1
|
Fries LM, Hune TLK, Sternkopf S, Mamone S, Schneider KL, Schulz-Heddergott R, Becker D, Glöggler S. Real-Time Metabolic Magnetic Resonance Spectroscopy of Pancreatic and Colon Cancer Tumor-Xenografts with Parahydrogen Hyperpolarized 1- 13C Pyruvate-d 3. Chemistry 2024; 30:e202400187. [PMID: 38887134 DOI: 10.1002/chem.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Parahydrogen-induced polarization (PHIP) is an emerging technique to enhance the signal of stable isotope metabolic contrast agents for Magnetic Resonance (MR). The objective of this study is to continue establishing 1-13C-pyruvate-d3, signal-enhanced via PHIP, as a hyperpolarized contrast agent, obtained in seconds, to monitor metabolism in human cancer. Our focus was on human pancreatic and colon tumor xenografts. 1-13C-vinylpyruvate-d6 was hydrogenated using parahydrogen. Thereafter, the polarization of the protons was transferred to 13C. Following a workup procedure, the free hyperpolarized 1-13C-pyruvate-d3 was obtained in clean aqueous solution. After injection into animals bearing either pancreatic or colon cancer xenografts, slice-selective MR spectra were acquired and analyzed to determine rate constants of metabolic conversion into lactate and alanine. 1-13C-pyruvate-d3 proved to follow the increased metabolic rate to lactate and alanine in the tumor xenografts.
Collapse
Affiliation(s)
- Lisa M Fries
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Present address: Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, Localita' Coppito, 67100, L'Aquila, Italy
| | - Kim Lucia Schneider
- Department of Molecular Oncology, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077, Göttingen, Germany
- Clinical Research Unit 5002, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Ramona Schulz-Heddergott
- Department of Molecular Oncology, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077, Göttingen, Germany
- Clinical Research Unit 5002, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
2
|
Li S, Deng P, Chang Q, Feng M, Shang Y, Song Y, Liu Y. In Situ Generation and High Bioresistance of Trityl-based Semiquinone Methide Radicals Under Anaerobic Conditions in Cellular Systems. Chemistry 2024; 30:e202400985. [PMID: 38932665 DOI: 10.1002/chem.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioreduction of spin labels and polarizing agents (generally stable radicals) has been an obstacle limiting the in-cell applications of pulsed electron paramagnetic resonance (EPR) spectroscopy and dynamic nuclear polarization (DNP). In this work, we have demonstrated that two semiquinone methide radicals (OXQM⋅ and CTQM⋅) can be easily produced from the trityl-based quinone methides (OXQM and CTQM) via reduction by various reducing agents including biothiols and ascorbate under anaerobic conditions. Both radicals have relatively low pKa's and exhibit EPR single line signals at physiological pH. Moreover, the bioreduction of OXQM in three cell lysates enables quantitative generation of OXQM⋅ which was most likely mediated by flavoenzymes. Importantly, the resulting OXQM⋅ exhibited extremely high stability in the E.coli lysate under anaerobic conditions with 76- and 14.3-fold slower decay kinetics as compared to the trityl OX063 and a gem-diethyl pyrrolidine nitroxide, respectively. Intracellular delivery of OXQM into HeLa cells was also achieved by covalent conjugation with a cell-permeable peptide as evidenced by the stable intracellular EPR signal from the OXQM⋅ moiety. Owing to extremely high resistance of OXQM⋅ towards bioreduction, OXQM and its derivatives show great application potential in in-cell EPR and in-cell DNP studies for various cells which can endure short-term anoxic treatments.
Collapse
Affiliation(s)
- Shuai Li
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Peng Deng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Qi Chang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Meirong Feng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yixuan Shang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yuguang Song
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
3
|
Katz I, Schmidt A, Ben-Shir I, Javitt M, Kouřil K, Capozzi A, Meier B, Lang A, Pokroy B, Blank A. Long-lived enhanced magnetization-A practical metabolic MRI contrast material. SCIENCE ADVANCES 2024; 10:eado2483. [PMID: 38996017 PMCID: PMC11244432 DOI: 10.1126/sciadv.ado2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.
Collapse
Affiliation(s)
- Itai Katz
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Asher Schmidt
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ira Ben-Shir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Arad Lang
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Pan F, Liu X, Wan J, Guo Y, Sun P, Zhang X, Wang J, Bao Q, Yang L. Advances and prospects in deuterium metabolic imaging (DMI): a systematic review of in vivo studies. Eur Radiol Exp 2024; 8:65. [PMID: 38825658 PMCID: PMC11144684 DOI: 10.1186/s41747-024-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI technique in vivo. METHODS A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Specific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution. RESULTS Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deuterated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-2H2]glucose, [2,2,2'-2H3]acetate) were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle, and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally, intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantification, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g., 3.3-mL spatial resolution with 10-min acquisition at 3 T). CONCLUSIONS Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability. RELEVANCE STATEMENT Deuterium metabolic imaging, a promising non-invasive technique, is systematically discussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabolism, displaying a relevant clinical potential. KEY POINTS • Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism. • This review explores DMI's current state, limits, and future research directions comprehensively. • The clinical translation of DMI is mainly impeded by limitations in spatial resolution.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiayu Wan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Xiaoxiao Zhang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
6
|
Stern Q, Reynard-Feytis Q, Elliott SJ, Ceillier M, Cala O, Ivanov K, Jannin S. Rapid and Simple 13C-Hyperpolarization by 1H Dissolution Dynamic Nuclear Polarization Followed by an Inline Magnetic Field Inversion. J Am Chem Soc 2023; 145:27576-27586. [PMID: 38054954 DOI: 10.1021/jacs.3c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Quentin Reynard-Feytis
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Stuart J Elliott
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
- Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Morgan Ceillier
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Konstantin Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| |
Collapse
|
7
|
Guillevin R, Naudin M, Fayolle P, Giraud C, Le Guillou X, Thomas C, Herpe G, Miranville A, Fernandez-Maloigne C, Pellerin L, Guillevin C. Diagnostic and Therapeutic Issues in Glioma Using Imaging Data: The Challenge of Numerical Twinning. J Clin Med 2023; 12:7706. [PMID: 38137775 PMCID: PMC10744312 DOI: 10.3390/jcm12247706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Glial tumors represent the leading etiology of primary brain tumors. Their particularities lie in (i) their location in a highly functional organ that is difficult to access surgically, including for biopsy, and (ii) their rapid, anisotropic mode of extension, notably via the fiber bundles of the white matter, which further limits the possibilities of resection. The use of mathematical tools enables the development of numerical models representative of the oncotype, genotype, evolution, and therapeutic response of lesions. The significant development of digital technologies linked to high-resolution NMR exploration, coupled with the possibilities offered by AI, means that we can envisage the creation of digital twins of tumors and their host organs, thus reducing the use of physical sampling.
Collapse
Affiliation(s)
- Rémy Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Mathieu Naudin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Pierre Fayolle
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Clément Giraud
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Xavier Le Guillou
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
- Department of Genetic, University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Clément Thomas
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Guillaume Herpe
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | - Alain Miranville
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| | | | - Luc Pellerin
- IRMETIST Laboratory, INSERM U1313, University of Poitiers and University Hospital Center of Poitiers, 86000 Poitiers, France
| | - Carole Guillevin
- Department of Imaging, University Hospital Center of Poitiers, 86000 Poitiers, France
- Labcom I3M, University of Poitiers, 86000 Poitiers, France
- DACTIM-MIS Team, Laboratoire de Mathématiques Appliquées LMA, CNRS UMR 7348, 86021 Poitiers, France
| |
Collapse
|
8
|
Shi J, Ji X, Shan S, Zhao M, Bi C, Li Z. The interaction between apigenin and PKM2 restrains progression of colorectal cancer. J Nutr Biochem 2023; 121:109430. [PMID: 37597817 DOI: 10.1016/j.jnutbio.2023.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Apigenin, a flavonoid that widely existed in vegetables and fruits, possesses anticarcinogenic, low toxicity, and no mutagenic properties, suggesting that apigenin is a potential therapeutic agent for tumors. However, the underlying anti-cancer molecular target of apigenin is still unclear. Therefore, to reveal the direct target and amino acid site of apigenin against colorectal cancer is the focus of this study. In the present study, the results proved that the anti-CRC activity of apigenin was positively correlated with pyruvate kinase M2 (PKM2) expression, characterized by the inhibition of cell proliferation and increase of apoptotic effects induced by apigenin in LS-174T cells of knock down PKM2. Next, pull-down and MALDI-TOF/TOF analysis determined that apigenin might interact directly with PKM2 in HCT-8 cells. Further, the study confirmed that lysine residue 433 (K433) was a key amino acid site for PKM2 binding to apigenin. Apigenin restricted the glycolysis of LS-174T and HCT-8 cells by targeting the K433 site of PKM2, thereby playing an anti-CRC role in vivo and in vitro. Meanwhile, apigenin markedly attenuated tumor growth without any adverse effects. Taken together, these findings reveal that apigenin is worthy of consideration as a promising PKM2 inhibitor for the prevention of CRC.
