1
|
Prajapat M, Maria A, Vidigal J. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise. Nucleic Acids Res 2025; 53:gkae1138. [PMID: 39673524 PMCID: PMC11724307 DOI: 10.1093/nar/gkae1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/26/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Non-coding regulatory sequences play essential roles in adjusting gene output to cellular needs and are thus critical to animal development and health. Numerous such sequences have been identified in mammalian genomes ranging from transcription factors binding motifs to recognition sites for RNA-binding proteins and non-coding RNAs. The advent of CRISPR has raised the possibility of assigning functionality to individual endogenous regulatory sites by facilitating the generation of isogenic cell lines that differ by a defined set of genetic modifications. Here we investigate the usefulness of this approach to assign function to individual miRNA binding sites. We find that the process of generating isogenic pairs of mammalian cell lines with CRISPR-mediated mutations introduces extensive molecular and phenotypic variability between biological replicates confounding attempts at assigning function to the binding site. Our work highlights an important consideration when employing CRISPR editing to characterize non-coding regulatory sequences in cell lines and calls for the development and adoption of alternative strategies to address this question in the future.
Collapse
Affiliation(s)
- Mahendra K Prajapat
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Andrea G Maria
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, The National Institutes of Health, 37 Convent Dr, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Hao Q, Henning SM, Magyar CE, Said J, Zhong J, Rettig MB, Vadgama JV, Wang P. Enhanced Chemoprevention of Prostate Cancer by Combining Arctigenin with Green Tea and Quercetin in Prostate-Specific Phosphatase and Tensin Homolog Knockout Mice. Biomolecules 2024; 14:105. [PMID: 38254705 PMCID: PMC10813217 DOI: 10.3390/biom14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The low bioavailability of most phytochemicals limits their anticancer effects in humans. The present study was designed to test whether combining arctigenin (Arc), a lignan mainly from the seed of Arctium lappa, with green tea (GT) and quercetin (Q) enhances the chemopreventive effect on prostate cancer. We performed in vitro proliferation studies on different cell lines. We observed a strong synergistic anti-proliferative effect of GT+Q+Arc in exposing androgen-sensitive human prostate cancer LNCaP cells. The pre-malignant WPE1-NA22 cell line was more sensitive to this combination. No cytotoxicity was observed in normal prostate epithelial PrEC cells. For an in vivo study, 3-week-old, prostate-specific PTEN (phosphatase and tensin homolog) knockout mice were treated with GT+Q, Arc, GT+Q+Arc, or the control daily until 16 weeks of age. In vivo imaging using prostate-specific membrane antigen (PSMA) probes demonstrated that the prostate tumorigenesis was significantly inhibited by 40% (GT+Q), 60% (Arc at 30 mg/kg bw), and 90% (GT+Q+Arc) compared to the control. A pathological examination showed that all control mice developed invasive prostate adenocarcinoma. In contrast, the primary lesion in the GT+Q and Arc alone groups was high-grade prostatic intraepithelial neoplasia (PIN), with low-grade PIN in the GT+Q+Arc group. The combined effect of GT+Q+Arc was associated with an increased inhibition of the androgen receptor, the PI3K/Akt pathway, Ki67 expression, and angiogenesis. This study demonstrates that combining Arc with GT and Q was highly effective in prostate cancer chemoprevention. These results warrant clinical trials to confirm the efficacy of this combination in humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Q.H.); (J.V.V.)
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Susanne M. Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Clara E. Magyar
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Said
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jin Zhong
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Internal Medicine, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Matthew B. Rettig
- Departments of Medicine and Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Q.H.); (J.V.V.)
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (Q.H.); (J.V.V.)
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Wang H, Zhou Y, Chu C, Xiao J, Zheng S, Korpal M, Korn JM, Penaloza T, Drake RR, Gan W, Gao X. Generating a Murine PTEN Null Cell Line to Discover the Key Role of p110β-PAK1 in Castration-Resistant Prostate Cancer Invasion. Mol Cancer Res 2023; 21:1317-1328. [PMID: 37606694 PMCID: PMC10841189 DOI: 10.1158/1541-7786.mcr-22-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/22/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Although androgen deprivation treatment often effectively decreases prostate cancer, incurable metastatic castration-resistant prostate cancer (CRPC) eventually occurs. It is important to understand how CRPC metastasis progresses, which is not clearly defined. The loss of PTEN, a phosphatase to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate in the PI3K pathway, occurs in up to 70% to 80% of CRPC. We generated a mouse androgen-independent prostate cancer cell line (PKO) from PTEN null and Hi-Myc transgenic mice in C57BL/6 background. We confirmed that this PKO cell line has an activated PI3K pathway and can metastasize into the femur and tibia of immunodeficient nude and immunocompetent C57BL/6 mice. In vitro, we found that androgen deprivation significantly enhanced PKO cell migration/invasion via the p110β isoform-depended PAK1-MAPK activation. Inhibition of the p110β-PAK1 axis significantly decreased prostate cancer cell migration/invasion. Of note, our analysis using clinical samples showed that PAK1 is more activated in CRPC than in advanced prostate cancer; high PAK1/phosphorylated-PAK1 levels are associated with decreased survival rates in patients with CRPC. All the information suggests that this cell line reflects the characteristics of CRPC cells and can be applied to dissect the mechanism of CRPC initiation and progression. This study also shows that PAK1 is a potential target for CRPC treatment. IMPLICATIONS This study uses a newly generated PTEN null prostate cancer cell line to define a critical functional role of p110β-PAK1 in CRPC migration/invasion. This study also shows that the p110β-PAK1 axis can potentially be a therapeutic target in CRPC metastasis.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jialing Xiao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Shanshan Zheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Manav Korpal
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Joshua M Korn
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Tiffany Penaloza
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wenjian Gan
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Unterberger CJ, McIlwain SJ, Tsourkas PK, Maklakova VI, Prince JL, Onesti A, Hu R, Kopchick JJ, Swanson SM, Marker PC. Conditional gene regulation models demonstrate a pro-proliferative role for growth hormone receptor in prostate cancer. Prostate 2023; 83:416-429. [PMID: 36562110 PMCID: PMC9974633 DOI: 10.1002/pros.24474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/11/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Humans with inactivating mutations in growth hormone receptor (GHR) have lower rates of cancer, including prostate cancer. Similarly, mice with inactivating Ghr mutations are protected from prostatic intraepithelial neoplasia in the C3(1)/TAg prostate cancer model. However, gaps in clinical relevance in those models persist. The current study addresses these gaps and the ongoing role of Ghr in prostate cancer using loss-of-function and gain-of-function models. METHODS Conditional Ghr inactivation was achieved in the C3(1)/TAg model by employing a tamoxifen-inducible Cre and a prostate-specific Cre. In parallel, a transgenic GH antagonist was also used. Pathology, proliferation, and gene expression of 6-month old mouse prostates were assessed. Analysis of The Cancer Genome Atlas data was conducted to identify GHR overexpression in a subset of human prostate cancers. Ghr overexpression was modeled in PTEN-P2 and TRAMP-C2 mouse prostate cancer cells using stable transfectants. The growth, proliferation, and gene expression effects of Ghr overexpression was assessed in vitro and in vivo. RESULTS Loss-of-function for Ghr globally or in prostatic epithelial cells reduced proliferation and stratification of the prostatic epithelium in the C3(1)/TAg model. Genes and gene sets involved in the immune system and tumorigenesis, for example, were dysregulated upon global Ghr disruption. Analysis of The Cancer Genome Atlas revealed higher GHR expression in human prostate cancers with ERG-fusion genes or ETV1-fusion genes. Modeling the GHR overexpression observed in these human prostate cancers by overexpressing Ghr in mouse prostate cancer cells with mutant Pten or T-antigen driver genes increased proliferation of prostate cancer cells in vitro and in vivo. Ghr overexpression regulated the expression of multiple genes oppositely to Ghr loss-of-function models. CONCLUSIONS Loss-of-function and gain-of-function Ghr models, including prostatic epithelial cell specific alterations in Ghr, altered proliferation, and gene expression. These data suggest that changes in GHR activity in human prostatic epithelial cells play a role in proliferation and gene regulation in prostate cancer, suggesting the potential for disrupting GH signaling, for example by the FDA approved GH antagonist pegvisomant, may be beneficial in treating prostate cancer.
Collapse
Affiliation(s)
- Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sean J McIlwain
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philippos K Tsourkas
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vilena I Maklakova
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jordyn L Prince
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Abigail Onesti
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Steven M Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Choudhry M, Gamallat Y, Khosh Kish E, Seyedi S, Gotto G, Ghosh S, Bismar TA. Downregulation of BUD31 Promotes Prostate Cancer Cell Proliferation and Migration via Activation of p-AKT and Vimentin In Vitro. Int J Mol Sci 2023; 24:ijms24076055. [PMID: 37047027 PMCID: PMC10094631 DOI: 10.3390/ijms24076055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Among men, prostate cancer (PCa) is the second most frequently diagnosed cancer subtype and has demonstrated a high degree of prevalence globally. BUD31, also known as Functional Spliceosome-Associated Protein 17, is a protein that works at the level of the spliceosome; it is functionally implicated in pre-mRNA splicing as well as processing, while also acting as a transcriptional regulator of androgen receptor (AR) target genes. Clinically, the expression of BUD31 and its functions in the development and progression of PCa is yet to be elucidated. The BUD31 expression was assessed using IHC in a tissue microarray (TMA) constructed from a cohort of 284 patient samples. In addition, we analyzed the prostate adenocarcinoma (TCGAPRAD-) database. Finally, we used PCa cell lines to knockdown BUD31 to study the underlying mechanisms in vitro.Assesment of BUD31 protein expression revealed lower expression in incidental and advanced PCa, and significantly lower expression was observed in patients diagnosed with castrate-resistant prostate cancer. Additionally, bioinformatic analysis and GSEA revealed that BUD31 increased processes related to cancer cell migration and proliferation. In vitro results made evident that BUD31 knockdown in PC3 cells led to an increase in the G2 cell population, indicating a more active and proliferative state. Additionally, an investigation of metastatic processes revealed that knockdown of BUD31 significantly enhanced the ability of PC3 cells to migrate and invade. Our in vitro results showed BUD31 knockdown promotes cell proliferation and migration of prostate cancer cells via activation of p-AKT and vimentin. These results support the clinical data, where low expression of BUD31 was correlated to more advanced stages of PCa.
