The risk score model was then validated by survival curves of high-risk and low-risk groups determined by IHC staining scores of OSC clinical samples. The carcinogenic effect of ACSS3 in OSC was confirmed through the knockdown of ACSS3 in SKOV3 and HO-8910 cells. CONCLUSION To summarize, we established a novel 7 MRGs - based risk score model that could be utilized for prognosis prediction and chemosensitivity assessment in OSC patients.
Collapse
Affiliation(s)
- Dongsheng Shen
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China; Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Chenghao Wu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Meiyi Chen
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China
| | - Zixuan Zhou
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Shanghai, 200433, PR China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China
| | - Zhenghu Chen
- College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, PR China.
| | - Yi Guo
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, School of Medicine, Tongji University, 200120, PR China; Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| |
Collapse
|
3
|
Lindahl E, Friedman R. Exploring the Impact of Protein Chain Selection in Binding Energy Calculations with DFT. Chemphyschem 2024; 25:e202400119. [PMID: 39188152 PMCID: PMC11648830 DOI: 10.1002/cphc.202400119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Calculation of binding free energies between a protein and a ligand are highly desired for computer-aided drug design. Here we approximate the binding energies of ABL1, an enzyme which is the target for drugs used in the treatment of chronic myeloid leukaemia, with minimal models and density functional theory (DFT). Starting from the crystal structures of protein-drug complexes, we estimated the binding free energies having used all available individual molecules (protein chains) within each structure, not only a single one as commonly used, in order to see if the choice of the protein chain is important in such calculations. Differences were observed between chains in the same file. Energy decomposition analysis (EDA) revealed that the most important factors for binding were exchange, repulsion and electrostatics. The desolvation term varied dramatically between the inhibitors (between 4.2 and 92.3 kcal/mol). All functionals showed similar patterns in the EDA and in discriminating between the ligands. Non-covalent interactions (NCI) analysis was used to further explain the differences between protein chains and functionals. Overall, it is shown that small minimal models of a drug binding site can be useful to infer on the suitability of an initial crystal structure for further analysis such as EDA.
Collapse
Affiliation(s)
- Erik Lindahl
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmarSE-391 82Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmarSE-391 82Sweden
| |
Collapse
|
4
|
Clayton J, Romany A, Matenoglou E, Gavathiotis E, Poulikakos PI, Shen J. Mechanism of Dimer Selectivity and Binding Cooperativity of BRAF Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.12.571293. [PMID: 38168366 PMCID: PMC10760002 DOI: 10.1101/2023.12.12.571293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.
Collapse
Affiliation(s)
- Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Aarion Romany
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Evangelia Matenoglou
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, United States
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
5
|
Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP. An updated literature on BRAF inhibitors (2018-2023). Mol Divers 2024; 28:2689-2730. [PMID: 37470921 DOI: 10.1007/s11030-023-10699-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BRAF is the most common serine-threonine protein kinase and regulates signal transduction from RAS to MEK inside the cell. The BRAF is a highly active isoform of RAF kinase. BRAF has two domains such as regulatory and kinase domains. The BRAF inhibitors bind in the c-terminus of the kinase domain and inhibit the downstream pathways. The mutation occurs mainly in the A-loop of the kinase domain. The mutation occurs due to a conversion of valine to glutamate/lysine/arginine/aspartic acid at 600th position. Among the diverse mutations, BRAFV600E is the most common and responsible for numerous cancer such as melanoma, colorectal, ovarian, and thyroid cancer. Due to mutations in RAC1, loss of PTEN, NF1, CCND1, USP28-FBW7 complex, COT overexpression, and CCND1 amplification, the BRAF kinase enzyme developed resistance over the commercially available BRAF inhibitors. There is still unmute urgence for the development of BRAF inhibitors to overcome the persistent limitation such as resistance, mutation, and adverse effects of drugs. In the current study, we described the structure, activation, downstream signaling pathway, and mutation of BRAF. Our group also provided a detailed review of BRAF inhibitors from the last five years (2018-2023) highlighting the structure-activity relationship, mechanistic study, and molecular docking studies. We hope that the current analysis will be a useful resource for researchers and provide chemists a glimpse into the future as design and development of more effective and secure BRAF kinase inhibitors.
Collapse
Affiliation(s)
- Lalmohan Maji
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Sindhuja Sengupta
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Rohit Pal
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Abhishek Ghara
- Department of Pharmaceutical Chemistry, Integrated Drug Discovery Centre, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
6
|
Yin H, Tang Q, Xia H, Bi F. Targeting RAF dimers in RAS mutant tumors: From biology to clinic. Acta Pharm Sin B 2024; 14:1895-1923. [PMID: 38799634 PMCID: PMC11120325 DOI: 10.1016/j.apsb.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024] Open
Abstract
RAS mutations occur in approximately 30% of tumors worldwide and have a poor prognosis due to limited therapies. Covalent targeting of KRAS G12C has achieved significant success in recent years, but there is still a lack of efficient therapeutic approaches for tumors with non-G12C KRAS mutations. A highly promising approach is to target the MAPK pathway downstream of RAS, with a particular focus on RAF kinases. First-generation RAF inhibitors have been authorized to treat BRAF mutant tumors for over a decade. However, their use in RAS-mutated tumors is not recommended due to the paradoxical ERK activation mainly caused by RAF dimerization. To address the issue of RAF dimerization, type II RAF inhibitors have emerged as leading candidates. Recent clinical studies have shown the initial effectiveness of these agents against RAS mutant tumors. Promisingly, type II RAF inhibitors in combination with MEK or ERK inhibitors have demonstrated impressive efficacy in RAS mutant tumors. This review aims to clarify the importance of RAF dimerization in cellular signaling and resistance to treatment in tumors with RAS mutations, as well as recent progress in therapeutic approaches to address the problem of RAF dimerization in RAS mutant tumors.
