1
|
López-Gómez L, Uranga JA. Polyphenols in the Prevention and Treatment of Colorectal Cancer: A Systematic Review of Clinical Evidence. Nutrients 2024; 16:2735. [PMID: 39203871 PMCID: PMC11357634 DOI: 10.3390/nu16162735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Polyphenols are plant metabolites with potential anti-inflammatory and anti-proliferative effects, which may be advantageous for disorders like colorectal cancer (CRC). Despite promising in vitro and in vivo evidence, human clinical trials have yielded mixed results. The present study aimed to evaluate the clinical evidence of polyphenols for CRC prevention or treatment. A systematic review was performed according to PRISMA. Based on a PROSPERO registered protocol (CRD42024560044), online databases (PubMed and COCHRANE) were utilized for the literature search. A total of 100 studies articles were initially identified. After reviewing, 12 studies with a low risk of bias were selected, examining the effect of a variety of compounds. Curcumin demonstrated promise in various trials, mainly decreasing inflammatory cytokines, though results varied, and it did not lower intestinal adenomas or improve outcomes after chemotherapy. Neither epigallocatechin gallate nor artepillin C reduced the incidence of adenomas. Finally, fisetin seemed to improve the inflammatory status of patients under chemotherapy (5-fluorouracil). In summary, although certain polyphenols appear to exert some effect, their role in the prevention or treatment of CRC is inconclusive, and more clinical studies under more controlled conditions are needed.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Jose Antonio Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| |
Collapse
|
2
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Palko-Łabuz A, Wesołowska O, Błaszczyk M, Uryga A, Sobieszczańska B, Skonieczna M, Kostrzewa-Susłow E, Janeczko T, Środa-Pomianek K. Methoxychalcones as potential anticancer agents for colon cancer: Is membrane perturbing potency relevant? Biochim Biophys Acta Gen Subj 2024; 1868:130581. [PMID: 38336309 DOI: 10.1016/j.bbagen.2024.130581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Chalcones are naturally produced by many plants, and constitute precursors for the synthesis of flavons and flavanons. They were shown to possess antibacterial, antifungal, anti-cancer, and anti- inflammatory properties. The goal of the study was to assess the suitability of three synthetic methoxychalcones as potential anticancer agents. In a panel of colon cancer cell lines they were demonstrated to be cytotoxic, proapoptotic, causing cell cycle arrest, and increasing intracellular level of reactive oxygen species. Anticancer activity of the compounds was not diminished in the presence of stool extract containing microbial enzymes that could change the structure of chalcones. Moreover, methoxychalcones interacted strongly with model phosphatidylcholine membranes as detected by differential scanning calorimetry. Metohoxychalcones particularly affected the properties of lipid domains in giant unilamellar liposomes formed from raft-mimicking lipid composition. This may be of importance since many molecular targets for therapy of metastatic colon cancer are raft-associated receptors (e.g., receptor tyrosine kinases). The importance of membrane perturbing potency of methoxychalcones for their biological activity was additionally corroborated by the results obtained by molecular modelling.
Collapse
Affiliation(s)
- Anna Palko-Łabuz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wroclaw, Poland.
| | - Olga Wesołowska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Błaszczyk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Uryga
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| | | | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, The Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
García-Saldaña EA, Cerqueda-García D, Ibarra-Laclette E, Aluja M. Insights into the differences related to the resistance mechanisms to the highly toxic fruit Hippomane mancinella (Malpighiales: Euphorbiaceae) between the larvae of the sister species Anastrepha acris and Anastrepha ludens (Diptera: Tephritidae) through comparative transcriptomics. Front Physiol 2024; 15:1263475. [PMID: 38304114 PMCID: PMC10830740 DOI: 10.3389/fphys.2024.1263475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
The Manchineel, Hippomane mancinella ("Death Apple Tree") is one of the most toxic fruits worldwide and nevertheless is the host plant of the monophagous fruit fly species Anastrepha acris (Diptera: Tephritidae). Here we aimed at elucidating the detoxification mechanisms in larvae of A. acris reared on a diet enriched with the toxic fruit (6% lyophilizate) through comparative transcriptomics. We compared the performance of A. acris larvae with that of the sister species A. ludens, a highly polyphagous pest species that is unable to infest H. mancinella in nature. The transcriptional alterations in A. ludens were significantly greater than in A. acris. We mainly found two resistance mechanisms in both species: structural, activating cuticle protein biosynthesis (chitin-binding proteins likely reducing permeability to toxic compounds in the intestine), and metabolic, triggering biosynthesis of serine proteases and xenobiotic metabolism activation by glutathione-S-transferases and cytochrome P450 oxidoreductase. Some cuticle proteins and serine proteases were not orthologous between both species, suggesting that in A. acris, a structural resistance mechanism has been selected allowing specialization to the highly toxic host plant. Our results represent a nice example of how two phylogenetically close species diverged over recent evolutionary time related to resistance mechanisms to plant secondary metabolites.
Collapse
Affiliation(s)
- Essicka A. García-Saldaña
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Daniel Cerqueda-García
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Clúster Científico y Tecnológico BioMimic, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Clúster Científico y Tecnológico BioMimic, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, A C–INECOL, Xalapa, Veracruz, Mexico
| |
Collapse
|
5
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
6
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
7
|
Wang R, Peng J, Shi X, Cao S, Xu Y, Xiao G, Li C. Change in membrane fluidity induced by polyphenols is highly dependent on the position and number of galloyl groups. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184015. [PMID: 35914569 DOI: 10.1016/j.bbamem.2022.184015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The cell membrane fluidity was very important in adipogenesis and galloyl groups on polyphenolic structures could enhance their antiadipogenic activity. However, the effect of polyphenols on membrane fluidity and the role of galloyl groups in fluidity changes remain unclear. Therefore, the present study chose structurally different polyphenols to compare their effects on the membrane morphology and fluidity of 3T3-L1 preadipocytes, and then the reasons behind the changes of membrane fluidity induced by galloylated polyphenols were explored from structural and molecular insights using liposome model and molecular dynamic simulation technology. Our results indicated that galloylated polyphenols could significantly change 3T3-L1 cell membrane morphology and decrease membrane fluidity, while non-galloylated ones could not. The membrane interference effect of polyphenols was enhanced as the number of galloyl groups increased. Morever, the decrease in membrane fluidity induced by galloylated polyphenols was due to the disturbance of polyphenols on lipid alkyl chains in the cell membrane. Galloylated polyphenols could not only locate in the polar head, but also insert into hydrophobic center of lipid bilayer to interfere with the lipid alkyl chains arrangement, thus decreasing the membrane fluidity and showing strong affinity for the membrane. In addition, differences in position of galloyl groups in polyphenols induced distinct effect on cell membranes interactions, thus affecting the binding manner and bioactivity. The results expanded the understanding on the strong antiadipogenic activity of galloylated polyphenols through the aspect of their effects on cell membrane by both experimental and theoretically simulated ways.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinming Peng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Cao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yawei Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gengsheng Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Islam F, Mitra S, Emran TB, Khan Z, Nath N, Das R, Sharma R, Awadh AAA, Park MN, Kim B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175686. [PMID: 36080453 PMCID: PMC9457641 DOI: 10.3390/molecules27175686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (B.K.)