Collapse
Affiliation(s)
- Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Geoffrey Gotto
- Department of Surgery, Division of Urology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Departments of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Wang EC, Lee WR, Armstrong AJ. Second generation anti-androgens and androgen deprivation therapy with radiation therapy in the definitive management of high-risk prostate cancer. Prostate Cancer Prostatic Dis 2023; 26:30-40. [PMID: 36203051 PMCID: PMC10033329 DOI: 10.1038/s41391-022-00598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evolving data suggest that men with high-risk localized prostate cancer may benefit from more potent androgen receptor inhibition in the context of curative intent radiotherapy. Recently updated American Society for Clinical Oncology (ASCO) evidence-based guidelines and the National Comprehensive Cancer Network (NCCN) Guidelines have updated recommendations for the consideration of adding second generation anti-androgens to androgen deprivation therapy (ADT) in men receiving radiation therapy (RT) for noncastrate locally advanced high and very high risk nonmetastatic or node positive prostate cancer. METHODS AND RESULTS We conducted a comprehensive review of existing published and abstract presented evidence behind RT with ADT for the definitive management of high-risk prostate cancer, particularly focused on the current phase II and III trial evidence for the addition of second generation anti-androgens to ADT in definitive RT treatment of high-risk prostate cancer and specifically focused on the recent STAMPEDE trial results with abiraterone acetate. We review the biological mechanisms in which second generation anti-androgens may help mitigate ADT resistance and provide radiosensitization through inhibition of DNA repair. Finally, we discuss ongoing clinical trials of potent androgen receptor (AR) inhibitors with ADT in this non-metastatic high-risk radiotherapy setting that may inform on future treatment guidelines. CONCLUSIONS Recent data suggest an overall survival benefit as well as increased probabilities of disease free and metastasis free survival in men with high and very high-risk localized, node positive, and oligometastatic hormone sensitive prostate cancer with abiraterone acetate and prednisone and support the use of potent AR inhibitors in this setting after informed decision making.
Collapse
Affiliation(s)
- Edina C Wang
- Department of Radiation Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - W Robert Lee
- Department of Radiation Oncology, Duke University, Durham, NC, USA
| | - Andrew J Armstrong
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Pozas J, Álvarez Rodríguez S, Fernández VA, Burgos J, Santoni M, Manneh Kopp R, Molina-Cerrillo J, Alonso-Gordoa T. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future? Cancers (Basel) 2022; 14:6071. [PMID: 36551557 PMCID: PMC9776956 DOI: 10.3390/cancers14246071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The androgen signaling pathway is the cornerstone in the treatment of high risk or advanced prostate cancer patients. However, in recent years, different mechanisms of resistance have been defined in this field, limiting the efficacy of the currently approved antiandrogen drugs. Different therapeutic approaches are under research to assess the role of combination therapies against escape signaling pathways or the development of novel antiandrogen drugs to try to solve the primary or acquired resistance against androgen dependent or independent pathways. The present review aims to summarize the current state of androgen inhibition in the therapeutic algorithm of patients with advanced prostate cancer and the mechanisms of resistance to those available drugs. In addition, this review conducted a comprehensive overview of the main present and future research approaches in the field of androgen receptor inhibition to overcome these resistances and the potential new drugs under research coming into this setting.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Álvarez Rodríguez
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | | | - Javier Burgos
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Matteo Santoni
- Medical Oncology Department, Mazerata Hospital, 62100 Macerata, Italy
| | - Ray Manneh Kopp
- Sociedad de Oncología y Hematología del Cesar, Valledupar 200001, Colombia
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
8
|
Brown NE, Jones A, Hunt BG, Waltz SE. Prostate tumor RON receptor signaling mediates macrophage recruitment to drive androgen deprivation therapy resistance through Gas6-mediated Axl and RON signaling. Prostate 2022; 82:1422-1437. [PMID: 35860905 PMCID: PMC9492645 DOI: 10.1002/pros.24416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT), or chemical castration, is the first-line therapy for prostate cancer; however, resistance leaves few treatment options. Prostatic tumor-associated macrophages (TAMs) have been shown to promote prostate cancer growth and are abundant in castration-resistant prostate cancer (CRPC), suggesting a role in promoting CRPC. We recently showed a tumor cell-intrinsic mechanism by which RON promotes CRPC. Given previous reports that RON alters prostate cancer cell chemokine production and RON-overexpressing tumors alter macrophage function, we hypothesized that a macrophage-dependent mechanism regulated by tumor cell intrinsic RON also promotes CRPC. METHODS Using RON-modulated genetically engineered mouse models (GEMMs) and GEMM-derived cell lines and co-cultures with bone marrow-derived macrophages, we show functional and molecular characteristics of signaling pathways in supporting CRPC. Further, we used an unbiased phosphokinase array to identify pathway interactions regulated by RON. Finally, using human prostate cancer cell lines and prostate cancer patient data sets, we show the relevance of our findings to human prostate cancer. RESULTS Studies herein show that macrophages recruited into the prostate tumor microenvironment (TME) serve as a source for Gas6 secretion which serves to further enhance RON and Axl receptor activation in prostate tumor cells thereby driving CRPC. Further, we show targeting RON and macrophages in a murine model promotes CRPC sensitization to ADT. CONCLUSIONS We discovered a novel role for the RON receptor in prostate cancer cells in promoting CRPC through the recruitment of macrophages into the prostate TME. Macrophage-targeting agents in combination with RON/Axl inhibition are likely to provide clinical benefits for patients with CRPC.
Collapse
Affiliation(s)
- Nicholas E. Brown
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Angelle Jones
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Brian G. Hunt
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Susan E. Waltz
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Research ServiceCincinnati Veterans Affairs Medical CenterCincinnatiOhioUSA
| |
Collapse
|
9
|
High Expression of PDLIM2 Predicts a Poor Prognosis in Prostate Cancer and Is Correlated with Epithelial-Mesenchymal Transition and Immune Cell Infiltration. J Immunol Res 2022; 2022:2922832. [PMID: 35707002 PMCID: PMC9192325 DOI: 10.1155/2022/2922832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose To elucidate the clinical and prognostic role of PDZ and LIM domain protein (PDLIM) genes and the association to epithelial-mesenchymal transition (EMT) and immune cell infiltration in patients with prostate cancer (PRAD). Methods The data of RNA-seq, DNA methylation, and clinical features of PRAD patients were collected from The Cancer Genome Atlas (TCGA) database to define the prognostic value of PDLIM gene expression and the association with EMT and immune cell infiltration. A tissue microarray including 134 radical prostatectomy specimens was served as validation by immunohistochemistry (IHC) staining analysis. Results The mRNA levels of PDLIM1/2/3/4/6/7 were significantly downregulated, while PDLIM5 was upregulated in PRAD (P < 0.05). High expression of PDLIM2 mRNA suggests poor progression free interval in PRAD patients. DNA methylation of PDLIM2 was correlated with its mRNA expression level, and that the cg22973076 methylation site in PDLIM2 was associated with shorter PFI (P < 0.05) in PRAD. Single-sample gene-set enrichment and gene functional enrichment results showed that PDLIM2 was correlated with EMT and immune processes. Spearman's test showed a significant correlation with six reported EMT signatures and several EMT signature-related genes. Tumor microenvironment analysis revealed that the PDLIM2 mRNA expression was positively correlated with the immune score, stromal score, and various tumor infiltrating immune cells. Additionally, the results showed that patients in the high-PDLIM2 mRNA expression group may be more sensitive to immune checkpoint blockade therapy. Finally, IHC analysis further implicated the protein level of PDLIM2 was upregulated in PRAD and acts as a novel potential biomarker in predicting tumor progression. Conclusion Our study suggests that PDLIM family genes might be significantly correlated with oncogenesis and the progression of PRAD. PDLIM2 correlated with EMT and immune cell infiltration by acting as an oncogene in PRAD, which may serve as a potential prognostic biomarker for PRAD patients.
Collapse
|
10
|
Unterberger CJ, Maklakova VI, Lazar M, Arneson PD, Mcilwain SJ, Tsourkas PK, Hu R, Kopchick JJ, Swanson SM, Marker PC. GH Action in Prostate Cancer Cells Promotes Proliferation, Limits Apoptosis, and Regulates Cancer-related Gene Expression. Endocrinology 2022; 163:6564019. [PMID: 35383352 PMCID: PMC8995093 DOI: 10.1210/endocr/bqac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Previous studies investigating the effects of blocking the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in prostate cancer found no effects of the growth hormone receptor (GHR) antagonist, pegvisomant, on the growth of grafted human prostate cancer cells in vivo. However, human GHR is not activated by mouse GH, so direct actions of GH on prostate cancer cells were not evaluated in this context. The present study addresses the species specificity of GH-GHR activity by investigating GH actions in prostate cancer cell lines derived from a mouse Pten-deletion model. In vitro cell growth was stimulated by GH and reduced by pegvisomant. These in vitro GH effects were mediated at least in part by the activation of JAK2 and STAT5. When Pten-mutant cells were grown as xenografts in mice, pegvisomant treatment dramatically reduced xenograft size, and this was accompanied by decreased proliferation and increased apoptosis. RNA sequencing of xenografts identified 1765 genes upregulated and 953 genes downregulated in response to pegvisomant, including many genes previously implicated as cancer drivers. Further evaluation of a selected subset of these genes via quantitative reverse transcription-polymerase chain reaction determined that some genes exhibited similar regulation by pegvisomant in prostate cancer cells whether treatment was in vivo or in vitro, indicating direct regulation by GH via GHR activation in prostate cancer cells, whereas other genes responded to pegvisomant only in vivo, suggesting indirect regulation by pegvisomant effects on the host endocrine environment. Similar results were observed for a prostate cancer cell line derived from the mouse transgenic adenocarcinoma of the mouse prostate (TRAMP) model.
Collapse
Affiliation(s)
- Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Vilena I Maklakova
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Sean J Mcilwain
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Philippos K Tsourkas
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Rong Hu
- School of Medicine and Public Health, Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53792, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | - Steven M Swanson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Correspondence: Paul C. Marker, PhD, Pharmaceutical Sciences Division, University of Wisconsin–Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Han H, Wang Y, Curto J, Gurrapu S, Laudato S, Rumandla A, Chakraborty G, Wang X, Chen H, Jiang Y, Kumar D, Caggiano EG, Capogiri M, Zhang B, Ji Y, Maity SN, Hu M, Bai S, Aparicio AM, Efstathiou E, Logothetis CJ, Navin N, Navone NM, Chen Y, Giancotti FG. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep 2022; 39:110595. [PMID: 35385726 PMCID: PMC9414743 DOI: 10.1016/j.celrep.2022.110595] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/18/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.
Collapse
Affiliation(s)
- Hyunho Han
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yan Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Josue Curto
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sreeharsha Gurrapu
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sara Laudato
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Alekya Rumandla
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Xiaobo Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hong Chen
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Jiang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily G Caggiano
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Monica Capogiri
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Boyu Zhang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Ji
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Sankar N Maity
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Min Hu
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Shanshan Bai
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Ana M Aparicio
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | | | | | - Nicholas Navin
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Nora M Navone
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program and Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
12
|
Racial disparities in prostate cancer: A complex interplay between socioeconomic inequities and genomics. Cancer Lett 2022; 531:71-82. [PMID: 35122875 DOI: 10.1016/j.canlet.2022.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
The largest US cancer health disparity exists in prostate cancer, with Black men having more than a two-fold increased risk of dying from prostate cancer compared to all other races. This disparity is a result of a complex network of factors including socioeconomic status (SES), environmental exposures, and genetics/biology. Inequity in the US healthcare system has emerged as a major driver of disparity in prostate cancer outcomes and has raised concerns that the actual incidence rates may be higher than current estimates. However, emerging studies argue that equalizing healthcare access will not fully eliminate racial health disparities and highlight the important role of biology. Significant differences have been observed in prostate cancer biology between various ancestral groups that may contribute to prostate cancer health disparities. These differences include enhanced androgen receptor signaling, increased genomic instability, metabolic dysregulation, and enhanced inflammatory and cytokine signaling. Immediate actions are needed to increase the establishment of adequate infrastructure and multi-center, interdisciplinary research to bridge the gap between social and biological determinants of prostate cancer health disparities.
