1
|
Desert R, Ge X, Song Z, Han H, Lantvit D, Chen W, Das S, Athavale D, Abraham-Enachescu I, Blajszczak C, Chen Y, Musso O, Guzman G, Hoshida Y, Nieto N. Role of Hepatocyte-Derived Osteopontin in Liver Carcinogenesis. Hepatol Commun 2021; 6:692-709. [PMID: 34730871 PMCID: PMC8948552 DOI: 10.1002/hep4.1845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Osteopontin (OPN) expression correlates with tumor progression in many cancers, including hepatocellular carcinoma (HCC); however, its role in the onset of HCC remains unclear. We hypothesized that increased hepatocyte‐derived OPN is a driver of hepatocarcinogenesis. Analysis of a tissue microarray of 366 human samples revealed a continuous increase in OPN expression during hepatocarcinogenesis. In patients with cirrhosis, a transcriptome‐based OPN correlation network was associated with HCC incidence along 10 years of follow‐up, together with messenger RNA (mRNA) signatures of carcinogenesis. After diethylnitrosamine (DEN) injection, mice with conditional overexpression of Opn in hepatocytes (OpnHep transgenic [Tg]) showed increased tumor burden. Surprisingly, mice with conditional ablation of Opn in hepatocytes (OpnΔHep) expressed a similar phenotype. The acute response to DEN was reduced in OpnΔHep, which also showed more cancer stem/progenitor cells (CSCs, CD44+AFP+) at 5 months. CSCs from OpnHep Tg mice expressed several mRNA signatures known to promote carcinogenesis, and mRNA signatures from OpnHep Tg mice were associated with poor outcome in human HCC patients. Treatment with rOPN had little effect on CSCs, and their progression to HCC was similar in Opn−/− compared with wild‐type mice. Finally, ablation of Cd44, an OPN receptor, did not reduce tumor burden in Cd44−/−OpnHep Tg mice. Conclusions: Hepatocyte‐derived OPN acts as a tumor suppressor at physiological levels by controlling the acute response to DEN and the presence of CSCs, while induction of OPN is pro‐tumorigenic. This is primarily due to intracellular events rather that by the secretion of the protein and receptor activation.
Collapse
Affiliation(s)
- Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ioana Abraham-Enachescu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chuck Blajszczak
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Orlando Musso
- INSERM, University of Rennes, INRA, Institut NuMeCAN (Nutrition Metabolisms and Cancer), Rennes, France
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Xu Z, Zeng H, Liu Z, Jin K, Chang Y, Wang Y, Liu L, Zhu Y, Xu L, Wang Z, Guo J, Xu J. Poor clinical outcomes and immunoevasive contexture in SIRPα + tumor-associated macrophages enriched muscle-invasive bladder cancer patients. Urol Oncol 2021; 40:109.e11-109.e20. [PMID: 34600802 DOI: 10.1016/j.urolonc.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/31/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES In tumor immune microenvironment, the functions of tumor-associated macrophages (TAMs), including phagocytosis and immunomodulatory, have attracted increasing attention recently. With the discovery of CD47-signal regulatory protein-α (SIRPα) as "don't eat me" signaling pathway, the role of novel subpopulation of TAMs expressing SIRPα has not been fully elucidated in a wide spectrum of solid tumors including bladder cancer. In this study, we investigated the prognostic and predictive implication of SIRPα+ TAMs regarding clinical outcomes and adjuvant chemotherapeutic benefit in muscle-invasive bladder cancer (MIBC), and preliminarily characterized the phenotypic features of SIRPα+ TAMs and its relationship with immune contexture. MATERIALS AND METHODS A total of 141 histochemical MIBC samples from Zhongshan Hospital (ZS), 45 fresh tissue samples, and 391 MIBC patients from TCGA database were enrolled in this study. SIRPα+ TAMs was evaluated by immunohistochemical staining of CD68 and SIRPα, and flow cytometry fluorescence staining. RESULTS Our results illustrated that SIRPα+ TAMs were enriched in MIBC specimens. Patients with high SIRPα+ TAMs infiltration suffered significant poor overall survival and recurrence-free survival (P = 0.0030 and P = 0.0282). SIRPα+ TAMs infiltration was an independent prognosticator in multivariate Cox model. Moreover, adjuvant chemotherapy (ACT) application showed significantly survival benefit in patients with low SIRPα+ TAMs infiltration (P = 0.0135). SIRPα+ TAMs with suppressive phenotype exhibited a positive correlation with immune tolerance and dysfunctional CD8+ T cells in MIBC. CONCLUSIONS SIRPα+ TAMs infiltration indicated poor prognosis and ACT resistance in MIBC. Immunosuppressive SIRPα+ TAMs is closely related to immune evasion with exhausted T cells states, suggesting the prospect of SIRPα+ TAMs as a potential therapeutic target in MIBC.