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
- Correspondence: (T.B.E.); (B.K.)
| |
Collapse
|
9
|
Oxidized tea polyphenol (OTP-3) targets EGFR synergistic nimotuzumab at inhibition of non-small cell lung tumor growth. Bioorg Chem 2022; 128:106084. [DOI: 10.1016/j.bioorg.2022.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
|
10
|
Yang CS, Chen T, Ho CT. Redox and Other Biological Activities of Tea Catechins That May Affect Health: Mechanisms and Unresolved Issues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7887-7899. [PMID: 35727888 DOI: 10.1021/acs.jafc.2c02527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The beneficial health effects of green tea have been attributed to tea catechins. However, the molecular mechanisms of action, especially those in vivo, remain unclear. This article reviews the redox and other activities of tea catechins, using (-)-epigallocatechin-3-gallate (EGCG), as an example. EGCG is a well-known antioxidant. However, EGCG can be oxidized to generate reactive oxygen species and EGCG quinone. We propose that EGCG quinone can react with Keap-1 to activate Nrf2-regulated cytoprotective enzymes. Tissue levels of catechins are important for their biological activities; a section is devoted to reviewing the biological fates of tea catechins after ingestion. Possible EGCG oxidation in vivo and whether the oligomeric forms are biologically active in animals are discussed. We also review the effects of EGCG on the activities of enzymes, receptors, and other signaling molecules through binding and raise a question about whether the autoxidation of EGCG in vitro may lead to artifacts or misinterpretation in some studies. Finally, we discuss the challenges in the extrapolation of in vitro results to situations in vivo and the translation of laboratory studies to humans.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Tingting Chen
- School of Food Science & Technology, State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang 330047, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
11
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
12
|
3,4,5-Trimethoxybenzoate of Catechin, an Anticarcinogenic Semisynthetic Catechin, Modulates the Physical Properties of Anionic Phospholipid Membranes. Molecules 2022; 27:molecules27092910. [PMID: 35566261 PMCID: PMC9105813 DOI: 10.3390/molecules27092910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
3,4,5-Trimethoxybenzoate of catechin (TMBC) is a semisynthetic catechin which shows strong antiproliferative activity against malignant melanoma cells. The amphiphilic nature of the molecule suggests that the membrane could be a potential site of action, hence the study of its interaction with lipid bilayers is mandatory in order to gain information on the effect of the catechin on the membrane properties and dynamics. Anionic phospholipids, though being minor components of the membrane, possess singular physical and biochemical properties that make them physiologically essential. Utilizing phosphatidylserine biomimetic membranes, we study the interaction between the catechin and anionic bilayers, bringing together a variety of experimental techniques and molecular dynamics simulation. The experimental data suggest that the molecule is embedded into the phosphatidylserine bilayers, where it perturbs the thermotropic gel to liquid crystalline phase transition. In the gel phase, the catechin promotes the formation of interdigitation, and in the liquid crystalline phase, it decreases the bilayer thickness and increases the hydrogen bonding pattern of the interfacial region of the bilayer. The simulation data agree with the experimental ones and indicate that the molecule is located in the interior of the anionic bilayer as monomer and small clusters reaching the carbonyl region of the phospholipid, where it also disturbs the intermolecular hydrogen bonding between neighboring lipids. Our observations suggest that the catechin incorporates well into phosphatidylserine bilayers, where it produces structural changes that could affect the functioning of the membrane.
Collapse
|
13
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
14
|
Wang R, Zhu W, Dang M, Deng X, Shi X, Zhang Y, Li K, Li C. Targeting Lipid Rafts as a Rapid Screening Strategy for Potential Antiadipogenic Polyphenols along with the Structure-Activity Relationship and Mechanism Elucidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3872-3885. [PMID: 35302782 DOI: 10.1021/acs.jafc.2c00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity is a global public health problem that endangers human health, and a rapid search for compounds with antiadipogenic activity could provide solutions to overcome this problem. Polyphenols are potential antiadipogenic compounds, but the screening strategy, structure-activity relationship (SAR), and elucidation of their mechanisms of action remain poorly understood because of the high diversity of polyphenols. Lipid rafts, enriched with sphingolipids and cholesterol, are considered a potential target of polyphenols for the regulation of cellular processes and diseases. Here, a novel rapid screening active polyphenol strategy that targets the lipid rafts using molecular dynamic simulation was developed and validated by 3T3-L1 preadipocyte assay. The screening strategy is high-throughput, inexpensive, reagent-free, and effort saving. In addition, the SAR and mechanisms of action mediating the differentiation-inhibition of the preadipocyte by polyphenols were well elucidated by utilizing multiple technologies, such as "raft-like liposomes" systems, giant plasma membrane vesicles, noninvasive lipid raft probes, and ultrahigh-resolution microscopy. High inhibitory-activity polyphenols could penetrate deeper into the hydrophobic lipid center, in an inverted V-shaped manner or by insertion of galloyl groups into rafts, thus disrupting the ordered domain of lipid rafts. In contrast, the medium and low inhibitory-activity polyphenols could only localize on the surface of lipid rafts, exerting slight and the weakest interference with a lipid raft structure, respectively. The combined use of reliable technologies could yield new knowledge on the SAR and the molecular mechanisms of polyphenols.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Zhu
- Department of Nutrition, University of California, Davis, California 95616-5270, United States
| | - Meizhu Dang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangyi Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Fricke N, Raghunathan K, Tiwari A, Stefanski KM, Balakrishnan M, Waterson AG, Capone R, Huang H, Sanders CR, Bauer JA, Kenworthy AK. High-Content Imaging Platform to Discover Chemical Modulators of Plasma Membrane Rafts. ACS CENTRAL SCIENCE 2022; 8:370-378. [PMID: 35355811 PMCID: PMC8961798 DOI: 10.1021/acscentsci.1c01058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 05/05/2023]
Abstract
Plasma membrane organization profoundly impacts cellular functionality. A well-known mechanism underlying this organization is through nanoscopic clustering of distinct lipids and proteins in membrane rafts. Despite their physiological importance, rafts remain a difficult-to-study aspect of membrane organization, in part because of the paucity of chemical tools to experimentally modulate their properties. Methods to selectively target rafts for therapeutic purposes are also currently lacking. To tackle these problems, we developed a high-throughput screen and an accompanying image analysis pipeline to identify small molecules that enhance or inhibit raft formation. Cell-derived giant plasma membrane vesicles were used as the experimental platform. A proof-of-principle screen using a bioactive lipid library demonstrates that this method is robust and capable of validating established raft modulators including C6- and C8-ceramide, miltefosine, and epigallocatechin gallate as well as identifying new ones. The platform we describe here represents a powerful tool to discover new chemical approaches to manipulate rafts and their components.