Collapse
|
13
|
Propylene Glycol Caprylate-Based Nanoemulsion Formulation of Plumbagin: Development and Characterization of Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3549061. [PMID: 35047632 PMCID: PMC8763502 DOI: 10.1155/2022/3549061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Plumbagin, a bioactive naphthoquinone, has demonstrated potent antitumor potential. However, plumbagin is a sparingly water-soluble compound; therefore, clinical translation requires and will be facilitated by the development of a new pharmaceutical formulation. We have generated an oil-in-water nanoemulsion formulation of plumbagin using a low-energy spontaneous emulsification process with propylene glycol caprylate (Capryol 90) as an oil phase and Labrasol/Kolliphor RH40 as surfactant and cosurfactant excipients. Formulation studies using Capryol 90/Labrasol/Kolliphor RH40 components, based on pseudoternary diagram and analysis of particle size distribution and polydispersity determined by dynamic light scattering (DLS), identified an optimized composition of excipients for nanoparticle formulation. The nanoemulsion loaded with plumbagin as an active pharmaceutical ingredient had an average hydrodynamic diameter of 30.9 nm with narrow polydispersity. The nanoemulsion exhibited long-term stability, as well as good retention of particle size in simulated physiological environments. Furthermore, plumbagin-loaded nanoemulsion showed an augmented cytotoxicity against prostate cancer cells PTEN-P2 in comparison to free drug. In conclusion, we generated a formulation of plumbagin with high loading drug capacity, robust stability, and scalable production. Novel Capryol 90-based nanoemulsion formulation of plumbagin demonstrated antiproliferative activity against prostate cancer cells, warranting thus further pharmaceutical development.
Collapse
|
14
|
Qi Z, Xu Z, Zhang L, Zou Y, Li J, Yan W, Li C, Liu N, Wu H. Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3Kα/β/δ treatment. Nat Commun 2022; 13:182. [PMID: 35013322 PMCID: PMC8748754 DOI: 10.1038/s41467-021-27833-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combining immune checkpoint therapy (ICT) and targeted therapy holds great promises for broad and long-lasting anti-cancer therapies. However, combining ICT with anti-PI3K inhibitors have been challenging because the multifaceted effects of PI3K on both cancer cells and immune cells within the tumor microenvironment. Here we find that intermittent but not daily dosing of a PI3Kα/β/δ inhibitor, BAY1082439, on Pten-null prostate cancer models could overcome ICT resistance and unleash CD8+ T cell-dependent anti-tumor immunity in vivo. Mechanistically, BAY1082439 converts cancer cell-intrinsic immune-suppression to immune-stimulation by promoting IFNα/IFNγ pathway activation, β2-microglubin expression and CXCL10/CCL5 secretion. With its preferential regulatory T cell inhibition activity, BAY1082439 promotes clonal expansion of tumor-associated CD8+ T cells, most likely via tertiary lymphoid structures. Once primed, tumors remain T cell-inflamed, become responsive to anti-PD-1 therapy and have durable therapeutic effect. Our data suggest that intermittent PI3K inhibition can alleviate Pten-null cancer cell-intrinsic immunosuppressive activity and turn "cold" tumors into T cell-inflamed ones, paving the way for successful ICT.
Collapse
Affiliation(s)
- Zhi Qi
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zihan Xu
- School of Life Sciences, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongkang Zou
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Jinping Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyu Yan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing, China
| | - Ningshu Liu
- Bayer AG, Drug Discovery TRG Oncology, Muellerstrasse 178, 13353, Berlin, Germany.,Hehlius Biotech, Inc., 1801 Hongmei Rd, Shanghai, 200233, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China. .,School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
15
|
Somatic Alterations Impact AR Transcriptional Activity and Efficacy of AR-Targeting Therapies in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13163947. [PMID: 34439101 PMCID: PMC8393938 DOI: 10.3390/cancers13163947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary For patients whose prostate cancer spreads beyond the confines of the prostate, treatment options continue to increase. However, we are missing the information that is needed to choose for each patient the best treatment at each step of his cancer progression so we can ensure that maximal remissions and prolonged survival are achieved. In this review, we examine whether a better understanding of how the activity of the target for the default first treatment, the androgen receptor, is regulated in prostate cancer tissues can improve prostate cancer treatment plans. We consider the evidence for variability of androgen receptor activity among patients and examine the molecular basis for this variable action. We summarize clinical evidence supporting that information on a prostate cancer’s genomic composition may inform on its level of androgen receptor action, which may facilitate choice for the most effective first-line therapy and ultimately improve prostate cancer treatment plans overall. Abstract Inhibiting the activity of the ligand-activated transcription factor androgen receptor (AR) is the default first-line treatment for metastatic prostate cancer (CaP). Androgen deprivation therapy (ADT) induces remissions, however, their duration varies widely among patients. The reason for this heterogeneity is not known. A better understanding of its molecular basis may improve treatment plans and patient survival. AR’s transcriptional activity is regulated in a context-dependent manner and relies on an interplay between its associated transcriptional regulators, DNA recognition motifs, and ligands. Alterations in one or more of these factors induce shifts in the AR cistrome and transcriptional output. Significant variability in AR activity is seen in both castration-sensitive (CS) and castration-resistant CaP (CRPC). Several AR transcriptional regulators undergo somatic alterations that impact their function in clinical CaPs. Some alterations occur in a significant fraction of cases, resulting in CaP subtypes, while others affect only a few percent of CaPs. Evidence is emerging that these alterations may impact the response to CaP treatments such as ADT, radiation therapy, and chemotherapy. Here, we review the contribution of recurring somatic alterations on AR cistrome and transcriptional output and the efficacy of CaP treatments and explore strategies to use these insights to improve treatment plans and outcomes for CaP patients.
Collapse
|
16
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
17
|
Makwana V, Rudrawar S, Anoopkumar-Dukie S. Signalling transduction of O-GlcNAcylation and PI3K/AKT/mTOR-axis in prostate cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166129. [PMID: 33744394 DOI: 10.1016/j.bbadis.2021.166129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/23/2022]
Abstract
Hexosamine biosynthetic (HBP) and PI3K/AKT/mTOR pathways are found to predominate the proliferation and survival of prostate cancer cells. Both these pathways have their own specific intermediates to propagate the secondary signals in down-stream cascades and besides having their own structured network, also have shared interconnecting branches. These interconnections are either competitive or co-operative in nature depending on the microenvironmental conditions. Specifically, in prostate cancer HBP and mTOR pathways increases the expression and protein level of androgen receptor in order to support cancer cell proliferation, advancement and metastasis. Pharmacological inhibition of a single pathway is therefore insufficient to stop disease progression as the cancer cells manage to alter the signalling channel. This is one of the primary reasons for the therapeutic failure in prostate cancer and emergence of chemoresistance. Inhibition of these multiple pathways at their common junctures might prove to be of benefit in men suffering from an advanced disease state. Hence, a thorough understanding of these cellular intersecting points and their significance with respect to signal transduction mechanisms might assist in the rational designing of combinations for effective management of prostate cancer.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
18
|
Wu D, Yan Y, Wei T, Ye Z, Xiao Y, Pan Y, Orme JJ, Wang D, Wang L, Ren S, Huang H. An acetyl-histone vulnerability in PI3K/AKT inhibition-resistant cancers is targetable by both BET and HDAC inhibitors. Cell Rep 2021; 34:108744. [PMID: 33596421 DOI: 10.1016/j.celrep.2021.108744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/06/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Acquisition of resistance to phosphatidylinositol 3-kinase (PI3K)/AKT-targeted monotherapy implies the existence of common resistance mechanisms independent of cancer type. Here, we demonstrate that PI3K/AKT inhibitors cause glycolytic crisis, acetyl-coenzyme A (CoA) shortage, and a global decrease in histone acetylation. In addition, PI3K/AKT inhibitors induce drug resistance by selectively augmenting histone H3 lysine 27 acetylation (H3K27ac) and binding of CBP/p300 and BRD4 proteins at a subset of growth factor and receptor (GF/R) gene loci. BRD4 occupation at these loci and drug-resistant cell growth are vulnerable to both bromodomain and histone deacetylase (HDAC) inhibitors. Little or no occupation of HDAC proteins at the GF/R gene loci underscores the paradox that cells respond equivalently to the two classes of inhibitors with opposite modes of action. Targeting this unique acetyl-histone-related vulnerability offers two clinically viable strategies to overcome PI3K/AKT inhibitor resistance in different cancers.
Collapse
Affiliation(s)
- Di Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA; Wuxi Institute of Health Sciences of Beijing Institute of Genomics, Wuxi 214174, China
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA
| | - Ting Wei
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA
| | - Jacob J Orme
- Division of Medical Oncology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Shancheng Ren
- Wuxi Institute of Health Sciences of Beijing Institute of Genomics, Wuxi 214174, China; Department of Urology, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA; Department of Urology, Mayo Clinic College of Medicine and Science, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, MN 55905, USA.
| |
Collapse
|
19
|
Haughey CM, Mukherjee D, Steele RE, Popple A, Dura-Perez L, Pickard A, Patel M, Jain S, Mullan PB, Williams R, Oliveira P, Buckley NE, Honeychurch J, S. McDade S, Illidge T, Mills IG, Eddie SL. Investigating Radiotherapy Response in a Novel Syngeneic Model of Prostate Cancer. Cancers (Basel) 2020; 12:E2804. [PMID: 33003551 PMCID: PMC7599844 DOI: 10.3390/cancers12102804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/24/2020] [Indexed: 01/03/2023] Open
Abstract
The prostate cancer (PCa) field lacks clinically relevant, syngeneic mouse models which retain the tumour microenvironment observed in PCa patients. This study establishes a cell line from prostate tumour tissue derived from the Pten-/-/trp53-/- mouse, termed DVL3 which when subcutaneously implanted in immunocompetent C57BL/6 mice, forms tumours with distinct glandular morphology, strong cytokeratin 8 and androgen receptor expression, recapitulating high-risk localised human PCa. Compared to the commonly used TRAMP C1 model, generated with SV40 large T-antigen, DVL3 tumours are immunologically cold, with a lower proportion of CD8+ T-cells, and high proportion of immunosuppressive myeloid derived suppressor cells (MDSCs), thus resembling high-risk PCa. Furthermore, DVL3 tumours are responsive to fractionated RT, a standard treatment for localised and metastatic PCa, compared to the TRAMP C1 model. RNA-sequencing of irradiated DVL3 tumours identified upregulation of type-1 interferon and STING pathways, as well as transcripts associated with MDSCs. Upregulation of STING expression in tumour epithelium and the recruitment of MDSCs following irradiation was confirmed by immunohistochemistry. The DVL3 syngeneic model represents substantial progress in preclinical PCa modelling, displaying pathological, micro-environmental and treatment responses observed in molecular high-risk disease. Our study supports using this model for development and validation of treatments targeting PCa, especially novel immune therapeutic agents.
Collapse
Affiliation(s)
- Charles M. Haughey
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (D.M.); (A.P.); (M.P.); (J.H.)
| | - Rebecca E. Steele
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London SM2 5NG, UK
| | - Amy Popple
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (D.M.); (A.P.); (M.P.); (J.H.)
| | - Lara Dura-Perez
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
| | - Adam Pickard
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PL, UK
| | - Mehjabin Patel
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (D.M.); (A.P.); (M.P.); (J.H.)
