1
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Mahé M, Rios-Fuller T, Katsara O, Schneider RJ. Non-canonical mRNA translation initiation in cell stress and cancer. NAR Cancer 2024; 6:zcae026. [PMID: 38828390 PMCID: PMC11140632 DOI: 10.1093/narcan/zcae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
The now well described canonical mRNA translation initiation mechanism of m7G 'cap' recognition by cap-binding protein eIF4E and assembly of the canonical pre-initiation complex consisting of scaffolding protein eIF4G and RNA helicase eIF4A has historically been thought to describe all cellular mRNA translation. However, the past decade has seen the discovery of alternative mechanisms to canonical eIF4E mediated mRNA translation initiation. Studies have shown that non-canonical alternate mechanisms of cellular mRNA translation initiation, whether cap-dependent or independent, serve to provide selective translation of mRNAs under cell physiological and pathological stress conditions. These conditions typically involve the global downregulation of canonical eIF4E1/cap-mediated mRNA translation, and selective translational reprogramming of the cell proteome, as occurs in tumor development and malignant progression. Cancer cells must be able to maintain physiological plasticity to acquire a migratory phenotype, invade tissues, metastasize, survive and adapt to severe microenvironmental stress conditions that involve inhibition of canonical mRNA translation initiation. In this review we describe the emerging, important role of non-canonical, alternate mechanisms of mRNA translation initiation in cancer, particularly in adaptation to stresses and the phenotypic cell fate changes involved in malignant progression and metastasis. These alternate translation initiation mechanisms provide new targets for oncology therapeutics development.
Collapse
Affiliation(s)
- Mélanie Mahé
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tiffany Rios-Fuller
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
3
|
Ding Y, Wang Z, Chen C, Li D, Wang W, Jia Y, Qin Y. miR-1304 targets KLK11 to regulate gastric cancer cell proliferation through the mTOR signaling pathway. Carcinogenesis 2024; 45:45-56. [PMID: 37971062 DOI: 10.1093/carcin/bgad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is prevalent worldwide but has a dismal prognosis, and its molecular and pathogenic pathways remain unknown. Kallikrein 11 (KLK11) has a reduced expression in GC and may be a promising biomarker. METHOD Herein, the function of KLK11 in GC and its regulatory mechanism was studied. Gene sequencing and quantitative reverse transcription-polymerase chain reaction were used to determine the expression of KLK11 in GC and precancerous lesions. Cell function tests and flow cytometry were conducted to determine the proliferative capacity and cell cycle of GC cells, respectively. A luciferase reporter test confirmed the interaction between RNA molecules. The mTOR/4E-BP1 signaling pathway was analyzed using western blotting. RESULT KLK11 has a suppressed expression in GC samples. KLK11 decreased the proliferative capacity of GC cells, by inhibiting the degree of mTOR/4E-BP1 phosphorylation. In contrast, miR-1304 increased GC cell proliferation by inhibiting KLK11. Moreover, KLK11 was able to limit in vivo GC cell proliferation. CONCLUSION These findings reveal a promising strategy to prevent and treat GC by targeting the KLK11-mediated mTOR/4E-BP1 cascade.
Collapse
Affiliation(s)
- Yi Ding
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dongyu Li
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai, Long, Taipa, Macao 999078, China
| | - Wenjia Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
4
|
Li S, Yuan J, Cheng Z, Li Y, Cheng S, Liu X, Huang S, Xu Z, Wu A, Liu L, Dong J. Hsa_circ_0021205 enhances lipolysis via regulating miR-195-5p/HSL axis and drives malignant progression of glioblastoma. Cell Death Discov 2024; 10:71. [PMID: 38341418 DOI: 10.1038/s41420-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal lipid metabolism is an essential hallmark of glioblastoma. Hormone sensitive lipase (HSL), an important rate-limiting enzyme contributed to lipolysis, which was involved in aberrant lipolysis of glioblastoma, however, its definite roles and the relevant regulatory pathway have not been fully elucidated. Our investigations disclosed high expression of HSL in glioblastoma. Knock-down of HSL restrained proliferation, migration, and invasion of glioblastoma cells while adding to FAs could significantly rescue the inhibitory effect of si-HSL on tumor cells. Overexpression of HSL further promoted tumor cell proliferation and invasion. Bioinformatics analysis and dual-luciferase reporter assay were performed to predict and verify the regulatory role of ncRNAs on HSL. Mechanistically, hsa_circ_0021205 regulated HSL expression by sponging miR-195-5p, which further promoted lipolysis and drove the malignant progression of glioblastoma. Besides, hsa_circ_0021205/miR-195-5p/HSL axis activated the epithelial-mesenchymal transition (EMT) signaling pathway. These findings suggested that hsa_circ_0021205 promoted tumorigenesis of glioblastoma through regulation of HSL, and targeting hsa_circ_0021205/miR-195-5p/HSL axis can serve as a promising new strategy against glioblastoma.
Collapse
Affiliation(s)
- Suwen Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Yuan
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Zhe Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurosurgery, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yongdong Li
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinglei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shilu Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhipeng Xu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Anyi Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Garufi A, Scarpelli F, Ricciardi L, Aiello I, D’Orazi G, Crispini A. New Copper-Based Metallodrugs with Anti-Invasive Capacity. Biomolecules 2023; 13:1489. [PMID: 37892171 PMCID: PMC10604694 DOI: 10.3390/biom13101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
While metal-based complexes are deeply investigated as anticancer chemotherapeutic drugs, fewer studies are devoted to their anti-invasive activity. Herein, two copper (Cu)(II) tropolone derivatives, [Cu(Trop)Cl] and [Cu(Trop)Sac], both containing the N,N-chelated 4,4'-bishydroxymethyl-2,2'-bipyridne ligand, were evaluated for their anticancer and anti-invasive properties. RKO (RKO-ctr) colon cancer cells and their derivatives undergoing stable small interference (si) RNA for HIPK2 protein (RKO-siHIPK2) with acquisition of pro-invasive capacity were used. The results demonstrate that while [Cu(Trop)Sac] did not show cytotoxic activity, [Cu(Trop)Cl] induced cell death in both RKO-ctr and RKO-siHIPK2 cells, indicating that structural changes on substituting the coordinated chloride ligand with saccharine (Sac) could be a key factor in suppressing mechanisms of cellular death. On the other hand, both [Cu(Trop)Sac] and [Cu(Trop)Cl] complexes counteracted RKO-siHIPK2 cell migration in the wound healing assay. The synergic effect exerted by the concomitant presence of both tropolone and saccharin ligands in [Cu(Trop)Sac] was also supported by its significant inhibition of RKO-siHIPK2 cell migration compared to the free Sac ligand. These data suggest that the two Cu(II) tropolone derivatives are also interesting candidates to be further tested in in vivo models as an anti-invasive tumor strategy.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Scarpelli
- MAT-In_LAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy; (F.S.); (I.A.); (A.C.)
| | - Loredana Ricciardi
- CNR NANOTEC-Institute of Nanotechnology U.O.S. Cosenza, 87036 Arcavacata di Rende, CS, Italy;
| | - Iolinda Aiello
- MAT-In_LAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy; (F.S.); (I.A.); (A.C.)
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- School of Medicine, UniCamillus International University of Health Sciences, 00100 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Alessandra Crispini
- MAT-In_LAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy; (F.S.); (I.A.); (A.C.)
| |
Collapse
|
6
|
Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Pharmaceuticals (Basel) 2023; 16:1004. [PMID: 37513916 PMCID: PMC10384750 DOI: 10.3390/ph16071004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha 61412, Saudi Arabia
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
7
|
Derwich A, Sykutera M, Bromińska B, Rubiś B, Ruchała M, Sawicka-Gutaj N. The Role of Activation of PI3K/AKT/mTOR and RAF/MEK/ERK Pathways in Aggressive Pituitary Adenomas-New Potential Therapeutic Approach-A Systematic Review. Int J Mol Sci 2023; 24:10952. [PMID: 37446128 PMCID: PMC10341524 DOI: 10.3390/ijms241310952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pituitary tumors (PT) are mostly benign, although occasionally they demonstrate aggressive behavior, invasion of surrounding tissues, rapid growth, resistance to conventional treatments, and multiple recurrences. The pathogenesis of PT is still not fully understood, and the factors responsible for its invasiveness, aggressiveness, and potential for metastasis are unknown. RAF/MEK/ERK and mTOR signaling are significant pathways in the regulation of cell growth, proliferation, and survival, its importance in tumorigenesis has been highlighted. The aim of our review is to determine the role of the activation of PI3K/AKT/mTOR and RAF/MEK/ERK pathways in the pathogenesis of pituitary tumors. Additionally, we evaluate their potential in a new therapeutic approach to provide alternative therapies and improved outcomes for patients with aggressive pituitary tumors that do not respond to standard treatment. We perform a systematic literature search using the PubMed, Embase, and Scopus databases (search date was 2012-2023). Out of the 529 screened studies, 13 met the inclusion criteria, 7 related to the PI3K/AKT/mTOR pathway, and 7 to the RAF/MEK/ERK pathway (one study was used in both analyses). Understanding the specific factors involved in PT tumorigenesis provides opportunities for targeted therapies. We also review the possible new targeted therapies and the use of mTOR inhibitors and TKI in PT management. Although the RAF/MEK/ERK and PI3K/AKT/mTOR pathways play a pivotal role in the complex signaling network along with many interactions, further research is urgently needed to clarify the exact functions and the underlying mechanisms of these signaling pathways in the pathogenesis of pituitary adenomas and their role in its invasiveness and aggressive clinical outcome.