Collapse
Affiliation(s)
- Nico Fricke
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Krishnan Raghunathan
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Ajit Tiwari
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine M. Stefanski
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology and Department of Molecular Physiology
and Biological Physics, University of Virginia
School of Medicine, Charlottesville, Virginia 22903, United States
| | - Alex G. Waterson
- Department
of Pharmacology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Ricardo Capone
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Joshua A. Bauer
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Anne K. Kenworthy
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
16
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
17
|
Takashima Y, Ishikawa K, Miyawaki R, Ogawa M, Ishii T, Misaka T, Kobayashi S. Modulatory Effect of Theaflavins on Apical Sodium-Dependent Bile Acid Transporter (ASBT) Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9585-9596. [PMID: 34346218 DOI: 10.1021/acs.jafc.1c03483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inhibiting apical sodium-dependent bile acid transporter (ASBT) has been identified as a potential strategy to reduce plasma cholesterol levels. Thus, in this study, we aimed to identify polyphenols that inhibited ASBT activity and to elucidate their mechanism. ASBT is responsible for most of the taurocholic acid (TC) uptake in Caco-2 cells. Of the 39 polyphenols examined, theaflavin (TF)-3-gallate (TF2A) and theaflavin-3'-gallate (TF2B) have been found to significantly reduce TC uptake in Caco-2 cells to 37.4 ± 2.8 and 33.8 ± 4.0%, respectively, of that in the untreated cells. The results from the TC uptake assay using N-acetylcysteine suggested that the inhibitory effect of TF2A and TF2B was attributed to the oxidization of their benzotropolone rings and their covalent bonding with ASBT's cysteine. TC uptake was reduced in the COS-7 cells expressing recombinant ASBT whose cysteine residues were mutated to alanine. Finally, the substrate concentration-dependent TC uptake assay showed that TFs competitively inhibited TC uptake.
Collapse
Affiliation(s)
- Yuki Takashima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kazuki Ishikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Rina Miyawaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Mana Ogawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takeshi Ishii
- Department of Nutrition, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Takumi Misaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shoko Kobayashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
18
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
19
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
20
|
Sinicrope FA, Viggiano TR, Buttar NS, Song LMWK, Schroeder KW, Kraichely RE, Larson MV, Sedlack RE, Kisiel JB, Gostout CJ, Kalaiger AM, Patai ÁV, Della'Zanna G, Umar A, Limburg PJ, Meyers JP, Foster NR, Yang CS, Sontag S. Randomized Phase II Trial of Polyphenon E versus Placebo in Patients at High Risk of Recurrent Colonic Neoplasia. Cancer Prev Res (Phila) 2021; 14:573-580. [PMID: 33648940 DOI: 10.1158/1940-6207.capr-20-0598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022]
Abstract
Polyphenon E (Poly E) is a green tea polyphenol preparation whose most active component is epigallocatechin gallate (EGCG). We studied the cancer preventive efficacy and safety of Poly E in subjects with rectal aberrant crypt foci (ACF), which represent putative precursors of colorectal cancers. Eligible subjects had prior colorectal advanced adenomas or cancers, and had ≥5 rectal ACF at a preregistration chromoendoscopy. Subjects (N = 39) were randomized to 6 months of oral Poly E (780 mg EGCG) daily or placebo. Baseline characteristics were similar by treatment arm (all P >0.41); 32 of 39 (82%) subjects completed 6 months of treatment. The primary endpoint was percent reduction in rectal ACF at chromoendoscopy comparing before and after treatment. Among 32 subjects (15 Poly E, 17 placebo), percent change in rectal ACF number (baseline vs. 6 months) did not differ significantly between study arms (3.7% difference of means; P = 0.28); total ACF burden was also similar (-2.3% difference of means; P = 0.83). Adenoma recurrence rates at 6 months were similar by arm (P > 0.35). Total drug received did not differ significantly by study arm; 31 (79%) subjects received ≥70% of prescribed Poly E. Poly E was well tolerated and adverse events (AE) did not differ significantly by arm. One subject on placebo had two grade 3 AEs; one subject had grade 2 hepatic transaminase elevations attributed to treatment. In conclusion, Poly E for 6 months did not significantly reduce rectal ACF number relative to placebo. Poly E was well tolerated and without significant toxicity at the dose studied. PREVENTION RELEVANCE: We report a chemoprevention trial of polyphenon E in subjects at high risk of colorectal cancer. The results show that polyphenon E was well tolerated, but did not significantly reduce the number of rectal aberrant crypt foci, a surrogate endpoint biomarker of colorectal cancer.
Collapse
Affiliation(s)
- Frank A Sinicrope
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Thomas R Viggiano
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Navtej S Buttar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Kenneth W Schroeder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Robert E Kraichely
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mark V Larson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Robert E Sedlack
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Abdul M Kalaiger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Árpád V Patai
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.,Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Gary Della'Zanna
- Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Asad Umar
- Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Paul J Limburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey P Meyers
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Nathan R Foster
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, The State University of New Jersey, Piscataway, New Jersey
| | - Stephen Sontag
- Section of Gastroenterology, Edward Hines, Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
21
|
Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2021; 14:34-47. [PMID: 33510571 PMCID: PMC7832984 DOI: 10.33393/dti.2020.2185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Introduction Plasma membranes are not the homogeneous bilayers of uniformly distributed lipids but the lipid complex with laterally separated lipid raft membrane domains, which provide receptor, ion channel and enzyme proteins with a platform. The aim of this article is to review the mechanistic interaction of drugs with membrane lipid rafts and address the question whether drugs induce physicochemical changes in raft-constituting and raft-surrounding membranes. Methods Literature searches of PubMed/MEDLINE and Google Scholar databases from 2000 to 2020 were conducted to include articles published in English in internationally recognized journals. Collected articles were independently reviewed by title, abstract and text for relevance. Results The literature search indicated that pharmacologically diverse drugs interact with raft model membranes and cellular membrane lipid rafts. They could physicochemically modify functional protein-localizing membrane lipid rafts and the membranes surrounding such domains, affecting the raft organizational integrity with the resultant exhibition of pharmacological activity. Raft-acting drugs were characterized as ones to decrease membrane fluidity, induce liquid-ordered phase or order plasma membranes, leading to lipid raft formation; and ones to increase membrane fluidity, induce liquid-disordered phase or reduce phase transition temperature, leading to lipid raft disruption. Conclusion Targeting lipid raft membrane domains would open a new way for drug design and development. Since angiotensin-converting enzyme 2 receptors which are a cell-specific target of and responsible for the cellular entry of novel coronavirus are localized in lipid rafts, agents that specifically disrupt the relevant rafts may be a drug against coronavirus disease 2019.