Collapse
Affiliation(s)
- Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaodan Ji
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Mengyun Zhao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Cai Bi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China.
| |
Collapse
|
9
|
Chung BT, Kim Y, Gordon JW, Chen HY, Autry AW, Lee PM, Hu JY, Tan CT, Suszczynski C, Chang SM, Villanueva-Meyer JE, Bok RA, Larson PEZ, Xu D, Li Y, Vigneron DB. Hyperpolarized [2- 13C]pyruvate MR molecular imaging with whole brain coverage. Neuroimage 2023; 280:120350. [PMID: 37634883 PMCID: PMC10530049 DOI: 10.1016/j.neuroimage.2023.120350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
Hyperpolarized (HP) 13C Magnetic Resonance Imaging (MRI) was applied for the first time to image and quantify the uptake and metabolism of [2-13C]pyruvate in the human brain to provide new metabolic information on cerebral energy metabolism. HP [2-13C]pyruvate was injected intravenously and imaged in 5 healthy human volunteer exams with whole brain coverage in a 1-minute acquisition using a specialized spectral-spatial multi-slice echoplanar imaging (EPI) pulse sequence to acquire 13C-labeled volumetric and dynamic images of [2-13C]pyruvate and downstream metabolites [5-13C]glutamate and [2-13C]lactate. Metabolic ratios and apparent conversion rates of pyruvate-to-lactate (kPL) and pyruvate-to-glutamate (kPG) were quantified to investigate simultaneously glycolytic and oxidative metabolism in a single injection.
Collapse
Affiliation(s)
- Brian T Chung
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA.
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Philip M Lee
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Chou T Tan
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Chris Suszczynski
- ISOTEC Stable Isotope Division, MilliporeSigma, Merck KGaA, Miamisburg, OH 45342, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, 1700 Fourth Street, Byers Hall Suite 102, San Francisco, CA 94158, USA; UCSF - UC Berkeley Graduate Program in Bioengineering, University of California, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Sannelli F, Wang KC, Jensen PR, Meier S. Rapid probing of glucose influx into cancer cell metabolism: using adjuvant and a pH-dependent collection of central metabolites to improve in-cell D-DNP NMR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4870-4882. [PMID: 37702554 DOI: 10.1039/d3ay01120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Changes to metabolism are a hallmark of many diseases. Disease metabolism under physiological conditions can be probed in real time with in-cell NMR assays. Here, we pursued a systematic approach towards improved in-cell NMR assays. Unambiguous identifications of metabolites and of intracellular pH are afforded by a comprehensive, downloadable collection of spectral data for central carbon metabolites in the physiological pH range (4.0-8.0). Chemical shifts of glycolytic intermediates provide unique pH dependent patterns akin to a barcode. Using hyperpolarized 13C1 enriched glucose as the probe molecule of central metabolism in cancer, we find that early glycolytic intermediates are detectable in PC-3 prostate cancer cell lines, concurrently yielding intracellular pH. Using non-enriched and non-enhanced pyruvate as an adjuvant, reactions of the pentose phosphate pathway become additionally detectable, without significant changes to the barriers in upper glycolysis and to intracellular pH. The scope of tracers for in-cell observations can thus be improved by the presence of adjuvants, showing that a recently proposed effect of pyruvate in the tumor environment is paralleled by a rerouting of cancer cell metabolism towards producing building blocks for proliferation. Overall, the combined use of reference data for compound identification, site specific labelling for reducing overlap, and use of adjuvant afford increasingly detailed insight into disease metabolism.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| | - Ke-Chuan Wang
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
11
|
Quan Y, Ouyang Y, Mardini M, Palani RS, Banks D, Kempf J, Wenckebach WT, Griffin RG. Resonant Mixing Dynamic Nuclear Polarization. J Phys Chem Lett 2023; 14:7007-7013. [PMID: 37523253 DOI: 10.1021/acs.jpclett.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We propose a mechanism for dynamic nuclear polarization that is different from the well-known Overhauser effect, solid effect, cross effect, and thermal mixing processes. We term it Resonant Mixing (RM), and we show that it arises from the evolution of the density matrix for a simple electron-nucleus coupled spin pair subject to weak microwave irradiation, the same interactions as the solid effect. However, the SE is optimal when the microwave field is off-resonance, whereas RM is optimal when the microwave field is on-resonance and involves the mixing of states by the microwave field together with the electron-nuclear coupling. Finally, we argue that this mechanism is responsible for the observed dispersive-shaped DNP field profile for trityl samples near the electron paramagnetic resonance center.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ravi Shankar Palani
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Banks
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - James Kempf
- Bruker Biospin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - W Tom Wenckebach
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- National High Magnetic Field Laboratory, University of Florida, Gainesville, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Liu X, Tang S, Cui D, Bok RA, Chen HY, Gordon JW, Wang ZJ, Larson PEZ. A metabolite specific 3D stack-of-spirals bSSFP sequence for improved bicarbonate imaging in hyperpolarized [1- 13C]Pyruvate MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107518. [PMID: 37402333 PMCID: PMC10498937 DOI: 10.1016/j.jmr.2023.107518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
13C-bicarbonate is a crucial measure of pyruvate oxidation and TCA cycle flux, but is challenging to measure due to its relatively low concentration and thus will greatly benefit from improved signal-to-noise ratio (SNR). To address this, we developed and investigated the feasibility of a 3D stack-of-spirals metabolite-specific balanced steady-state free precession (MS-bSSFP) sequence for improving the SNR and spatial resolution of dynamic 13C-bicarbonate imaging in hyperpolarized [1-13C]pyruvate studies. The bicarbonate MS-bSSFP sequence was evaluated by simulations, phantoms studies, preclinical studies on five rats, brain studies on two healthy volunteers and renal study on one renal cell carcinoma patient. The simulations and phantom results showed that the bicarbonate-specific pulse had minimal perturbation of other metabolites (<1%). In the animal studies, the MS-bSSFP sequence provided an approximately 2.6-3 × improvement in 13C-bicarbonate SNR compared to a metabolite-specific gradient echo (MS-GRE) sequence without altering the bicarbonate or pyruvate kinetics, and the shorter spiral readout in the MS-bSSFP approach reduced blurring. Using the SNR ratio between MS-bSSFP and MS-GRE, the T2 values of bicarbonate and lactate in the rat kidneys were estimated as 0.5 s and 1.1 s, respectively. The in-vivo feasibility of bicarbonate MS-bSSFP sequence was demonstrated in two human brain studies and one renal study. These studies demonstrate the potential of the sequence for in-vivo applications, laying the foundation for future studies to observe this relatively low concentration metabolite with high-quality images and improve measurements of pyruvate oxidation.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Di Cui
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Sannelli F, Jensen PR, Meier S. In-Cell NMR Approach for Real-Time Exploration of Pathway Versatility: Substrate Mixtures in Nonengineered Yeast. Anal Chem 2023; 95:7262-7270. [PMID: 37097609 DOI: 10.1021/acs.analchem.3c00225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The central carbon metabolism of microbes will likely be used in future sustainable bioproduction. A sufficiently deep understanding of central metabolism would advance the control of activity and selectivity in whole-cell catalysis. Opposite to the more obvious effects of adding catalysts through genetic engineering, the modulation of cellular chemistry through effectors and substrate mixtures remains less clear. NMR spectroscopy is uniquely suited for in-cell tracking to advance mechanistic insight and to optimize pathway usage. Using a comprehensive and self-consistent library of chemical shifts, hyperpolarized NMR, and conventional NMR, we probe the versatility of cellular pathways to changes in substrate composition. Conditions for glucose influx into a minor pathway to an industrial precursor (2,3-butanediol) can thus be designed. Changes to intracellular pH can be followed concurrently, while mechanistic details for the minor pathway can be derived using an intermediate-trapping strategy. Overflow at the pyruvate level can be induced in nonengineered yeast with suitably mixed carbon sources (here glucose with auxiliary pyruvate), thus increasing glucose conversion to 2,3-butanediol by more than 600-fold. Such versatility suggests that a reassessment of canonical metabolism may be warranted using in-cell spectroscopy.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
14
|
Xu Z, Michel KA, Walker CM, Harlan CJ, Martinez GV, Gordon JW, Chen HY, Vigneron DB, Bankson JA. Model-constrained reconstruction accelerated with Fourier-based undersampling for hyperpolarized [1- 13 C] pyruvate imaging. Magn Reson Med 2023; 89:1481-1495. [PMID: 36468638 PMCID: PMC9892212 DOI: 10.1002/mrm.29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Model-constrained reconstruction with Fourier-based undersampling (MoReFUn) is introduced to accelerate the acquisition of dynamic MRI using hyperpolarized [1-13 C]-pyruvate. METHODS The MoReFUn method resolves spatial aliasing using constraints introduced by a pharmacokinetic model that describes the signal evolution of both pyruvate and lactate. Acceleration was evaluated on three single-channel data sets: a numerical digital phantom that is used to validate the accuracy of reconstruction and model parameter restoration under various SNR and undersampling ratios, prospectively and retrospectively sampled data of an in vitro dynamic multispectral phantom, and retrospectively undersampled imaging data from a prostate cancer patient to test the fidelity of reconstructed metabolite time series. RESULTS All three data sets showed successful reconstruction using MoReFUn. In simulation and retrospective phantom data, the restored time series of pyruvate and lactate maintained the image details, and the mean square residual error of the accelerated reconstruction increased only slightly (< 10%) at a reduction factor up to 8. In prostate data, the quantitative estimation of the conversion-rate constant of pyruvate to lactate was achieved with high accuracy of less than 10% error at a reduction factor of 2 compared with the conversion rate derived from unaccelerated data. CONCLUSION The MoReFUn technique can be used as an effective and reliable imaging acceleration method for metabolic imaging using hyperpolarized [1-13 C]-pyruvate.