Collapse
Affiliation(s)
- Ziang Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaifeng Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Behrouzfar K, Burton K, Mutsaers SE, Morahan G, Lake RA, Fisher SA. How to Better Understand the Influence of Host Genetics on Developing an Effective Immune Response to Thoracic Cancers. Front Oncol 2021; 11:679609. [PMID: 34235080 PMCID: PMC8256168 DOI: 10.3389/fonc.2021.679609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Thoracic cancers pose a significant global health burden. Immune checkpoint blockade therapies have improved treatment outcomes, but durable responses remain limited. Understanding how the host immune system interacts with a developing tumor is essential for the rational development of improved treatments for thoracic malignancies. Recent technical advances have improved our understanding of the mutational burden of cancer cells and changes in cancer-specific gene expression, providing a detailed understanding of the complex biology underpinning tumor-host interactions. While there has been much focus on the genetic alterations associated with cancer cells and how they may impact treatment outcomes, how host genetics affects cancer development is also critical and will greatly determine treatment response. Genome-wide association studies (GWAS) have identified genetic variants associated with cancer predisposition. This approach has successfully identified host genetic risk factors associated with common thoracic cancers like lung cancer, but is less effective for rare cancers like malignant mesothelioma. To assess how host genetics impacts rare thoracic cancers, we used the Collaborative Cross (CC); a powerful murine genetic resource designed to maximize genetic diversity and rapidly identify genes associated with any biological trait. We are using the CC in conjunction with our asbestos-induced MexTAg mouse model, to identify host genes associated with mesothelioma development. Once genes that moderate tumor development and progression are known, human homologues can be identified and human datasets interrogated to validate their association with disease outcome. Furthermore, our CC-MexTAg animal model enables in-depth study of the tumor microenvironment, allowing the correlation of immune cell infiltration and gene expression signatures with disease development. This strategy provides a detailed picture of the underlying biological pathways associated with mesothelioma susceptibility and progression; knowledge that is crucial for the rational development of new diagnostic and therapeutic strategies. Here we discuss the influence of host genetics on developing an effective immune response to thoracic cancers. We highlight current knowledge gaps, and with a focus on mesothelioma, describe the development and application of the CC-MexTAg to overcome limitations and illustrate how the knowledge gained from this unique study will inform the rational design of future treatments of mesothelioma.