Collapse
|
22
|
Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:115-176. [PMID: 33797642 DOI: 10.1007/978-3-030-64853-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secondary metabolites (SM) from organisms have served medicinal chemists over the past two centuries as an almost inexhaustible pool of new drugs, drug-like skeletons, and chemical probes that have been used in the "hunt" for new biologically active molecules with a "beneficial effect on human mind and body." Several secondary metabolites, or their derivatives, have been found to be the answer in the quest to search for new approaches to treat or even eradicate many types of diseases that oppress humanity. A special place among SM is occupied by lignans and neolignans. These phenolic compounds are generated biosynthetically via radical coupling of two phenylpropanoid monomers, and are known for their multitarget activity and low toxicity. The disadvantage of the relatively low specificity of phenylpropanoid-based SM turns into an advantage when structural modifications of these skeletons are made. Indeed, phenylpropanoid-based SM previously have proven to offer great potential as a starting point in drug development. Compounds such as Warfarin® (a coumarin-based anticoagulant) as well as etoposide and teniposide (podophyllotoxin-based anticancer drugs) are just a few examples. At the beginning of the third decade of the twenty-first century, the call for the treatment of more than a dozen rare or previously "neglected" diseases remains for various reasons unanswered. Leishmaniasis, a neglected disease that desperately needs new ways of treatment, is just one of these. This disease is caused by more than 20 leishmanial parasites that are pathogenic to humans and are spread by as many as 800 sandfly species across subtropical areas of the world. With continuing climate changes, the presence of Leishmania parasites and therefore leishmaniasis, the disease caused by these parasites, is spreading from previous locations to new areas. Thus, leishmaniasis is affecting each year a larger proportion of the world's population. The choice of appropriate leishmaniasis treatment depends on the severity of the disease and its form of manifestation. The success of current drug therapy is often limited, due in most cases to requiring long hospitalization periods (weeks to months) and the toxicity (side effects) of administered drugs, in addition to the increasing resistance of the parasites to treatment. It is thus important to develop new drugs and treatments that are less toxic, can overcome drug resistance, and require shorter periods of treatment. These aspects are especially important for the populations of developing countries. It was reported that several phenylpropanoid-based secondary metabolites manifest interesting antileishmanial activities and are used by various indigenous people to treat leishmaniasis. In this chapter, the authors shed some light on the various biological activities of phenylpropanoid natural products, with the main focus being on their possible applications in the context of antileishmanial treatment.
Collapse
|
23
|
|
24
|
Citrus sudachi Peel Extract Suppresses Cell Proliferation and Promotes the Differentiation of Keratinocytes through Inhibition of the EGFR-ERK Signaling Pathway. Biomolecules 2020; 10:biom10101468. [PMID: 33096942 PMCID: PMC7589747 DOI: 10.3390/biom10101468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Citrus sudachi is a well-known fruit in Tokushima Prefecture, Japan, and its peels are rich in phytochemicals, including phenolic compounds. Although it is expected that the extract of the C. sudachi peel elicits various beneficial physiological activities, the effect on the skin has not been investigated. In this study, we report that the aqueous extract from the peel of C. sudachi suppresses cell proliferation of the immortalized human keratinocyte cell line, HaCaT, and primary normal human epidermal keratinocytes. The extract of C. sudachi peel suppressed epidermal growth factor (EGF)-induced EGF receptor activation and tumor necrosis factor (TNF)-α-induced extracellular regulated kinase (ERK) 1/2 activation, which suggests that the extract exerts its inhibitory effect through inhibition of both the EGF receptor (EGFR) and its downstream molecules. Additionally, the extract of C. sudachi peel potentiated calcium-induced keratinocyte differentiation. These results suggest that the extract of C. sudachi peel may have beneficial effects against skin diseases that are characterized by hyperproliferation of epidermal keratinocytes, such as those seen in psoriasis and in cutaneous squamous cell carcinoma.
Collapse
|
25
|
Wang R, Zhu W, Peng J, Li K, Li C. Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Crit Rev Food Sci Nutr 2020; 62:311-324. [PMID: 32951435 DOI: 10.1080/10408398.2020.1815171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polyphenols have attracted a lot of global attention due to their diverse biological actions against cancer, obesity, and cardiovascular diseases. Although extensive research has been carried out to elucidate the mechanisms of pleiotropic actions of polyphenols, this remains unclear. Lipid rafts are distinct nanodomains enriched in cholesterol and sphingolipids, present in the inner and outer leaflets of cell membranes, forming functional platforms for the regulation of cellular processes and diseases. Recent studies focusing on the interaction between polyphenols and cellular lipid rafts shed new light on the pleiotropic actions of polyphenols. Polyphenols are postulated to interact with lipid rafts in two ways: first, they interfere with the structural integrity of lipid rafts, by disrupting their structure and clustering of the ordered domains; second, they modulate the downstream signaling pathways mediated by lipid rafts, by binding to receptor proteins associated with lipid rafts, such as the 67 kDa laminin receptor (67LR), epidermal growth factor receptor (EGFR), and others. This study aims to elaborate the mechanism of interaction between polyphenols and lipid rafts, and describe pleiotropic preventive effects of polyphenols.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
26
|
Zhu W, Li MC, Wang FR, Mackenzie GG, Oteiza PI. The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling. Biochem Pharmacol 2020; 175:113923. [PMID: 32217102 PMCID: PMC7489796 DOI: 10.1016/j.bcp.2020.113923] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological studies indicate that consumption of fruits and vegetables containing procyanidins is associated with lower CRC risk. This study investigated the capacity of two dimeric procyanidins composed of epicatechin gallate (ECG) or epigallocatechin gallate (EGCG) isolated from persimmons, to inhibit CRC cell growth and promote apoptosis, characterizing the underlying mechanisms. ECG and EGCG dimers reduced the growth of five human CRC cell lines in a concentration (10-60 μM)- and time (24-72 h)-dependent manner, with a 72 h-IC50 value in Caco-2 cells of 10 and 30 μM, respectively. ECG and EGCG dimers inhibited Caco-2 cell proliferation by arresting the cell cycle in G2/M phase and by inducing apoptosis via the mitochondrial pathway. In addition, ECG and EGCG dimers inhibited cell migration, invasion, and adhesion, decreasing the activity of matrix metalloproteinases (MMP-2/9). Mechanistically, ECG and EGCG dimers inhibited the activation of lipid raft-associated epidermal growth factor (EGF) receptor (EGFR), without affecting its localization at lipid rafts. In particular, ECG and EGCG dimers reduced EGFR phosphorylation at Tyr1068 residue, prevented EGFR dimerization and activation upon stimulation, and induced EGFR internalization both in the absence and presence of EGF. Furthermore, ECG and EGCG dimers increased EGFR phosphorylation at Tyr1045 residue, providing a docking site for ubiquitin ligase c-Cbl and induced EGFR degradation by the proteasome. Downstream of EGFR, ECG and EGCG dimers inhibited the activation of the MEK/ERK1/2 and PI3K/AKT signaling pathways, downregulating proteins involved in the modulation of cell survival. In conclusion, ECG and EGCG dimers reduced CRC cell growth by inhibiting EGFR activation at multiple steps, including the disruption of lipid rafts integrity and promoting EGFR degradation. These results shed light on a potential molecular mechanism on how procyanidins-rich diets may lower CRC risk.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mei C Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng R Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