Collapse
Affiliation(s)
- Aleksandra Derwich
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Monika Sykutera
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Barbara Bromińska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.D.)
| |
Collapse
|
8
|
Li R, Huang D, Ju M, Chen HY, Luan C, Zhang JA, Chen K. The long non-coding RNA PVT1 promotes tumorigenesis of cutaneous squamous cell carcinoma via interaction with 4EBP1. Cell Death Discov 2023; 9:101. [PMID: 36944636 PMCID: PMC10030977 DOI: 10.1038/s41420-023-01380-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) plays an oncogenic role in multiple cancers due to its high expression. However, the expression and associated regulatory mechanisms of PVT1 in cutaneous squamous cell carcinoma (cSCC) remain unclear. Our results revealed that PVT1 was highly upregulated in cSCC tissues and cSCC cell lines. To determine the functional role of PVT1 in cSCC, we constructed a stable knockdown cell model of PVT1 in the A431 and COLO16 cell lines using a lentiviral approach. Xenograft tumor experiments of nude mice in vivo, and colony formation, CCK-8, and EdU assays in vitro demonstrated that knockdown of PVT1 could widely suppress cell proliferation in vivo and in vitro. In addition, PVT1 knockdown induced cell cycle arrest and promoted apoptosis, as detected by flow cytometry analysis. Wound healing and transwell assays revealed that PVT1 knockdown significantly inhibited the migration and invasion of CSCC cell lines. To gain insight into the tumorigenic mechanism and explore the potential target molecules of PVT1, we employed label-free quantitative proteomic analysis. The GO, KEGG enrichment, and protein-protein interaction (PPI) networks suggested that 4E-binding protein 1 (4EBP1) is the possible downstream target effector of PVT1, which was validated by western blot analysis. PVT1 silencing markedly decreased 4EBP1 protein expression levels and directly bound 4EBP1 in the cytoplasm of cSCC cells. 4EBP1 overexpression counteracted the effects of PVT1 knockdown on tumorigenesis in cSCC cells, including cell proliferation, apoptosis, migration, and invasion. Our findings provide strong evidence that PVT1 is an oncogene which plays a role in tumorigenesis of cSCC, that PVT1 may interact with 4EBP1 in the cytoplasm as an underlying mechanism in cSCC carcinogenesis, and that PVT1 combined with 4EBP1 may serve as a potential new therapeutic target for cSCC.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Dan Huang
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Mei Ju
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Hong-Ying Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Chao Luan
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Jia-An Zhang
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| |
Collapse
|
9
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Muñoz-Ayala A, Chimal-Vega B, García-González V. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:111-141. [PMID: 36088073 DOI: 10.1016/bs.apcsb.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathways that regulate protein homeostasis (proteostasis) in cells range from mRNA processing to protein degradation; perturbations in regulatory mechanisms of these pathways can lead to oncogenic cellular processes. Protein synthesis modulation failures are common phenomena in cancer cells, wherein specific conditions that promote the translation of protein factors promoting carcinogenesis are present. These specific conditions may be favored by metabolic lipid alterations like those found in metabolic syndrome and obesity. Protein translation modifications have been described in obesity, favoring the translation of protein targets that benefit lipid accumulation; a determining factor is the activity of the cap-binding eukaryotic translation initiation factor 4E (eIF4E), a crosstalk in protein translation and lipogenesis. Besides, alterations of protein translation initiation steps are critical participants for the development of both pathogenic conditions, cancer, and obesity. This chapter is focused on the regulation of recognition and processing of carcinogenic-mRNA and the connections among lipid metabolism and cell signaling pathways that promote oncogenesis, tumoral microenvironment generation and potentially the development of chemoresistance. We performed an in-depth analysis of events, such as those occurring in obesity and dyslipidemias, that may influence protein translation, driving the recognition of certain mRNAs and favoring cancer development and chemoresistance.
Collapse
Affiliation(s)
- Andrea Muñoz-Ayala
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México.
| |
Collapse
|
11
|
Yuan K, Li Z, Kuang W, Wang X, Ji M, Chen W, Ding J, Li J, Min W, Sun C, Ye X, Lu M, Wang L, Ge H, Jiang Y, Hao H, Xiao Y, Yang P. Targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 with a highly selective inhibitor for the treatment of prostate cancer. Nat Commun 2022; 13:2903. [PMID: 35614066 PMCID: PMC9133015 DOI: 10.1038/s41467-022-30581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide, and hormonal therapy plays a key role in the treatment of PCa. However, the drug resistance of hormonal therapy makes it urgent and necessary to identify novel targets for PCa treatment. Herein, dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is found and confirmed to be highly expressed in the PCa tissues and cells, and knock-down of DYRK2 remarkably reduces PCa burden in vitro and in vivo. On the base of DYRK2 acting as a promising target, we further discover a highly selective DYRK2 inhibitor YK-2-69, which specifically interacts with Lys-231 and Lys-234 in the co-crystal structure. Especially, YK-2-69 exhibits more potent anti-PCa efficacy than the first-line drug enzalutamide in vivo. Meanwhile, YK-2-69 displays favorable safety properties with a maximal tolerable dose of more than 10,000 mg/kg and pharmacokinetic profiles with 56% bioavailability. In summary, we identify DYRK2 as a potential drug target and verify its critical roles in PCa. Meanwhile, we discover a highly selective DYRK2 inhibitor with favorable druggability for the treatment of PCa. The kinase DYRK2 is a known oncogene but its role in prostate cancer is unexplored. Here, the authors identify DYRK2 as a target for prostate cancer with a role in invasion and they discover a specific DYRK2 inhibitor that has good pharmacokinetics and efficacy in vivo.
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Zhaoxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, 211198, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, 313000, Huzhou, China
| | - Yuzhang Jiang
- Department of Laboratory, Huai'an First People's Hospital, Nanjing Medical University, 223300, Huai'an, Jiangsu, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China. .,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 211198, Nanjing, China.
| |
Collapse
|
12
|
EIF4EBP1 is transcriptionally upregulated by MYCN and associates with poor prognosis in neuroblastoma. Cell Death Dis 2022; 8:157. [PMID: 35379801 PMCID: PMC8980029 DOI: 10.1038/s41420-022-00963-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023]
Abstract
Neuroblastoma (NB) accounts for 15% of cancer-related deaths in childhood despite considerable therapeutic improvements. While several risk factors, including MYCN amplification and alterations in RAS and p53 pathway genes, have been defined in NB, the clinical outcome is very variable and difficult to predict. Since genes of the mechanistic target of rapamycin (mTOR) pathway are upregulated in MYCN-amplified NB, we aimed to define the predictive value of the mTOR substrate-encoding gene eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) expression in NB patients. Using publicly available data sets, we found that EIF4EBP1 mRNA expression is positively correlated with MYCN expression and elevated in stage 4 and high-risk NB patients. In addition, high EIF4EBP1 mRNA expression is associated with reduced overall and event-free survival in the entire group of NB patients in three cohorts, as well as in stage 4 and high-risk patients. This was confirmed by monitoring the clinical value of 4EBP1 protein expression, which revealed that high levels of 4EBP1 are significantly associated with prognostically unfavorable NB histology. Finally, functional analyses revealed that EIF4EBP1 expression is transcriptionally controlled by MYCN binding to the EIF4EBP1 promoter in NB cells. Our data highlight that EIF4EBP1 is a direct transcriptional target of MYCN whose high expression is associated with poor prognosis in NB patients. Therefore, EIF4EBP1 may serve to better stratify patients with NB.