Collapse
Affiliation(s)
- Zhan Xu
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX
| | - Keith A. Michel
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX
| | - Christopher M. Walker
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX
| | - Collin J. Harlan
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX
| | - Gary V. Martinez
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Hsin-Yu Chen
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Daniel B. Vigneron
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - James A. Bankson
- Department of Imaging Physics, The University of Texas-MD Anderson Cancer Center, Houston, TX
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
15
|
Qi Q, Fox MS, Lim H, Sullivan R, Li A, Bellyou M, Desjardins L, McClennan A, Bartha R, Hoffman L, Scholl TJ, Lee TY, Thiessen JD. Glucose Infusion Induced Change in Intracellular pH and Its Relationship with Tumor Glycolysis in a C6 Rat Model of Glioblastoma. Mol Imaging Biol 2023; 25:271-282. [PMID: 36418769 DOI: 10.1007/s11307-022-01726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The reliance on glycolytic metabolism is a hallmark of tumor metabolism. Excess acid and protons are produced, leading to an acidic tumor environment. Therefore, we explored the relationship between the tumor glycolytic metabolism and tissue pH by comparing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and hyperpolarized [1-13C]pyruvate MR spectroscopy imaging (MRSI) to chemical exchange saturation transfer (CEST) MRI measurements of tumor pH. METHODS 106 C6 glioma cells were implanted in the brains of male Wistar rats (N = 11) using stereotactic surgery. A 60-min PET acquisition after a bolus of FDG was performed at 11-13 days post implantation, and standardized uptake value (SUV) was calculated. CEST measurements were acquired the following day before and during constant infusion of glucose solution. Tumor intracellular pH (pHi) was evaluated using amine and amide concentration-independent detection (AACID) CEST MRI. The change of pHi (∆pHi) was calculated as the difference between pHi pre- and during glucose infusion. Rats were imaged immediately with hyperpolarized [1-13C]pyruvate MRSI. Regional maps of the ratio of Lac:Pyr were acquired. The correlations between SUV, Lac:Pyr ratio, and ∆pHi were evaluated using Pearson's correlation. RESULTS A decrease of 0.14 in pHi was found after glucose infusion in tumor region. Significant correlations between tumor glycolysis measurements of Lac:Pyr and ∆pHi within the tumor (ρ = 0.83, P = 0.01) and peritumoral region (ρ = 0.76, P = 0.028) were observed. No significant correlations were found between tumor SUV and ∆pHi within the tumor (ρ = - 0.45, P = 0.17) and peritumor regions (ρ = - 0.6, P = 0.051). CONCLUSION AACID detected the changes in pHi induced by glucose infusion. Significant correlations between tumor glycolytic measurement of Lac:Pyr and tumoral and peritumoral pHi and ∆pHi suggest the intrinsic relationship between tumor glycolytic metabolism and the tumor pH environment as well as the peritumor pH environment.
Collapse
Affiliation(s)
- Qi Qi
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Matthew S Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Heeseung Lim
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Rebecca Sullivan
- Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Alex Li
- Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Miranda Bellyou
- Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Lise Desjardins
- Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Andrew McClennan
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Robert Bartha
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Medical Imaging, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Lisa Hoffman
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Department of Pathology, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Ting-Yim Lee
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Department of Medical Imaging, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Jonathan D Thiessen
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada. .,Molecular Imaging Program, The University of Western Ontario, London, ON, N6A 3K7, Canada. .,Imaging Program, Lawson Health Research Institute, London, ON, N6A 4V2, Canada. .,Department of Medical Imaging, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
16
|
Concilio MG, Frydman L. Microwave-free J-driven dynamic nuclear polarization: A proposal for enhancing the sensitivity of solution-state NMR. Phys Rev E 2023; 107:035303. [PMID: 37073023 DOI: 10.1103/physreve.107.035303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling J_{ex}. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Using optimal controlled singlet spin order to accurately target molecular signal in MRI and MRS. Sci Rep 2023; 13:2212. [PMID: 36750607 PMCID: PMC9905495 DOI: 10.1038/s41598-023-28425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) have made great successes in clinical diagnosis, medical research, and neurological science. MRI provides high resolution anatomical images of tissues/organs, and MRS provides information of the functional molecules related to a specific tissue/organ. However, it is difficult for classic MRI/MRS to selectively image/probe a specific metabolite molecule other than the water or fat in tissues/organs. This greatly limits their applications on the study of the molecular mechanism(s) of metabolism and disease. Herein, we report a series of molecularly targeted MRI/MRS methods to target specific molecules. The optimal control method was used to efficiently prepare the singlet spin orders of varied multi-spin systems and in turn greatly expand the choice of the targeted molecules in the molecularly targeted MRI/MRS. Several molecules, such as N-acetyl-L-aspartic acid (NAA), dopamine (DA), and a tripeptide (alanine-glycine-glycine, AGG), have been used as targeted molecules for molecularly targeted MRI and MRS. We show in vivo NAA-targeted 1H MRS spectrum of a human brain. The high-resolution signal of NAA suggests a promising way to study important issues in molecular biology at the molecular level, e.g., measuring the local pH value of tissue in vivo, demonstrating the high potential of such methods in medicine.
Collapse
|
18
|
Farah C, Neveu MA, Bouzin C, Knezevic Z, Gallez B, Leucci E, Baurain JF, Mignion L, Jordan BF. Hyperpolarized 13C-Pyruvate to Assess Response to Anti-PD1 Immune Checkpoint Inhibition in YUMMER 1.7 Melanoma Xenografts. Int J Mol Sci 2023; 24:ijms24032499. [PMID: 36768822 PMCID: PMC9917169 DOI: 10.3390/ijms24032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
There is currently no consensus to determine which advanced melanoma patients will benefit from immunotherapy, highlighting the critical need to identify early-response biomarkers to immune checkpoint inhibitors. The aim of this work was to evaluate in vivo metabolic spectroscopy using hyperpolarized (HP) 13C-pyruvate and 13C-glucose to assess early response to anti-PD1 therapy in the YUMMER1.7 syngeneic melanoma model. The xenografts showed a significant tumor growth delay when treated with two cycles of an anti-PD1 antibody compared to an isotype control antibody. 13C-MRS was performed in vivo after the injection of hyperpolarized 13C-pyruvate, at baseline and after one cycle of immunotherapy, to evaluate early dynamic changes in 13C-pyruvate-13C-lactate exchange. Furthermore, ex vivo 13C-MRS metabolic tracing experiments were performed after U-13C-glucose injection following one cycle of immunotherapy. A significant decrease in the ratio of HP 13C-lactate to 13C-pyruvate was observed in vivo in comparison with the isotype control group, while there was a lack of change in the levels of 13C lactate and 13C alanine issued from 13C glucose infusion, following ex vivo assessment on resected tumors. Thus, these results suggest that hyperpolarized 13C-pyruvate could be used to assess early response to immune checkpoint inhibitors in melanoma patients.