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
| | - Paul B. Mullan
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
| | - Rich Williams
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
| | - Pedro Oliveira
- The Christie Hospital Foundation Trust, Manchester M20 4BX, UK;
| | - Niamh E. Buckley
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (D.M.); (A.P.); (M.P.); (J.H.)
| | - Simon S. McDade
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
| | - Timothy Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PL, UK; (D.M.); (A.P.); (M.P.); (J.H.)
- The Christie Hospital Foundation Trust, Manchester M20 4BX, UK;
| | - Ian G. Mills
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sharon L. Eddie
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK; (C.M.H.); (R.E.S.); (L.D.-P.); (A.P.); (S.J.); (P.B.M.); (R.W.); (N.E.B.); (S.S.M.)
| |
Collapse
|
20
|
Tremblay M, Viala S, Shafer ME, Graham-Paquin AL, Liu C, Bouchard M. Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation. eLife 2020; 9:54542. [PMID: 32894216 PMCID: PMC7525654 DOI: 10.7554/elife.54542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022] Open
Abstract
Tissue homeostasis relies on the fine regulation between stem and progenitor cell maintenance and lineage commitment. In the adult prostate, stem cells have been identified in both basal and luminal cell compartments. However, basal stem/progenitor cell homeostasis is still poorly understood. We show that basal stem/progenitor cell maintenance is regulated by a balance between BMP5 self-renewal signal and GATA3 dampening activity. Deleting Gata3 enhances adult prostate stem/progenitor cells self-renewal capacity in both organoid and allograft assays. This phenotype results from a local increase in BMP5 activity in basal cells as shown by the impaired self-renewal capacity of Bmp5-deficient stem/progenitor cells. Strikingly, Bmp5 gene inactivation or BMP signaling inhibition with a small molecule inhibitor are also sufficient to delay prostate and skin cancer initiation of Pten-deficient mice. Together, these results establish BMP5 as a key regulator of basal prostate stem cell homeostasis and identifies a potential therapeutic approach against Pten-deficient cancers.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Sophie Viala
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Maxwell Er Shafer
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Adda-Lee Graham-Paquin
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Chloe Liu
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
21
|
Chrastina A, Welsh J, Rondeau G, Abedinpour P, Borgström P, Baron VT. Plumbagin‐Serum Albumin Interaction: Spectral, Electrochemical, Structure‐Binding Analysis, Antiproliferative and Cell Signaling Aspects with Implications for Anticancer Therapy. ChemMedChem 2020; 15:1338-1347. [DOI: 10.1002/cmdc.202000157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM) 505 Coast Blvd. South La Jolla CA 92037 USA
| | - John Welsh
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| | - Gaelle Rondeau
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| | - Parisa Abedinpour
- Proteogenomics Research Institute for Systems Medicine (PRISM) 505 Coast Blvd. South La Jolla CA 92037 USA
| | - Per Borgström
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| | - Véronique T. Baron
- Vaccine Research Institute of San Diego (VRISD) 3030 Bunker Hill Street San Diego CA 92109 USA
| |
Collapse
|
22
|
Wang S, Zhou X, Liang C, Bao M, Tian Y, Zhu J, Zhang T, Yang J, Wang Z. ALDH1A3 serves as a predictor for castration resistance in prostate cancer patients. BMC Cancer 2020; 20:387. [PMID: 32375698 PMCID: PMC7201787 DOI: 10.1186/s12885-020-06899-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023] Open
Abstract
Background Aldehyde dehydrogenase 1A3 (ALDH1A3) has been implicated in the survival and proliferation of prostate cancer cells. Methods We retrospectively reviewed our patients with advanced disease on adjuvant hormonal therapy after prostatectomy. Time to castration resistance stage was documented. And Immunohistochemistry analysis for ALDH1A3 was performed for those patient samples on tissue microarray. Bioinformatics anslysis was used for RNA sequencing data of both primary prostate cancer and metastatic castration resistance prostate cancer (mCRPC) from online datasets. Crispr-Cas9 was used to knock out ALDH1A3 in prostate cancer luminal cells, and morphologic analysis as well as the Gene Set Enrichment Analysis (GSEA) were facilitated to discover the mechanisms of the resistance phenotype. Results We found that the patients with ALDH1A3 low expression had shorter time to progression to castration resistance compared with those of higher expression group on adjuvant hormonal therapy after radical prostatectomy. The ALDH1A3 knockout cells gradually acquired resistance to androgen deprivation therapy, a few cells have been found in knockout group showing as that the spindle-like luminal cells in charcoal stripped medium. Furthermore, PI3K pathway activation has been confirmed by Western blot. The PI3K pathway inhibitor BEZ235 has been demonstrated that the acquired ADT resistance by ALDH1A3 down regulation could be rescued by PI3K pathway inhibitor. Conclusion These results suggested a novel function for ALDH1A3 in development of mCRPC, and indicated PI3K pathway inhibitor has the potential in the treatment of a subgroup of mCRPC patients.
Collapse
Affiliation(s)
- Shangqian Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jundong Zhu
- Department of Urology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Tongtong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
23
|
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 2020; 17:292-307. [PMID: 32203305 PMCID: PMC7218925 DOI: 10.1038/s41585-020-0298-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K-AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Kevin Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen E Knudsen
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, Huang C, Schittenhelm RB, Anderson KE, Furic L, Wijayaratne PR, Matzaris M, Montgomery MK, Papargiris M, Norden S, Febbraio M, Risbridger GP, Frydenberg M, Nomura DK, Taylor RA. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med 2020; 11:11/478/eaau5758. [PMID: 30728288 DOI: 10.1126/scitranslmed.aau5758] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
Metabolism alterations are hallmarks of cancer, but the involvement of lipid metabolism in disease progression is unclear. We investigated the role of lipid metabolism in prostate cancer using tissue from patients with prostate cancer and patient-derived xenograft mouse models. We showed that fatty acid uptake was increased in human prostate cancer and that these fatty acids were directed toward biomass production. These changes were mediated, at least partly, by the fatty acid transporter CD36, which was associated with aggressive disease. Deleting Cd36 in the prostate of cancer-susceptible Pten-/- mice reduced fatty acid uptake and the abundance of oncogenic signaling lipids and slowed cancer progression. Moreover, CD36 antibody therapy reduced cancer severity in patient-derived xenografts. We further demonstrated cross-talk between fatty acid uptake and de novo lipogenesis and found that dual targeting of these pathways more potently inhibited proliferation of human cancer-derived organoids compared to the single treatments. These findings identify a critical role for CD36-mediated fatty acid uptake in prostate cancer and suggest that targeting fatty acid uptake might be an effective strategy for treating prostate cancer.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia. .,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Ashlee K Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Vanessa R Haynes
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard Rebello
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research UK Manchester Institute, University of Manchester, Manchester M20 4GJ, UK
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Birunthi Niranjan
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sarah T Whitby
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer Lo
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kimberley E Anderson
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Luc Furic
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Poornima R Wijayaratne
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Maria Matzaris
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Magdalene K Montgomery
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia.,Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity, Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Melissa Papargiris
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sam Norden
- TissuPath, Mount Waverley, VIC 3149, Australia
| | - Maria Febbraio
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Frydenberg
- Department of Surgery, Faculty of Medicine, Monash University, Clayton, VIC 3800, Australia
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkley, Berkeley, CA, USA
| | - Renea A Taylor
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC 3800, Australia. .,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
25
|
Wang B, Zhou Y, Zhang J, Jin X, Wu H, Huang H. Fructose-1,6-bisphosphatase loss modulates STAT3-dependent expression of PD-L1 and cancer immunity. Theranostics 2020; 10:1033-1045. [PMID: 31938049 PMCID: PMC6956820 DOI: 10.7150/thno.38137] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: Abnormal expression of programmed death-1 (PD-1) ligand-1(PD-L1) in cancer cells plays a crucial role in cancer immune evasion and progression. The immune checkpoint molecules PD-1 and PD-L1 have been targeted for cancer treatment with significant benefits for cancer patients. However, the response rate is relatively low in certain types of cancer and the underlying mechanism remains poorly understood. Better understanding of the molecular mechanism of PD-L1 expression regulation in cancer cells is urgently needed to improve the treatment response rate and overall survival of patients. Fructose-1, 6-biphosphatase (FBP1) is a key enzyme in gluconeogenesis and is implicated in human cancer due to its frequent loss in various cancer types. Methods: Expression of FBP1 and PD-L1 was analyzed in various cancer cell lines. Western blot and RT-qPCR were performed to determine whether FBP1 regulates PD-L1 expression. Co-immunoprecipitation and glutathione S-transferase (GST) pulldown assay were employed to define the underlying regulatory mechanisms. Immunohistochemistry was conducted to determine the correlation between FBP1 and PD-L1 expression in a cohort of patients. A cancer syngeneic mouse model was utilized to examine how FBP1 affects tumor immunity. Results: We demonstrated that in a manner independent of its enzymatic activity FBP1 downregulates the expression of PD-L1 in various cell lines of different cancer types including pancreatic and prostate cancer. We further showed that this regulation occurs at the transcriptional level and is mediated by FBP1 inhibition of signal transducer and activator of transcription-3 (STAT3)-dependent PD-L1 transcription. Moreover, FBP1 and PD-L1 protein expression were negatively correlated in pancreatic ductal adenocarcinoma (PDAC) specimens from a cohort of patients. Most importantly, we demonstrated that decreased FBP1 expression promotes tumor growth and resistance to immune checkpoint blockade therapy in mice. Conclusions: Our findings reveal a new tumor suppressor function of FBP1 in inhibiting PD-L1 expression and enhancing cancer immunity. They also suggest that FBP1-deficient human cancers could be therapeutically targeted by PD-1/PD-L1-based immune checkpoint blockade therapy.
Collapse
|
26
|
Sun J, Hu X, Gao Y, Tang Q, Zhao Z, Xi W, Yang F, Zhang W, Song Y, Song B, Wang T, Wang H. MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3β signaling impedes castration-resistant prostate cancer growth. Aging (Albany NY) 2019; 11:10644-10663. [PMID: 31761786 PMCID: PMC6914400 DOI: 10.18632/aging.102482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations that lead to dysregulated gene expression in the progression of castration-resistant prostate cancer (CRPC) remain elusive. Here, we investigated the role of histone deubiquitinase MYSM1 in the pathogenesis of prostate cancer (PCa). Tissues and public datasets of PCa were evaluated for MYSM1 levels. We explored the effects of MYSM1 on cell proliferation, senescence and viability both in vitro and in vivo. Integrative database analyses and co-immunoprecipitation assays were performed to elucidate genomic association of MYSM1 and MYSM1-involved biological interaction network in PCa. We observed that MYSM1 were downregulated in CRPC compared to localized prostate tumors. Knockdown of MYSM1 promoted cell proliferation and suppressed senescence of CRPC cells under condition of androgen ablation. MYSM1 downregulation enhanced the tumorigenic ability in nude mice. Integrative bioinformatic analyses of the significantly associated genes with MYSM1 revealed MYSM1-correlated pathways, providing substantial clues as to the role of MYSM1 in PCa. MYSM1 was able to bind to androgen receptor instead of increasing its expression and knockdown of MYSM1 resulted in activation of Akt/c-Raf/GSK-3β signaling. Together, our findings indicate that MYSM1 is pivotal in CRPC pathogenesis and may be established as a potential target for future treatment.