Collapse
Affiliation(s)
- Huanhuan Yin
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongwei Xia
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Liu Y, Li X, Chen S, Zhu C, Shi Y, Dang S, Zhang W, Li W. Pan-cancer analysis of SERPINE family genes as biomarkers of cancer prognosis and response to therapy. Front Mol Biosci 2024; 10:1277508. [PMID: 38274096 PMCID: PMC10808646 DOI: 10.3389/fmolb.2023.1277508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Serine protease inhibitor E (SERPINE) family genes participate in the tumor growth, cancer cell survival and metastasis. However, the SERPINE family members role in the prognosis and their clinical therapeutic potentials in various human cancer types have not been elaborately explored. Methods: We preliminarily analyzed expression levels and prognostic values of SERPINE family genes, and investigated the correlation between SERPINEs expression and tumor microenvironment (TME), Stemness score, clinical characteristic, immune infiltration, tumor mutational burden (TMB), immune subtype, and drug sensitivity in pan-cancer, which based on updated public databases and integrated some bioinformatics analysis methods. In addition, we conducted the enrichment analysis of SERPINEs from DAVID and KOBAS databases. Results: SERPINE1, SERPINE2, and SERPINE3 expression were upregulated in nine cancers, twelve cancers, and six cancers, respectively. The expression of SERPINE family genes was associated with the prognosis in several cancers from The Cancer Genome Atlas (TCGA). Furthermore, SERPINE family genes expression also had a significant relation to stromal and immune scores, and RNA stemness score and DNA stemness score in pan-cancer. SERPINE1 and SERPINE2 expression significantly increased in tumor advanced stage in colon adenocarcinoma (COAD). Results showed that SERPINE1 and SERPINE2 expression were negatively related with B cells and Monocytes, respectively. SERPINE2 expression had a significantly positive relation with B cells and Macrophages. In terms of TMB, SERPINE1, SERPINE2, and SERPINE3 were found to associated with TMB in seven cancers, fourteen cancers, and four cancers, respectively. Moreover, all SERPINE gene family members were significantly correlated with immune subtypes. SERPINE1 expression had a significantly positive or negative correlation with drug sensitivity. Conclusion: The study indicated the great potential of SERPINE family genes as biomarkers for prognosis and provided valuable strategies for further investigation of SERPINE family genes as potential targets in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Li
- Department of Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Gunderwala A, Cope N, Wang Z. Mechanism and inhibition of BRAF kinase. Curr Opin Chem Biol 2022; 71:102205. [PMID: 36067564 PMCID: PMC10396080 DOI: 10.1016/j.cbpa.2022.102205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023]
Abstract
The role of BRAF in tumor initiation has been established, however, the precise mechanism of autoinhibition has only been illustrated recently by several structural studies. These structures uncovered the basis by which the regulatory domains engage in regulating the activity of BRAF kinase domain, which lead to a more complete picture of the regulation cycle of RAF kinases. Small molecule BRAF inhibitors developed specifically to target BRAFV600E have proven effective at inhibiting the most dominant BRAF mutant in melanomas, but are less potent against other BRAF mutants in RAS-driven diseases due to paradoxical activation of the MAPK pathway. A variety of new generation inhibitors that do not show paradoxical activation have been developed. Alternatively, efforts have begun to develop inhibitors targeting the dimer interface of BRAF. A deeper understanding of BRAF regulation together with more diverse BRAF inhibitors will be beneficial for drug development in RAF or RASdriven cancers.
Collapse
Affiliation(s)
- Amber Gunderwala
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Nicholas Cope
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
9
|
Asgaonkar K, Tanksali S, Abhang K, Sagar A. Development of optimized pyrimido-thiazole scaffold derivatives as anticancer and multitargeting tyrosine kinase inhibitors using computational studies. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Clerk A, Meijles DN, Hardyman MA, Fuller SJ, Chothani SP, Cull JJ, Cooper ST, Alharbi HO, Vanezis K, Felkin LE, Markou T, Leonard SJ, Shaw SW, Rackham OJ, Cook SA, Glennon PE, Sheppard MN, Sembrat JC, Rojas M, McTiernan CF, Barton PJ, Sugden PH. Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo. Biochem J 2022; 479:401-424. [PMID: 35147166 PMCID: PMC8883496 DOI: 10.1042/bcj20210615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.
Collapse
Affiliation(s)
- Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Institute, St. George's University of London, London, U.K
| | | | | | - Sonia P. Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore City, Singapore
| | - Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George's University of London, London, U.K
| | - Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Konstantinos Vanezis
- National Heart and Lung Institute, Imperial College London, London, U.K
- MRC London Institute of Medical Sciences, Imperial College London, London, U.K
| | - Leanne E. Felkin
- National Heart and Lung Institute, Imperial College London, London, U.K
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, U.K
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Reading, U.K
| | | | - Spencer W. Shaw
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Owen J.L. Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore City, Singapore
| | - Stuart A. Cook
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore City, Singapore
- MRC London Institute of Medical Sciences, Imperial College London, London, U.K
- National Heart Centre Singapore, Singapore City, Singapore
| | - Peter E. Glennon
- University Hospitals Coventry and Warwickshire, University Hospital Cardiology Department, Clifford Bridge Road, Coventry, U.K
| | - Mary N. Sheppard
- CRY Cardiovascular Pathology Department, St. George's Healthcare NHS Trust, London, U.K
| | - John C. Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, and Dorothy P & Richard P Simmons Center for Interstitial Lung Disease, Department of Medicine, University of Pittsburgh, Pittsburgh, U.S.A
| | - Mauricio Rojas
- Division of Pulmonary, Allergy and Critical Care Medicine, and Dorothy P & Richard P Simmons Center for Interstitial Lung Disease, Department of Medicine, University of Pittsburgh, Pittsburgh, U.S.A
| | - Charles F. McTiernan
- Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, U.S.A
| | - Paul J. Barton
- National Heart and Lung Institute, Imperial College London, London, U.K
- Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals, London, U.K
| | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
11
|
Yao K, Zhou E, Cheng C. A B-Raf V600E gene signature for melanoma predicts prognosis and reveals sensitivity to targeted therapies. Cancer Med 2022; 11:1232-1243. [PMID: 35044091 PMCID: PMC8855909 DOI: 10.1002/cam4.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND B-Raf V600E mutations account for about half of all skin cutaneous melanoma cases, and patients with this mutation are sensitive to BRAF inhibitors. However, aberrations in other genes in the MAPK/ERK pathway may cascade a similar effect as B-Raf V600E mutations, rendering those patients sensitive to BRAF inhibitors. We rationalized that defining a signature based on B-Raf pathway activity may be more informative for prognosis and drug sensitivity prediction than a binary indicator such as mutation status. METHODS In this study, we defined a B-Raf signature score using RNA-seq data from TCGA. A higher score is shown to not only predict B-Raf mutation status, but also predict other aberrations that could similarly activate the MAPK/ERK pathway, such as B-Raf amplification, RAS mutation, and EGFR amplification. RESULTS We showed that patients dichotomized by the median B-Raf score is more significantly stratified than by other metrics of measuring B-Raf aberration, such as mutation status, gene expression, and protein expression. We also demonstrated that high B-Raf score predicts higher sensitivity to B-Raf inhibitors SB590885 and PLX4720, as expected, but also correlated with sensitivity to drugs targeting other relevant oncogenic pathways. CONCLUSION The BRAF signature may better help guide targeted therapy for melanoma, and such a framework can be applied to other cancers and mutations to provide more information than mutation status alone.
Collapse
Affiliation(s)
- Kevin Yao
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Emily Zhou
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Chao Cheng
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA
- Institute for Clinical and Transcriptional ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
12
|
Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Nat Commun 2022; 13:486. [PMID: 35078985 PMCID: PMC8789793 DOI: 10.1038/s41467-022-28084-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
RAF kinases are essential effectors of RAS, but how RAS binding initiates the conformational changes needed for autoinhibited RAF monomers to form active dimers has remained unclear. Here, we present cryo-electron microscopy structures of full-length BRAF complexes derived from mammalian cells: autoinhibited, monomeric BRAF:14-3-32:MEK and BRAF:14-3-32 complexes, and an inhibitor-bound, dimeric BRAF2:14-3-32 complex, at 3.7, 4.1, and 3.9 Å resolution, respectively. In both autoinhibited, monomeric structures, the RAS binding domain (RBD) of BRAF is resolved, revealing that the RBD forms an extensive contact interface with the 14-3-3 protomer bound to the BRAF C-terminal site and that key basic residues required for RBD-RAS binding are exposed. Moreover, through structure-guided mutational studies, our findings indicate that RAS-RAF binding is a dynamic process and that RBD residues at the center of the RBD:14-3-3 interface have a dual function, first contributing to RAF autoinhibition and then to the full spectrum of RAS-RBD interactions. RAF kinases are essential for RAS protein signalling but how RAS binding regulates dimerization and activation of RAF has remained unclear. Here, the authors report cryoEM structures that provide mechanistic insights into the RAS-mediated monomer-to-dimer transition of full-length BRAF.