Collapse
|
13
|
Lehman SL, Wilson ED, Camphausen K, Tofilon PJ. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. Int J Mol Sci 2021; 22:ijms221910664. [PMID: 34639005 PMCID: PMC8508945 DOI: 10.3390/ijms221910664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Towards improving the efficacy of radiotherapy, one approach is to target the molecules and processes mediating cellular radioresponse. Along these lines, translational control of gene expression has been established as a fundamental component of cellular radioresponse, which suggests that the molecules participating in this process (i.e., the translational machinery) can serve as determinants of radiosensitivity. Moreover, the proteins comprising the translational machinery are often overexpressed in tumor cells suggesting the potential for tumor specific radiosensitization. Studies to date have shown that inhibiting proteins involved in translation initiation, the rate-limiting step in translation, specifically the three members of the eIF4F cap binding complex eIF4E, eIF4G, and eIF4A as well as the cap binding regulatory kinases mTOR and Mnk1/2, results in the radiosensitization of tumor cells. Because ribosomes are required for translation initiation, inhibiting ribosome biogenesis also appears to be a strategy for radiosensitization. In general, the radiosensitization induced by targeting the translation initiation machinery involves inhibition of DNA repair, which appears to be the consequence of a reduced expression of proteins critical to radioresponse. The availability of clinically relevant inhibitors of this component of the translational machinery suggests opportunities to extend this approach to radiosensitization to patient care.
Collapse
|
14
|
Lai CC, Chen TJ, Chan TC, Li WS, He HL. Prognostic significance of OXR1 in urothelial carcinoma: low OXR1 expression is associated with worse survival. Future Oncol 2021; 17:4145-4156. [PMID: 34467778 DOI: 10.2217/fon-2021-0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Bioinformatic analysis has revealed that OXR1 is significantly downregulated in muscle-invasive bladder cancer. Patients & methods: The expression of OXR1 in patients with urothelial carcinoma was evaluated by immunohistochemistry, including 340 cases with urothelial carcinoma in the upper urinary tract and 295 in the urinary bladder. Results: Low expression of OXR1 was significantly correlated with adverse pathological parameters including high primary tumor (pT) stage, high node stage, high histological grade, high mitotic activity and increased vascular or perineural invasion (all p < 0.05). Low expression of OXR1 independently predicted worse metastasis-free survival (p = 0.033) in urothelial carcinoma of the upper urinary tract and worse disease-specific survival (p = 0.022) and metastasis-free survival (p < 0.001) in urothelial carcinoma of the urinary bladder. Conclusion: Low expression of OXR1 is an adverse prognostic factor in urothelial carcinoma.
Collapse
Affiliation(s)
- Chien-Cheng Lai
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ti-Chun Chan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan 704016, Taiwan
| | - Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Department of Pathology, E-DA Hospital & E-DA Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
15
|
Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev 2021; 40:865-878. [PMID: 34142285 DOI: 10.1007/s10555-021-09977-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.
Collapse
Affiliation(s)
- Guido Eibl
- Department of Surgery, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
17
|
Majeed ST, Batool A, Majeed R, Bhat NN, Zargar MA, Andrabi KI. mTORC1 induces eukaryotic translation initiation factor 4E interaction with TOS-S6 kinase 1 and its activation. Cell Cycle 2021; 20:839-854. [PMID: 33938392 DOI: 10.1080/15384101.2021.1901038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.
Collapse
Affiliation(s)
- Sheikh Tahir Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Asiya Batool
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Nadiem Nazir Bhat
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| | | | - Khurshid Iqbal Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
18
|
Integrated Analysis to Identify a Redox-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6648093. [PMID: 33968297 PMCID: PMC8084660 DOI: 10.1155/2021/6648093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The imbalance of the redox system has been shown to be closely related to the occurrence and progression of many cancers. However, the biological function and clinical significance of redox-related genes (RRGs) in clear cell renal cell carcinoma (ccRCC) are unclear. In our current study, we downloaded transcriptome data from The Cancer Genome Atlas (TCGA) database of ccRCC patients and identified the differential expression of RRGs in tumor and normal kidney tissues. Then, we identified a total of 344 differentially expressed RRGs, including 234 upregulated and 110 downregulated RRGs. Fourteen prognosis-related RRGs (ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, HTR2C, ITIH4, LTB4R, MMP3, PLG, PRKCG, SAA1, and VWF) were selected out, and a prognosis-related signature was constructed based on these RRGs. Survival analysis showed that overall survival was lower in the high-risk group than in the low-risk group. The area under the receiver operating characteristic curve of the risk score signature was 0.728 at three years and 0.759 at five years in the TCGA cohort and 0.804 at three years and 0.829 at five years in the E-MTAB-1980 cohort, showing good predictive performance. In addition, we explored the regulatory relationships of these RRGs with upstream miRNA, their biological functions and molecular mechanisms, and their relationship with immune cell infiltration. We also established a nomogram based on these prognostic RRGs and performed internal and external validation in the TCGA and E-MTAB-1980 cohorts, respectively, showing an accurate prediction of ccRCC prognosis. Moreover, a stratified analysis showed a significant correlation between the prognostic signature and ccRCC progression.
Collapse
|
19
|
Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers (Basel) 2021; 13:cancers13071538. [PMID: 33810522 PMCID: PMC8037590 DOI: 10.3390/cancers13071538] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation of several signalling cascades which regulate biological processes such as cellular growth, survival, proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour progression and is one of the most common events in human cancers. Additionally, aberrant activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of anti-tumour agents paving the way for the development and implementation of PI3K inhibitors in the clinic. However, the overall effectiveness of these compounds has been greatly limited by inadequate target engagement due to reactivation of the pathway by compensatory mechanisms. Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway, therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore, we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.
Collapse
Affiliation(s)
- Sarah Christine Elisabeth Wright
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Natali Vasilevski
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Violeta Serra
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Jordi Rodon
- MD Anderson Cancer Center, Investigational Cancer Therapeutics Department, Houston, TX 77030, USA;
| | - Pieter Johan Adam Eichhorn
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
20
|
Wang J, Li W, Chen X. Inhibition of GH3 and HEK293 pituitary adenoma cell growth by Trigonella foenum-graecum extract (TFGE) via mTORC1 down-regulation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1927858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jing Wang
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, People’s Republic of China
| | - Wencong Li
- Department of Endocrinology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, People’s Republic of China
| | - Xingwang Chen
- Department of Neurology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, People’s Republic of China
| |
Collapse
|
21
|
Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020; 18:175. [PMID: 33148274 PMCID: PMC7640403 DOI: 10.1186/s12964-020-00607-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaojiao Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Yin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiao Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
22
|
Rozpędek W, Pytel D, Wawrzynkiewicz A, Siwecka N, Dziki A, Dziki Ł, Diehl JA, Majsterek I. Use of Small-molecule Inhibitory Compound of PERK-dependent Signaling Pathway as a Promising Target-based Therapy for Colorectal Cancer. Curr Cancer Drug Targets 2020; 20:223-238. [PMID: 31906838 DOI: 10.2174/1568009620666200106114826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Colorectal cancer constitutes one of the most common cancer with a high mortality rate. The newest data has reported that activation of the pro-apoptotic PERK-dependent unfolded protein response signaling pathway by small-molecule inhibitors may constitute an innovative anti-cancer treatment strategy. OBJECTIVE In the presented study, we evaluated the effectiveness of the PERK-dependent unfolded protein response signaling pathway small-molecule inhibitor 42215 both on HT-29 human colon adenocarcinoma and CCD 841 CoN normal human colon epithelial cell lines. METHODS Cytotoxicity of the PERK inhibitor was evaluated by the resazurin-based and lactate dehydrogenase (LDH) tests. Apoptotic cell death was measured by flow cytometry using the FITCconjugated Annexin V to indicate apoptosis and propidium iodide to indicate necrosis as well as by colorimetric caspase-3 assay. The effect of tested PERK inhibitor on cell cycle progression was measured by flow cytometry using the propidium iodide staining. The level of the phosphorylated form of the eukaryotic initiation factor 2 alpha was detected by the Western blot technique. RESULTS Obtained results showed that investigated PERK inhibitor is selective only toward cancer cells, since inhibited their viability in a dose- and time-dependent manner and induced their apoptosis and G2/M cell cycle arrest. Furthermore, 42215 PERK inhibitor evoked significant inhibition of eIF2α phosphorylation within HT-29 cancer cells. CONCLUSION Highly-selective PERK inhibitors may provide a ground-breaking, anti-cancer treatment strategy via activation of the pro-apoptotic branch of the PERK-dependent unfolded protein response signaling pathway.
Collapse
Affiliation(s)
- Wioletta Rozpędek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Adam Dziki
- Department of General and Colorectal Surgery, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Colorectal Surgery, Medical University of Lodz, Lodz, Poland
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Ramón y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl) 2020; 98:161-177. [PMID: 31970428 PMCID: PMC7007907 DOI: 10.1007/s00109-020-01874-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors.