Collapse
Affiliation(s)
- Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xiangnan Hu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhining Zhao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.,Clinical Laboratory, 451 Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
27
|
Shanmugapriya, Othman N, Sasidharan S. Prediction of genes and protein-protein interaction networking for miR-221-5p using bioinformatics analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Thivierge C, Tseng HW, Mayya VK, Lussier C, Gravel SP, Duchaine TF. Alternative polyadenylation confers Pten mRNAs stability and resistance to microRNAs. Nucleic Acids Res 2019; 46:10340-10352. [PMID: 30053103 PMCID: PMC6212768 DOI: 10.1093/nar/gky666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Fine regulation of the phosphatase and tensin homologue (PTEN) phosphatase dosage is critical for homeostasis and tumour suppression. The 3'-untranslated region (3'-UTR) of Pten mRNA was extensively linked to post-transcriptional regulation by microRNAs (miRNAs). In spite of this critical regulatory role, alternative 3'-UTRs of Pten have not been systematically characterized. Here, we reveal an important diversity of Pten mRNA isoforms generated by alternative polyadenylation sites. Several 3'-UTRs are co-expressed and their relative expression is dynamically regulated. In spite of encoding multiple validated miRNA-binding sites, longer isoforms are largely refractory to miRNA-mediated silencing, are more stable and contribute to the bulk of PTEN protein and signalling functions. Taken together, our results warrant a mechanistic re-interpretation of the post-transcriptional mechanisms involving Pten mRNAs and raise concerns on how miRNA-binding sites are being validated.
Collapse
Affiliation(s)
- Caroline Thivierge
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Hsin-Wei Tseng
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Vinay K Mayya
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | - Carine Lussier
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| | | | - Thomas F Duchaine
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3A 1A3 Canada
| |
Collapse
|
29
|
Bai Y, Yang Y, Yan Y, Zhong J, Blee AM, Pan Y, Ma T, Karnes RJ, Jimenez R, Xu W, Huang H. RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis. Theranostics 2019; 9:3459-3475. [PMID: 31281490 PMCID: PMC6587168 DOI: 10.7150/thno.33292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: The overall success rate of prostate cancer (PCa) diagnosis and therapy has been improved over the years. However, genomic and phenotypic heterogeneity remains a major challenge for effective detection and treatment of PCa. Efforts to better classify PCa into functional subtypes and elucidate the molecular mechanisms underlying prostate tumorigenesis and therapy resistance are warranted for further improvement of PCa outcomes. Methods: We generated Cre+;Runx2-cTg;Ptenp/+ (Runx2-Pten double mutant) mice by crossbreeding Cre+;Runx2-cTg males with Pten conditional (Ptenp/p) females. By using Hematoxylin and Eosin (H&E) staining, SMA and Masson's Trichrome staining, we investigated the effect of PTEN haploinsufficiency in combination with Runx2 overexpression on prostate tumorigenesis. Moreover, we employed immunohistochemistry (IHC) to stain Ki67 for cell proliferation, cleaved caspase 3 for apoptosis and AKT phosphorylation for signaling pathway in prostate tissues. Chromatin immunoprecipitation coupled quantitative PCR (ChIP-qPCR), reverse transcription coupled quantitative PCR (RT-qPCR), western blot (WB) analyses and immunofluorescence (IF) were conducted to determine the underlying mechanism by which RUNX2 regulates CXCR7 and AKT phosphorylation in PCa cells. Results: We demonstrated that mice with prostate-specific Pten heterozygous deletion and Runx2 overexpression developed high-grade prostatic intraepithelial neoplasia (HGPIN) and cancerous lesions at age younger than one year, with concomitant high level expression of Akt phosphorylation and the chemokine receptor Cxcr7 in malignant glands. RUNX2 overexpression induced CXCR7 transcription and membrane location and AKT phosphorylation in PTEN-deficient human PCa cell lines. Increased expression of RUNX2 also promoted growth of PCa cells and this effect was largely mediated by CXCR7. CXCR7 expression also positively correlated with AKT phosphorylation in PCa patient specimens. Conclusions: Our results reveal a previously unidentified cooperative role of RUNX2 overexpression and PTEN haploinsufficiency in prostate tumorigenesis, suggesting that the defined RUNX2-CXCR7-AKT axis can be a viable target for effective treatment of PCa.
Collapse
Affiliation(s)
- Yang Bai
- Heilongjiang Key Laboratory of Scientific Research in Urology and Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yinhui Yang
- Heilongjiang Key Laboratory of Scientific Research in Urology and Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jian Zhong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Alexandra M. Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Tao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - R. Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Wanhai Xu
- Heilongjiang Key Laboratory of Scientific Research in Urology and Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Torquato S, Pallavajjala A, Goldstein A, Valda Toro P, Silberstein JL, Lee J, Nakazawa M, Waters I, Chu D, Shinn D, Groginski T, Hughes RM, Simons BW, Khan H, Feng Z, Carducci MA, Paller CJ, Denmeade SR, Kressel B, Eisenberger MA, Antonarakis ES, Trock BJ, Park BH, Hurley PJ. Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer. JCO Precis Oncol 2019; 3:PO.18.00227. [PMID: 31131348 PMCID: PMC6532665 DOI: 10.1200/po.18.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Androgen receptor (AR) gene alterations, including ligand-binding domain mutations and copy number (CN) gain, have yet to be fully established as predictive markers of resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC). The goal of this study was to validate AR gene alterations detected in cell-free DNA (cfDNA) as markers of enzalutamide and abiraterone resistance in patients with mCRPC. METHODS Patients with mCRPC (N = 62) were prospectively enrolled between 2014 and 2018. Blood was collected before therapies-enzalutamide (n = 25), abiraterone (n = 35), or enzalutamide and abiraterone (n = 2)-and at disease progression. We used deep next-generation sequencing to analyze cfDNA for sequence variants and CN status in AR and 45 additional cancer-associated genes. Primary end points were prostate-specific antigen response, progression-free survival (PFS), and overall survival (OS). RESULTS Elevated tumor-specific cfDNA (circulating tumor DNA) was associated with a worse prostate-specific antigen response (hazard ratio [HR], 3.17; 95% CI, 1.11 to 9.05; P = .031), PFS (HR, 1.76; 95% CI, 1.03 to 3.01; P = .039), and OS (HR, 2.92; 95% CI, 1.40 to 6.11; P = .004). AR ligand-binding domain missense mutations (HR, 2.51; 95% CI, 1.15 to 5.72; P = .020) were associated with a shorter PFS in multivariable models. AR CN gain was associated with a shorter PFS; however, significance was lost in multivariable modeling. Genetic alterations in tumor protein p53 (HR, 2.70; 95% CI, 1.27 to 5.72; P = .009) and phosphoinositide 3-kinase pathway defects (HR, 2.62; 95% CI, 1.12 to 6.10; P = .026) were associated with a worse OS in multivariable models. CONCLUSION These findings support the conclusion that high circulating tumor DNA burden is associated with worse outcomes to enzalutamide and abiraterone in men with mCRPC. Tumor protein p53 loss and phosphoinositide 3-kinase pathway defects were associated with worse OS in men with mCRPC. AR status associations with outcomes were not robust, and additional validation is needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Ian Waters
- Johns Hopkins School of Medicine, Baltimore, MD
| | - David Chu
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | - Hamda Khan
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | - Ben H. Park
- Johns Hopkins School of Medicine, Baltimore, MD
- Johns Hopkins University, Baltimore, MD
| | | |
Collapse
|
31
|
Hernández G, Ramírez JL, Pedroza-Torres A, Herrera LA, Jiménez-Ríos MA. The Secret Life of Translation Initiation in Prostate Cancer. Front Genet 2019; 10:14. [PMID: 30761182 PMCID: PMC6363655 DOI: 10.3389/fgene.2019.00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. Despite the advances understanding the molecular processes driving the onset and progression of this disease, as well as the continued implementation of screening programs, PCa still remains a significant cause of morbidity and mortality, in particular in low-income countries. It is only recently that defects of the translation process, i.e., the synthesis of proteins by the ribosome using a messenger (m)RNA as a template, have begun to gain attention as an important cause of cancer development in different human tissues, including prostate. In particular, the initiation step of translation has been established to play a key role in tumorigenesis. In this review, we discuss the state-of-the-art of three key aspects of protein synthesis in PCa, namely, misexpression of translation initiation factors, dysregulation of the major signaling cascades regulating translation, and the therapeutic strategies based on pharmacological compounds targeting translation as a novel alternative to those based on hormones controlling the androgen receptor pathway.
Collapse
Affiliation(s)
- Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Jorge L. Ramírez
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer, Mexico City, Mexico
| | - Abraham Pedroza-Torres
- Cátedra-CONACyT Program, Hereditary Cancer Clinic, National Institute of Cancer, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, The National Autonomous University of Mexico, Mexico City, Mexico
| | | |
Collapse
|
32
|
Molecular Mechanisms Related to Hormone Inhibition Resistance in Prostate Cancer. Cells 2019; 8:cells8010043. [PMID: 30642011 PMCID: PMC6356740 DOI: 10.3390/cells8010043] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Management of metastatic or advanced prostate cancer has acquired several therapeutic approaches that have drastically changed the course of the disease. In particular due to the high sensitivity of prostate cancer cells to hormone depletion, several agents able to inhibit hormone production or binding to nuclear receptor have been evaluated and adopted in clinical practice. However, despite several hormonal treatments being available nowadays for the management of advanced or metastatic prostate cancer, the natural history of the disease leads inexorably to the development of resistance to hormone inhibition. Findings regarding the mechanisms that drive this process are of particular and increasing interest as these are potentially related to the identification of new targetable pathways and to the development of new drugs able to improve our patients' clinical outcomes.
Collapse
|
33
|
Phosphorylated RB Promotes Cancer Immunity by Inhibiting NF-κB Activation and PD-L1 Expression. Mol Cell 2018; 73:22-35.e6. [PMID: 30527665 DOI: 10.1016/j.molcel.2018.10.034] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Aberrant expression of programmed death ligand-1 (PD-L1) in tumor cells promotes cancer progression by suppressing cancer immunity. The retinoblastoma protein RB is a tumor suppressor known to regulate the cell cycle, DNA damage response, and differentiation. Here, we demonstrate that RB interacts with nuclear factor κB (NF-κB) protein p65 and that their interaction is primarily dependent on CDK4/6-mediated serine-249/threonine-252 (S249/T252) phosphorylation of RB. RNA-seq analysis shows a subset of NF-κB pathway genes including PD-L1 are selectively upregulated by RB knockdown or CDK4/6 inhibitor. S249/T252-phosphorylated RB inversely correlates with PD-L1 expression in patient samples. Expression of a RB-derived S249/T252 phosphorylation-mimetic peptide suppresses radiotherapy-induced upregulation of PD-L1 and augments therapeutic efficacy of radiation in vivo. Our findings reveal a previously unrecognized tumor suppressor function of hyperphosphorylated RB in suppressing NF-κB activity and PD-L1 expression and suggest that the RB-NF-κB axis can be exploited to overcome cancer immune evasion triggered by conventional or targeted therapies.