Collapse
|
13
|
Khan PS, Rajesh P, Rajendra P, Chaskar MG, Rohidas A, Jaiprakash S. Recent advances in B-RAF inhibitors as anticancer agents. Bioorg Chem 2022; 120:105597. [PMID: 35033817 DOI: 10.1016/j.bioorg.2022.105597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/24/2022]
Abstract
The significance of B-RAF in the promotion of cell proliferation and motility was explored by the researchers in the past. However, in 2002, several researchers found that mutation in B-RAF leads to cancer. Extensive research on B-RAF mutations suggested B-RAF V600E mutation as a critical predictive, prognostic and diagnostic biomarker in numerous cancers such as melanoma, thyroid, and colorectal cancers. Based on the significance of B-RAF kinase and associated mutation, the present review will give a brief overview about structure and functions of B-RAF enzyme, its role in different types of cancer, available drugs in the market for B-RAF inhibition, chemical classification and SAR studies of reported investigational B-RAF inhibitors in patented and non-patented literature during last decade. The SAR provided for all the reported inhibitors will help researchers to gain knowledge about the possible structural features required for selective B-RAF inhibition. This insightful analysis of B-RAF will certainly help researchers to develop novel anticancer agents in the future.
Collapse
Affiliation(s)
- Pathan Shahebaaz Khan
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India
| | - Patil Rajesh
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy, Kondhwa (Bk), Pune, India
| | - Patil Rajendra
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, M.S., India
| | - Manohar G Chaskar
- Prof Ramkrishna More College, Akurdi, Pune 411044, Maharashtra, India
| | - Arote Rohidas
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul. Republic of Korea
| | - Sangshetti Jaiprakash
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad, MS 431001, India.
| |
Collapse
|
14
|
Othman IMM, Alamshany ZM, Tashkandi NY, Gad-Elkareem MAM, Abd El-Karim SS, Nossier ES. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Adv 2022; 12:561-577. [PMID: 35424523 PMCID: PMC8694192 DOI: 10.1039/d1ra08055e] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy. This context represents the design and synthesis of two sets of derivatives bearing a pyrazoline-3-one ring conjugated either with a thieno[3,2-d]thiazole or with a dihydrothiazolo[4,5-d]thiazole scaffold via an NH linker, 3a–d and 5a–d respectively, using the pyrazolinone–thiazolinone derivative 1 as a key precursor. All the newly synthesized compounds were assessed in vitro for their anticancer activity against two cancer cell lines (MCF-7 and HepG-2). The safety profile of the most active cytotoxic candidates 1 and 3c was further examined against the normal cell line WI-38. The compounds 1 and 3c were further evaluated as multi-targeting kinase inhibitors against EGFR, VEGFR-2 and BRAFV600E, exhibiting promising suppression impact. Additionally, the latter compounds were investigated for their impact on cell cycle and apoptosis induction potential in the MCF-7 cell line. Moreover, the antimicrobial activity of all the new analogues was evaluated against a panel of Gram-positive and Gram-negative bacteria, yeast and fungi in comparison to streptomycin and amphotericin-B as reference drugs. Interestingly, both 1 and 3c showed the most promising microbial inhibitory effect. Molecular docking studies showed promising binding patterns of the compounds 1 and 3c with the prospective targets, EGFR, VEGFR-2 and BRAFV600E. Finally, additional toxicity studies were performed for the new derivatives which showed their good drug-like properties and low toxicity risks in humans. Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy.![]()
Collapse
Affiliation(s)
- Ismail M. M. Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Zahra M. Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| | - Nada Y. Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 42805, Jeddah 21551, Saudi Arabia
| | | | - Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
15
|
Park J, Park H, Byun JM, Hong J, Shin DY, Koh Y, Yoon SS. Pan-RAF inhibitor LY3009120 is highly synergistic with low-dose cytarabine, but not azacitidine, in acute myeloid leukemia with RAS mutations. Oncol Lett 2021; 22:745. [PMID: 34539849 DOI: 10.3892/ol.2021.13006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022] Open
Abstract
Alterations in RAS oncogenes have been implicated in various types of cancer, including acute myeloid leukemia (AML). Considering that currently, there are no targeted therapies for patients with RAS-mutated AML despite the poor outcomes, RAF may be a potential target for AML. In this study, we first analyzed the efficacy of different MAPK inhibitors in AML cell lines. We found that LY3009120, a pan-RAF inhibitor, significantly decreased cell survival in RAS-mutated AML cell lines. We then investigated the synergistic effects of LY3009120 with either cytarabine or azacitidine. We found that the combination of low-dose cytarabine and LY3009120 showed a synergistic effect in NRAS-mutated HL-60 cells and KRAS-mutated NB4 cells. This effect was caused by a decrease in proliferation, induction of apoptosis, and cell growth arrest through a decrease in phosphorylated MEK and ERK along with a cytotoxic response occurring specifically for the RAS mutation of the pan-RAF inhibitor LY3009120. In addition, we confirmed that combination treatment with low-dose cytarabine and LY3009120 led to an increase in apoptosis in primary AML cells. Our findings indicate that combination therapy with pan-RAF inhibitor LY3009120 and low-dose cytarabine may be a promising treatment strategy for RAS-mutated AML.