27
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
28
|
Bimonte S, Cascella M, Barbieri A, Arra C, Cuomo A. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: an update of the current state of knowledge. Infect Agent Cancer 2020; 15:2. [PMID: 31938038 PMCID: PMC6954554 DOI: 10.1186/s13027-020-0270-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-Negative Breast Cancer (TNBC), represents a subtype of breast cancer in which the estrogens receptor (ER) negative, the progesterone receptor (PR) negative and the human epidermal growth factor receptor 2 (HER2) negative, are not expressed. Thusly, TNBC does not respond to hormonal therapies or to those targeting the HER2 protein receptors. To overcome this flawed issue, new alternative therapies based on the use of natural substances, as the (-) - epigallocatechin 3-gallate (EGCG), has been proposed. It is largely documented that EGCG, the principal constituent of green tea, has suppressive effects on different types of cancer, including breast cancer, through the regulation of different signaling pathways. Thus, is reasonable to assume that EGCG could be viewed as a therapeutic option for the prevention and the treatment of TNBC. Here, we summarizing these promising results with the scope of turn a light on the potential roles of EGCG in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
29
|
Shao W, Zhu W, Lin J, Luo M, Lin Z, Lu L, Jia H, Qin L, Lu M, Chen J. Liver X Receptor Agonism Sensitizes a Subset of Hepatocellular Carcinoma to Sorafenib by Dual-Inhibiting MET and EGFR. Neoplasia 2019; 22:1-9. [PMID: 31751859 PMCID: PMC6911865 DOI: 10.1016/j.neo.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023] Open
Abstract
Sorafenib is the first approved systemic therapy for advanced hepatocellular carcinoma (HCC) and is the first-line choice in clinic. Sustained activation of receptor tyrosine kinases (RTKs) is associated with low efficacy of sorafenib in HCC. Activation of liver X receptor (LXR) has been reported to inhibit some RTKs. In this study, we found that the LXR agonist enhanced the anti-tumor activity of sorafenib in a subset of HCC cells with high LXR-β/α gene expression ratio. Mechanically, the activation of LXR suppressed sorafenib dependent recruitment of MET and epidermal growth factor receptor (EGFR) in lipid rafts through cholesterol efflux. Our findings imply that LXR agonist can serve as a potential sensitizer to enhance the anti-tumor effect of sorafenib.
Collapse
Affiliation(s)
- Weiqing Shao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Jing Lin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Mengjun Luo
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institutes of Biomedical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhifei Lin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China; Institutes of Biomedical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China.
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China.
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai 200040, China.
| |
Collapse
|
30
|
Zhu W, Wang RF, Khalifa I, Li CM. Understanding toward the Biophysical Interaction of Polymeric Proanthocyanidins (Persimmon Condensed Tannins) with Biomembranes: Relevance for Biological Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11044-11052. [PMID: 31545599 DOI: 10.1021/acs.jafc.9b04508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Persimmon condensed tannins (PT) are highly polymerized (mDP = 26) and highly galloylated (72%) proanthocyanidins. Its pleiotropic effects in oxidation resistance, neuroprotection, hypolipidemia, and cardio-protection both in vitro and in vivo were widely reported. Because large proanthocyanidins are unlikely to be absorbed in the gastrointestinal tract, it is believed that the interaction of PT with biological membranes may play a crucial role in its biological activities. In the present study, the capacities of PT adsorbing to membrane, partitioning into membrane, and its influence on the membrane fluidity were investigated by fluorescence quenching, isothermal titration calorimetry (ITC) and fluorescence anisotropy measurements in a biomembrane-mimetic system composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), sphingomyelin (SPM), and cholesterol (CHOL). Besides, the effects of PT on the morphology and integrity of the cell membrane were studied by scanning electron microscopy (SEM) and fluorescence staining in the 3T3-L1 cell model. The results suggested that PT could affect cell membrane rafts domains, destroy the cell membrane morphology, and regulate cell membrane fluidity, which might contribute to its biological effects.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Rui-Feng Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Ibrahim Khalifa
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Food Technology Department, Faculty of Agriculture , Benha University , Moshtohor 13736 , Egypt
| | - Chun-Mei Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
- Key Laboratory of Environment Correlative Food Science , Huazhong Agricultural University, Ministry of Education , Wuhan 430070 , China
| |
Collapse
|
31
|
Borisova MP, Kataev AA, Sivozhelezov VS. Action of tannin on cellular membranes: Novel insights from concerted studies on lipid bilayers and native cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1103-1111. [PMID: 30926363 DOI: 10.1016/j.bbamem.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Hydrolyzable tannin (3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose) has a dual effect on the cell membrane: (1) it binds to a plasmalemmal protein of the Chara corallina cell (C50 = 2.7 ± 0.3 μM) and (2) it forms ionic channels in the lipid membrane. Based on these facts, a molecular model for the interaction of tannins with the cell membrane is proposed. The model suggests that the molecules of hydrolyzable tannin bind electrostatically to the outer groups of the membrane protein responsible for the Ca2+-dependent chloride current and blocks it. Some tannin molecules penetrate into the hydrophobic region of the membrane, and when a particular concentration is reached, they form ion-conducting structures selective toward Cl-.
Collapse
Affiliation(s)
- Marina P Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, 142290, Russia.
| | - Anatoly A Kataev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Victor S Sivozhelezov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
32
|
Zhang JY, Liao YH, Lin Y, Liu Q, Xie XM, Tang LY, Ren ZF. Effects of tea consumption and the interactions with lipids on breast cancer survival. Breast Cancer Res Treat 2019; 176:679-686. [DOI: 10.1007/s10549-019-05253-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
|
33
|
Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018; 10:nu10121936. [PMID: 30563268 PMCID: PMC6315581 DOI: 10.3390/nu10121936] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.
Collapse
|
34
|
Bernardes N, Fialho AM. Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies. Int J Mol Sci 2018; 19:E3871. [PMID: 30518103 PMCID: PMC6321595 DOI: 10.3390/ijms19123871] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/26/2023] Open
Abstract
Cancer is a multi-process disease where different mechanisms exist in parallel to ensure cell survival and constant adaptation to the extracellular environment. To adapt rapidly, cancer cells re-arrange their plasma membranes to sustain proliferation, avoid apoptosis and resist anticancer drugs. In this review, we discuss novel approaches based on the modifications and manipulations that new classes of molecules can exert in the plasma membrane lateral organization and order of cancer cells, affecting growth factor signaling, invasiveness, and drug resistance. Furthermore, we present azurin, an anticancer protein from bacterial origin, as a new approach in the development of therapeutic strategies that target the cell membrane to improve the existing standard therapies.