Collapse
|
34
|
Batra A, Winquist E. Emerging cell cycle inhibitors for treating metastatic castration-resistant prostate cancer. Expert Opin Emerg Drugs 2018; 23:271-282. [PMID: 30422005 DOI: 10.1080/14728214.2018.1547707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Disease progression despite androgen suppression defines lethal castration-resistant prostate cancer (CRPC). Most of these cancers remain androgen receptor (AR)-signaling dependent. Therapy for metastatic CRPC includes abiraterone acetate, enzalutamide, docetaxel, cabazitaxel, sipuleucel-T, and radium-223. However, survival remains modest for men with progressive disease despite AR-targeted therapy and docetaxel, and therefore novel treatments are needed. Areas covered: Recent evidence of genomic heterogeneity and sensitivity to PARP inhibitors supports investigation of targeted agents in CRPC. Cell cycle inhibitors are therefore logical molecules to investigate. Review of the current literature identified cell cycle inhibitors under study in early phase clinical trials targeting the G1 (palbociclib, ribociclib, AZD-5363, ipatasertib), S (M-6620, prexasertib), G2 (adavosertib), and M (alisertib) phases of the cell cycle. Expert opinion: Strategies combining cell cycle inhibitors with active agents in CRPC are most likely to have clinical impact with CDK4/6 and Wee1 inhibitors appearing most promising. Identification of predictive biomarkers may be essential and currently trials are testing circulating cell-free DNA as an approach. Incremental toxicities such as neutropenia are important in this population. Results from most current clinical trials of cell cycle inhibitors in CRPC are still pending but it is anticipated they will provide important insights into the heterogeneous biology of CRPC.
Collapse
Affiliation(s)
- Anupam Batra
- a Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry , Western University and London Health Sciences Centre , London , ON , Canada
| | - Eric Winquist
- a Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry , Western University and London Health Sciences Centre , London , ON , Canada
| |
Collapse
|
35
|
Plumbagin-Loaded Nanoemulsion Drug Delivery Formulation and Evaluation of Antiproliferative Effect on Prostate Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9035452. [PMID: 30534567 PMCID: PMC6252225 DOI: 10.1155/2018/9035452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022]
Abstract
Background Plumbagin, a medicinal plant-derived 5-hydroxy-2-methyl-1,4-naphthoquinone, is an emerging drug with a variety of pharmacological effects, including potent anticancer activity. We have previously shown that plumbagin improves the efficacy of androgen deprivation therapy (ADT) in prostate cancer and it is now being evaluated in phase I clinical trial. However, the development of formulation of plumbagin as a compound with sparing solubility in water is challenging. Methods We have formulated plumbagin-loaded nanoemulsion using pneumatically controlled high pressure homogenization of oleic acid dispersions with polyoxyethylene (20) sorbitan monooleate as surfactant. Nanoemulsion formulations were characterized for particle size distribution by dynamic light scattering (DLS). The kinetics of in vitro drug release was determined by equilibrium dialysis. Anticancer activity toward prostate cancer cells PTEN-P2 was assessed by MTS (Owen's reagent) assay. Results Particle size distribution of nanoemulsions is tunable and depends on the surfactant concentration. Nanoemulsion formulations of plumbagin with 1-3.5% (w/w) of surfactant showed robust stability of size distribution over time. Plumbagin-loaded nanoemulsion with average hydrodynamic diameter of 135 nm showed exponential release of plumbagin with a half-life of 6.1 h in simulated gastric fluid, 7.0 h in simulated intestinal fluid, and displayed enhanced antiproliferative effect toward prostate cancer cells PTEN-P2 compared to free plumbagin. Conclusion High drug-loading capacity, retention of nanoparticle size, kinetics of release under simulated physiological conditions, and increased antiproliferative activity indicate that oleic-acid based nanoemulsion formulation is a suitable delivery system of plumbagin.
Collapse
|
36
|
Response to olaparib in metastatic castration-resistant prostate cancer with germline BRCA2 mutation: a case report. BMC MEDICAL GENETICS 2018; 19:185. [PMID: 30333000 PMCID: PMC6192270 DOI: 10.1186/s12881-018-0703-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023]
Abstract
Background Prostate cancer is a heterogeneous disease, meaning patients would benefit from different treatment strategies based on their molecular stratification. In recent years, several genomic studies have identified prostate cancers with defects in DNA repair genes. It is known that the PARP inhibitor, olaparib, has a significant synthetic lethal effect on tumors with BRCA 1/2 mutations, particularly in ovarian and breast cancer. Case presentation In this study, we describe a patient with metastatic castration-resistant prostate cancer (mCRPC) containing a BRCA2 germline mutation who underwent olaparib treatment. The efficacy of the treatment was monitored by serum TPSA level as well as mutation levels of circulating tumor DNA (ctDNA) using next-generation sequencing (NGS). The patient responded to the olaparib treatment as indicated by the minimal residual levels of TPSA and tumor-specific mutations of ctDNA in plasma after four months of treatment, although the patient eventually progressed at six-month post-treatment with significantly elevated and newly acquired somatic mutations in ctDNA. Conclusions Our study provides evidence that mCRPC with BRCA2 germline mutations could response to PARP inhibitor, which improves patient’s outcome. We further demonstrated that NGS-based genetic testing on liquid biopsy can be used to dynamically monitor the efficacy of treatment.
Collapse
|
37
|
van Duijn PW, Marques RB, Ziel-van der Made ACJ, van Zoggel HJAA, Aghai A, Berrevoets C, Debets R, Jenster G, Trapman J, van Weerden WM. Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSA-targeted Pten knockout mouse prostate cancer (MuCaP) model. Prostate 2018; 78:1013-1023. [PMID: 30133757 DOI: 10.1002/pros.23659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer is recognized as a heterogeneous disease demanding appropriate preclinical models that reflect tumor complexity. Previously, we established the PSA-Cre;PtenLoxP/LoxP genetic engineered mouse model (GEMM) for prostate cancer reflecting the various stages of tumor development. Prostate tumors in this Pten KO model slowly develop, requiring more than 10 months. In order to enhance its practical utility, we established a syngeneic panel of cell lines derived from PSA-Cre targeted Pten KO tumors, designated the mouse prostate cancer (MuCap) model. METHODS Four different MuCaP epithelial cell lines were established from three independent primary Pten KO mouse prostate tumors. Tumorigenic capacity of the MuCaP cell lines was determined by subcutaneous inoculation of these cell lines in immunocompetent mice. Response to PI3K-targeted therapy was validated in ex vivo tissue slices of the established MuCaP tumors. RESULTS The MuCaP cell lines were all tumorigenic in immunocompetent mice after subcutaneous inoculation. Interestingly, these syngrafted tumors represented different tumor growth rates and morphologies. Treatment with the specific PI3K inhibitor GDC0941 resulted in responses very similar between syngeneic MuCaP and primary Pten KO prostate tumors. Finally, immunoprofiling of the different syngeneic MuCaP tumors demonstrated differential numbers of tumor infiltrating lymphocytes and distinct immune gene profiles with expression of CD8, INFy, and PD1 being inversely related to tumor aggressiveness. CONCLUSIONS Collectively, we present here a well-defined MuCaP platform of in vitro and in vivo mouse prostate cancer models that may support preclinical assessment of (immune)-therapies for prostate cancer.
Collapse
Affiliation(s)
- Petra W van Duijn
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rute B Marques
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Ashraf Aghai
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Garg R, Blando JM, Perez CJ, Lal P, Feldman MD, Smyth EM, Ricciotti E, Grosser T, Benavides F, Kazanietz MG. COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene 2018; 37:4735-4749. [PMID: 29765153 PMCID: PMC6195867 DOI: 10.1038/s41388-018-0318-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
The pro-oncogenic kinase PKCε is overexpressed in human prostate cancer and cooperates with loss of the tumor suppressor Pten for the development of prostatic adenocarcinoma. However, the effectors driving PKCε-mediated phenotypes remain poorly defined. Here, using cellular and mouse models, we showed that PKCε overexpression acts synergistically with Pten loss to promote NF-κB activation and induce cyclooxygenase-2 (COX-2) expression, phenotypic traits which are also observed in human prostate tumors. Targeted disruption of PKCε from prostate cancer cells impaired COX-2 induction and PGE2 production. Notably, COX-2 inhibitors selectively killed prostate epithelial cells overexpressing PKCε, and this ability was greatly enhanced by Pten loss. Long-term COX-2 inhibition markedly reduced adenocarcinoma formation, as well as angiogenesis in a mouse model of prostate-specific PKCε expression and Pten loss. Overall, our results provide strong evidence for the involvement of the canonical NF-κB pathway and its target gene COX2 as PKCε effectors, and highlight the potential of PKCε as a useful biomarker for the use of COX inhibition for chemopreventive and/or chemotherapeutic purposes in prostate cancer.
Collapse
Affiliation(s)
- Rachana Garg
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jorge M Blando
- Department of Immunology, Immunopathology Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carlos J Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emer M Smyth
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tilo Grosser
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Dahiya NR, Chandrasekaran B, Kolluru V, Ankem M, Damodaran C, Vadhanam MV. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Mol Carcinog 2018; 57:1332-1341. [PMID: 30069922 DOI: 10.1002/mc.22848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022]
Abstract
Androgen ablation therapy is the primary therapeutic option for locally advanced and metastatic castration-resistant prostate cancer (CRPC). We investigated therapeutic effect of a dietary metabolite Urolithin A (UroA) and dissected the molecular mechanism in CRPC cells. Treatment with UroA inhibited cell proliferation in both androgen receptor-positive (AR+ ) (C4-2B) and androgen receptor-negative (AR- ) (PC-3) cells however, AR+ CaP cells were more sensitive to UroA treatment as compared with AR- CaP cells. Inhibition of the AR signaling was responsible for the UroA effect on AR+ CaP cells. Ectopic expression of AR in PC-3 cells sensitized them to UroA treatment as compared to the vector-expresseing PC-3 cells, which suggests that AR could be a target of UroA. Similarly, in enzalutamide-resistant C4-2B cells, a downregulation of AR expression also suppressed cell proliferation which was observed with the UroA treatment. Oral administration of UroA significantly suppressed the growth of C4-2B xenografts (P = 0.05) compared with PC-3 xenografts (P = 0.069) without causing toxicity to animals. Immunohistochemistry analysis confirmed in vitro findings such as downregulation of AR/pAKT signaling in UroA-treated C4-2B tumors, which suggests that UroA may be a potent chemo-preventive and therapeutic agent for CRPC.