Collapse
Affiliation(s)
- Jihyun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Hematology Oncology Department, Center for Medical Innovation, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Hyejoo Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Hematology Oncology Department, Center for Medical Innovation, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Ja Min Byun
- Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Hematology Oncology Department, Center for Medical Innovation, Seoul National University Hospital, Seoul 03082, Republic of Korea.,Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dong-Yeop Shin
- Hematology Oncology Department, Center for Medical Innovation, Seoul National University Hospital, Seoul 03082, Republic of Korea.,Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Hematology Oncology Department, Center for Medical Innovation, Seoul National University Hospital, Seoul 03082, Republic of Korea.,Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Hematology Oncology Department, Center for Medical Innovation, Seoul National University Hospital, Seoul 03082, Republic of Korea.,Department of Internal Medicine, Division of Hematology and Medical Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
16
|
Anand D, Yashashwi K, Kumar N, Rane S, Gann PH, Sethi A. Weakly supervised learning on unannotated hematoxylin and eosin stained slides predicts BRAF mutation in thyroid cancer with high accuracy. J Pathol 2021; 255:232-242. [PMID: 34346511 DOI: 10.1002/path.5773] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022]
Abstract
Deep neural networks (DNNs) that predict mutational status from H&E slides of cancers can enable inexpensive and timely precision oncology. Although expert knowledge is reliable for annotating regions informative of malignancy and other known histological patterns (strong supervision), it is unreliable for identifying regions informative of mutational status. This poses a serious impediment to obtaining higher prognostic accuracy and discovering new knowledge of pathobiology. We used a weakly supervised learning technique to train a DNN to predict BRAF V600E mutational status, determined using DNA testing, in H&E stained images of thyroid cancer tissue without regional annotations. Our discovery cohort was a tissue microarray of only 85 patients from a single hospital. Yet, on a large independent external cohort of 444 patients from other hospitals, the trained model gave an AUC = 0.98 (95% CI: 0.97-1.00), which is much higher than the previously reported results for detecting any mutation using H&E by DNNs trained using strong supervision. We also developed a visualization technique that can automatically highlight regions the DNN found most informative for predicting mutational status. Our visualization is spatially granular and highly specific in highlighting regions with strong negative and positive regions and move us towards explainable artificial intelligence. Using t-tests, we confirmed that the proportions of follicular or papillary histology and oncocytic cytology, as noted for each patient by a pathologist who was blinded to the mutational status, were significantly different between mutated and wildtype patients. However, based solely on these features noted by the pathologist, a logistic regression classifier gave an average AUC = 0.78 in 5-fold CV, which is much lower than that obtained using the DNN. These results highlight the potential of weakly supervised learning for training DNN models for problems where the informative visual patterns and their locations are not known a priori. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, MH, India
| | - Kumar Yashashwi
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, MH, India
| | - Neeraj Kumar
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada.,Alberta Machine Intelligence Institute, Edmonton, Alberta, Canada
| | - Swapnil Rane
- Department of Pathology, Tata Memorial Centre-ACTREC, HBNI, Mumbai, MH, India
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amit Sethi
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, MH, India.,Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Pavithra T, Devi ES, Maheswari CU. Recent Advances in N‐Heterocyclic Carbene Catalyzed Oxidative Cyclization for the Formation of Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T. Pavithra
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - E. Sankari Devi
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - C. Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
18
|
Maloney RC, Zhang M, Jang H, Nussinov R. The mechanism of activation of monomeric B-Raf V600E. Comput Struct Biotechnol J 2021; 19:3349-3363. [PMID: 34188782 PMCID: PMC8215184 DOI: 10.1016/j.csbj.2021.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in the serine/threonine kinase B-Raf, particularly the V600E mutation, are frequent in cancer, making it a major drug target. Although much is known about B-Raf's active and inactive states, questions remain about the mechanism by which the protein changes between these two states. Here, we utilize molecular dynamics to investigate both wild-type and V600E B-Raf to gain mechanistic insights into the impact of the Val to Glu mutation. The results show that the wild-type and mutant follow similar activation pathways involving an extension of the activation loop and an inward motion of the αC-helix. The V600E mutation, however, destabilizes the inactive state by disrupting hydrophobic interactions present in the wild-type structure while the active state is stabilized through the formation of a salt bridge between Glu600 and Lys507. Additionally, when the activation loop is extended, the αC-helix is able to move between an inward and outward orientation as long as the DFG motif adopts a specific orientation. In that orientation Phe595 rotates away from the αC-helix, allowing the formation of a salt bridge between Lys483 and Glu501. These mechanistic insights have implications for the development of new Raf inhibitors.
Collapse
Affiliation(s)
- Ryan C. Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author at: Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
19
|
Integrated computational approaches on pyrazoline derivatives as B-Raf kinase inhibitors for the development of novel anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
LXRα activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. NATURE CANCER 2021; 2:201-217. [PMID: 35122079 DOI: 10.1038/s43018-020-00168-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
The success of molecular therapies targeting specific metabolic pathways in cancer is often limited by the plasticity and adaptability of metabolic networks. Here we show that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of hepatocellular carcinoma (HCC). LXRα-induced liponeogenesis and Raf-1 inhibition are synthetic lethal in HCC owing to a toxic accumulation of saturated fatty acids. Raf-1 was found to bind and activate SCD1, and conformation-changing DFG-out Raf inhibitors could disrupt this interaction, thereby blocking fatty acid desaturation and inducing lethal lipotoxicity. Studies in genetically engineered and nonalcoholic steatohepatitis-induced HCC mouse models and xenograft models of human HCC revealed that therapies comprising LXR agonists and Raf inhibitors were well tolerated and capable of overcoming therapy resistance in HCC. Conceptually, our study suggests pharmacologically induced lipotoxicity as a new mode for metabolic targeting of liver cancer.
Collapse
|
21
|
Adderley JD, John von Freyend S, Jackson SA, Bird MJ, Burns AL, Anar B, Metcalf T, Semblat JP, Billker O, Wilson DW, Doerig C. Analysis of erythrocyte signalling pathways during Plasmodium falciparum infection identifies targets for host-directed antimalarial intervention. Nat Commun 2020; 11:4015. [PMID: 32782246 PMCID: PMC7419518 DOI: 10.1038/s41467-020-17829-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023] Open
Abstract
Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention. Plasmodium infection activates signaling pathways in a-nucleated erythrocytes. Here, Adderley et al. use a comprehensive antibody microarray to show that infection extensively modulates host cell signalling and that the host receptor tyrosine kinase c-MET supports Plasmodium falciparum proliferation.
Collapse
Affiliation(s)
- Jack D Adderley
- Centre for Chronic Inflammatory and Infectious and Diseases, Biomedical Sciences Cluster, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sarah A Jackson
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Megan J Bird
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Burcu Anar
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Tom Metcalf
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jean-Philippe Semblat
- Institut National de la Transfusion Sanguine, Inserm UMR S1134, 75015, Paris, France
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.,Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.,Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Christian Doerig
- Centre for Chronic Inflammatory and Infectious and Diseases, Biomedical Sciences Cluster, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
22
|
Xiao Y, Gong Q, Wang W, Liu F, Kong Q, Pan F, Zhang X, Yu C, Hu S, Fan F, Li S, Liu Y. The combination of Biochanin A and SB590885 potentiates the inhibition of tumour progression in hepatocellular carcinoma. Cancer Cell Int 2020; 20:371. [PMID: 32774165 PMCID: PMC7405455 DOI: 10.1186/s12935-020-01463-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most aggressive and frequently diagnosed malignancy of the liver. Despite aggressive therapy, life expectancy of many patients in these cases is extended by only a few months. Hepatocellular carcinoma (HCC) has a particularly poor prognosis and would greatly benefit from more effective therapies. Methods The CCK-8 assay and colony formation assays were used to test the cell proliferation and viability. The effects of combination Biochanin A and SB590885 on apoptosis and cell cycle arrest of HCC cells were analysed by flow cytometry. The expression of ERK MAPK and PI3K/AKT/mTOR signalling as well as apoptosis and cell cycle-related proteins in HCC cells were tested by western blotting. The HCC cell xenograft model was established to test the tumor proliferation. Serum and plasma were tested for liver and kidney safety markers (ALP, ALT, AST, total bilirubin, creatinine, urea nitrogen) by using SpectraMax i3X. Results The combination of natural product Biochanin A with the BRAF inhibitor SB590885 synergistically suppressed proliferation, and promoted cell cycle arrest and apoptosis in vitro. Furthermore, we demonstrated that the combination of Biochanin A and SB590885 led to increased impairment of proliferation and HCC tumour inhibition through disrupting of the ERK MAPK and the PI3K/AKT pathways in vitro. The volumes tumors and the weights of tumours were significantly reduced by the combination treatment compared to the control or single treatments in vivo. In addition, we found that there was no significant hepatorenal toxicity with the drug combination, as indicated by the hepatorenal toxicity test. Conclusion The results identify an effective combination therapy for the most aggressive form of HCC and provide the possibility of therapeutic improvement for patients with advanced HCC.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Department of Biochemistry and Molecular Biology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Qiang Gong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Wenhong Wang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Fang Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Feng Pan
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Xiaoke Zhang
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Changyan Yu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Shanshan Hu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 China
| | - Fang Fan
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Department of Biochemistry and Molecular Biology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China
| | - Sanhua Li
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Department of Biochemistry and Molecular Biology, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi, 563000 China.,Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, 563000 China
| |
Collapse
|
23
|
Chavda J, Bhatt H. Systemic review on B-Raf V600E mutation as potential therapeutic target for the treatment of cancer. Eur J Med Chem 2020; 206:112675. [PMID: 32798788 DOI: 10.1016/j.ejmech.2020.112675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
Cancer is one of the major public catastrophes worldwide and as per WHO, cancer is the leading cause of death universally after CVS disorders accounting for 9.6 million deaths in 2018. WHO statistics revealed five dangerous types of cancer viz. lung, breast, colorectal, prostate and skin. In male, lung cancer causes highest death, while in female, breast cancer causes the most. Alteration in MAPK signalling pathway plays a significant role in majority of cancer cases. Raf protein is activated by phosphorylation via downstream regulation of the MAPK pathway. Raf composed of 3 subtypes, viz. A-Raf, B-Raf, and C-Raf. B-Raf kinase plays a significant role in healthy cell growth in the MAPK pathway and the problem associated with B-Raf mutation leads to the development of cancer and other diseases. The progression of mutant B-Raf (B-RafV600E) protein is higher in cancer as compare to other diseases. In 2002, B-RafV600E mutation was identified for the first time in the development of cancer. The frequency of B-RafV600E mutation is higher in melanoma, thyroid, colorectal and ovarian cancer. We have covered small molecule B-RafV600E inhibitors reported in various literatures; from 2002 to 2020 and also covered clinical trial data. To widen the scope of readers, we compiled details of small molecules, specifically inhibiting B-RafV600E mutant and showing anti-proliferative activity against various cancer cell lines along with in-vivo data. We believe that the information covered here will be important in signifying the potentials of B-RafV600E mutation and its inhibitors as potent anticancer agents.