Collapse
Affiliation(s)
- Kiarash Behrouzfar
- National Centre for Asbestos Related Diseases (NCARD), University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Kimberley Burton
- National Centre for Asbestos Related Diseases (NCARD), University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Steve E. Mutsaers
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases (NCARD), University of Western Australia, Nedlands, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases (NCARD), University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
4
|
Tremi I, Nowsheen S, Aziz K, Siva S, Ventura J, Hatzi VI, Martin OA, Georgakilas AG. Inflammation and oxidatively induced DNA damage: A synergy leading to cancer development. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Shirakawa K, Endo J, Kataoka M, Katsumata Y, Yoshida N, Yamamoto T, Isobe S, Moriyama H, Goto S, Kitakata H, Hiraide T, Fukuda K, Sano M. IL (Interleukin)-10-STAT3-Galectin-3 Axis Is Essential for Osteopontin-Producing Reparative Macrophage Polarization After Myocardial Infarction. Circulation 2019; 138:2021-2035. [PMID: 29967195 DOI: 10.1161/circulationaha.118.035047] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Both osteopontin (OPN) and galectin-3 have been implicated in phagocytic clearance of dead cells and reparative fibrosis during wound healing. CD206+ macrophages are involved in tissue repair through phagocytosis and fibrosis after myocardial infarction (MI). However, the relationship among OPN, galectin-3, and macrophage polarization in the context of MI remains unclear. METHODS The time course of Spp1 (encoding OPN) expression in the heart after MI showed a strong activation of Spp1 on day 3 after MI. To identify where in the body and in which cells the transcriptional activity of Spp1 increased after MI, we analyzed EGFP (enhanced green fluorescent protein)- Spp1 knockin reporter mice on day 3 after MI. RESULTS The transcriptional activity of Spp1 increased only in CD206+ macrophages in the infarct myocardium, and most of CD206+ macrophages have strong transcriptional activation of Spp1 after MI. The temporal expression pattern of Lgal3 (encoding galectin-3) in cardiac macrophages after MI was similar to that of Spp1, and OPN is almost exclusively produced by galectin-3hiCD206+ macrophages. Although both interleukin (IL)-4 and IL-10 were reported to promote CD206+ macrophage-mediated cardiac repair after MI, IL-10- but not IL-4-stimulated CD11b+Ly6G- cells could differentiate into OPN-producing galectin-3hiCD206+ macrophages and showed enhanced phagocytic ability. Inhibition of STAT3 tyrosine phosphorylation suppressed IL-10-induced expression of intracellular galectin-3 and transcriptional activation of Spp1. Knockdown of galectin-3 suppressed their ability to differentiate into OPN-producing cells, but not STAT3 activation. The tyrosine phosphorylation of STAT3 and the appearance rate of galectin-3hiCD206+ cells on cardiac CD11b+Ly6G- cells in Spp1 knockout mice were the same as those in wild-type mice. Spp1 knockout mice showed vulnerability to developing post-MI left ventricular chamber dilatation and the terminal deoxynucleo-tidyltransferase 2'-Deoxyuridine-5'-triphosphate nick-end labeling (TUNEL)-positive cells in the infarcted myocardium after MI remained higher in number in Spp1 knockout mice than in wild-type mice. CONCLUSIONS OPN is almost exclusively produced by galectin-3hiCD206+ macrophages, which specifically appear in the infarct myocardium after MI. The IL-10-STAT3-galectin-3 axis is essential for OPN-producing reparative macrophage polarization after myocardial infarction, and these macrophages contribute to tissue repair by promoting fibrosis and clearance of apoptotic cells. These results suggest that galectin-3 may contribute to reparative fibrosis in the infarct myocardium by controlling OPN levels.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Yoshinori Katsumata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Naohiro Yoshida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.).,Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Japan (N.Y.)
| | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Sarasa Isobe
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Hiroki Kitakata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Takahiro Hiraide
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan (K.S., J.E., M.K., Y.K., N.Y., T.Y., S.I., H.M., S.G., H.K., T.H., K.F., M.S.).,Japan Science and Technology Agency, Tokyo, Japan (M.S.)
| |
Collapse
|
6
|
Sears CR, Zhou H, Justice MJ, Fisher AJ, Saliba J, Lamb I, Wicker J, Schweitzer KS, Petrache I. Xeroderma Pigmentosum Group C Deficiency Alters Cigarette Smoke DNA Damage Cell Fate and Accelerates Emphysema Development. Am J Respir Cell Mol Biol 2018; 58:402-411. [PMID: 29111769 DOI: 10.1165/rcmb.2017-0251oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.