Collapse
Affiliation(s)
- Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
| | - Arsenio M Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
35
|
Shirakami Y, Shimizu M. Possible Mechanisms of Green Tea and Its Constituents against Cancer. Molecules 2018; 23:molecules23092284. [PMID: 30205425 PMCID: PMC6225266 DOI: 10.3390/molecules23092284] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
A number of epidemiological, clinical, and experimental researches have indicated that administration of green tea appears to have anti-cancer activity. According to findings of laboratory cell culture studies, a diverse mechanism has been observed underlying the effects of green tea catechins against cancer. These mechanisms include anti-oxidant activity, cell cycle regulation, receptor tyrosine kinase pathway inhibition, immune system modulation, and epigenetic modification control. This review discusses the results of these studies to provide more insight into the effects of green tea administration on cancers observed to date in this research field.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
36
|
Hsieh CH, Lu CH, Kuo YY, Chen WT, Chao CY. Studies on the non-invasive anticancer remedy of the triple combination of epigallocatechin gallate, pulsed electric field, and ultrasound. PLoS One 2018; 13:e0201920. [PMID: 30080905 PMCID: PMC6078317 DOI: 10.1371/journal.pone.0201920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/24/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the most troublesome diseases and a leading cause of death worldwide. Recently, novel treatments have been continuously developed to improve the disadvantages of conventional therapies, such as prodigious expenses, unwanted side effects, and tumor recurrence. Here, we provide the first non-invasive treatment that has combined epigallocatechin gallate (EGCG), the most abundant catechin in green tea, with a low strength pulsed electric field (PEF) and a low energy ultrasound (US). It has been observed that the cell viability of human pancreatic cancer PANC-1 was decreased approximately to 20% of the control after this combination treatment for 72 h. Besides, the combined triple treatment significantly reduced the high tolerance of HepG2 cells to the EGCG-induced cytotoxicity and similarly exhibited compelling proliferation-inhibitory effects. We also found the combined triple treatment increased the intracellular reactive oxygen species (ROS) and acidic vesicles, and the EGCG-induced inhibition of Akt phosphorylation was dramatically intensified. In this study, the apoptosis inhibitor Z-VAD-FMK and the autophagy inhibitor 3-MA were, respectively, shown to attenuate the anticancer effects of the triple treatment. This indicates that the triple treatment-induced autophagy was switched from cytoprotective to cytotoxic, and hence, cooperatively caused cell death with the apoptosis. Since the EGCG is easily accessible from the green tea and mild for a long-term treatment, and the non-invasive physical stimulations could be modified to focus on a specific location, this combined triple treatment may serve as a promising strategy for anticancer therapy.
Collapse
Affiliation(s)
- Chih-Hsiung Hsieh
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
38
|
Dhatwalia SK, Kumar M, Dhawan DK. Role of EGCG in Containing the Progression of Lung Tumorigenesis - A Multistage Targeting Approach. Nutr Cancer 2018; 70:334-349. [PMID: 29570987 DOI: 10.1080/01635581.2018.1445762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is a prominent form among various types of cancers, irrespective of the sex worldwide. Treatment of lung cancer involves the intensive phase of chemotherapy/radiotherapy which is associated with high rate of adverse events. There is a need of safe and reliable treatment/adjunctive therapy to apprehend the cancer by reducing the undesirable outcome of primary therapy. Epigallocatechin-3-gallate (EGCG), which is a potent antioxidant and anticancer compound extracted from the plant camellia sinensis has proved to be a novel agent to control or reduce lung tumorigenesis by affecting the signaling molecules of cell cycle regulation and apoptotic pathways. In vitro studies have revealed that EGCG can contain carcinogenesis by altering the molecules involved in multiple signal transduction pathways like ERK, VEGF, COX2, NEAT, Ras-GTPase, and kinases. The animal studies have also demonstrated effectiveness of EGCG by inhibiting various molecular pathways which include AKT, NFkB, MAPK, Bcl/Bax, DNMT1, and HIF-1α. Various attempts have been made to see the adjunctive role of EGCG in human lung cancer. Phase I/II clinical studies have recommended that EGCG is quite safe and effective in providing protection against cancer. In this review, we will discuss the role of EGCG and its molecular mechanisms in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | - Devinder K Dhawan
- a Department of Biophysics , Panjab University , Chandigarh , India.,c Nuclear Medicine, Panjab University , Chandigarh , India
| |
Collapse
|
39
|
Lee MJ, Feng W, Yang L, Chen YK, Chi E, Liu A, Yang CS. Methods for efficient analysis of tocopherols, tocotrienols and their metabolites in animal samples with HPLC-EC. J Food Drug Anal 2018; 26:318-329. [PMID: 29389570 PMCID: PMC9332665 DOI: 10.1016/j.jfda.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022] Open
Abstract
Tocopherols and tocotrienols, collectively known as vitamin E, have received a great deal of attention because of their interesting biological activities. In the present study, we reexamined and improved previous methods of sample preparation and the conditions of high-performance liquid chromatography for more accurate quantification of tocopherols, tocotrienols and their major chain-degradation metabolites. For the analysis of serum tocopherols/tocotrienols, we reconfirmed our method of mixing serum with ethanol followed by hexane extraction. For the analysis of tissue samples, we improved our methods by extracting tocopherols/tocotrienols directly from tissue homogenate with hexane. For the analysis of total amounts (conjugated and unconjugated forms) of side-chain degradation metabolites, the samples need to be deconjugated by incubating with β-glucuronidase and sulfatase; serum samples can be directly used for the incubation, whereas for tissue homogenates a pre-deproteination step is needed. The present methods are sensitive, convenient and are suitable for the determination of different forms of vitamin E and their metabolites in animal and human studies. Results from the analysis of serum, liver, kidney, lung and urine samples from mice that had been treated with mixtures of tocotrienols and tocopherols are presented as examples.
Collapse
|
40
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
41
|
Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1354017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
42
|
The Inhibitory Effect of Epigallocatechin Gallate on the Viability of T Lymphoblastic Leukemia Cells is Associated with Increase of Caspase-3 Level and Fas Expression. Indian J Hematol Blood Transfus 2017; 34:253-260. [PMID: 29622866 DOI: 10.1007/s12288-017-0854-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
Acute lymphoblastic leukemia is the most prevalent cancer in children. Novel components to help struggle aggressive malignancies and overcome some side effects of conventional treatments could be a promising strategy. Epigallocatechingallate (EGCG), have attracted the attention of scientists for prevention or treatment of some cancers. Jurkat cells were incubated with the different concentrations of EGCG (30-100 µm) for 24, 48, and 72 h and cell viability was investigated using MTS test. Apoptosis and the level of caspase 3 alterations were evaluated using flowcytometry and expression of Fas by Real Time PCR. EGCG decreased viability of cells with an inhibition concentration (IC50) of 82.8 ± 3.1, 68.8 ± 4 and 59.7 ± 4.8 μM in 24,48 and 72 h. 50, 70 and 100 µM concentrations of EGCG induced apoptosis in about 31, 40 and 71% of the cells, respectively. The mean value of caspase 3 positive cells in the presence of 50, 70 and 100 µm concentrations of EGCG was 19.3 ± 2.9, 29.5 ± 3.1 and 61.2 ± 3.4 respectively compared to 7.8 ± 1.1 in control with a significant difference at 100 µm concentration. Treatment with EGCG for 48 h enhanced the expression of Fas reaching to a significant level at 100 µM concentration. EGCG is effective in decrease cell viability, apoptosis induction and enhancement of caspase 3 and Fas expression level in jurkat cells. A comprehensive understanding of molecular events and pharmacokinetics of the component and experiments in animal models are required for dose determination and its interaction with other components of combination chemotherapy.