Collapse
Affiliation(s)
- Jaydeepsinh Chavda
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India
| | - Hardik Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, India.
| |
Collapse
|
24
|
Palušová V, Renzová T, Verlande A, Vaclová T, Medková M, Cetlová L, Sedláčková M, Hříbková H, Slaninová I, Krutá M, Rotrekl V, Uhlířová H, Křížová A, Chmelík R, Veselý P, Krafčíková M, Trantírek L, Schink KO, Uldrijan S. Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds. Cancers (Basel) 2020; 12:cancers12061516. [PMID: 32531927 PMCID: PMC7352453 DOI: 10.3390/cancers12061516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.
Collapse
Affiliation(s)
- Veronika Palušová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Tereza Renzová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Amandine Verlande
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Tereza Vaclová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Michaela Medková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Linda Cetlová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Miroslava Sedláčková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Hana Hříbková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Iva Slaninová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Miriama Krutá
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Vladimír Rotrekl
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Uhlířová
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (H.U.); (R.C.)
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Aneta Křížová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Radim Chmelík
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (H.U.); (R.C.)
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Pavel Veselý
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Michaela Krafčíková
- National Centre for Biomolecular Research, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Lukáš Trantírek
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Kay Oliver Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Stjepan Uldrijan
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
25
|
Cai J, Cai H, Chen J, Yang X. Identifying "Many-to-Many" Relationships between Gene-Expression Data and Drug-Response Data via Sparse Binary Matching. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:165-176. [PMID: 29994482 DOI: 10.1109/tcbb.2018.2849708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identifying gene-drug patterns is a critical step in pharmacology for unveiling disease mechanisms and drug discovery. The availability of high-throughput technologies accumulates massive large-scale pharmacological and genomic data, and thus provides a new substantial opportunity to deeply understand how the oncogenic genes and the therapeutic drugs relate to each other. However, most previous studies merely used the pharmacological and genomic datasets without any prior knowledge to infer the gene-drug patterns. Here, we proposed a novel network-guided sparse binary matching model (NSBM) to decode these relationships hidden in the datasets. Not only the large-scale gene-expression data and drug-response data are jointly analyzed in our method, but also the additional prior information of genes and drugs are integrated into the form of network-based regularization. The essential structure of the NSBM model is a convex quadratic minimization problem with network-based penalties. It was demonstrated to be superior when compared with two benchmark methods through extensive experiments on both synthetic and empirical data. Posterior validation, including gene-ontology and enrichment analysis, confirmed the effectiveness of NSBM in revealing gene-drug patterns on a large-scale heterogeneous data source.
Collapse
|
26
|
Abdel-Maksoud MS, Ammar UM, El-Gamal MI, Gamal El-Din MM, Mersal KI, Ali EM, Yoo KH, Lee KT, Oh CH. Design, synthesis, and anticancer activity of imidazo[2,1-b]oxazole-based RAF kinase inhibitors. Bioorg Chem 2019; 93:103349. [DOI: 10.1016/j.bioorg.2019.103349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/27/2019] [Accepted: 10/05/2019] [Indexed: 10/25/2022]
|
27
|
Kondo Y, Ognjenović J, Banerjee S, Karandur D, Merk A, Kulhanek K, Wong K, Roose JP, Subramaniam S, Kuriyan J. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019; 366:109-115. [PMID: 31604311 DOI: 10.1126/science.aay0543] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Raf kinases are important cancer drug targets. Paradoxically, many B-Raf inhibitors induce the activation of Raf kinases. Cryo-electron microscopy structural analysis of a phosphorylated B-Raf kinase domain dimer in complex with dimeric 14-3-3, at a resolution of ~3.9 angstroms, shows an asymmetric arrangement in which one kinase is in a canonical "active" conformation. The distal segment of the C-terminal tail of this kinase interacts with, and blocks, the active site of the cognate kinase in this asymmetric arrangement. Deletion of the C-terminal segment reduces Raf activity. The unexpected asymmetric quaternary architecture illustrates how the paradoxical activation of Raf by kinase inhibitors reflects an innate mechanism, with 14-3-3 facilitating inhibition of one kinase while maintaining activity of the other. Conformational modulation of these contacts may provide new opportunities for Raf inhibitor development.
Collapse
Affiliation(s)
- Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jana Ognjenović
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA
| | - Saikat Banerjee
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathryn Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sriram Subramaniam
- University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures. Proc Natl Acad Sci U S A 2019; 116:18962-18970. [PMID: 31462496 PMCID: PMC6754584 DOI: 10.1073/pnas.1901156116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large-scale exome sequencing of tumors has enabled the identification of cancer drivers using recurrence-based approaches. Some of these methods also employ 3D protein structures to identify mutational hotspots in cancer-associated genes. In determining such mutational clusters in structures, existing approaches overlook protein dynamics, despite its essential role in protein function. We present a framework to identify cancer driver genes using a dynamics-based search of mutational hotspot communities. Mutations are mapped to protein structures, which are partitioned into distinct residue communities. These communities are identified in a framework where residue-residue contact edges are weighted by correlated motions (as inferred by dynamics-based models). We then search for signals of positive selection among these residue communities to identify putative driver genes, while applying our method to the TCGA (The Cancer Genome Atlas) PanCancer Atlas missense mutation catalog. Overall, we predict 1 or more mutational hotspots within the resolved structures of proteins encoded by 434 genes. These genes were enriched among biological processes associated with tumor progression. Additionally, a comparison between our approach and existing cancer hotspot detection methods using structural data suggests that including protein dynamics significantly increases the sensitivity of driver detection.