Collapse
Affiliation(s)
- Nisha R Dahiya
- Department of Urology, University of Louisville, Louisville, Kentucky
| | | | - Venkatesh Kolluru
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Murali Ankem
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, Kentucky
| | - Manicka V Vadhanam
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky
| |
Collapse
|
40
|
Zou Y, Qi Z, Guo W, Zhang L, Ruscetti M, Shenoy T, Liu N, Wu H. Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3Kα/β/δ Inhibitor BAY1082439. Mol Cancer Ther 2018; 17:2091-2099. [PMID: 30045927 DOI: 10.1158/1535-7163.mct-18-0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
Abstract
Targeting the PI3K pathway is a promising strategy for treating prostate cancers with PTEN-loss. However, current anti-PI3K therapies fail to show long lasting in vivo effects. We find that not only the PI3Kα- and PI3kβ-isoforms, but also PI3Kδ, are associated with the epithelial-mesenchymal transition (EMT), a critical process distinguishing indolent from aggressive prostate cancer. This suggests that cotargeting PI3Kα/β/δ could preempt the rebound activation of the parallel pathways induced by α- or β-isoform-selective inhibitor and prevent EMT. Indeed, BAY1082439, a new selective PI3Kα/β/δ inhibitor, is highly effective in vivo in inhibiting Pten-null prostate cancer growth and preventing EMT in the mutant Pten/Kras metastatic model. The anti-PI3Kδ property of BAY1082439 further blocks B-cell infiltration and lymphotoxin release, which are tumor microenvironment factors that promote castration-resistant growth. Together, our data suggest a new approach for the treatment of prostate cancer by targeting both tumor cells and tumor microenvironment with PI3Kα/β/δ inhibitor. Mol Cancer Ther; 17(10); 2091-9. ©2018 AACR.
Collapse
Affiliation(s)
- Yongkang Zou
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Zhi Qi
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Weilong Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Marcus Ruscetti
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Tanu Shenoy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Ningshu Liu
- Bayer AG, Drug Discovery TRG Oncology, Berlin, Germany
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China. .,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
41
|
Kim SM, Nguyen TT, Ravi A, Kubiniok P, Finicle BT, Jayashankar V, Malacrida L, Hou J, Robertson J, Gao D, Chernoff J, Digman MA, Potma EO, Tromberg BJ, Thibault P, Edinger AL. PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 2018; 8:866-883. [PMID: 29572236 PMCID: PMC6030497 DOI: 10.1158/2159-8290.cd-17-1215] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
We report that PTEN-deficient prostate cancer cells use macropinocytosis to survive and proliferate under nutrient stress. PTEN loss increased macropinocytosis only in the context of AMPK activation, revealing a general requirement for AMPK in macropinocytosis and a novel mechanism by which AMPK promotes survival under stress. In prostate cancer cells, albumin uptake did not require macropinocytosis, but necrotic cell debris proved a specific macropinocytic cargo. Isotopic labeling confirmed that macropinocytosed necrotic cell proteins fueled new protein synthesis in prostate cancer cells. Supplementation with necrotic debris, but not albumin, also maintained lipid stores, suggesting that macropinocytosis can supply nutrients other than amino acids. Nontransformed prostatic epithelial cells were not macropinocytic, but patient-derived prostate cancer organoids and xenografts and autochthonous prostate tumors all exhibited constitutive macropinocytosis, and blocking macropinocytosis limited prostate tumor growth. Macropinocytosis of extracellular material by prostate cancer cells is a previously unappreciated tumor-microenvironment interaction that could be targeted therapeutically.Significance: As PTEN-deficient prostate cancer cells proliferate in low-nutrient environments by scavenging necrotic debris and extracellular protein via macropinocytosis, blocking macropinocytosis by inhibiting AMPK, RAC1, or PI3K may have therapeutic value, particularly in necrotic tumors and in combination with therapies that cause nutrient stress. Cancer Discov; 8(7); 866-83. ©2018 AACR.See related commentary by Commisso and Debnath, p. 800This article is highlighted in the In This Issue feature, p. 781.
Collapse
Affiliation(s)
- Seong M Kim
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Tricia T Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Archna Ravi
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Peter Kubiniok
- Department of Chemistry, Université de Montréal, Quebec, Canada
| | - Brendan T Finicle
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Vaishali Jayashankar
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
- Departamento de Fisiopatología, Hospital del Clínicas, Facultad de Medicia, Universidad de la República, Montevideo, Uruguay
| | - Jue Hou
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Jane Robertson
- Department of Developmental and Cell Biology, University of California, Irvine, California
| | - Dong Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, University of California, Irvine, California
| | - Eric O Potma
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Bruce J Tromberg
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, California
| | - Pierre Thibault
- Department of Chemistry, Université de Montréal, Quebec, Canada
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, California.
| |
Collapse
|
42
|
Maly IV, Hofmann WA. Fatty Acids and Calcium Regulation in Prostate Cancer. Nutrients 2018; 10:nu10060788. [PMID: 29921791 PMCID: PMC6024573 DOI: 10.3390/nu10060788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is a widespread malignancy characterized by a comparative ease of primary diagnosis and difficulty in choosing the individualized course of treatment. Management of prostate cancer would benefit from a clearer understanding of the molecular mechanisms behind the transition to the lethal, late-stage forms of the disease, which could potentially yield new biomarkers for differential prognosis and treatment prioritization in addition to possible new therapeutic targets. Epidemiological research has uncovered a significant correlation of prostate cancer incidence and progression with the intake (and often co-intake) of fatty acids and calcium. Additionally, there is evidence of the impact of these nutrients on intracellular signaling, including the mechanisms mediated by the calcium ion as a second messenger. The present review surveys the recent literature on the molecular mechanisms associated with the critical steps in the prostate cancer progression, with special attention paid to the regulation of these processes by fatty acids and calcium homeostasis. Testable hypotheses are put forward that integrate some of the recent results in a more unified picture of these phenomena at the interface of cell signaling and metabolism.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| |
Collapse
|
43
|
David SN, Arnold Egloff SA, Goyal R, Clark PE, Phillips S, Gellert LL, Hameed O, Giannico GA. MAGI2 is an independent predictor of biochemical recurrence in prostate cancer. Prostate 2018. [PMID: 29542165 DOI: 10.1002/pros.23506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (MAGI2) promotes the activity of phosphatase and tensin homolog (PTEN). Recent studies suggest that dysregulation of this signaling pathway has a role in prostate carcinogenesis. Our study aims to determine the prognostic significance of MAGI2 expression in prostate cancer. METHODS Tissue microarrays from 51 radical prostatectomy cases including benign prostatic tissue, high grade prostatic intraepithelial neoplasia (HGPIN), and adenocarcinoma were constructed. Immunohistochemistry with double staining for MAGI2 and p63 was performed and analyzed by image analysis as percent of analyzed area (%AREA). Multivariable logistic regression was used to correlate MAGI2 expression with clinical outcomes. Generalized Estimating Equations (GEE) with linear and logistic regression was used to correlate MAGI2 with intrapatient histology. RESULTS MAGI2 %AREA was inversely associated with progression from HGPIN to adenocarcinoma of low to high Gleason score (OR, 0.980; slope, -0.02; P = 0.005) and HGPIN to cancer of any Gleason score (OR, 0.969; P = 0.007). After adjusting for grade, stage, and margin status, MAGI2 %AREA was a significant independent predictor of biochemical recurrence (BCR) (OR, 0.936; 95%CI, 0.880-0.996; P = 0.037; bootstrap P = 0.017). The addition of MAGI2 %AREA to these standard clinical parameters improved accuracy of predicting BCR by 2.9% (91.0% vs 88.1%). CONCLUSIONS These results reveal that MAGI2 expression is reduced during prostate cancer progression and that retention of MAGI2 signal reduces odds of BCR. The study results further suggest a possible role of MAGI2 in prostate neoplasia. Decreased MAGI2 expression may help predict prostate cancer aggressiveness and provide new insight for treatment decisions and post-operative surveillance intervals.
Collapse
Affiliation(s)
- Stephanie N David
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shanna A Arnold Egloff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Nashville, Tennessee
| | | | - Peter E Clark
- Carolinas HealthCare System, Levine Cancer Institute, Charlotte, North Carolina
| | - Sharon Phillips
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Lan L Gellert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar Hameed
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
44
|
Kopp JL, Dubois CL, Schaeffer DF, Samani A, Taghizadeh F, Cowan RW, Rhim AD, Stiles BL, Valasek M, Sander M. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice. Gastroenterology 2018; 154:1509-1523.e5. [PMID: 29273451 PMCID: PMC5880733 DOI: 10.1053/j.gastro.2017.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/15/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Intraductal papillary mucinous neoplasias (IPMNs) are precancerous cystic lesions that can develop into pancreatic ductal adenocarcinomas (PDACs). These large macroscopic lesions are frequently detected during medical imaging, but it is unclear how they form or progress to PDAC. We aimed to identify cells that form IPMNs and mutations that promote IPMN development and progression. METHODS We generated mice with disruption of Pten specifically in ductal cells (Sox9CreERT2;Ptenflox/flox;R26RYFP or PtenΔDuct/ΔDuct mice) and used PtenΔDuct/+ and Pten+/+ mice as controls. We also generated KrasG12D;PtenΔDuct/ΔDuct and KrasG12D;PtenΔDuct/+ mice. Pancreata were collected when mice were 28 weeks to 14.5 months old and analyzed by histology, immunohistochemistry, and electron microscopy. We performed multiplexed droplet digital polymerase chain reaction to detect spontaneous Kras mutations in PtenΔDuct/ΔDuct mice and study the effects of Ras pathway activation on initiation and progression of IPMNs. We obtained 2 pancreatic sections from a patient with an invasive pancreatobiliary IPMN and analyzed the regions with and without the invasive IPMN (control tissue) by immunohistochemistry. RESULTS Mice with ductal cell-specific disruption of Pten but not control mice developed sporadic, macroscopic, intraductal papillary lesions with histologic and molecular features of human IPMNs. PtenΔDuct/ΔDuct mice developed IPMNs of several subtypes. In PtenΔDuct/ΔDuct mice, 31.5% of IPMNs became invasive; invasion was associated with spontaneous mutations in Kras. KrasG12D;PtenΔDuct/ΔDuct mice all developed invasive IPMNs within 1 month. In KrasG12D;PtenΔDuct/+ mice, 70% developed IPMN, predominately of the pancreatobiliary subtype, and 63.3% developed PDAC. In all models, IPMNs and PDAC expressed the duct-specific lineage tracing marker yellow fluorescent protein. In immunohistochemical analyses, we found that the invasive human pancreatobiliary IPMN tissue had lower levels of PTEN and increased levels of phosphorylated (activated) ERK compared with healthy pancreatic tissue. CONCLUSIONS In analyses of mice with ductal cell-specific disruption of Pten, with or without activated Kras, we found evidence for a ductal cell origin of IPMNs. We also showed that PTEN loss and activated Kras have synergistic effects in promoting development of IPMN and progression to PDAC.