Collapse
Affiliation(s)
- Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Autonomous University of Barcelona, Pg. Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032 USA
| | - Trond Aasen
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Leticia De Mattos-Arruda
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, c/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Salvador J. Diaz-Cano
- Department of Histopathology, King’s College Hospital and King’s Health Partners, London, UK
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Josep Castellví
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
24
|
Okumura Y, Kohashi K, Tanaka Y, Kato M, Maehara Y, Ogawa Y, Oda Y. Activation of the Akt/mammalian target of rapamycin pathway in combined hepatocellular carcinoma and cholangiocarcinoma: significant correlation between p-4E-BP1 expression in cholangiocarcinoma component and prognosis. Virchows Arch 2020; 476:881-890. [PMID: 31927624 DOI: 10.1007/s00428-019-02741-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/03/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
The Akt/mammalian target of rapamycin (mTOR) pathway, which plays an important role in regulating cellular functions including proliferation, motility, and invasion, is known to be activated in many cancers. Combined hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) (cHCC-CC) has wide histological diversity characterized by relatively poor prognosis. Because of a lack of investigation into its molecular mechanisms, no effective systemic therapy is currently available for unresectable cHCC-CC tumors. Here, we retrospectively examined the clinicopathological and activation statuses of the Akt/mTOR pathway in 89 cases of cHCC-CC. Expression levels of molecular markers associated with this signaling pathway, including phosphatase and tensin homologue deleted on chromosome 10 (PTEN), phosphorylated Akt (p-Akt), p-mTOR, p-ribosomal protein S6 (p-S6RP), and p-eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (p-4E-BP1), were measured by immunohistochemical staining. In addition, such activation in different cHCC-CC morphological categories was compared by dividing cases into those with HCC (n = 86), CC (n = 78), and intermediate components (n = 60). Comparison of prognosis among these groups revealed that p-4E-BP1 immunopositivity in cHCC-CC cases containing CC a component was a significant risk factor for poorer overall survival (P = 0.041). By evaluating factors in p-4E-BP1 expression in 78 cHCC-CC cases with a CC component, only lymph node metastasis was significantly correlated with positive immunostaining for p-4E-BP1 (P = 0.0222). In conclusion, p-4E-BP1 expression, especially in cHCC-CC cases with a CC component, was a notable Akt/mTOR pathway-related factor associated with poor prognosis. Assessing histological structure and p-4E-BP1 expression in cHCC-CC may be helpful for both predicting prognosis and using molecular targeted therapy.
Collapse
Affiliation(s)
- Yukihiko Okumura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Tanaka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
Zhu J, Wang M, Hu D. Development of an autophagy-related gene prognostic signature in lung adenocarcinoma and lung squamous cell carcinoma. PeerJ 2020; 8:e8288. [PMID: 31938577 PMCID: PMC6953332 DOI: 10.7717/peerj.8288] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose There is plenty of evidence showing that autophagy plays an important role in the biological process of cancer. The purpose of this study was to establish a novel autophagy-related prognostic marker for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Methods The mRNA microarray and clinical data in The Cancer Genome Atlas (TCGA) were analyzed by using a univariate Cox proportional regression model to select candidate autophagy-related prognostic genes. Bioinformatics analysis of gene function using the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) platforms was performed. A multivariate Cox proportional regression model helped to develop a prognostic signature from the pool of candidate genes. On the basis of this prognostic signature, we could divide LUAD and LUSC patients into high-risk and low-risk groups. Further survival analysis demonstrated that high-risk patients had significantly shorter disease-free survival (DFS) than low-risk patients. The signature which contains six autophagy-related genes (EIF4EBP1, TP63, BNIP3, ATIC, ERO1A and FADD) showed good performance for predicting the survival of LUAD and LUSC patients by having a better Area Under Curves (AUC) than other clinical parameters. Its efficacy was also validated by data from the Gene Expression Omnibus (GEO) database. Conclusion Collectively, the prognostic signature we proposed is a promising biomarker for monitoring the outcomes of LUAD and LUSC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Intensive Care Unit, The People's Hospital of Tongliang District, Chongqing, China
| | - Min Wang
- Department of Respiratory and Geriatrics, Chongqing Public Health Medical Center, Chongqing, China
| | - Daixing Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Effects of single-nucleotide polymorphisms in the mTORC1 pathway on the risk of brain metastasis in patients with non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 146:273-285. [PMID: 31641854 PMCID: PMC6942024 DOI: 10.1007/s00432-019-03059-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 01/14/2023]
Abstract
Purpose The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway plays a vital role in cancer development and progression. This study aimed to investigate the relationship between genotype variants in mTORC1 pathway and the risk of brain metastasis (BM) in patients with non-small cell lung cancer (NSCLC). Methods We extracted genomic DNA from blood samples of 501 NSCLC patients and genotyped eight single-nucleotide polymorphisms (SNPs) in three core genes [mammalian target of rapamycin (mTOR), mammalian lethal with sec-13 protein 8 (mLST8) and regulatory-associated protein of mTOR (RPTOR)] of the mTORC1 pathway. The associations between these SNPs and the risk of BM development were assessed. Results The AG/GG genotype of mLST8:rs26865 and TC/CC genotype of mLST8:rs3160 were associated with an increased risk of BM [hazard ratios (HR) 2.938, 95% confidence interval (CI) 1.664–5.189, p < 0.001 and HR = 2.490, 95% CI = 1.543–4.016, p < 0.001, respectively]. These risk polymorphisms had a cumulative effect on BM risk, with two risk genotypes exhibiting the highest increased risk (p < 0.001). Furthermore, these risk SNPs were associated with the lymph node metastasis (N2/3), body mass index (BMI) (≥ 25 kg/m2), high level of squamous cell carcinoma (SCC) antigen and Ki-67 proliferation index. Moreover, patients with AG/GG genotype of mLST8:rs26865 had significantly lower median overall survival than those with AA genotype (12.1 months versus 21.6 months, p = 0.04). Conclusions Our results indicate that polymorphisms in mTORC1 pathway were significantly associated with increased risk of BM and may be valuable biomarkers to identify NSCLC patients with a high risk of BM. Electronic supplementary material The online version of this article (10.1007/s00432-019-03059-y) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Binal Z, Açıkgöz E, Kızılay F, Öktem G, Altay B. Cross-talk between ribosome biogenesis, translation, and mTOR in CD133+ 4/CD44+ prostate cancer stem cells. Clin Transl Oncol 2019; 22:1040-1048. [PMID: 31630355 DOI: 10.1007/s12094-019-02229-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the gene expression profile of CSCs and to explore the key pathways and specific molecular signatures involved in the characteristic of CSCs. MATERIALS AND METHODS CD133+ /CD44+ CSCs and bulk population (non-CSCs) were isolated from DU-145 cells using fluorescence-activated cell sorting (FACS). We used Illumina HumanHT-12 v4 Expression to investigate gene expression profiling of CSCs and non-CSCs. Protein-protein interaction (PPI) network analysis was performed using the STRING database. Biomarkers selected based on gene expression profiling were visually analyzed using immunofluorescence staining method. An image analysis program, ImageJ®, was used for the analysis of fluorescence intensity. RESULTS In microarray analysis, we found that many ribosomal proteins and translation initiation factors that constitute the mTOR complex were highly expressed. PPI analysis using the 33 genes demonstrated that there was a close interaction between ribosome biogenesis, translation, and mTOR signaling. The fluorescence amount of mTOR and MLST8 were higher in CSCs compared to non-CSCs. CONCLUSIONS The increase in a number of genes associated with ribosome biogenesis, translation, and mTOR signaling may be important to evaluate prognosis and determine treatment approach for prostate cancer (PCa). A better understanding of the molecular pathways associated with CSCs may be promising to develop targeted therapies to prolong survival in PCa.