Collapse
|
43
|
Alawin OA, Ahmed RA, Dronamraju V, Briski KP, Sylvester PW. γ-Tocotrienol-induced disruption of lipid rafts in human breast cancer cells is associated with a reduction in exosome heregulin content. J Nutr Biochem 2017; 48:83-93. [PMID: 28797930 DOI: 10.1016/j.jnutbio.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/09/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022]
Abstract
Overexpression of heregulin, a potent ligand that activates HER3 and HER4 receptors, plays a significant role in the development of chemotherapy resistance in breast cancer patients. Exosomes released from cancer cells are small vesicles originating from the outward budding of lipid rafts that carry various mitogenic proteins that then act locally in an autocrine/paracrine manner to stimulate cancer cell growth. Since the anticancer activity of γ-tocotrienol has been shown to be mediated in part through the disruption of lipid rafts, studies were conducted to determine the effect of γ-tocotrienol on exosomes mitogenic biopotency. Exosomes isolated from the media of cultured T47D breast cancer cells were found to stimulate T47D cell growth in a dose-dependent manner. These growth stimulating effects were due to the high levels of heregulin contained in the exosomes that act to stimulate HER3 and HER4 activation, heterodimerization and mitogenic signaling. Exposure to 5 μM γ-tocotrienol resulted in the selective accumulation and disruption in the integrity of the lipid raft microdomain and a corresponding decrease in exosome heregulin content and mitogenic biopotency. These findings provide strong evidence indicating that the anticancer effects of γ-tocotrienol are mediated, at least in part, by directly disrupting HER dimerization and signaling within the lipid rafts and indirectly by reducing exosome heregulin content and subsequent autocrine/paracrine mitogenic stimulation.
Collapse
Affiliation(s)
- Osama A Alawin
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | - Rayan A Ahmed
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | | | - Karen P Briski
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA
| | - Paul W Sylvester
- School of Pharmacy, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA.
| |
Collapse
|
44
|
Zhu W, Deng X, Peng J, Zou B, Li C. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts. J Nutr Biochem 2017; 48:62-73. [PMID: 28772148 DOI: 10.1016/j.jnutbio.2017.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/26/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022]
Abstract
The present study aimed to explore the underlying mechanisms of epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate (A-type ECG dimer) and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate (A-type EGCG dimer) involved in their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. In the synthetic "lipid raft-like" liposome, A-type ECG and EGCG dimers incorporated into the liposome with high affinity and decreased the fluidity of the liposome. In 3T3-L1 preadipocytes, A-type ECG and EGCG dimers possibly bonded to lipid rafts cholesterol and disrupted the integrity of lipid rafts, thus exerting their notable inhibitory effects on 3T3-L1 preadipocytes differentiation by suppressing mitotic clonal expansion process and mRNA levels of PPARγ, C/EBPα and SREBP1C. A highly positive correlation between the cholesterol binding capacity of the two dimers and their inhibitory effect on 3T3-L1 preadipocytes differentiation (R2=0.9328) was observed. Molecular dynamics simulation further verified that A-type ECG and EGCG dimers could bond to cholesterol via hydrogen bonding. The results of this study suggested that the disruption of A-type ECG and EGCG dimers on membrane lipid rafts by targeting cholesterol in the lipid rafts was involved in the underlying mechanisms of their strong inhibitory effects on 3T3-L1 preadipocytes differentiation. This broadens the understanding of the molecular mechanisms of polyphenols on modulating and controlling of metabolic dysregulation, particularly adipocyte differentiation, which is a significant risk factor associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070
| | - Xiangyi Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070
| | - Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070
| | - Bo Zou
- Sericultural & Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China, 510610
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, 430070; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education.
| |
Collapse
|
45
|
Horibe Y, Adachi S, Ohno T, Goto N, Okuno M, Iwama M, Yamauchi O, Kojima T, Saito K, Ibuka T, Yasuda I, Araki H, Moriwaki H, Shimizu M. Alpha-glucosidase inhibitor use is associated with decreased colorectal neoplasia risk in patients with type 2 diabetes mellitus receiving colonoscopy: a retrospective study. Oncotarget 2017; 8:97862-97870. [PMID: 29228657 PMCID: PMC5716697 DOI: 10.18632/oncotarget.18416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study was to clarify the factors that influence the incidence of colorectal neoplasia in patients with type 2 diabetes mellitus (DM). Study Design and Setting Among a total of 1176 patients who underwent total colonoscopy at our hospital, we retrospectively analyzed 168 patients with type 2 DM. Univariate and multivariate logistic regression analyses were then performed to identify the risk factors associated with colorectal neoplasia. Results A multivariate analysis of these patients demonstrated that male gender (odds ratio [OR] = 4.04, 95% confidence interval [CI] = 1.67-10.37, p = 0.002), taking statins (OR = 4.59, 95% CI = 1.69-13.43, p = 0.003), taking alpha glucosidase inhibitor (α-GI) (OR = 0.35, 95% CI = 0.13-0.87, p = 0.023) and taking low-dose aspirin (LDA) (OR = 0.32, 95% CI = 0.10-0.95, p = 0.040) were independent factors associated with an increased (male gender and statins) or decreased (α-GI and LDA) risk of colorectal neoplasia. Conclusions While male gender and taking statins are risk factors, taking α-GI as well as LDA may reduce the risk of colorectal neoplasia in patients with type2 DM.