Collapse
Affiliation(s)
| | | | - Matthew J Justice
- 1 Department of Medicine and.,2 Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado
| | - Amanda J Fisher
- 3 Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana; and
| | | | | | | | - Kelly S Schweitzer
- 1 Department of Medicine and.,2 Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado
| | - Irina Petrache
- 1 Department of Medicine and.,2 Department of Medicine, National Jewish Health and University of Colorado Denver, Denver, Colorado
| |
Collapse
|
7
|
Tippimanchai DD, Nolan K, Poczobutt J, Verzosa G, Li H, Scarborough H, Huang J, Young C, DeGregori J, Nemenoff RA, Malkoski SP. Adenoviral vectors transduce alveolar macrophages in lung cancer models. Oncoimmunology 2018; 7:e1438105. [PMID: 29872579 PMCID: PMC5980415 DOI: 10.1080/2162402x.2018.1438105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 11/09/2022] Open
Abstract
Adenoviral vectors expressing Cre recombinase are commonly used to initiate tumor formation in murine lung cancer models. While these vectors are designed to target genetic recombination to lung epithelial cells, adenoviruses can infect additional cell types that potentially influence tumor development. Our goal was to explore the consequences of adenoviral-mediated alveolar macrophage (AM) transduction in a Kras-initiated lung tumor model. As expected, treatment of animals harboring the KrasLSL-G12D allele and an inducible green fluorescence protein (GFP) tracking allele with an adenoviral vector expressing Cre recombinase under the control of the cytomegalovirus (CMV) promoter (Ad5-CMV-Cre), caused GFP-positive lung adenocarcinomas. Surprisingly, however, up to 70% of the total GFP+ cells were AM, and GFP+ AM could be detected 6 months after tumor initiation, and transduced AM demonstrated Kras activation and increased proliferation. In contrast, recombination was not detected in other immune cell populations and AM recombination could be eliminated by tumor initiation with an adenovirus expressing Cre recombinase under the control of the surfactant protein C (SPC) promoter. In addition, AM isolated from KrasLSL-G12D animals and transduced by Ad5-CMV-Cre ex vivo displayed prolonged survival in vitro and increased the growth of murine lung adenocarcinoma CMT/167 cells when co-injected in an orthotopic flank model. Given the importance of the immune system in tumor development and progression, inadvertent AM transduction by Ad5-CMV-Cre merits careful consideration during lung cancer model selection particularly if studies evaluating the tumor-immune interactions are planned.
Collapse
Affiliation(s)
- Darinee D Tippimanchai
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Kyle Nolan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Joanna Poczobutt
- Division of Renal Disease and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Gregory Verzosa
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Howard Li
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Hannah Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Jing Huang
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Christian Young
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Raphael A Nemenoff
- Division of Renal Disease and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Stephen P Malkoski
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Kuo CHS, Liu CY, Pavlidis S, Lo YL, Wang YW, Chen CH, Ko HW, Chung FT, Lin TY, Wang TY, Lee KY, Guo YK, Wang TH, Yang CT. Unique Immune Gene Expression Patterns in Bronchoalveolar Lavage and Tumor Adjacent Non-Neoplastic Lung Tissue in Non-Small Cell Lung Cancer. Front Immunol 2018; 9:232. [PMID: 29483918 PMCID: PMC5816075 DOI: 10.3389/fimmu.2018.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background The immune cells in the local environments surrounding non-small cell lung cancer (NSCLC) implicate the balance of pro- and antitumor immunity; however, their transcriptomic profiles remain poorly understood. Methods A transcriptomic microarray study of bronchoalveolar lavage (BAL) cells harvested from tumor-bearing lung segments was performed in a discovery group. The findings were validated (1) in published microarray datasets, (2) in an independent group by RT-qPCR, and (3) in non-diseased and tumor adjacent non-neoplastic lung tissue by immunohistochemistry and in BAL cell lysates by immunoblotting. Result The differential expression of 129 genes was identified in the discovery group. These genes revealed functional enrichment in Fc gamma receptor-dependent phagocytosis and circulating immunoglobulin