Collapse
Affiliation(s)
- Z Binal
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey
| | - E Açıkgöz
- Department of Histology and Embryology, Faculty of Medicine, Yuzuncu Yıl University, 65080, Van, Turkey
| | - F Kızılay
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey.
| | - G Öktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey
| | - B Altay
- Department of Urology, Faculty of Medicine, Ege University School of Medicine, Ege University, Bornova, PO Box: 35100, 35100, İzmir, Turkey
| |
Collapse
|
28
|
Murugan AK. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol 2019; 59:92-111. [PMID: 31408724 DOI: 10.1016/j.semcancer.2019.07.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 02/09/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that gets inputs from the amino acids, nutrients, growth factor, and environmental cues to regulate varieties of fundamental cellular processes which include protein synthesis, growth, metabolism, aging, regeneration, autophagy, etc. The mTOR is frequently deregulated in human cancer and activating somatic mutations of mTOR were recently identified in several types of human cancer and hence mTOR is therapeutically targeted. mTOR inhibitors were commonly used as immunosuppressors and currently, it is approved for the treatment of human malignancies. This review briefly focuses on the structure and biological functions of mTOR. It extensively discusses the genetic deregulation of mTOR including amplifications and somatic mutations, mTOR-mediated cell growth promoting signaling, therapeutic targeting of mTOR and the mechanisms of resistance, the role of mTOR in precision medicine and other recent advances in further understanding the role of mTOR in cancer.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Research Center (MBC 03), Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
29
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
30
|
Zhang S, Hu B, Lv X, Chen S, Liu W, Shao Z. The Prognostic Role of Ribosomal Protein S6 Kinase 1 Pathway in Patients With Solid Tumors: A Meta-Analysis. Front Oncol 2019; 9:390. [PMID: 31139572 PMCID: PMC6527894 DOI: 10.3389/fonc.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Recent studies supported the predictive role of ribosomal protein S6 kinase 1 (S6K1), phosphorylated S6K1 (p-S6K1), and phosphorylated ribosomal protein S6 (p-S6) for the outcome of cancer patients. However, inconsistent results were acquired across different researches. To comprehensively and quantitatively elucidate their prognostic significance in solid malignancies, the current meta-analysis was carried out utilizing the results of clinical studies. Methods: We conducted the literature retrieval by searching PubMed, Web of Science, EMBASE, and Cochrane library to identify eligible publications. Data were collected from included articles to calculate pooled overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), and progression-free survival (PFS). Hazard ratios (HRs) with 95% confidence intervals (CIs) served as appropriate parameters to assess prognostic significance. Results: Forty-four original studies were included, of which 7 studies were analyzed for S6K1, 24 for p-S6K1, and 16 for p-S6. The overexpression of p-S6K1 was significantly associated with poorer prognosis of solid tumor patients in OS (HR = 1.706, 95%CI: 1.369–2.125, p < 0.001), DFS (HR = 1.665, 95%CI: 1.002–2.768, p = 0.049). However, prognostic role of p-S6K1 in RFS and PFS was not found. The result also revealed that S6K1 and p-S6 were significantly associated with reduced OS (HR = 1.691, 95%CI: 1.306–2.189, p < 0.001; HR = 2.019, 95%CI: 1.775–2.296, p < 0.001, respectively). Conclusions: The present meta-analysis demonstrated that elevated expression of S6K1, p-S6K1, or p-S6 might indicate worse prognosis of patients with solid tumors, and supported a promising clinical test to predict solid tumor prognosis based on the level of S6K1 pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Mitchell DC, Menon A, Garner AL. Chemoproteomic Profiling Uncovers CDK4-Mediated Phosphorylation of the Translational Suppressor 4E-BP1. Cell Chem Biol 2019; 26:980-990.e8. [PMID: 31056462 DOI: 10.1016/j.chembiol.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
Recent estimates of the human proteome suggest there are ∼20,000 protein-coding genes, the protein products of which contain >145,000 phosphosites. Unfortunately, in-depth examination of the human phosphoproteome has outpaced the ability to annotate the kinases that mediate these post-translational modifications. To obtain actionable information about phosphorylation-driven signaling cascades, it is essential to identify the kinases responsible for phosphorylating sites that differ across disease states. To fill in these gaps we have developed an unbiased, chemoproteomic approach for identifying high-confidence kinase-substrate interactions with phosphosite specificity. Using this assay, we uncovered the role of cyclin-dependent kinase 4 (CDK4), a clinically validated kinase important for cell-cycle progression, in regulating cap-dependent translation via phosphorylation of the tumor suppressor 4E-BP1. The discovery of this signaling axis sheds light on the mechanisms by which CDK4/6 inhibitors control cell proliferation and constitutes a successful example of kinase discovery using an activity-based, kinase-directed probe.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Homoharringtonine Combined with the Heat Shock Protein 90 Inhibitor IPI504 in the Treatment of FLT3-ITD Acute Myeloid Leukemia. Transl Oncol 2019; 12:801-809. [PMID: 30953928 PMCID: PMC6449739 DOI: 10.1016/j.tranon.2019.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
As a heterogeneous group of clonal disorders, acute myeloid leukemia with internal tandem duplication of fms-like tyrosine kinase 3 (FLT3-ITD) mutation usually shows an inferior prognosis. In the present study, we found that homoharringtonine (HHT), a protein translation inhibitor of plant alkaloid in China, exhibited potent cytotoxic effect against FLT3-ITD (+) cell lines and primary leukemia cells, and a remarkable synergistic anti-leukemia action was demonstrated in vitro and in vivo in xenograft mouse models when co-treated with the heat shock protein 90 inhibitor IPI504. Mechanistically, HHT combined with IPI504 synergistically inhibited the growth of leukemia cells by inducing apoptosis and G1 phase arrest. This synergistic action resulted in a prominent reduction of total and phosphorylated FLT3 (p-FLT3) as well as inhibition of its downstream signaling molecules such as STAT5, AKT, ERK and 4E-BP1. Furthermore, co-treatment of HHT and IPI504 led to a synergistic or additive effect on 55.56%(10/18) of acute myeloid leukemia cases tested, including three relapsed/refractory patients. In conclusion, our findings indicate that the combination of HHT and HSP90 inhibitor provides an alternative way for the treatment of FLT3-ITD positive acute myeloid leukemia, especially for relapsed/refractory AML.
Collapse
|
33
|
Naito S, Ichiyanagi O, Ito H, Kabasawa T, Kanno H, Narisawa T, Fukuhara H, Yagi M, Kurota Y, Yamagishi A, Sakurai T, Nishida H, Kawazoe H, Yamanobe T, Kato T, Makhov P, Kolenko VM, Yamakawa M, Tsuchiya N. Expression of total and phospho 4EBP1 in metastatic and non-metastatic renal cell carcinoma. Oncol Lett 2019; 17:3910-3918. [PMID: 30881508 PMCID: PMC6403496 DOI: 10.3892/ol.2019.10033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/04/2019] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) is phosphorylated and activated by mammalian target of rapamycin complex 1, which serves as a regulator of cell growth, cell survival, metastasis and angiogenesis in many types of cancer. The aim of this study was to evaluate the role of phosphorylated 4EBP1 (p4EBP1) in primary renal cell carcinoma (RCC) as a biomarker in metastatic RCC (mRCC) and non-mRCC cohorts. Primary tumor tissue from 254 non-mRCC and 60 mRCC patients were immunohistochemically stained for t4EBP1 and p4EBP1. The disease-free interval (DFI) categorized by the expressions and clinical parameters were assessed by univariate and multivariate analysis in the non-mRCC cohort. Then, the cause-specific survival (CSS) was assessed in the mRCC cohort by the same methods as used in the non-mRCC cohort. In the non-mRCC cohort, patients with t4EBP1 expression had no RCC recurrence. Patients with p4EBP1 expression had the shorter DFI in univariate analysis (P=0.037). p4EBP1 and pT1b-4 expression levels were independent predictors for de novo metastasis. In the mRCC cohort, intermediate/poor MSKCC risk, non-clear cell RCC, and no p4EBP1 expression were correlated with poor CSS on multivariate analysis. Expression of p4EBP1 could be a predictive biomarker for de novo metastasis in non-mRCC patient cohort. By contrast, mRCC patients showing no p4EBP1 expression had shorter CSS than patients with p4EBP1 expression.
Collapse
Affiliation(s)
- Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Osamu Ichiyanagi
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Takanobu Kabasawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hidenori Kanno
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Takafumi Narisawa
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hiroki Fukuhara
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Mayu Yagi
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Atsushi Yamagishi
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Toshihiko Sakurai
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hayato Nishida
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hisashi Kawazoe
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Takuya Yamanobe
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| |
Collapse
|
34
|
Identification and clinical validation of a multigene assay that interrogates the biology of cancer stem cells and predicts metastasis in breast cancer: A retrospective consecutive study. EBioMedicine 2019; 42:352-362. [PMID: 30846393 PMCID: PMC6491379 DOI: 10.1016/j.ebiom.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Background Breast cancers show variations in the number and biological aggressiveness of cancer stem cells that correlate with their clinico-prognostic and molecular heterogeneity. Thus, prognostic stratification of breast cancers based on cancer stem cells might help guide patient management. Methods We derived a 20-gene stem cell signature from the transcriptional profile of normal mammary stem cells, capable of identifying breast cancers with a homogeneous profile and poor prognosis in in silico analyses. The clinical value of this signature was assessed in a prospective-retrospective cohort of 2, 453 breast cancer patients. Models for predicting individual risk of metastasis were developed from expression data of the 20 genes in patients randomly assigned to a training set, using the ridge-penalized Cox regression, and tested in an independent validation set. Findings Analyses revealed that the 20-gene stem cell signature provided prognostic information in Triple-Negative and Luminal breast cancer patients, independently of standard clinicopathological parameters. Through functional studies in individual tumours, we correlated the risk score assigned by the signature with the proliferative and self-renewal potential of the cancer stem cell population. By retraining the 20-gene signature in Luminal patients, we derived the risk model, StemPrintER, which predicted early and late recurrence independently of standard prognostic factors. Interpretation Our findings indicate that the 20-gene stem cell signature, by its unique ability to interrogate the biology of cancer stem cells of the primary tumour, provides a reliable estimate of metastatic risk in Triple-Negative and Luminal breast cancer patients independently of standard clinicopathological parameters.