Collapse
Affiliation(s)
- Yohei Horibe
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Seiji Adachi
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Tomohiko Ohno
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Naoe Goto
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Mitsuru Okuno
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Midori Iwama
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Osamu Yamauchi
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Takao Kojima
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Koshiro Saito
- Department of Gastroenterology and Internal Medicine, Gihoku Kosei Hospital, Yamagata, 501-2105, Japan
| | - Takashi Ibuka
- Division for Regional Cancer Control, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Gastroenterology and Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Ichiro Yasuda
- Division for Regional Cancer Control, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hiroshi Araki
- Department of Gastroenterology and Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hisataka Moriwaki
- Department of Gastroenterology and Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Masahito Shimizu
- Department of Gastroenterology and Internal Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
46
|
Ye F, Yang C, Kim J, MacNevin CJ, Hahn KM, Park D, Ginsberg MH, Kim C. Epigallocatechin gallate has pleiotropic effects on transmembrane signaling by altering the embedding of transmembrane domains. J Biol Chem 2017; 292:9858-9864. [PMID: 28487468 DOI: 10.1074/jbc.c117.787309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/01/2017] [Indexed: 11/06/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the principal bioactive ingredient in green tea and has been reported to have many health benefits. EGCG influences multiple signal transduction pathways related to human diseases, including redox, inflammation, cell cycle, and cell adhesion pathways. However, the molecular mechanisms of these varying effects are unclear, limiting further development and utilization of EGCG as a pharmaceutical compound. Here, we examined the effect of EGCG on two representative transmembrane signaling receptors, integrinαIIbβ3 and epidermal growth factor receptor (EGFR). We report that EGCG inhibits talin-induced integrin αIIbβ3 activation, but it activates αIIbβ3 in the absence of talin both in a purified system and in cells. This apparent paradox was explained by the fact that the activation state of αIIbβ3 is tightly regulated by the topology of β3 transmembrane domain (TMD); increases or decreases in TMD embedding can activate integrins. Talin increases the embedding of integrin β3 TMD, resulting in integrin activation, whereas we observed here that EGCG decreases the embedding, thus opposing talin-induced integrin activation. In the absence of talin, EGCG decreases the TMD embedding, which can also disrupt the integrin α-β TMD interaction, leading to integrin activation. EGCG exhibited similar paradoxical behavior in EGFR signaling. EGCG alters the topology of EGFR TMD and activates the receptor in the absence of EGF, but inhibits EGF-induced EGFR activation. Thus, this widely ingested polyphenol exhibits pleiotropic effects on transmembrane signaling by modifying the topology of TMDs.
Collapse
Affiliation(s)
- Feng Ye
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Chansik Yang
- the Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea.,the School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea, and
| | - Jiyoon Kim
- the Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Christopher J MacNevin
- the Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Klaus M Hahn
- the Department of Pharmacology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Dongeun Park
- the School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea, and
| | - Mark H Ginsberg
- From the Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093,
| | - Chungho Kim
- the Department of Life Sciences, Korea University, Seoul 136-701, Republic of Korea,
| |
Collapse
|
47
|
Shirakami Y, Ohnishi M, Sakai H, Tanaka T, Shimizu M. Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation. Int J Mol Sci 2017; 18:ijms18050908. [PMID: 28445390 PMCID: PMC5454821 DOI: 10.3390/ijms18050908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is a major healthcare concern worldwide. Many experimental and clinical studies have been conducted to date to discover agents that help in the prevention of this disease. Chronic inflammation in colonic mucosa and obesity, and its related metabolic abnormalities, are considered to increase the risk of colorectal cancer. Therefore, treatments targeting these factors might be a promising strategy to prevent the development of colorectal cancer. Among a number of functional foods, various phytochemicals, including tea catechins, which have anti-inflammatory and anti-obesity properties, and medicinal agents that ameliorate metabolic disorders, might also be beneficial in the prevention of colorectal cancer. In this review article, we summarize the strategies for preventing colorectal cancer by targeting obesity-related disorders and inflammation through nutraceutical and pharmaceutical approaches, and discuss the mechanisms of several phytochemicals and medicinal drugs used in basic and clinical research, especially focusing on the effects of green tea catechins.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Masaya Ohnishi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu 500-8513, Japan.
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|
48
|
Naponelli V, Ramazzina I, Lenzi C, Bettuzzi S, Rizzi F. Green Tea Catechins for Prostate Cancer Prevention: Present Achievements and Future Challenges. Antioxidants (Basel) 2017; 6:antiox6020026. [PMID: 28379200 PMCID: PMC5488006 DOI: 10.3390/antiox6020026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Green tea catechins (GTCs) are a family of chemically related compounds usually classified as antioxidant molecules. Epidemiological evidences, supported by interventional studies, highlighted a more than promising role for GTCs in human prostate cancer (PCa) chemoprevention. In the last decades, many efforts have been made to gain new insights into the mechanism of action of GTCs. Now it is clear that GTCs' anticancer action can no longer be simplistically limited to their direct antioxidant/pro-oxidant properties. Recent contributions to the advancement of knowledge in this field have shown that GTCs specifically interact with cellular targets, including cell surface receptors, lipid rafts, and endoplasmic reticulum, modulate gene expression through direct effect on transcription factors or indirect epigenetic mechanisms, and interfere with intracellular proteostasis at various levels. Many of the effects observed in vitro are dose and cell context dependent and take place at concentrations that cannot be achieved in vivo. Poor intestinal absorption together with an extensive systemic and enteric metabolism influence GTCs' bioavailability through still poorly understood mechanisms. Recent efforts to develop delivery systems that increase GTCs' overall bioavailability, by means of biopolymeric nanoparticles, represent the main way to translate preclinical results in a real clinical scenario for PCa chemoprevention.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma 43126, Italy.
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy.
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, Rome 00136, Italy.
- Fondazione Umberto Veronesi, Piazza Velasca 5, Milan 20122, Italy.
| | - Ileana Ramazzina
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma 43126, Italy.
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy.
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, Rome 00136, Italy.
| | - Chiara Lenzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| | - Saverio Bettuzzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma 43126, Italy.
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy.
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, Rome 00136, Italy.
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, Parma 43126, Italy.
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy.
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, Rome 00136, Italy.
| |
Collapse
|
49
|
ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. JOURNAL OF ONCOLOGY 2017; 2017:1532534. [PMID: 28286519 PMCID: PMC5327764 DOI: 10.1155/2017/1532534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
ErbB proteins overexpression, in both normal and mutated forms, is associated with invasive forms of cancer prone to metastasis and with stronger antiapoptotic mechanisms and therefore more challenging to treat. Downstream effectors of ErbB receptors mediating these phenotypic traits include MAPK, STAT, and PI3K/AKT/mTOR pathways. Various phytochemical compounds were studied for their large number of biological effects including anticancer activity. Among these compounds, epigallocatechin-3-gallate (EGCG), the main catechin from green tea leaves, and curcumin, component of the curry powder, constituted the object of numerous studies. Both compounds were shown to act directly either on ErbB expression, or on their downstream signaling molecules. In this paper we aim to review the involvement of ErbB proteins in cancer as well as the biologic activity of EGCG and curcumin in ErbB expressing and overexpressing malignancies. The problems arising in the administration of the two compounds due to their reduced bioavailability when orally administered, as well as the progress made in this field, from using novel formulations to improved dosing regimens or improved synthetic analogs, are also discussed.
Collapse
|
50
|
Abstract
Deadly diseases, such as cardiovascular diseases and cancer, remain the major health problems worldwide. Research in cardiovascular diseases and genome-wide association studies were successful in indentifying the gene loci associated with these threatening diseases. Yet, a substantial number of casual factors remain unexplained. Over the last decade, a better understanding of molecular and biochemical mechanisms of cardiac diseases led to developing a rationale for combining various protective agents, such as polyphenols, to target multiple signaling pathways. The present review article summarizes recent advances of the use of polyphenols against diseases, such as cardiac diseases.
Collapse
|