Collapse
Affiliation(s)
- Chantale Farah
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Marie-Aline Neveu
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, K.U. Leuven, B-3001 Leuven, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvai, (UCLouvain), B-1200 Brussels, Belgium
| | - Zorica Knezevic
- Laboratory for RNA Cancer Biology, Department of Oncology, K.U. Leuven, B-3001 Leuven, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (U.C. Louvain), B-1200 Brussels, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, K.U. Leuven, B-3001 Leuven, Belgium
| | - Jean-François Baurain
- Molecular Imaging and Radiation Oncology (MIRO) Group, Institute de Recherche Expérimentale et Clinique (IREC), B-1200 Brussels, Belgium
| | - Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (U.C. Louvain), B-1200 Brussels, Belgium
| | - Bénédicte F. Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (U.C. Louvain), B-1200 Brussels, Belgium
- Correspondence:
| |
Collapse
|
19
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Vaziri S, Autry AW, Lafontaine M, Kim Y, Gordon JW, Chen HY, Hu JY, Lupo JM, Chang SM, Clarke JL, Villanueva-Meyer JE, Bush NAO, Xu D, Larson PEZ, Vigneron DB, Li Y. Assessment of higher-order singular value decomposition denoising methods on dynamic hyperpolarized [1- 13C]pyruvate MRI data from patients with glioma. Neuroimage Clin 2022; 36:103155. [PMID: 36007439 PMCID: PMC9421383 DOI: 10.1016/j.nicl.2022.103155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Real-time metabolic conversion of intravenously-injected hyperpolarized [1-13C]pyruvate to [1-13C]lactate and [13C]bicarbonate in the brain can be measured using dynamic hyperpolarized carbon-13 (HP-13C) MRI. However, voxel-wise evaluation of metabolism in patients with glioma is challenged by the limited signal-to-noise ratio (SNR) of downstream 13C metabolites, especially within lesions. The purpose of this study was to evaluate the ability of higher-order singular value decomposition (HOSVD) denoising methods to enhance dynamic HP [1-13C]pyruvate MRI data acquired from patients with glioma. METHODS Dynamic HP-13C MRI were acquired from 14 patients with glioma. The effects of two HOSVD denoising techniques, tensor rank truncation-image enhancement (TRI) and global-local HOSVD (GL-HOSVD), on the SNR and kinetic modeling were analyzed in [1-13C]lactate data with simulated noise that matched the levels of [13C]bicarbonate signals. Both methods were then evaluated in patient data based on their ability to improve [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate SNR. The effects of denoising on voxel-wise kinetic modeling of kPL and kPB was also evaluated. The number of voxels with reliable kinetic modeling of pyruvate-to-lactate (kPL) and pyruvate-to-bicarbonate (kPB) conversion rates within regions of interest (ROIs) before and after denoising was then compared. RESULTS Both denoising methods improved metabolite SNR and regional signal coverage. In patient data, the average increase in peak dynamic metabolite SNR was 2-fold using TRI and 4-5 folds using GL-HOSVD denoising compared to acquired data. Denoising reduced kPL modeling errors from a native average of 23% to 16% (TRI) and 15% (GL-HOSVD); and kPB error from 42% to 34% (TRI) and 37% (GL-HOSVD) (values were averaged voxelwise over all datasets). In contrast-enhancing lesions, the average number of voxels demonstrating within-tolerance kPL modeling error relative to the total voxels increased from 48% in the original data to 84% (TRI) and 90% (GL-HOSVD), while the number of voxels showing within-tolerance kPB modeling error increased from 0% to 15% (TRI) and 8% (GL-HOSVD). CONCLUSION Post-processing denoising methods significantly improved the SNR of dynamic HP-13C imaging data, resulting in a greater number of voxels satisfying minimum SNR criteria and maximum kinetic modeling errors in tumor lesions. This enhancement can aid in the voxel-wise analysis of HP-13C data and thereby improve monitoring of metabolic changes in patients with glioma following treatment.
Collapse
Affiliation(s)
- Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jasmine Y Hu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
21
|
Miyanishi K, Mizukami W, Motoyama M, Ichijo N, Kagawa A, Negoro M, Kitagawa M. Prediction of 1H Singlet Relaxation via Intermolecular Dipolar Couplings Using the Molecular Dynamics Method. J Phys Chem B 2022; 126:3530-3538. [PMID: 35538043 DOI: 10.1021/acs.jpcb.1c10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dissolution dynamic nuclear polarization has been applied in various fields, including chemistry, biology, and medical science. To expand the scope of these applications, the nuclear singlet state, which is decoherence-free against dipolar relaxation between spin pairs, has been studied experimentally, theoretically, and numerically. The singlet state composed of proton spins is used in several applications, such as enhanced polarization preservation, molecular tagging to probe slow dynamic processes, and detection of ligand-protein complexes. In this study, we predict the lifetimes of the nuclear spin states composed of proton spin pairs using the molecular dynamics method and quantum chemistry simulations. We consider intramolecular dipolar, intermolecular dipolar between solvent and solute, chemical shift anisotropy, and spin-rotation interactions. In particular, the relaxation rate of intermolecular dipolar interactions is calculated using the molecular dynamics method for various solvents. The calculated values and the experimental values are of the same order of magnitude. Our program would provide insight into the molecular design of several NMR applications and would be helpful in predicting the nuclear spin relaxation time of synthetic molecules in advance.
Collapse
Affiliation(s)
- K Miyanishi
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - W Mizukami
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - M Motoyama
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - N Ichijo
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - A Kagawa
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - M Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - M Kitagawa
- Division of Advanced Electronics and Optical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Center for Quantum Information and Quantum Biology, Osaka University, 1-2 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
22
|
Radke KL, Abrar DB, Frenken M, Wilms LM, Kamp B, Boschheidgen M, Liebig P, Ljimani A, Filler TJ, Antoch G, Nebelung S, Wittsack HJ, Müller-Lutz A. Chemical Exchange Saturation Transfer for Lactate-Weighted Imaging at 3 T MRI: Comprehensive In Silico, In Vitro, In Situ, and In Vivo Evaluations. Tomography 2022; 8:1277-1292. [PMID: 35645392 PMCID: PMC9149919 DOI: 10.3390/tomography8030106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/22/2023] Open
Abstract
Based on in silico, in vitro, in situ, and in vivo evaluations, this study aims to establish and optimize the chemical exchange saturation transfer (CEST) imaging of lactate (Lactate-CEST—LATEST). To this end, we optimized LATEST sequences using Bloch−McConnell simulations for optimal detection of lactate with a clinical 3 T MRI scanner. The optimized sequences were used to image variable lactate concentrations in vitro (using phantom measurements), in situ (using nine human cadaveric lower leg specimens), and in vivo (using four healthy volunteers after exertional exercise) that were then statistically analyzed using the non-parametric Friedman test and Kendall Tau-b rank correlation. Within the simulated Bloch−McConnell equations framework, the magnetization transfer ratio asymmetry (MTRasym) value was quantified as 0.4% in the lactate-specific range of 0.5−1 ppm, both in vitro and in situ, and served as the imaging surrogate of the lactate level. In situ, significant differences (p < 0.001) and strong correlations (τ = 0.67) were observed between the MTRasym values and standardized intra-muscular lactate concentrations. In vivo, a temporary increase in the MTRasym values was detected after exertional exercise. In this bench-to-bedside comprehensive feasibility study, different lactate concentrations were detected using an optimized LATEST imaging protocol in vitro, in situ, and in vivo at 3 T, which prospectively paves the way towards non-invasive quantification and monitoring of lactate levels across a broad spectrum of diseases.
Collapse
Affiliation(s)
- Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Daniel B. Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Lena Marie Wilms
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Matthias Boschheidgen
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | | | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Timm Joachim Filler
- Institute of Anatomy I, Heinrich-Heine-University, D-40225 Dusseldorf, Germany;
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, D-52074 Aachen, Germany
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany; (K.L.R.); (M.F.); (L.M.W.); (B.K.); (M.B.); (A.L.); (G.A.); (S.N.); (H.-J.W.); (A.M.-L.)
| |
Collapse
|
23
|
Aime S, Longo DL, Reineri F, Geninatti Crich S. New tools to investigate tumor metabolism by NMR/MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107198. [PMID: 35339957 DOI: 10.1016/j.jmr.2022.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Changes in metabolism is an hallmark that characterizes tumour cells from healthy ones. Their detection can be highly relevant for staging the tumor and for monitoring the response to therapeutic treatments. Herein it is shown the readout of these changes can be achieved either by assessing the pH of the extracellular space in the tumour region and by monitoring real time transformations of hyperpolarized C-13 labelled substrates. Mapping pH in a MR image is possible by measuring the CEST response of an administered contrast agent such as Iopamidol that can provide accurate measurements of the heterogeneity of tumour acidosis. Direct detection of relevant enzymatic activities have been acquired by using Pyruvate and Fumarate hyperpolarized by the incorporation of a molecule of para-H2. Finally, it has been found that the tumour transformation involves an increase in the water exchange rate between the intra- and the extra-cellular compartments. A quantitative estimation of these changes can be obtained by acquiring the longitudinal relaxation times of tissue water protons at low magnetic field strength on Fast Field Cycling Relaxometers. This finding has been exploited in an application devoted to the assessment of the presence of residual tumour tissue in the margins of the resected mass in breast conservative surgery.