Collapse
|
29
|
El-Sherief HA, Youssif BG, Abdelazeem AH, Abdel-Aziz M, Abdel-Rahman HM. Design, Synthesis and Antiproliferative Evaluation of Novel 1,2,4-Triazole/Schiff Base Hybrids with EGFR and B-RAF Inhibitory Activities. Anticancer Agents Med Chem 2019; 19:697-706. [DOI: 10.2174/1871520619666181224115346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022]
Abstract
Background:
1,2,4-triazoles possess a broad spectrum of biological activities such as analgesic,
antimicrobial, antitubercular, anti-inflammatory and antineoplastic activities. This heterocycle and their derivatives
were included into a wide variety of therapeutically interesting drugs. Hence, it is of great interest to explore
new 1,2,4-triazoles as cytotoxic agents targeting EGFR, B-Raf kinases.
Methods:
The final compounds 9a-b, 10a-b, 11a-b, 12a-b, 13a-b and 14a-f were prepared by refluxing a mixture
of triazole 3a-b and 7a-d with the corresponding benzaldehyde derivatives 8a-d in absolute ethanol to afford
the target final compounds in good yields. The newly synthesized triazole-containing compounds were
assessed according to standard protocols for their in vitro antiproliferative activity against four human cancer
cell lines including human pancreas cancer cell line (Panc-1), pancreatic carcinoma cells (PaCa-2), colon cancer
cells (HT-29) and lung cancer cells (H-460) using the propidium iodide (PI) fluorescence assay. Compounds 9a
and 13a were evaluated against EGFR, B-Raf and Tubulin anticancer targets.
Results:
Compounds 9a, 9b, 10a, 11a, 12a, 13a and 13b showed remarkable antiproliferative activity against
the tested cell lines with IC50 range of 1.3-5.9µM. Compounds 9a and 13a with the least IC50 values in the anticancer
screening assay were tested against three known anticancer targets including EGFR, B-Raf kinase and
Tubulin. The results revealed that compound 13a showed the highest potency against B-Raf and EGFR kinases
with IC50 = 0.7 and 1.9 µM, respectively.
Conclusion:
1,2,4-triazoles reported herein are potent EGFR, B-Raf inhibitors. These lead compounds will be
subjected to more detailed mechanistic studies.
Collapse
Affiliation(s)
- Hany A.M. El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| | - Bahaa G.M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H. Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519-Minia, Egypt
| | - Hamdy M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-suef, Egypt
| |
Collapse
|
30
|
Construction of substituted imidazoles from aryl methyl ketones and benzylamines via N-heterocyclic carbene-catalysis. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
31
|
Aldaghi SA, Jalal R. Concentration-Dependent Dual Effects of Ciprofloxacin on SB-590885-Resistant BRAF V600E A375 Melanoma Cells. Chem Res Toxicol 2019; 32:645-658. [PMID: 30829029 DOI: 10.1021/acs.chemrestox.8b00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BRAF inhibitors (BRAFi) have been applied to treat melanoma harboring V600E mutations. Several studies showed that BRAFi-resistant melanomas are dependent on mitochondrial biogenesis. Therefore, the present study aimed to investigate the influence of ciprofloxacin (CIP), a mitochondria-targeting antibiotic, on SB-590885-resistant BRAFV600E A375 melanoma (A375/SB) cells. The cytotoxicity activity of CIP and SB-590885, a potent and specific BRAFi, on A375 and A375/SB cells was evaluated by MTT, colony formation, migration, and spheroid formation assays. Moreover, SB-590885-induced cell death in A375 cells was analyzed. SB-590885 showed time- and concentration-dependent cytotoxic effects on A375 cells. Twenty-five μg/mL CIP decreased the cell viability of A375 and A375/SB cells in a time-dependent manner. This concentration of CIP markedly decreased clonogenicity in both cells and caused a reduction in the growth of A375/SB spheroids. The cytotoxicity of 5 μg/mL CIP on A375/SB cells was less than that of A375 cells. The colony formation and migration ability of A375/SB cells was increased in the presence of 5 μg/mL CIP. Ten μM SB-590885 induced a massive vacuolization in A375 cells. Cell death assays suggested a simultaneous activation of autophagy, paraptosis, apoptosis, and necrosis. For the first time, this study reveals that CIP at the maximum concentration in serum (5 μg/mL) can enhance the colony formation and migration abilities in BRAFi-resistant melanoma cells, while it has cytotoxic activity against these cells at a higher concentration than serum level. This study suggests that CIP may promote aggressive growth properties in BRAFi-resistant melanomas, at a concentration present in serum.
Collapse
Affiliation(s)
- Seyyede Araste Aldaghi
- Department of Chemistry, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Razieh Jalal
- Department of Chemistry, Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran.,Department of Research Cell and Molecular Biology, Institute of Biotechnology , Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
32
|
Miyamoto K, Sawa M. Development of Highly Sensitive Biosensors of RAF Dimerization in Cells. Sci Rep 2019; 9:636. [PMID: 30679688 PMCID: PMC6345758 DOI: 10.1038/s41598-018-37213-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
The BRAF inhibitors dabrafenib and vemurafenib induce remarkable clinical responses in patients with BRAF-mutated melanomas. However, adverse events, including the emergence of secondary tumors and drug resistance, have been reported. Studies have revealed that undesirable RAF dimerization induced by inhibitors promotes these adverse effects. Here, we developed highly sensitive biosensors of RAF dimerization in cells utilizing the split enhanced click beetle luciferase (Emerald Luc, ELuc) complementation technique. We demonstrated that our biosensor system works effectively for high-throughput screens in the microplate format. A comprehensive analysis of commercially available RAF inhibitors performed using this assay system revealed that the inhibitors exhibit various potencies in inducing the dimerization of RAF isoforms, and their dimerization potencies do not always correlate with the RAF enzyme inhibition. This sensitive assay system will become a powerful tool to discover next-generation BRAF inhibitors with safer profiles.
Collapse
Affiliation(s)
- Kyoko Miyamoto
- CarnaBio USA, Inc., 329 Oyster Point Boulevard, Suite 300, South San Francisco, CA, 94080, USA.
| | - Masaaki Sawa
- CarnaBio USA, Inc., 329 Oyster Point Boulevard, Suite 300, South San Francisco, CA, 94080, USA.,Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, BMA 3rd Floor, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
33
|
Li G, Hao WJ, Hu JY, Gao YY, Zhang WW, Zhang KY, Li WL, Jiang B. Diastereoselective Synthesis of Poly-Substituted syn-Imidazolidine-2-thiones via Microwave-Assisted Three-Component [2+2+1] Heterocyclizations. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Ammar UM, Abdel-Maksoud MS, Oh CH. Recent advances of RAF (rapidly accelerated fibrosarcoma) inhibitors as anti-cancer agents. Eur J Med Chem 2018; 158:144-166. [PMID: 30216849 DOI: 10.1016/j.ejmech.2018.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022]
Abstract
Frequent oncogenic mutations have been identified in MAPK (mitogen-activated protein kinase) signaling pathway components. As a result, MAPK pathway is associated with human cancer initiation, in particular RAF (rapidly accelerated fibrosarcoma) component. The mutation in RAF component leads to auto-activation of MAPK signaling pathway, stimulating the uncontrolled cell growth and proliferation. In last few years, diverse chemical scaffolds have been identified as RAF inhibitors. Most of these scaffolds show potent anti-cancer activity. The present review highlights the recent investigations of RAF inhibitors during the last five years.