Collapse
|
35
|
Katsuno Y, Meyer DS, Zhang Z, Shokat KM, Akhurst RJ, Miyazono K, Derynck R. Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal 2019; 12:12/570/eaau8544. [PMID: 30808819 DOI: 10.1126/scisignal.aau8544] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumors comprise cancer stem cells (CSCs) and their heterogeneous progeny within a stromal microenvironment. In response to transforming growth factor-β (TGF-β), epithelial and carcinoma cells undergo a partial or complete epithelial-mesenchymal transition (EMT), which contributes to cancer progression. This process is seen as reversible because cells revert to an epithelial phenotype upon TGF-β removal. However, we found that prolonged TGF-β exposure, mimicking the state of in vivo carcinomas, promotes stable EMT in mammary epithelial and carcinoma cells, in contrast to the reversible EMT induced by a shorter exposure. The stabilized EMT was accompanied by stably enhanced stem cell generation and anticancer drug resistance. Furthermore, prolonged TGF-β exposure enhanced mammalian target of rapamycin (mTOR) signaling. A bitopic mTOR inhibitor repressed CSC generation, anchorage independence, cell survival, and chemoresistance and efficiently inhibited tumorigenesis in mice. These results reveal a role for mTOR in the stabilization of stemness and drug resistance of breast cancer cells and position mTOR inhibition as a treatment strategy to target CSCs.
Collapse
Affiliation(s)
- Yoko Katsuno
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.,Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dominique Stephan Meyer
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Rosemary J Akhurst
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA.,Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Wu ZR, Yan L, Liu YT, Cao L, Guo YH, Zhang Y, Yao H, Cai L, Shang HB, Rui WW, Yang G, Zhang XB, Tang H, Wang Y, Huang JY, Wei YX, Zhao WG, Su B, Wu ZB. Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun 2018; 9:4624. [PMID: 30397197 PMCID: PMC6218470 DOI: 10.1038/s41467-018-06853-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/11/2018] [Indexed: 01/02/2023] Open
Abstract
Aberrant expression of long noncoding RNA H19 has been associated with tumour progression, but the underlying molecular tumourigenesis mechanisms remain largely unknown. Here, we report that H19 expression is frequently downregulated in human primary pituitary adenomas and is negatively correlated with tumour progression. Consistently, upregulation of H19 expression inhibits pituitary tumour cell proliferation in vitro and tumour growth in vivo. Importantly, we uncover a function of H19, which controls cell/tumour growth through inhibiting function of mTORC1 but not mTORC2. Mechanistically, we show that H19 could block mTORC1-mediated 4E-BP1 phosphorylation without affecting S6K1 activation. At the molecular level, H19 interacted with 4E-BP1 at the TOS motif and competitively inhibited 4E-BP1 binding to Raptor. Finally, we demonstrate that H19 is more effective than cabergoline treatment in the suppression of pituitary tumours. Together, our study uncovered the role of H19-mTOR-4E-BP1 axis in pituitary tumour growth regulation that may be a potential therapeutic target for human pituitary tumours. LncRNA H19 has been shown to be aberrantly expressed in different cancers. Here, the authors show that H19 lncRNA is downregulated in pituitary adenomas and H19 is able to impede pituitary tumorigenesis via disruption of 4E-BPB1 and Raptor interaction to inhibit the phosphorylation of 4E-BP1.
Collapse
Affiliation(s)
- Ze Rui Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Lichong Yan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yan Ting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100050, Beijing, China
| | - Yu Hang Guo
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Yong Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Lin Cai
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China
| | - Han Bing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wei Wei Rui
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 410000, Chongqing, China
| | - Xiao Biao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Jin Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yong Xu Wei
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wei Guo Zhao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, China.
| |
Collapse
|
37
|
Harwood FC, Klein Geltink RI, O’Hara BP, Cardone M, Janke L, Finkelstein D, Entin I, Paul L, Houghton PJ, Grosveld GC. ETV7 is an essential component of a rapamycin-insensitive mTOR complex in cancer. SCIENCE ADVANCES 2018; 4:eaar3938. [PMID: 30258985 PMCID: PMC6156121 DOI: 10.1126/sciadv.aar3938] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/03/2018] [Indexed: 05/14/2023]
Abstract
The mechanistic target of rapamycin (mTOR) serine/threonine kinase, a critical regulator of cell proliferation, is frequently deregulated in human cancer. Although rapamycin inhibits the two canonical mTOR complexes, mTORC1 and mTORC2, it often shows minimal benefit as an anticancer drug. This is caused by rapamycin resistance of many different tumors, and we show that a third mTOR complex, mTORC3, contributes to this resistance. The ETS (E26 transformation-specific) transcription factor ETV7 interacts with mTOR in the cytoplasm and assembles mTORC3, which is independent of ETV7's transcriptional activity. This complex exhibits bimodal mTORC1/2 activity but is devoid of crucial mTORC1/2 components. Many human cancers activate mTORC3 at considerable frequency, and tumor cell lines that lose mTORC3 expression become rapamycin-sensitive. We show mTORC3's tumorigenicity in a rhabdomyosarcoma mouse model in which transgenic ETV7 expression accelerates tumor onset and promotes tumor penetrance. Discovery of mTORC3 represents an mTOR paradigm shift and identifies a novel target for anticancer drug development.
Collapse
Affiliation(s)
- Franklin C. Harwood
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Brendan P. O’Hara
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Monica Cardone
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Veterinary Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Igor Entin
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Leena Paul
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Zakaria C, Sean P, Hoang HD, Leroux LP, Watson M, Workenhe ST, Hearnden J, Pearl D, Truong VT, Robichaud N, Yanagiya A, Tahmasebi S, Jafarnejad SM, Jia JJ, Pelin A, Diallo JS, Le Boeuf F, Bell JC, Mossman KL, Graber TE, Jaramillo M, Sonenberg N, Alain T. Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathog 2018; 14:e1007264. [PMID: 30138450 PMCID: PMC6124814 DOI: 10.1371/journal.ppat.1007264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 09/05/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis. Dysregulated mRNA translation occurs frequently in tumours due to elevated eIF4E expression or a hyperactive mTOR complex 1 (mTORC1) signaling pathway that results in the inactivation of the eIF4E binding proteins (4E-BPs). Targeting the mTORC1/4E-BPs/eIF4E axis is a promising strategy in cancer therapies and for preventing resistance to treatment. Enhanced mTORC1 activity also drives innate immune responses by modulating protein expression of antiviral genes. It was previously shown that the mTORC1 inhibitor rapamycin limits antiviral responses and promotes replication of oncolytic viruses within tumour tissues. Active-site dual mTORC1 and mTORC2 inhibitors (asTORi) have been developed for superior mTOR inhibition and anti-cancer potency but have not been studied in the context of oncolytic viral infection. We show here that prolonged treatment with asTORi strongly augments infection of HSV1-dICP0 in cancer cells, but not in normal cells, an effect modulated via eIF4E/4E-BP expression. Thus, cancer cells with dysregulated translation could be amenable to the pharmacoviral combination of HSV1 and asTORi treatment.