Collapse
Affiliation(s)
- Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
24
|
Reynolds S, Kazan SM, Anton A, Alizadeh T, Gunn RN, Paley MN, Tozer GM, Cunningham VJ. Kinetic modelling of dissolution dynamic nuclear polarisation 13 C magnetic resonance spectroscopy data for analysis of pyruvate delivery and fate in tumours. NMR IN BIOMEDICINE 2022; 35:e4650. [PMID: 34841602 DOI: 10.1002/nbm.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/19/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Dissolution dynamic nuclear polarisation (dDNP) of 13 C-labelled pyruvate in magnetic resonance spectroscopy/imaging (MRS/MRSI) has the potential for monitoring tumour progression and treatment response. Pyruvate delivery, its metabolism to lactate and efflux were investigated in rat P22 sarcomas following simultaneous intravenous administration of hyperpolarised 13 C-labelled pyruvate (13 C1 -pyruvate) and urea (13 C-urea), a nonmetabolised marker. A general mathematical model of pyruvate-lactate exchange, incorporating an arterial input function (AIF), enabled the losses of pyruvate and lactate from tumour to be estimated, in addition to the clearance rate of pyruvate signal from blood into tumour, Kip , and the forward and reverse fractional rate constants for pyruvate-lactate signal exchange, kpl and klp . An analogous model was developed for urea, enabling estimation of urea tumour losses and the blood clearance parameter, Kiu . A spectral fitting procedure to blood time-course data proved superior to assuming a gamma-variate form for the AIFs. Mean arterial blood pressure marginally correlated with clearance rates. Kiu equalled Kip , indicating equivalent permeability of the tumour vasculature to urea and pyruvate. Fractional loss rate constants due to effluxes of pyruvate, lactate and urea from tumour tissue into blood (kpo , klo and kuo , respectively) indicated that T1 s and the average flip angle, θ, obtained from arterial blood were poor surrogates for these parameters in tumour tissue. A precursor-product model, using the tumour pyruvate signal time-course as the input for the corresponding lactate signal time-course, was modified to account for the observed delay between them. The corresponding fractional rate constant, kavail , most likely reflected heterogeneous tumour microcirculation. Loss parameters, estimated from this model with different TRs, provided a lower limit on the estimates of tumour T1 for lactate and urea. The results do not support use of hyperpolarised urea for providing information on the tumour microcirculation over and above what can be obtained from pyruvate alone. The results also highlight the need for rigorous processes controlling signal quantitation, if absolute estimations of biological parameters are required.
Collapse
Affiliation(s)
- Steven Reynolds
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Samira M Kazan
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Adriana Anton
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Tooba Alizadeh
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, London, UK
| | - Martyn N Paley
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Gillian M Tozer
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
25
|
Conversion of Hyperpolarized [1- 13C]Pyruvate in Breast Cancer Cells Depends on Their Malignancy, Metabolic Program and Nutrient Microenvironment. Cancers (Basel) 2022; 14:cancers14071845. [PMID: 35406616 PMCID: PMC8997828 DOI: 10.3390/cancers14071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (MRS) is a technology for characterizing tumors in vivo based on their metabolic activities. The conversion rates (kpl) of hyperpolarized [1-13C]pyruvate to [1-13C]lactate depend on monocarboxylate transporters (MCT) and lactate dehydrogenase (LDH); these are also indicators of tumor malignancy. An unresolved issue is how glucose and glutamine availability in the tumor microenvironment affects metabolic characteristics of the cancer and how this relates to kpl-values. Two breast cancer cells of different malignancy (MCF-7, MDA-MB-231) were cultured in media containing defined combinations of low glucose (1 mM; 2.5 mM) and glutamine (0.1 mM; 1 mM) and analyzed for pyruvate uptake, intracellular metabolite levels, LDH and pyruvate kinase activities, and 13C6-glucose-derived metabolomics. The results show variability of kpl with the different glucose/glutamine conditions, congruent with glycolytic activity, but not with LDH activity or the Warburg effect; this suggests metabolic compartmentation. Remarkably, kpl-values were almost two-fold higher in MCF-7 than in the more malignant MDA-MB-231 cells, the latter showing a higher flux of 13C-glucose-derived pyruvate to the TCA-cycle metabolites 13C2-citrate and 13C3-malate, i.e., pyruvate decarboxylation and carboxylation, respectively. Thus, MRS with hyperpolarized [1-13C-pyruvate] is sensitive to both the metabolic program and the nutritional state of cancer cells.
Collapse
|
26
|
Combined HP 13C Pyruvate and 13C-Glucose Fluxomic as a Potential Marker of Response to Targeted Therapies in YUMM1.7 Melanoma Xenografts. Biomedicines 2022; 10:biomedicines10030717. [PMID: 35327519 PMCID: PMC8945537 DOI: 10.3390/biomedicines10030717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
A vast majority of BRAF V600E mutated melanoma patients will develop resistance to combined BRAF/MEK inhibition after initial clinical response. Resistance to targeted therapy is described to be accompanied by specific metabolic changes in melanoma. The aim of this work was to evaluate metabolic imaging using 13C-MRS (Magnetic Resonance Spectroscopy) as a marker of response to BRAF/MEK inhibition in a syngeneic melanoma model. Tumor growth was significantly delayed in mice bearing YUMM1.7 melanoma xenografts treated with the BRAF inhibitor vemurafenib, and/or with the MEK inhibitor trametinib, in comparison with the control group. 13C-MRS was performed in vivo after injection of hyperpolarized (HP) 13C-pyruvate, at baseline and 24 h after treatment, to evaluate dynamic changes in pyruvate-lactate exchange. Furthermore, ex vivo 13C-MRS steady state metabolic tracing experiments were performed after U-13C-glucose or 5-13C-glutamine injection, 24 h after treatment. The HP 13C-lactate-to-pyruvate ratio was not modified in response to BRAF/MEK inhibition, whereas the production of 13C-lactate from 13C-glucose was significantly reduced 24 h after treatment with vemurafenib, trametinib, or with the combined inhibitors. Conversely, 13C-glutamine metabolism was not modified in response to BRAF/MEK inhibition. In conclusion, we identified 13C-glucose fluxomic as a potential marker of response to BRAF/MEK inhibition in YUMM1.7 melanoma xenografts.
Collapse
|
27
|
Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science 2022; 375:eaay9040. [PMID: 35298272 DOI: 10.1126/science.aay9040] [Citation(s) in RCA: 296] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous challenges must be overcome. It is vital to better understand who is at greatest risk of developing cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify consequential disease that requires intervention. Insights must be translated into sensitive and specific early detection technologies and be appropriately evaluated to support practical clinical implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding highlight that it is time to accelerate early detection research and transform cancer survival.
Collapse
Affiliation(s)
| | - Sangeeta Bhatia
- Marble Center for Cancer Nanomedicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisa M Coussens
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence at the University of Manchester and University College London, University of Manchester, Manchester, UK
- CRUK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Sadik Esener
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Peter Kuhn
- USC Michelson Center Convergent Science Institute in Cancer, University of Southern California, Los Angeles, CA, USA
| | - Timothy R Rebbeck
- Division of Population Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
29
|
Concilio MG, Kuprov I, Frydman L. J-Driven dynamic nuclear polarization for sensitizing high field solution state NMR. Phys Chem Chem Phys 2022; 24:2118-2125. [PMID: 35024715 DOI: 10.1039/d1cp04186j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel. .,National High Magnetic Field Laboratory, Tallahassee, Florida, USA
| |
Collapse
|
30
|
Tumor Metabolism Is Affected by Obesity in Preclinical Models of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030562. [PMID: 35158830 PMCID: PMC8833372 DOI: 10.3390/cancers14030562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Obesity promotes both development and progression of breast cancer. As a disease, obesity is followed by hyperglycemia, hyperinsulinemia, and hyperlipidemia. The impact of obesity, accumulation of fat depots, and related markers on the metabolism of tumors still remains poorly understood. The aim of this study is to characterize the putative differences in the metabolism of tumors from obese and lean mice. The findings reported here could help tailor personalized treatments targeting tumor metabolism in obese cancer patients by identifying the metabolic preferences of these tumors. Abstract Obesity is characterized by an excessive fat mass accumulation associated with multiple disorders, including impaired glucose homeostasis, altered adipokine levels, and hyperlipidemia. Despite clear associations between tumor progression and obesity, the effects of these disorders on tumor metabolism remain largely unknown. Thus, we studied the metabolic differences between tumors of obese and lean mice in murine models of triple-negative breast cancer (E0771 and PY8819). For this purpose, a real-time hyperpolarized 1-13C-pyruvate-to-lactate conversion was studied before and after glucose administration in fasting mice. This work was completed by U-13C glucose tracing experiments using nuclear magnetic resonance (NMR) spectroscopy, as well as mass spectrometry (MS). Ex vivo analyses included immunostainings of major lipid, glucose, and monocarboxylic acids transporters. On the one hand, we discovered that tumors of obese mice yield higher lactate/pyruvate ratios after glucose administration. On the other hand, we found that the same tumors produce higher levels of lactate and alanine from glucose than tumors from lean mice, while no differences on the expression of key transporters associated with glycolysis (i.e., GLUT1, MCT1, MCT4) have been observed. In conclusion, our data suggests that breast tumor metabolism is regulated by the host’s physiological status, such as obesity and diabetes.