Collapse
Affiliation(s)
- Janel L. Kopp
- Departments of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Claire L. Dubois
- Departments of Pediatrics and Cellular & Molecular Medicine, University of California-San Diego, La Jolla, CA 92093-0695
| | - David F. Schaeffer
- Department of Pathology and Laboratory and Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Atefeh Samani
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Farnaz Taghizadeh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Robert W. Cowan
- Ahmed Center for Pancreatic Cancer Research and Department of Gastroenterology, Hepatology and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew D. Rhim
- Ahmed Center for Pancreatic Cancer Research and Department of Gastroenterology, Hepatology and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bangyan L. Stiles
- Department of Pharmaceutical Sciences, School of Pharmacy, Keck School of Medicine, University of Southern California, and the Norris Comprehensive Cancer Center, Los Angeles, CA 90033
| | - Mark Valasek
- Department of Pathology, University of California-San Diego, La Jolla, CA 92093-0695
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California-San Diego, La Jolla, California.
| |
Collapse
|
45
|
Korang-Yeboah M, Patel D, Morton D, Sharma P, Gorantla Y, Joshi J, Nagappan P, Pallaniappan R, Chaudhary J. Intra-tumoral delivery of functional ID4 protein via PCL/maltodextrin nano-particle inhibits prostate cancer growth. Oncotarget 2018; 7:68072-68085. [PMID: 27487149 PMCID: PMC5340093 DOI: 10.18632/oncotarget.10953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022] Open
Abstract
ID4, a helix loop helix transcriptional regulator has emerged as a tumor suppressor in prostate cancer. Epigenetic silencing of ID4 promotes prostate cancer whereas ectopic expression in prostate cancer cell lines blocks cancer phenotype. To directly investigate the anti-tumor property, full length human recombinant ID4 encapsulated in biodegradable Polycaprolactone/Maltodextrin (PCL-MD) nano-carrier was delivered to LNCaP cells in which the native ID4 was stably silenced (LNCaP(-)ID4). The cellular uptake of ID4 resulted in increased apoptosis, decreased proliferation and colony formation. Intratumoral delivery of PCL-MD ID4 into growing LNCaP(-)ID4 tumors in SCID mice significantly reduced the tumor volume compared to the tumors treated with chemotherapeutic Docetaxel. The study supports the feasibility of using nano-carrier encapsulated ID4 protein as a therapeutic. Mechanistically, ID4 may assimilate multiple regulatory pathways for example epigenetic re-programming, integration of multiple AR co-regulators or signaling pathways resulting in tumor suppressor activity of ID4.
Collapse
Affiliation(s)
| | - Divya Patel
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Derrick Morton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Pankaj Sharma
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | | | - Jugal Joshi
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | - Perri Nagappan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| | | | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA
| |
Collapse
|
46
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
47
|
Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, Pan Y, Hinten M, Zhang J, Karnes RJ, Kohli M, Westendorf JJ, Li B, Zhu R, Huang H, Xu W. PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clin Cancer Res 2018; 24:834-846. [PMID: 29167276 PMCID: PMC5816982 DOI: 10.1158/1078-0432.ccr-17-2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Purpose: Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR) reactivation and antiandrogen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood.Experimental Design: The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human prostate cancer cell lines. Pten knockout mice were used to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivoResults: We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null prostate cancer cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level, and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivoPten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9.Conclusions: Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null prostate cancer, including CRPC. Clin Cancer Res; 24(4); 834-46. ©2017 AACR.
Collapse
Affiliation(s)
- Yinhui Yang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yang Bai
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jiaxiang Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Linlin Ma
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Michael Hinten
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jennifer J Westendorf
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Runzhi Zhu
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas.
- Department for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
48
|
Rondeau G, Abedinpour P, Chrastina A, Pelayo J, Borgstrom P, Welsh J. Differential gene expression induced by anti-cancer agent plumbagin is mediated by androgen receptor in prostate cancer cells. Sci Rep 2018; 8:2694. [PMID: 29426892 PMCID: PMC5807367 DOI: 10.1038/s41598-018-20451-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Treatment of mice harboring PTEN-P2 tumors in the prostate or on prostate tissue in vivo with 5-hydroxy-2-methyl-1,4-naphthoquinone, also known as plumbagin, results in tumor regression in castrated mice, but not in intact mice. This suggested that dihydrotestosterone (DHT) production in the testes may prevent cell death due to plumbagin treatment, but the underlying mechanism is not understood. We performed RNA-seq analysis on cells treated with combinations of plumbagin and DHT, and analyzed differential gene expression, to gain insight into the interactions between androgen and plumbgin. DHT and plumbagin synergize to alter the expression of many genes that are not differentially regulated by either single agent when used alone. These experiments revealed that, for many genes, increases in mRNAs caused by DHT are sharply down-regulated by plumbagin, and that many transcripts change in response to plumbagin in a DHT-dependent manner. This suggests that androgen receptor mediates some of the effects of plumbagin on gene expression.
Collapse
Affiliation(s)
- Gaelle Rondeau
- Vaccine Research Institute of San Diego, 3030 Bunker Hill Street, Suite 200, San Diego, CA, 92109, USA
| | - Parisa Abedinpour
- Vaccine Research Institute of San Diego, 3030 Bunker Hill Street, Suite 200, San Diego, CA, 92109, USA
| | - Adrian Chrastina
- Vaccine Research Institute of San Diego, 3030 Bunker Hill Street, Suite 200, San Diego, CA, 92109, USA
| | - Jennifer Pelayo
- Vaccine Research Institute of San Diego, 3030 Bunker Hill Street, Suite 200, San Diego, CA, 92109, USA
| | - Per Borgstrom
- Vaccine Research Institute of San Diego, 3030 Bunker Hill Street, Suite 200, San Diego, CA, 92109, USA
- Pellficure Pharmaceuticals, Inc., 2325 Camino del Collado, La Jolla, CA, 92037, USA
| | - John Welsh
- Vaccine Research Institute of San Diego, 3030 Bunker Hill Street, Suite 200, San Diego, CA, 92109, USA.
| |
Collapse
|
49
|
p53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2018; 21:260-268. [PMID: 29302046 DOI: 10.1038/s41391-017-0027-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/13/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND We tested whether tissue-based analysis of p53 and PTEN genomic status in primary tumors is predictive for subsequent sensitivity to abiraterone and enzalutamide in castration-resistant prostate cancer (CRPC). METHODS We performed a retrospective analysis of 309 consecutive patients with CRPC treated with abiraterone or enzalutamide. Of these, 101 men (33%) had available primary tumor tissue for analysis. We screened for deleterious TP53 missense mutations and PTEN deletions using genetically validated immunohistochemical assays for nuclear accumulation of p53 protein and PTEN protein loss, with sequencing confirmation of TP53 mutations in a subset. Overall survival (OS) and progression-free survival (PFS) were compared between patients with and without p53 and/or PTEN alterations. RESULTS Forty-eight percent of the evaluable cases had PTEN loss and 27% had p53 nuclear accumulation. OS and PFS did not differ according to PTEN status, but were significantly associated with p53 status. Median OS was 16.7 months (95% CI, 14-21.9 months) and 31.2 months (95% CI, 24.5-43.4) for men with and without p53 nuclear accumulation, respectively (HR 2.32; 95% CI 1.19-4.51; P = 0.0018). Similarly, median PFS was 5.5 months (95% CI, 3.2-9.9 months) and 10.9 months (95% CI, 8-15.2 months) in men with and without p53 nuclear accumulation, respectively (HR 2.14, 95%CI 1.20-3.81; P = 0.0008). In multivariable analyses, p53 status was independently associated with PFS (HR 2.15; 95% CI 1.03-4.49; P = 0.04) and a HR of 2.19 for OS (95% CI 0.89-5.40; P = 0.087). CONCLUSIONS p53 inactivation in the primary tumor (but not PTEN loss) may be predictive of inferior outcomes to novel hormonal therapies in CRPC.
Collapse
|
50
|
Hussain M, Daignault-Newton S, Twardowski PW, Albany C, Stein MN, Kunju LP, Siddiqui J, Wu YM, Robinson D, Lonigro RJ, Cao X, Tomlins SA, Mehra R, Cooney KA, Montgomery B, Antonarakis ES, Shevrin DH, Corn PG, Whang YE, Smith DC, Caram MV, Knudsen KE, Stadler WM, Feng FY, Chinnaiyan AM. Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results From NCI 9012. J Clin Oncol 2017; 36:991-999. [PMID: 29261439 DOI: 10.1200/jco.2017.75.7310] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine whether cotargeting poly (ADP-ribose) polymerase-1 plus androgen receptor is superior to androgen receptor inhibition in metastatic castration-resistant prostate cancer (mCRPC) and whether ETS fusions predict response. Patients and Methods Patients underwent metastatic site biopsy and were stratified by ETS status and randomly assigned to abiraterone plus prednisone without (arm A) or with veliparib (arm B). Primary objectives were: confirmed prostate-specific antigen (PSA) response rate (RR) and whether ETS fusions predicted response. Secondary objectives were: safety, measurable disease RR (mRR), progression-free survival (PFS), and molecular biomarker analysis. A total of 148 patients were randomly assigned to detect a 20% PSA RR improvement. Results A total of 148 patients with mCRPC were randomly assigned: arm A, n = 72; arm B, n = 76. There were no differences in PSA RR (63.9% v 72.4%; P = .27), mRR (45.0% v 52.2%; P = .51), or median PFS (10.1 v 11 months; P = .99). ETS fusions did not predict response. Exploratory analysis of tumor sequencing (80 patients) revealed: 41 patients (51%) were ETS positive, 20 (25%) had DNA-damage repair defect (DRD), 41 (51%) had AR amplification or copy gain, 34 (43%) had PTEN mutation, 33 (41%) had TP53 mutation, 39 (49%) had PIK3CA pathway activation, and 12 (15%) had WNT pathway alteration. Patients with DRD had significantly higher PSA RR (90% v 56.7%; P = .007) and mRR (87.5% v 38.6%; P = .001), PSA decline ≥ 90% (75% v 25%; P = .001), and longer median PFS (14.5 v 8.1 months; P = .025) versus those with wild-type tumors. Median PFS was longer in patients with normal PTEN (13.5 v 6.7 months; P = .02), TP53 (13.5 v 7.7 months; P = .01), and PIK3CA (13.8 v 8.3 months; P = .03) versus those with mutation or activation. In multivariable analysis adjusting for clinical covariates, DRD association with PFS remained significant. Conclusion Veliparib and ETS status did not affect response. Exploratory analysis identified a novel DRD association with mCRPC outcomes.
Collapse
Affiliation(s)
- Maha Hussain
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Stephanie Daignault-Newton
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Przemyslaw W Twardowski
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Costantine Albany
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Mark N Stein
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Lakshmi P Kunju
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Javed Siddiqui
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Yi-Mi Wu
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Dan Robinson
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Robert J Lonigro
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Xuhong Cao
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Scott A Tomlins
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Rohit Mehra
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Kathleen A Cooney
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Bruce Montgomery
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Emmanuel S Antonarakis
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Daniel H Shevrin
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Paul G Corn
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Young E Whang
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - David C Smith
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Megan V Caram
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Karen E Knudsen
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Walter M Stadler
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Felix Y Feng
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| | - Arul M Chinnaiyan
- Maha Hussain, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; Walter M. Stadler, University of Chicago, Chicago; Daniel H. Shevrin, NorthShore University Health System, Evanston, IL; Maha Hussain, Stephanie Daignault-Newton, Lakshmi P. Kunju, Javed Siddiqui, Yi-Mi Wu, Dan Robinson, Robert J. Lonigro, Xuhong Cao, Scott A. Tomlins, Rohit Mehra, David C. Smith, Megan V. Caram, and Arul M. Chinnaiyan, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI; Przemyslaw W. Twardowski, City of Hope Cancer Center, Duarte; Felix Y. Feng, University of California San Francisco, San Francisco, CA; Costantine Albany, Simon Cancer Center, Indiana University, Indianapolis, IN; Mark N. Stein, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ; Kathleen A. Cooney, University of Utah, Salt Lake City, UT; Bruce Montgomery, University of Washington, Seattle, WA; Emmanuel S. Antonarakis, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Paul G. Corn, University of Texas MD Anderson Cancer Center, Houston, TX; Young E. Whang, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC; and Karen E. Knudsen, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|