Collapse
Affiliation(s)
- Chadi Zakaria
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Polen Sean
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Margaret Watson
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathology and Molecular Medicine, MG DeGroote Institute for Infectious Disease, McMaster University, Hamilton, Ontario, Canada
| | - Jaclyn Hearnden
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Dana Pearl
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Vinh Tai Truong
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Nathaniel Robichaud
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Akiko Yanagiya
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Soroush Tahmasebi
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Jian-Jun Jia
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John Cameron Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, MG DeGroote Institute for Infectious Disease, McMaster University, Hamilton, Ontario, Canada
| | - Tyson Ernst Graber
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Maritza Jaramillo
- INRS Institut Armand-Frappier Research Centre, Laval, Quebec, Canada
| | - Nahum Sonenberg
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
- * E-mail: (NS); (TA)
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (NS); (TA)
| |
Collapse
|
39
|
Jin YP, Valenzuela NM, Zhang X, Rozengurt E, Reed EF. HLA Class II-Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection. THE JOURNAL OF IMMUNOLOGY 2018; 200:2372-2390. [PMID: 29475988 DOI: 10.4049/jimmunol.1701259] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Transplant recipients developing donor-specific HLA class II (HLA-II) Abs are at higher risk for Ab-mediated rejection (AMR) and transplant vasculopathy. To understand how HLA-II Abs cause AMR and transplant vasculopathy, we determined the signaling events triggered in vascular endothelial cells (EC) following Ab ligation of HLA-II molecules. HLA-II expression in EC was induced by adenoviral vector expression of CIITA or by pretreatment with TNF-α/IFN-γ. Ab ligation of class II stimulated EC proliferation and migration. Class II Ab also induced activation of key signaling nodes Src, focal adhesion kinase, PI3K, and ERK that regulated downstream targets of the mammalian target of rapamycin (mTOR) pathway Akt, p70 ribosomal S6 kinase, and S6 ribosomal protein. Pharmacological inhibitors and small interfering RNA showed the protein kinases Src, focal adhesion kinase, PI3K/Akt, and MEK/ERK regulate class II Ab-stimulated cell proliferation and migration. Treatment with rapalogs for 2 h did not affect HLA-II Ab-induced phosphorylation of ERK; instead, mTOR complex (mTORC)1 targets were dependent on activation of ERK. Importantly, suppression of mTORC2 for 24 h with rapamycin or everolimus or treatment with mTOR active-site inhibitors enhanced HLA-II Ab-stimulated phosphorylation of ERK. Furthermore, knockdown of Rictor with small interfering RNA caused overactivation of ERK while abolishing phosphorylation of Akt Ser473 induced by class II Ab. These data are different from HLA class I Ab-induced activation of ERK, which is mTORC2-dependent. Our results identify a complex signaling network triggered by HLA-II Ab in EC and indicate that combined ERK and mTORC2 inhibitors may be required to achieve optimal efficacy in controlling HLA-II Ab-mediated AMR.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Xiaohai Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
40
|
Ramon Y Cajal S, Castellvi J, Hümmer S, Peg V, Pelletier J, Sonenberg N. Beyond molecular tumor heterogeneity: protein synthesis takes control. Oncogene 2018; 37:2490-2501. [PMID: 29463861 PMCID: PMC5945578 DOI: 10.1038/s41388-018-0152-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023]
Abstract
One of the daunting challenges facing modern medicine lies in the understanding and treatment of tumor heterogeneity. Most tumors show intra-tumor heterogeneity at both genomic and proteomic levels, with marked impacts on the responses of therapeutic targets. Therapeutic target-related gene expression pathways are affected by hypoxia and cellular stress. However, the finding that targets such as eukaryotic initiation factor (eIF) 4E (and its phosphorylated form, p-eIF4E) are generally homogenously expressed throughout tumors, regardless of the presence of hypoxia or other cellular stress conditions, opens the exciting possibility that malignancies could be treated with therapies that combine targeting of eIF4E phosphorylation with immune checkpoint inhibitors or chemotherapy.
Collapse
Affiliation(s)
- Santiago Ramon Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain. .,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain. .,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| | - Josep Castellvi
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Vicente Peg
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.,Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget 2018; 7:62340-62351. [PMID: 27694690 PMCID: PMC5308731 DOI: 10.18632/oncotarget.11470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation confirmed that depletion of endogenous PC-1/PrLZ significantly increased prostate cancer cell radiosensitivity. Irradiation (IR) increased PC-1/PrLZ expression in a dose- and time-dependent manner and increased radiosensitivity in PC-1/PrLZ-suppressed cells was partially due to decreased DNA double strand break (DBS) repair which was measured with comet and gH2AX foci assays. Furthermore, depletion of PC-1/PrLZ impaired the IR-induced G2/M checkpoint, which has been reported to be correlate with radioresistance in cancer cells. PC-1/PrLZ-deficient cells exhibited higher level of autophagy when compared with control cells. Thus, specific inhibition of PC-1/PrLZ might provide a novel therapeutic strategy for radiosensitizing prostate cancer cells.
Collapse
|
42
|
Earwaker P, Anderson C, Willenbrock F, Harris AL, Protheroe AS, Macaulay VM. RAPTOR up-regulation contributes to resistance of renal cancer cells to PI3K-mTOR inhibition. PLoS One 2018; 13:e0191890. [PMID: 29389967 PMCID: PMC5794101 DOI: 10.1371/journal.pone.0191890] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/12/2018] [Indexed: 02/04/2023] Open
Abstract
The outlook for patients with advanced renal cell cancer (RCC) has been improved by targeted agents including inhibitors of the PI3 kinase (PI3K)-AKT-mTOR axis, although treatment resistance is a major problem. Here, we aimed to understand how RCC cells acquire resistance to PI3K-mTOR inhibition. We used the RCC4 cell line to generate a model of in vitro resistance by continuous culture in PI3K-mTOR kinase inhibitor NVP-BEZ235 (BEZ235, Dactolisib). Resistant cells were cross-resistant to mTOR inhibitor AZD2014. Sensitivity was regained after 4 months drug withdrawal, and resistance was partially suppressed by HDAC inhibition, supporting an epigenetic mechanism. BEZ235-resistant cells up-regulated and/or activated numerous proteins including MET, ABL, Notch, IGF-1R, INSR and MEK/ERK. However, resistance was not reversed by inhibiting or depleting these pathways, suggesting that many induced changes were passengers not drivers of resistance. BEZ235 blocked phosphorylation of mTOR targets S6 and 4E-BP1 in parental cells, but 4E-BP1 remained phosphorylated in resistant cells, suggesting BEZ235-refractory mTORC1 activity. Consistent with this, resistant cells over-expressed mTORC1 component RAPTOR at the mRNA and protein level. Furthermore, BEZ235 resistance was suppressed by RAPTOR depletion, or allosteric mTORC1 inhibitor rapamycin. These data reveal that RAPTOR up-regulation contributes to PI3K-mTOR inhibitor resistance, and suggest that RAPTOR expression should be included in the pharmacodynamic assessment of mTOR kinase inhibitor trials.
Collapse
Affiliation(s)
| | | | | | - Adrian L. Harris
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, United Kingdom
| | - Andrew S. Protheroe
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, United Kingdom
| | - Valentine M. Macaulay
- Department of Oncology, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
43
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
44
|
Implication of 4E-BP1 protein dephosphorylation and accumulation in pancreatic cancer cell death induced by combined gemcitabine and TRAIL. Cell Death Dis 2017; 8:3204. [PMID: 29233971 PMCID: PMC5870593 DOI: 10.1038/s41419-017-0001-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer cells show varying sensitivity to the anticancer effects of gemcitabine. However, as a chemotherapeutic agent, gemcitabine can cause intolerably high levels of toxicity and patients often develop resistance to the beneficial effects of this drug. Combination studies show that use of gemcitabine with the pro-apoptotic cytokine TRAIL can enhance the inhibition of survival and induction of apoptosis of pancreatic cancer cells. Additionally, following combination treatment there is a dramatic increase in the level of the hypophosphorylated form of the tumour suppressor protein 4E-BP1. This is associated with inhibition of mTOR activity, resulting from caspase-mediated cleavage of the Raptor and Rictor components of mTOR. Use of the pan-caspase inhibitor Z-VAD-FMK indicates that the increase in level of 4E-BP1 is also caspase-mediated. ShRNA-silencing of 4E-BP1 expression renders cells more resistant to cell death induced by the combination treatment. Since the levels of 4E-BP1 are relatively low in untreated pancreatic cancer cells these results suggest that combined therapy with gemcitabine and TRAIL could improve the responsiveness of tumours to treatment by elevating the expression of 4E-BP1.
Collapse
|
45
|
Meta-analysis of the prognostic value of p-4EBP1 in human malignancies. Oncotarget 2017; 9:2761-2769. [PMID: 29416809 PMCID: PMC5788677 DOI: 10.18632/oncotarget.23031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023] Open
Abstract
Phosphorylated 4E-binding protein 1 (p-4EBP1) is the inactivated form of 4EBP1, which is a downstream mediator in the mTOR signaling pathway and a vital factor in the synthesis of some oncogenic proteins. This meta-analysis was conducted to assess the predicative value of p-4EBP1 expression in human malignancies. The PubMed and Embase databases were carefully searched. Articles comparing the prognostic worthiness of different p-4EBP1 levels in human malignancies were collected for pooled analyses and methodologically appraised using the Newcastle-Ottawa Scale (NOS). A total of 39 retrospective cohorts with an overall sample size of 3,980 were selected. Patients with lower p-4EBP1 expression had better 3-year (P < 0.00001), 5-year (P < 0.00001), and 10-year (P = 0.03) overall survival and better 3-year (P < 0.0001) and 5-year (P = 0.0005) disease-free survival. Subgroup analyses confirmed the unfavorable prognosis associated with p-4EBP1 overexpression. These findings were further validated by sensitivity analyses. Harbord and Peters tests revealed no publication bias within the included studies. It thus appears higher expression of p-4EBP1 indicates a poor prognosis in human malignancies.