Collapse
|
31
|
Saul P, Mamone S, Glöggler S. Hyperpolarization of 15N in an amino acid derivative. RSC Adv 2022; 12:2282-2286. [PMID: 35425247 PMCID: PMC8979135 DOI: 10.1039/d1ra08808d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization is a nuclear magnetic resonance (NMR) technique which can be used to significantly enhance the signal in NMR experiments. In recent years, the possibility to enhance the NMR signal of heteronuclei by the use of para-hydrogen induced polarization (PHIP) has gained attention, especially in the area of possible applications in magnetic resonance imaging (MRI). Herein we introduce a way to synthesize a fully deuterated, 15N labelled amino acid derivative and the possibility to polarize the 15N by means of hydrogenation with para-hydrogen to a polarization level of 0.18%. The longevity of the polarization with a longitudinal relaxation time of more than a minute can allow for the observation of dynamic processes and metabolic imaging in vivo. In addition, we observe the phenomenon of proton–deuterium exchange with a homogeneous catalyst leading to signal enhanced allyl moeities in the precursor. A perdeuterated, 15N-labeled derivative of the amino acid glycine has been synthesized and polarized by means of para-hydrogen induced polarization (PHIP).![]()
Collapse
Affiliation(s)
- Philip Saul
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| | - Salvatore Mamone
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| | - Stefan Glöggler
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| |
Collapse
|
32
|
Pudakalakatti S, Raj P, Salzillo TC, Enriquez JS, Bourgeois D, Dutta P, Titus M, Shams S, Bhosale P, Kim M, McAllister F, Bhattacharya PK. Metabolic Imaging Using Hyperpolarization for Assessment of Premalignancy. Methods Mol Biol 2022; 2435:169-180. [PMID: 34993946 PMCID: PMC9352438 DOI: 10.1007/978-1-0716-2014-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an unmet need for noninvasive surrogate markers that can help identify premalignant lesions across different tumor types. Here we describe the methodology and technical details of protocols employed for in vivo 13C pyruvate metabolic imaging experiments. The goal of the method described is to identify and understand metabolic changes, to enable detection of pancreatic premalignant lesions, as a proof of concept of the high sensitivity of this imaging modality.
Collapse
Affiliation(s)
- Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyank Raj
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - José S Enriquez
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dontrey Bourgeois
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Statistics, Rice University, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shayan Shams
- Department of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Priya Bhosale
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
33
|
Stewart NJ, Sato T, Takeda N, Hirata H, Matsumoto S. Hyperpolarized 13C Magnetic Resonance Imaging as a Tool for Imaging Tissue Redox State, Oxidative Stress, Inflammation, and Cellular Metabolism. Antioxid Redox Signal 2022; 36:81-94. [PMID: 34218688 PMCID: PMC8792501 DOI: 10.1089/ars.2021.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Magnetic resonance imaging (MRI) with hyperpolarized (HP) 13C-labeled redox-sensitive metabolic tracers can provide noninvasive functional imaging biomarkers, reflecting tissue redox state, oxidative stress, and inflammation, among others. The capability to use endogenous metabolites as 13C-enriched imaging tracers without structural modification makes HP 13C MRI a promising tool to evaluate redox state in patients with various diseases. Recent Advances: Recent studies have demonstrated the feasibility of in vivo metabolic imaging of 13C-labeled tracers polarized by parahydrogen-induced polarization techniques, which offer a cost-effective alternative to the more widely used dissolution dynamic nuclear polarization-based hyperpolarizers. Critical Issues: Although the fluxes of many metabolic pathways reflect the change in tissue redox state, they are not functionally specific. In the present review, we summarize recent challenges in the development of specific 13C metabolic tracers for biomarkers of redox state, including that for detecting reactive oxygen species. Future Directions: Applications of HP 13C metabolic MRI to evaluate redox state have only just begun to be investigated. The possibility to gain a comprehensive understanding of the correlations between tissue redox potential and metabolism under different pathological conditions by using HP 13C MRI is promoting its interest in the clinical arena, along with its noninvasive biomarkers to evaluate the extent of disease and treatment response.
Collapse
Affiliation(s)
- Neil J Stewart
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan.,POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism Center for Molecular Medicine, Jichi Medical University, Shimotsuke-shi, Japan
| | - Hiroshi Hirata
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan
| | - Shingo Matsumoto
- Division of Bioengineering & Bioinformatics, Graduate School of Information Science & Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Li Y, Vigneron DB, Xu D. Current human brain applications and challenges of dynamic hyperpolarized carbon-13 labeled pyruvate MR metabolic imaging. Eur J Nucl Med Mol Imaging 2021; 48:4225-4235. [PMID: 34432118 PMCID: PMC8566394 DOI: 10.1007/s00259-021-05508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
The ability of hyperpolarized carbon-13 MR metabolic imaging to acquire dynamic metabolic information in real time is crucial to gain mechanistic insights into metabolic pathways, which are complementary to anatomic and other functional imaging methods. This review presents the advantages of this emerging functional imaging technology, describes considerations in clinical translations, and summarizes current human brain applications. Despite rapid development in methodologies, significant technological and physiological related challenges continue to impede broader clinical translation.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF Radiology, University of California, 185 Berry Street, Ste 350, Box 0946, San Francisco, CA, 94107, USA
| |
Collapse
|
36
|
Jørgensen SH, Bøgh N, Hansen E, Væggemose M, Wiggers H, Laustsen C. Hyperpolarized MRI - An update and future perspectives. Semin Nucl Med 2021; 52:374-381. [PMID: 34785033 DOI: 10.1053/j.semnuclmed.2021.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/11/2022]
Abstract
In recent years, hyperpolarized 13C magnetic resonance spectroscopic (MRS) imaging has emerged as a complementary metabolic imaging approach. Hyperpolarization via dissolution dynamic nuclear polarization is a technique that enhances the MR signal of 13C-enriched molecules by a factor of > 104, enabling detection downstream metabolites in a variety of intracellular metabolic pathways. The aim of the present review is to provide the reader with an update on hyperpolarized 13C MRS imaging and to assess the future clinical potential of the technology. Several carbon-based probes have been used in hyperpolarized studies. However, the first and most widely used 13C-probe in clinical studies is [1-13C]pyruvate. In this probe, the enrichment of 13C is performed at the first carbon position as the only modification. Hyperpolarized [1-13C]pyruvate MRS imaging can detect intracellular production of [1-13C]lactate and 13C-bicarbonate non-invasively and in real time without the use of ionizing radiation. Thus, by probing the balance between oxidative and glycolytic metabolism, hyperpolarized [1-13C]pyruvate MRS imaging can image the Warburg effect in malignant tumors and detect the hallmarks of ischemia or viability in the myocardium. An increasing number of clinical studies have demonstrated that clinical hyperpolarized 13C MRS imaging is not only possible, but also it provides metabolic information that was previously inaccessible by non-invasive techniques. Although the technology is still in its infancy and several technical improvements are warranted, it is of paramount importance that nuclear medicine physicians gain knowledge of the possibilities and pitfalls of the technique. Hyperpolarized 13C MRS imaging may become an integrated feature in combined metabolic imaging of the future.
Collapse
Affiliation(s)
- S H Jørgensen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark; The Department of Cardiology, North Denmark Regional Hospital, Hjørring, Denmark
| | - N Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ess Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Væggemose
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; GE Healthcare, Brøndby, Denmark
| | - H Wiggers
- The Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - C Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
37
|
Jensen PR, Sannelli F, Stauning LT, Meier S. Enhanced 13C NMR detects extended reaction networks in living cells. Chem Commun (Camb) 2021; 57:10572-10575. [PMID: 34558573 DOI: 10.1039/d1cc03838a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insights into intracellular chemistry have remained sparse, but would be impactful for the advancement of biomedicine and bioproduction. A suitable 13C NMR approach provides improvements in sensitivity that make extended reaction networks and assay time windows, previously inaccessible cell densities and relative flux measurements accessible in living cells.
Collapse
Affiliation(s)
- Pernille Rose Jensen
- Department of Health Technology Technical University of Denmark Elektrovej, 349 2800-Kgs. Lyngby, Denmark.
| | - Francesca Sannelli
- Department of Chemistry Technical University of Denmark Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark.
| | - Ludvig Tving Stauning
- Department of Health Technology Technical University of Denmark Elektrovej, 349 2800-Kgs. Lyngby, Denmark. .,Department of Chemistry Technical University of Denmark Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark.
| | - Sebastian Meier
- Department of Chemistry Technical University of Denmark Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
38
|
Elliott SJ, Stern Q, Ceillier M, El Daraï T, Cousin SF, Cala O, Jannin S. Practical dissolution dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:59-100. [PMID: 34852925 DOI: 10.1016/j.pnmrs.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.
Collapse
Affiliation(s)
- Stuart J Elliott
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Quentin Stern
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Morgan Ceillier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Théo El Daraï
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Samuel F Cousin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Olivier Cala
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
39
|
Radial Flow Perfusion Enables Real-Time Profiling of Cellular Metabolism at Low Oxygen Levels with Hyperpolarized 13C NMR Spectroscopy. Metabolites 2021; 11:metabo11090576. [PMID: 34564392 PMCID: PMC8465580 DOI: 10.3390/metabo11090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we describe new methods for studying cancer cell metabolism with hyperpolarized 13C magnetic resonance spectroscopy (HP 13C MRS) that will enable quantitative studies at low oxygen concentrations. Cultured hepatocellular carcinoma cells were grown on the surfaces of non-porous microcarriers inside an NMR spectrometer. They were perfused radially from a central distributer in a modified NMR tube (bioreactor). The oxygen level of the perfusate was continuously monitored and controlled externally. Hyperpolarized substrates were injected continuously into the perfusate stream with a newly designed system that prevented oxygen and temperature perturbations in the bioreactor. Computational and experimental results demonstrated that cell mass oxygen profiles with radial flow were much more uniform than with conventional axial flow. Further, the metabolism of HP [1-13C]pyruvate was markedly different between the two flow configurations, demonstrating the importance of avoiding large oxygen gradients in cell perfusion experiments.