complex among others. Microarray datasets analysis (n = 607) showed that gene expression of BAL cells of tumor-bearing lung segment was also the unique transcriptomic profile of tumor adjacent non-neoplastic lung of early stage NSCLC and a significantly gradient increase of immunoglobulin genes’ expression for non-diseased lungs, tumor adjacent non-neoplastic lungs, and tumors was identified (ANOVA, p < 2 × 10−16). A 53-gene signature was determined with significant correlation with inhibitory checkpoint PDCD1 (r = 0.59, p = 0.0078) among others, where the nine top genes including IGJ and IGKC were RT-qPCR validated with high diagnostic performance (AUC: 0.920, 95% CI: 0.831–0.985, p = 2.98 × 10−7). Increased staining and expression of IGKC revealed by immunohistochemistry and immunoblotting in tumor adjacent non-neoplastic lung tissues (Wilcoxon signed-rank test, p < 0.001) and in BAL cell lysates (p < 0.01) of NSCLC, respectively, were noted. Conclusion The BAL cells of tumor-bearing lung segments and tumor adjacent non-neoplastic lung tissues present a unique gene expression characterized by IGKC in relation to inhibitory checkpoints. Further study of humoral immune responses to NSCLC is warranted.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Chien-Ying Liu
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Stelios Pavlidis
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Yu-Lun Lo
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yen-Wen Wang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chih-Hung Chen
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - How-Wen Ko
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Fu-Tsai Chung
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tin-Yu Lin
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsai-Yu Wang
- Division of Airway Diseases, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Thoracic Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yi-Ke Guo
- Department of Computing, Imperial College London, Data Science Institute, London, United Kingdom
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Ta Yang
- Division of Lung Cancer and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Xu Y, Zhang Y, Liu X, Wang Z, Ma J, Wang J, Yue W. The Effects of Ultrasound and Arsenic Trioxide on Neurogliocytoma Cells and Secondary Activation of Macrophages. TUMORI JOURNAL 2018; 95:780-8. [DOI: 10.1177/030089160909500622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and Background As a new technique for clinical therapeutics, ultrasound has synergistic effects on traditional chemotherapy. Arsenic trioxide (AS2O3), an apoptosis-inducing drug, has successfully been used in the treatment of some tumor types in recent years. Macrophages have both positive and negative effects on the occurrence and development of tumors. The aim of this study was to observe the effects of ultrasound and AS2O3 on a glioma cell line and the secondary activation of macrophages by cell death, in order to provide a theoretical basis for the clinical application of AS2O3 and ultrasound in glioma treatment. Methods Different AS2O3 concentrations were used solely or combined with ultrasound in rat glioma C6 cells to induce cell death. The degree of C6 cell death was determined by AnnexinV-FITC and PI double staining. The intracellular arsenium concentration and the release of lactate dehydrogenase (LDH) from C6 cells were also measured. The supernatant of C6 cells was then used to stimulate macrophages. Finally the activation of NF-κB and the secretion of TNF-α and TGF-β1 by macrophages were determined. Results The cell death increase in the group where ultrasound was used together with AS2O3 was significantly higher than that obtained by either ultrasound or AS2O3. The increase was also significantly higher than the sum of the increases in the ultrasound and the AS2O3 only groups. At the same AS2O3 concentration, additional treatment with ultrasound can significantly increase the intracellular arsenium concentration. The release of LDH from C6 cells showed a close, direct correlation with late apoptosis and necrosis, but did not exhibit an obvious correlation with early apoptosis. The activation of NF-κB and the secretion of TNF-α and TGF-β1 in macrophages also showed a close direct correlation with late apoptosis and necrosis. Conclusions This in vitro study demonstrates that ultrasound may synergistically enhance the cell-killing effect by promoting AS2O3 to enter the C6 cells. Macrophages may be activated by killed C6 cells, especially by necrotic C6 cells.