Collapse
|
46
|
Chu J, Ramon Y Cajal S, Sonenberg N, Pelletier J. Eukaryotic initiation factor 4F-sidestepping resistance mechanisms arising from expression heterogeneity. Curr Opin Genet Dev 2017; 48:89-96. [PMID: 29169064 DOI: 10.1016/j.gde.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
There is enormous diversity in the genetic makeup and gene expression profiles between and within tumors. This heterogeneity leads to phenotypic variation and is a major mechanism of resistance to molecular targeted therapies. Here we describe a conceptual framework for targeting eukaryotic initiation factor (eIF) 4F in cancer-an essential complex that drives and promotes multiple Cancer Hallmarks. The unique nature of eIF4F and its druggability bypasses several of the heterogeneity issues that plague molecular targeted drugs developed for cancer therapy.
Collapse
Affiliation(s)
- Jennifer Chu
- Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec, Canada
| | - Santiago Ramon Y Cajal
- Pathology Department, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Nahum Sonenberg
- Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec, Canada; Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec, Canada; Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol 2017; 54:50-62. [PMID: 29079305 DOI: 10.1016/j.semcancer.2017.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to be a lethal disease with no efficacious treatment modalities. The incidence of PDAC is expected to increase, at least partially because of the obesity epidemic. Increased efforts to prevent or intercept this disease are clearly needed. Mutations in KRAS are initiating events in pancreatic carcinogenesis supported by genetically engineered mouse models of the disease. However, oncogenic KRAS is not entirely sufficient for the development of fully invasive PDAC. Additional genetic mutations and/or environmental, nutritional, and metabolic stressors, e.g. inflammation and obesity, are required for efficient PDAC formation with activation of KRAS downstream effectors. Multiple factors "upstream" of KRAS associated with obesity, including insulin resistance, inflammation, changes in gut microbiota and GI peptides, can enhance/modulate downstream signals. Multiple signaling networks and feedback loops "downstream" of KRAS have been described that respond to obesogenic diets. We propose that KRAS mutations potentiate a signaling network that is promoted by environmental factors. Specifically, we envisage that KRAS mutations increase the intensity and duration of the growth-promoting signaling network. As the transcriptional activator YAP plays a critical role in the network, we conclude that the rationale for targeting the network (at different points), e.g. with FDA approved drugs such as statins and metformin, is therefore compelling.
Collapse
Affiliation(s)
- Guido Eibl
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States.
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Sapam TD, Velmurugan Ilavarasi A, Palaka BK, Elumalai E, Kanika ND, Ampasala DR. Identifying novel small molecule antagonists for mLST8 protein using computational approaches. J Recept Signal Transduct Res 2017; 38:1-11. [PMID: 29041842 DOI: 10.1080/10799893.2017.1387920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mammalian lethal with SEC13 protein 8 (mLST8), is an indispensable protein subunit of mammalian target of rapamycin (mTOR) signaling pathway that interacts with the kinase domain of mTOR protein, thereby stabilizing its active site. Experimental studies reported the over expression of mLST8 in human colon and prostate cancers by activation of both mTORC1/2 complexes and subsequent downstream substrates leading to tumor progression. Considering its role, targeting mLST8 protein would be a therapeutic approach against tumor progression in colon and prostate cancers. Hence, using in silico structure based drug design approach, the comparative binding patterns of 1,1'-binapthyl-2,2'diol (BINOL), 1-(2-carboxynaphth-1yl)-2-naphthoic acid (SCF-12) and their analogs in the cavity of mLST8 were explored. ADME and binding energy calculations led to the identification of five compounds with favorable Glide (G) scores and implicated the importance of Asn132 and Gln225 as key binding residues. Molecular dynamics (MD) simulations and free energy landscape (FEL) approaches helped in elucidating the binding mechanism and suggested the possibility of ligands 1-3 namely, ZINC01765622, ZINC62723702 and ZINC02576980 to be promising antagonists for mLST8. Thus, this study substantiates the prospect of targeting mLST8 protein using potent hits which could hinder tumor progression in colon and prostate cancers.
Collapse
Affiliation(s)
- Tuleshwori Devi Sapam
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| | | | - Bhagath Kumar Palaka
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| | - Elakkiya Elumalai
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| | | | - Dinakara Rao Ampasala
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , Puducherry , India
| |
Collapse
|
49
|
Jin L, Jin MH, Nam AR, Park JE, Bang JH, Oh DY, Bang YJ. Anti-tumor effects of NVP-BKM120 alone or in combination with MEK162 in biliary tract cancer. Cancer Lett 2017; 411:162-170. [PMID: 29024814 DOI: 10.1016/j.canlet.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
There are currently no clinically validated therapeutic targets for biliary tract cancer (BTC). Despite promising results in other cancers, compounds targeting the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, alone or in combination with Ras/Raf/MEK pathway inhibitors, have not been evaluated in BTC. Here, we examined the effects of a pan-PI3K inhibitor (BKM120) with or without a MEK inhibitor (MEK162), on eight human BTC cell lines carrying mutations in K-Ras and/or the PI3K catalytic subunit, PI3KCA. BKM120 inhibited the colony-forming ability and migration of BTC cells carrying wild-type (WT) PI3KCA and either mutant (MT) or WT K-Ras, but not of cells carrying mutations in both genes. In K-Ras-WT cells, BKM120 decreased the phosphorylation of Akt, its downstream effector kinase p70S6K, and the translational repressor 4E-BP1. Interestingly, BKM120 did not induce cell cycle arrest or suppress PI3K signaling via restoration of p-4E-BP1 in cells with PIK3CA and K-Ras double mutations. Notably, the resistance of dual K-Ras/PI3KCA-mutant cells to BKM120 was overcome by treatment with a combination of BKM120 and MEK162. Our findings thus support the clinical development of BKM120 monotherapy or BKM120/MEK162 combination therapy for the treatment of BTC.
Collapse
Affiliation(s)
- Ling Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mei-Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Ramón Y Cajal S, Capdevila C, Hernandez-Losa J, De Mattos-Arruda L, Ghosh A, Lorent J, Larsson O, Aasen T, Postovit LM, Topisirovic I. Cancer as an ecomolecular disease and a neoplastic consortium. Biochim Biophys Acta Rev Cancer 2017; 1868:484-499. [PMID: 28947238 DOI: 10.1016/j.bbcan.2017.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Current anticancer paradigms largely target driver mutations considered integral for cancer cell survival and tumor progression. Although initially successful, many of these strategies are unable to overcome the tremendous heterogeneity that characterizes advanced tumors, resulting in the emergence of resistant disease. Cancer is a rapidly evolving, multifactorial disease that accumulates numerous genetic and epigenetic alterations. This results in wide phenotypic and molecular heterogeneity within the tumor, the complexity of which is further amplified through specific interactions between cancer cells and the tumor microenvironment. In this context, cancer may be perceived as an "ecomolecular" disease that involves cooperation between several neoplastic clones and their interactions with immune cells, stromal fibroblasts, and other cell types present in the microenvironment. This collaboration is mediated by a variety of secreted factors. Cancer is therefore analogous to complex ecosystems such as microbial consortia. In the present article, we comment on the current paradigms and perspectives guiding the development of cancer diagnostics and therapeutics and the potential application of systems biology to untangle the complexity of neoplasia. In our opinion, conceptualization of neoplasia as an ecomolecular disease is warranted. Advances in knowledge pertinent to the complexity and dynamics of interactions within the cancer ecosystem are likely to improve understanding of tumor etiology, pathogenesis, and progression. This knowledge is anticipated to facilitate the design of new and more effective therapeutic approaches that target the tumor ecosystem in its entirety.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain.
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Pathology Department, Vall d'Hebron Hospital, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Leticia De Mattos-Arruda
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Abhishek Ghosh
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 65 Solna, Sweden
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta Department of Oncology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, JGH, SMBD, Gerald-Bronfman Department of Oncology, McGill University QC, Montreal H3T 1E2, Canada
| |
Collapse
|