Collapse
|
40
|
Harlan CJ, Xu Z, Walker CM, Michel KA, Reed GD, Bankson JA. The effect of transmit B 1 inhomogeneity on hyperpolarized [1- 13 C]-pyruvate metabolic MR imaging biomarkers. Med Phys 2021; 48:4900-4908. [PMID: 34287945 DOI: 10.1002/mp.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE A specialized Helmholtz-style 13 C volume transmit "clamshell" coil is currently being utilized for 13 C excitation in pre-clinical and clinical hyperpolarized 13 C MRI studies aimed at probing the metabolic activity of tumors in various target anatomy. Due to the widespread use of this 13 C clamshell coil design, it is important that the effects of the 13 C clamshell coil B1 + profile on HP signal evolution and quantification are well understood. The goal of this study was to characterize the B1 + field of the 13 C clamshell coil and assess the impact of inhomogeneities on semi-quantitative and quantitative hyperpolarized MR imaging biomarkers of metabolism. METHODS The B1 + field of the 13 C clamshell coil was mapped by hand using a network analyzer equipped with an S-parameter test set. Pharmacokinetic models were used to simulate signal evolution as a function of position-dependent local excitation angles, for various nominal excitation angles, which were assumed to be accurately calibrated at the isocenter. These signals were then quantified according to the normalized lactate ratio (nLac) and the apparent rate constant for the conversion of pyruvate to lactate (kPL ). The percent difference between these metabolic imaging biomarker maps and the reference value observed at the isocenter of the clamshell coil was calculated to estimate the potential for error due to position within the clamshell coil. Finally, regions were identified within the clamshell coil where deviations in B1 + field inhomogeneity or imaging biomarker errors imparted by the B1 + field were within ±10% of the value at the isocenter. RESULTS The B1 + field maps show that a limited volume encompassed by a region measuring approximately 12.9 × 11.5 × 13.4 cm (X-direction, Y-direction, Z-direction) centered in the 13 C clamshell coil will produce deviations in the B1 + field within ±10% of that at the isocenter. For the metabolic imaging biomarkers that we evaluated, the case when the pyruvate excitation angle (θP ) and lactate excitation angle (θL ) were equal to 10° produced the largest volumetric region with deviations within ±10% of the value at the isocenter. Higher excitation angles yielded higher signal and SNR, but the size of the region in which uniform measurements could be collected near the isocenter of the coil was reduced at higher excitation angles. The tradeoff between the size of the homogenous region at the isocenter and signal intensity must be weighed carefully depending on the particular imaging application. CONCLUSION This work identifies regions and optimal excitation angles (θP and θL ) within the 13 C clamshell coil where deviations in B1 + field inhomogeneity or imaging biomarker errors imparted by the B1 + field were within ±10% of the respective value at the isocenter, and thus where excitation angles are reproducible and well-calibrated. Semi-quantitative and quantitative metabolic imaging biomarkers can vary with position in the clamshell coil as a result of B1 + field inhomogeneity, necessitating care in patient positioning and the selection of an excitation angle set that balances reproducibility and SNR performance over the target imaging volume.
Collapse
Affiliation(s)
- Collin J Harlan
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Walker
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Keith A Michel
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - James A Bankson
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,The University of Texas M.D. Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
41
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
42
|
Shaul D, Grieb B, Sapir G, Uppala S, Sosna J, Gomori JM, Katz-Brull R. The metabolic representation of ischemia in rat brain slices: A hyperpolarized 13 C magnetic resonance study. NMR IN BIOMEDICINE 2021; 34:e4509. [PMID: 33774865 DOI: 10.1002/nbm.4509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The ischemic penumbra in stroke is not clearly defined by today's available imaging tools. This study aimed to develop a model system and noninvasive biomarkers of ischemic brain tissue for an examination that might potentially be performed in humans, very quickly, in the course of stroke triage. Perfused rat brain slices were used as a model system and 31 P spectroscopy verified that the slices were able to recover from an ischemic insult of about 3.5 min of perfusion arrest. This was indicated as a return to physiological pH and adenosine triphosphate levels. Instantaneous changes in lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) activities were monitored and quantified by the metabolic conversions of hyperpolarized [1-13 C]pyruvate to [1-13 C]lactate and [13 C]bicarbonate, respectively, using 13 C spectroscopy. In a control group (n = 8), hyperpolarized [1-13 C]pyruvate was administered during continuous perfusion of the slices. In the ischemia group (n = 5), the perfusion was arrested 30 s prior to administration of hyperpolarized [1-13 C]pyruvate and perfusion was not resumed throughout the measurement time (approximately 3.5 min). Following about 110 s of the ischemic insult, LDH activity increased by 80.4 ± 13.5% and PDH activity decreased by 47.8 ± 25.3%. In the control group, the mean LDH/PDH ratio was 16.6 ± 3.3, and in the ischemia group, the LDH/PDH ratio reached an average value of 38.7 ± 16.9. The results suggest that monitoring the activity of LDH and PDH, and their relative activities, using hyperpolarized [1-13 C]pyruvate, could serve as an imaging biomarker to characterize the changes in the ischemic penumbra.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Benjamin Grieb
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
- Department of Psychiatry and Psychotherapy I (Weissenau), Ulm University, Ravensburg, Germany
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
43
|
Kondo Y, Nonaka H, Takakusagi Y, Sando S. Entwicklung molekularer Sonden für die hyperpolarisierte NMR‐Bildgebung im biologischen Bereich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201915718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoichi Takakusagi
- Institute of Quantum Life Science National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
- National Institute of Radiological Sciences National Institutes for Quantum and Radiological Science and Technology 4-9-1 Anagawa, Inage Chiba-city 263-8555 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
44
|
Enriquez JS, Chu Y, Pudakalakatti S, Hsieh KL, Salmon D, Dutta P, Millward NZ, Lurie E, Millward S, McAllister F, Maitra A, Sen S, Killary A, Zhang J, Jiang X, Bhattacharya PK, Shams S. Hyperpolarized Magnetic Resonance and Artificial Intelligence: Frontiers of Imaging in Pancreatic Cancer. JMIR Med Inform 2021; 9:e26601. [PMID: 34137725 PMCID: PMC8277399 DOI: 10.2196/26601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/24/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is an unmet need for noninvasive imaging markers that can help identify the aggressive subtype(s) of pancreatic ductal adenocarcinoma (PDAC) at diagnosis and at an earlier time point, and evaluate the efficacy of therapy prior to tumor reduction. In the past few years, there have been two major developments with potential for a significant impact in establishing imaging biomarkers for PDAC and pancreatic cancer premalignancy: (1) hyperpolarized metabolic (HP)-magnetic resonance (MR), which increases the sensitivity of conventional MR by over 10,000-fold, enabling real-time metabolic measurements; and (2) applications of artificial intelligence (AI). OBJECTIVE Our objective of this review was to discuss these two exciting but independent developments (HP-MR and AI) in the realm of PDAC imaging and detection from the available literature to date. METHODS A systematic review following the PRISMA extension for Scoping Reviews (PRISMA-ScR) guidelines was performed. Studies addressing the utilization of HP-MR and/or AI for early detection, assessment of aggressiveness, and interrogating the early efficacy of therapy in patients with PDAC cited in recent clinical guidelines were extracted from the PubMed and Google Scholar databases. The studies were reviewed following predefined exclusion and inclusion criteria, and grouped based on the utilization of HP-MR and/or AI in PDAC diagnosis. RESULTS Part of the goal of this review was to highlight the knowledge gap of early detection in pancreatic cancer by any imaging modality, and to emphasize how AI and HP-MR can address this critical gap. We reviewed every paper published on HP-MR applications in PDAC, including six preclinical studies and one clinical trial. We also reviewed several HP-MR-related articles describing new probes with many functional applications in PDAC. On the AI side, we reviewed all existing papers that met our inclusion criteria on AI applications for evaluating computed tomography (CT) and MR images in PDAC. With the emergence of AI and its unique capability to learn across multimodal data, along with sensitive metabolic imaging using HP-MR, this knowledge gap in PDAC can be adequately addressed. CT is an accessible and widespread imaging modality worldwide as it is affordable; because of this reason alone, most of the data discussed are based on CT imaging datasets. Although there were relatively few MR-related papers included in this review, we believe that with rapid adoption of MR imaging and HP-MR, more clinical data on pancreatic cancer imaging will be available in the near future. CONCLUSIONS Integration of AI, HP-MR, and multimodal imaging information in pancreatic cancer may lead to the development of real-time biomarkers of early detection, assessing aggressiveness, and interrogating early efficacy of therapy in PDAC.