Collapse
Affiliation(s)
- Usama M Ammar
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul, Seongbuk-gu, 02792, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza, 12622, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul, Seongbuk-gu, 02792, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu, 34113, Republic of Korea.
| |
Collapse
|
35
|
Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Syst 2018; 7:161-179.e14. [PMID: 30007540 DOI: 10.1016/j.cels.2018.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
Collapse
|
36
|
Li HL, Su MM, Xu YJ, Xu C, Yang YS, Zhu HL. Design and biological evaluation of novel triaryl pyrazoline derivatives with dioxane moiety for selective BRAFV600E inhibition. Eur J Med Chem 2018; 155:725-735. [DOI: 10.1016/j.ejmech.2018.06.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 01/31/2023]
|
37
|
Catalyst-free synthesis of 1,2,4,5-tetrasubstituted imidazoles from arylamins, benzonitriles, arylglyoxals, and Meldrum’s acid. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018; 23:molecules23051038. [PMID: 29710787 PMCID: PMC6102569 DOI: 10.3390/molecules23051038] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022] Open
Abstract
Molecular docking is the most frequently used computational method for studying the interactions between organic molecules and biological macromolecules. In this context, docking allows predicting the preferred pose of a ligand inside a receptor binding site. However, the selection of the “best” solution is not a trivial task, despite the widely accepted selection criterion that the best pose corresponds to the best energy score. Here, several rigid-target docking methods were evaluated on the same dataset with respect to their ability to reproduce crystallographic binding orientations, to test if the best energy score is a reliable criterion for selecting the best solution. For this, two experiments were performed: (A) to reconstruct the ligand-receptor complex by performing docking of the ligand in its own crystal structure receptor (defined as self-docking), and (B) to reconstruct the ligand-receptor complex by performing docking of the ligand in a crystal structure receptor that contains other ligand (defined as cross-docking). Root-mean square deviation (RMSD) was used to evaluate how different the obtained docking orientation is from the corresponding co-crystallized pose of the same ligand molecule. We found that docking score function is capable of predicting crystallographic binding orientations, but the best ranked solution according to the docking energy is not always the pose that reproduces the experimental binding orientation. This happened when self-docking was achieved, but it was critical in cross-docking. Taking into account that docking is typically used with predictive purposes, during cross-docking experiments, our results indicate that the best energy score is not a reliable criterion to select the best solution in common docking applications. It is strongly recommended to choose the best docking solution according to the scoring function along with additional structural criteria described for analogue ligands to assure the selection of a correct docking solution.
Collapse
Affiliation(s)
- David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, 5 Poniente No. 1670, 3460000 Talca, Chile.
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 1 Poniente No. 1141, 3460000 Talca, Chile.
| |
Collapse
|
39
|
Design, synthesis and anticancer evaluation of novel spirobenzo[h]chromene and spirochromane derivatives with dual EGFR and B-RAF inhibitory activities. Eur J Med Chem 2018; 150:567-578. [DOI: 10.1016/j.ejmech.2018.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/16/2023]
|
40
|
Vafaee A, Davoodnia A, Bozorgmehr MR, Pordel M. Characterization and Molecular Docking Study of New 4-Acetamidoalkyl Pyrazoles As B-Raf /Cox-2 Inhibitors. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Affiliation(s)
- Bogos Agianian
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
42
|
Youssif BG, Abdelrahman MH, Abdelazeem AH, abdelgawad MA, Ibrahim HM, Salem OI, Mohamed MF, Treambleau L, Bukhari SNA. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur J Med Chem 2018; 146:260-273. [DOI: 10.1016/j.ejmech.2018.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 12/22/2022]
|
43
|
Abstract
The discovery that a subset of human tumours is dependent on mutationally deregulated BRAF kinase intensified the development of RAF inhibitors to be used as potential therapeutics. The US Food and Drug Administration (FDA)-approved second-generation RAF inhibitors vemurafenib and dabrafenib have elicited remarkable responses and improved survival of patients with BRAF-V600E/K melanoma, but their effectiveness is limited by resistance. Beyond melanoma, current clinical RAF inhibitors show modest efficacy when used for colorectal and thyroid BRAF-V600E tumours or for tumours harbouring BRAF alterations other than the V600 mutation. Accumulated experimental and clinical evidence indicates that the complex biochemical mechanisms of RAF kinase signalling account both for the effectiveness of RAF inhibitors and for the various mechanisms of tumour resistance to them. Recently, a number of next-generation RAF inhibitors, with diverse structural and biochemical properties, have entered preclinical and clinical development. In this Review, we discuss the current understanding of RAF kinase regulation, mechanisms of inhibitor action and related clinical resistance to these drugs. The recent elucidation of critical structural and biochemical aspects of RAF inhibitor action, combined with the availability of a number of structurally diverse RAF inhibitors currently in preclinical and clinical development, will enable the design of more effective RAF inhibitors and RAF-inhibitor-based therapeutic strategies, tailored to different clinical contexts.
Collapse
Affiliation(s)
- Zoi Karoulia
- Department of Oncological Sciences and Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences and Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
44
|
Abdelazeem AH, El-Saadi MT, Said EG, Youssif BGM, Omar HA, El-Moghazy SM. Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities. Bioorg Chem 2017; 75:127-138. [PMID: 28938224 DOI: 10.1016/j.bioorg.2017.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022]
Abstract
Over the last few decades, a growing body of studies addressed the anticancer activity of NSAIDs, particularly selective COX-2 inhibitors. However, their exact molecular mechanism is still unclear and is not fully investigated. In this regard, a novel series of compounds bearing a COXs privilege scaffold, diphenyl thiazole, was synthesized and evaluated for their anticancer activity against a panel of cancer cell lines. The most active compounds 10b, 14a,b, 16a, 17a,b and 18b were evaluated in vitro for COX-1/COX-2 inhibitory activity. These compounds were suggested to exert their anticancer activity through a multi-target mechanism based on their structural features. Thus, compounds 10b and 17b with the least IC50 values in MTT assay were tested against three known anticancer targets; EGFR, BRAF and tubulin. Compounds 10b and 17b showed remarkable activity against EGFR with IC50 values of 0.4 and 0.2μM, respectively and good activity against BRAF with IC50 values of 1.3 and 1.7μM, respectively. In contrast, they showed weak activity in tubulin polymerization assay. The in vivo anti-inflammatory potential was assessed and interestingly, compound 17b was the most potent compound. Together, this study offers some important insights into the correlation between COXs inhibition and cancer treatment. Additionally, the results demonstrated the promising activity of these compounds with a multi-target mechanism as good candidates for further development into potential anticancer agents.