Collapse
Affiliation(s)
- José S Enriquez
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yan Chu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kang Lin Hsieh
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Duncan Salmon
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Niki Zacharias Millward
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eugene Lurie
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven Millward
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Florencia McAllister
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anirban Maitra
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Subrata Sen
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ann Killary
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jian Zhang
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayan Shams
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
45
|
Eykyn T, Elliott S, Kuchel P. Extended Bloch-McConnell equations for mechanistic analysis of hyperpolarized 13C magnetic resonance experiments on enzyme systems. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:421-446. [PMID: 37904769 PMCID: PMC10539799 DOI: 10.5194/mr-2-421-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 11/01/2023]
Abstract
We describe an approach to formulating the kinetic master equations of the time evolution of NMR signals in reacting (bio)chemical systems. Special focus is given to studies that employ signal enhancement (hyperpolarization) methods such as dissolution dynamic nuclear polarization (dDNP) and involving nuclear spin-bearing solutes that undergo reactions mediated by enzymes and membrane transport proteins. We extend the work given in a recent presentation on this topic (Kuchel and Shishmarev, 2020) to now include enzymes with two or more substrates and various enzyme reaction mechanisms as classified by Cleland, with particular reference to non-first-order processes. Using this approach, we can address some pressing questions in the field from a theoretical standpoint. For example, why does binding of a hyperpolarized substrate to an enzyme not cause an appreciable loss of the signal from the substrate or product? Why does the concentration of an unlabelled pool of substrate, for example 12 C lactate, cause an increase in the rate of exchange of the 13 C-labelled pool? To what extent is the equilibrium position of the reaction perturbed during administration of the substrate? The formalism gives a full mechanistic understanding of the time courses derived and is of relevance to ongoing clinical trials using these techniques.
Collapse
Affiliation(s)
- Thomas R. Eykyn
- School of Biomedical Engineering and Imaging Sciences, King's
College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Stuart J. Elliott
- Centre de Résonance Magnétique Nucléaire à Très
Hauts Champs – FRE 2034 Université de Lyon / CNRS / Université
Claude Bernard Lyon 1 / ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne,
France
- current address: Department of Chemistry, University of Liverpool,
Liverpool L69 7ZD, United Kingdom
| | - Philip W. Kuchel
- School of Life and Environmental Sciences, University of Sydney,
Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Larson PEZ, Gordon JW. Hyperpolarized Metabolic MRI-Acquisition, Reconstruction, and Analysis Methods. Metabolites 2021; 11:386. [PMID: 34198574 PMCID: PMC8231874 DOI: 10.3390/metabo11060386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/05/2023] Open
Abstract
Hyperpolarized metabolic MRI with 13C-labeled agents has emerged as a powerful technique for in vivo assessments of real-time metabolism that can be used across scales of cells, tissue slices, animal models, and human subjects. Hyperpolarized contrast agents have unique properties compared to conventional MRI scanning and MRI contrast agents that require specialized imaging methods. Hyperpolarized contrast agents have a limited amount of available signal, irreversible decay back to thermal equilibrium, bolus injection and perfusion kinetics, cellular uptake and metabolic conversion kinetics, and frequency shifts between metabolites. This article describes state-of-the-art methods for hyperpolarized metabolic MRI, summarizing data acquisition, reconstruction, and analysis methods in order to guide the design and execution of studies.
Collapse
Affiliation(s)
- Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA;
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94143, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA;
| |
Collapse
|
47
|
Carrera C, Cavallari E, Digilio G, Bondar O, Aime S, Reineri F. ParaHydrogen Polarized Ethyl-[1- 13 C]pyruvate in Water, a Key Substrate for Fostering the PHIP-SAH Approach to Metabolic Imaging. Chemphyschem 2021; 22:1042-1048. [PMID: 33720491 PMCID: PMC8251755 DOI: 10.1002/cphc.202100062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Indexed: 01/01/2023]
Abstract
An efficient synthesis of vinyl-[1-13 C]pyruvate has been reported, from which 13 C hyperpolarized (HP) ethyl-[1-13 C]pyruvate has been obtained by means of ParaHydrogen Induced Polarization (PHIP). Due to the intrinsic lability of pyruvate, which leads quickly to degradation of the reaction mixture even under mild reaction conditions, the vinyl-ester has been synthesized through the intermediacy of a more stable ketal derivative. 13 C and 1 H hyperpolarizations of ethyl-[1-13 C]pyruvate, hydrogenated using ParaHydrogen, have been compared to those observed on the more widely used allyl-derivative. It has been demonstrated that the spin order transfer from ParaHydrogen protons to 13 C, is more efficient on the ethyl than on the allyl-esterdue to the larger J-couplings involved. The main requirements needed for the biological application of this HP product have been met, i. e. an aqueous solution of the product at high concentration (40 mM) with a good 13 C polarization level (4.8 %) has been obtained. The in vitro metabolic transformation of the HP ethyl-[1-13 C]pyruvate, catalyzed by an esterase, has been observed. This substrate appears to be a good candidate for in vivo metabolic investigations using PHIP hyperpolarized probes.
Collapse
Affiliation(s)
- Carla Carrera
- Institute of Biostructures and BioimagingNational Research CouncilVia Nizza 5210126TorinoItaly
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Giuseppe Digilio
- Department of Science and Technologic InnovationUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Oksana Bondar
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences Molecular Imaging CentreUniversity of TorinoVia Nizza 5210126TorinoItaly
| |
Collapse
|
48
|
Tissue Imaging and Quantification Relying on Endogenous Contrast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:257-288. [PMID: 34053031 DOI: 10.1007/978-981-15-7627-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cell-matrix interactions play an important role in regulating a variety of essential processes in multicellular organisms, and are closely associated with numerous diseases. Modified interactions have major effects upon key features of both cells and extracellular matrix (ECM), and a thorough understanding of changes in these features can lead to critically important insights of diseases as well as the identification of effective therapeutic targets. Here, we summarize recent advances in quantitative, optical imaging of cellular metabolism and ECM spatial organization using endogenous sources of contrast. Specifically, we focus on the two-photon excited fluorescence (TPEF) imaging of autofluorescent cellular coenzymes, NAD(P)H and FAD, for the extraction of metabolic information described by optical biomarkers including cellular redox state, NAD(P)H fluorescence lifetime, and mitochondrial clustering. We show representative applications in assessing adipose tissue function and detecting malignant lesions in human skin, and further demonstrate that a combination of these optical metrics can provide complementary insights into the underlying biological mechanisms. In addition, we review the development of quantitative analysis methods to extract spatial orientation and organization metrics of collagen fibers, a major ECM component, and demonstrate applications of these approaches in two and three dimensions in several diseases, including would healing, osteoarthritis and cancer, as well as assessments of matrix remodeling in hormone-regulated engineered breast tissues. Finally, we summarize this chapter and discuss important research directions that we expect will evolve in the near future.
Collapse
|
49
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
50
|
Stewart NJ, Nakano H, Sugai S, Tomohiro M, Kase Y, Uchio Y, Yamaguchi T, Matsuo Y, Naganuma T, Takeda N, Nishimura I, Hirata H, Hashimoto T, Matsumoto S. Hyperpolarized 13 C Magnetic Resonance Imaging of Fumarate Metabolism by Parahydrogen-induced Polarization: A Proof-of-Concept in vivo Study. Chemphyschem 2021; 22:915-923. [PMID: 33590933 PMCID: PMC8251594 DOI: 10.1002/cphc.202001038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Indexed: 01/18/2023]
Abstract
Hyperpolarized [1-13 C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13 C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13 C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13 C]fumarate at sufficient 13 C polarization for ex vivo detection of hyperpolarized 13 C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13 C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hitomi Nakano
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Shuto Sugai
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Mitsushi Tomohiro
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yuki Kase
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Yoshiki Uchio
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Toru Yamaguchi
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Yujirou Matsuo
- Division of Computational ChemistryTransition State Technology Co. Ltd.2-16-1 Tokiwadai, UbeYamaguchi755-8611Japan
| | - Tatsuya Naganuma
- R&D DepartmentJapan REDOX Ltd.4-29-49-805 Chiyo, Hakata-kuFukuoka812-0044Japan
| | - Norihiko Takeda
- Division of Cardiology and MetabolismCenter for Molecular MedicineJichi Medical University3311-1 Yakushiji, Shimotsuke-shiTochigi329-0498Japan
| | - Ikuya Nishimura
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Hiroshi Hirata
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| | - Takuya Hashimoto
- Chiba Iodine Resource Innovation Center and Department of ChemistryGraduate School of ScienceChiba University1-33 Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Shingo Matsumoto
- Division of Bioengineering & BioinformaticsGraduate School of Information Science & TechnologyHokkaido UniversityNorth 14, West 9, Kita-ku, SapporoHokkaido060-0814Japan
| |
Collapse
|