Collapse
Affiliation(s)
- Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Eman G Said
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Aljouf University, Aljouf, Sakaka 2014, Saudi Arabia
| | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Samir M El-Moghazy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
45
|
Singh H, Rajput JK. Co(II) anchored glutaraldehyde crosslinked magnetic chitosan nanoparticles (MCS) for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Harminder Singh
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology; Jalandhar 144011 Punjab India
| | - Jaspreet Kaur Rajput
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology; Jalandhar 144011 Punjab India
| |
Collapse
|
46
|
Drewry DH, Wells CI, Andrews DM, Angell R, Al-Ali H, Axtman AD, Capuzzi SJ, Elkins JM, Ettmayer P, Frederiksen M, Gileadi O, Gray N, Hooper A, Knapp S, Laufer S, Luecking U, Michaelides M, Müller S, Muratov E, Denny RA, Saikatendu KS, Treiber DK, Zuercher WJ, Willson TM. Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS One 2017; 12:e0181585. [PMID: 28767711 PMCID: PMC5540273 DOI: 10.1371/journal.pone.0181585] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases.
Collapse
Affiliation(s)
- David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Andrews
- AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge, United Kingdom
| | - Richard Angell
- Drug Discovery Group, Translational Research Office, University College London School of Pharmacy, 29–39 Brunswick Square, London, United Kingdom
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Universidade Estadual de Campinas—UNICAMP, Campinas, Sao Paulo, Brazil
| | | | - Mathias Frederiksen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Opher Gileadi
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathanael Gray
- Harvard Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana−Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Alice Hooper
- Drug Discovery Group, Translational Research Office, University College London School of Pharmacy, 29–39 Brunswick Square, London, United Kingdom
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, and Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, Tübingen, Germany
| | - Ulrich Luecking
- Bayer Pharma AG, Drug Discovery, Müllerstrasse 178, Berlin, Germany
| | - Michael Michaelides
- Oncology Chemistry, AbbVie, 1 North Waukegan Road, North Chicago, Illinois, United States of America
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, and Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 15, Frankfurt am Main, Germany
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - R. Aldrin Denny
- Worldwide Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts, United States of America
| | - Kumar S. Saikatendu
- Global Research Externalization, Takeda California, Inc., 10410 Science Center Drive, San Diego, California, United States of America
| | | | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
47
|
Abl kinase regulation by BRAF/ERK and cooperation with Akt in melanoma. Oncogene 2017; 36:4585-4596. [PMID: 28368422 PMCID: PMC5552414 DOI: 10.1038/onc.2017.76] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/08/2017] [Accepted: 02/22/2017] [Indexed: 12/18/2022]
Abstract
The melanoma incidence continues to increase, and the disease remains incurable for many due to its metastatic nature and high rate of therapeutic resistance. In particular, melanomas harboring BRAFV600E and PTEN mutations often are resistant to current therapies, including BRAF inhibitors (BRAFi) and immune checkpoint inhibitors. Abl kinases (Abl/Arg) are activated in melanomas and drive progression; however, their mechanism of activation has not been established. Here we elucidate a novel link between BRAFV600E/ERK signaling and Abl kinases. We demonstrate that BRAFV600E/ERK play a critical role in binding, phosphorylating and regulating Abl localization and Abl/Arg activation by Src family kinases. Importantly, Abl/Arg activation downstream of BRAFV600E has functional and biological significance, driving proliferation, invasion, as well as switch in epithelial-mesenchymal-transition transcription factor expression, which is known to be critical for melanoma cells to shift between differentiated and invasive states. Finally, we describe findings of high translational significance by demonstrating that Abl/Arg cooperate with PI3K/Akt/PTEN, a parallel pathway that is associated with intrinsic resistance to BRAFi and immunotherapy, as Abl/Arg and Akt inhibitors cooperate to prevent viability, cell cycle progression and in vivo growth of melanomas harboring mutant BRAF/PTEN. Thus, these data not only provide mechanistic insight into Abl/Arg regulation during melanoma development, but also pave the way for the development of new strategies for treating patients with melanomas harboring mutant BRAF/PTEN, which often are refractory to current therapies.
Collapse
|
48
|
Shao Q, Xu Z, Wang J, Shi J, Zhu W. Energetics and structural characterization of the “DFG-flip” conformational transition of B-RAF kinase: a SITS molecular dynamics study. Phys Chem Chem Phys 2017; 19:1257-1267. [DOI: 10.1039/c6cp06624k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of a homology modeling technique and an enhanced sampling molecular dynamics simulation implemented using the SITS method is employed to compute a detailed map of the free-energy landscape and explore the conformational transition pathway of B-RAF kinase.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Zhijian Xu
- Drug Discovery and Design Center
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Jinan Wang
- Drug Discovery and Design Center
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Jiye Shi
- UCB Biopharma SPRL
- Chemin du Foriest
- Braine-l’Alleud
- Belgium
| | - Weiliang Zhu
- Drug Discovery and Design Center
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
49
|
Lawhorn BG, Philp J, Graves AP, Holt DA, Gatto GJ, Kallander LS. Substituent Effects on Drug–Receptor H-bond Interactions: Correlations Useful for the Design of Kinase Inhibitors. J Med Chem 2016; 59:10629-10641. [DOI: 10.1021/acs.jmedchem.6b01342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Brian G. Lawhorn
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Joanne Philp
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Alan P. Graves
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Dennis A. Holt
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Gregory J. Gatto
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Lara S. Kallander
- Heart Failure Discovery Performance Unit and ‡Platform Technology
and Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
50
|
Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways. PLoS One 2016; 11:e0166583. [PMID: 27861609 PMCID: PMC5115767 DOI: 10.1371/journal.pone.0166583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
The recent studies have revealed that most BRAF inhibitors can paradoxically induce kinase activation by promoting dimerization and enzyme transactivation. Despite rapidly growing number of structural and functional studies about the BRAF dimer complexes, the molecular basis of paradoxical activation phenomenon is poorly understood and remains largely hypothetical. In this work, we have explored the relationships between inhibitor binding, protein dynamics and allosteric signaling in the BRAF dimers using a network-centric approach. Using this theoretical framework, we have combined molecular dynamics simulations with coevolutionary analysis and modeling of the residue interaction networks to determine molecular determinants of paradoxical activation. We have investigated functional effects produced by paradox inducer inhibitors PLX4720, Dabrafenib, Vemurafenib and a paradox breaker inhibitor PLX7904. Functional dynamics and binding free energy analyses of the BRAF dimer complexes have suggested that negative cooperativity effect and dimer-promoting potential of the inhibitors could be important drivers of paradoxical activation. We have introduced a protein structure network model in which coevolutionary residue dependencies and dynamic maps of residue correlations are integrated in the construction and analysis of the residue interaction networks. The results have shown that coevolutionary residues in the BRAF structures could assemble into independent structural modules and form a global interaction network that may promote dimerization. We have also found that BRAF inhibitors could modulate centrality and communication propensities of global mediating centers in the residue interaction networks. By simulating allosteric communication pathways in the BRAF structures, we have determined that paradox inducer and breaker inhibitors may activate specific signaling routes that correlate with the extent of paradoxical activation. While paradox inducer inhibitors may facilitate a rapid and efficient communication via an optimal single pathway, the paradox breaker may induce a broader ensemble of suboptimal and less efficient communication routes. The central finding of our study is that paradox breaker PLX7904 could mimic structural, dynamic and network features of the inactive BRAF-WT monomer that may be required for evading paradoxical activation. The results of this study rationalize the existing structure-functional experiments by offering a network-centric rationale of the paradoxical activation phenomenon. We argue that BRAF inhibitors that amplify dynamic features of the inactive BRAF-WT monomer and intervene with the allosteric interaction networks may serve as effective paradox breakers in cellular environment.
Collapse
|