Collapse
Affiliation(s)
- Yonggang Xu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafang Zhang
- Department of Anatomy Harbin Medical University, Harbin, China
| | - Xiaoqian Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Anatomy Harbin Medical University, Harbin, China
| | - Jie Wang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wu Yue
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Lebya K, Garcia‐Smith R, Swaminathan R, Jones A, Russell J, Joste N, Bisoffi M, Trujillo K. Towards a personalized surgical margin for breast conserving surgery—Implications of field cancerization in local recurrence. J Surg Oncol 2017; 115:109-115. [DOI: 10.1002/jso.24469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Katarina Lebya
- Department of Cell Biology and PhysiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico
| | - Randi Garcia‐Smith
- Department of Cell Biology and PhysiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico
| | | | - Anna Jones
- Department of Internal MedicineUniversity of New Mexico Health Science CenterAlbuquerqueNew Mexico
| | - John Russell
- Department of SurgeryUniversity of New Mexico Health Science CenterAlbuquerqueNew Mexico
| | - Nancy Joste
- Department of PathologyUniversity of New Mexico Health Science CenterAlbuquerqueNew Mexico
| | - Marco Bisoffi
- Biochemistry and Molecular BiologySchmid College of Science and Technology Chapman UniversityOrangeCalifornia
| | - Kristina Trujillo
- Department of Cell Biology and PhysiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNew Mexico
| |
Collapse
|
11
|
Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 2016; 6:36107. [PMID: 27786298 PMCID: PMC5082376 DOI: 10.1038/srep36107] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
The inflammatory microenvironment has been shown to play important roles in various stages of tumor development including initiation, growth, and metastasis. The inflammasome is a critical innate immune pathway for the production of active IL-1β, a potent inflammatory cytokine. Although inflammasomes are essential for host defense against pathogens and contribute to autoimmune diseases, their role in tumor progression remains controversial. Here, our results demonstrate that the inflammasome and IL-1β pathway promoted tumor growth and metastasis in animal and human breast cancer models. We found that tumor progression was associated with the activation of inflammasome and elevated levels of IL-1β at primary and metastatic sites. Mice deficient for inflammasome components exhibited significantly reduced tumor growth and lung metastasis. Furthermore, inflammasome activation promoted the infiltration of myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) into tumor microenvironments. Importantly, blocking IL-1R with IL-1R antagonist (IL-Ra) inhibited tumor growth and metastasis accompanied by decreased myeloid cell accumulation. Our results suggest that targeting the inflammasome/IL-1 pathway in tumor microenvironments may provide a novel approach for the treatment of cancer.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| | - Shunjun Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America
| | - Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| |
Collapse
|
12
|
Yu G, Herazo-Maya JD, Nukui T, Romkes M, Parwani A, Juan-Guardela BM, Robertson J, Gauldie J, Siegfried JM, Kaminski N, Kass DJ. Matrix metalloproteinase-19 promotes metastatic behavior in vitro and is associated with increased mortality in non-small cell lung cancer. Am J Respir Crit Care Med 2015; 190:780-90. [PMID: 25250855 DOI: 10.1164/rccm.201310-1903oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RATIONALE Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Matrix metalloproteinases (MMPs) have been implicated in the development and progression of lung cancer, but their role in the molecular pathogenesis of lung cancer remains unclear. We have found that MMP19, a relatively novel member of the MMP family, is overexpressed in lung tumors when compared with control subjects. OBJECTIVES To test the hypothesis that MMP19 plays a significant role in the development and progression of non-small cell lung cancer (NSCLC). METHODS We have analyzed lung cancer gene expression data, immunostained lung tumors for MMP19, and performed in vitro assays to test the effects of MMP19 in NSCLC cells. MEASUREMENTS AND MAIN RESULTS We found that MMP19 gene and protein expression is increased in lung cancer tumors compared with adjacent and histologically normal lung tissues. In three independent datasets, increased MMP19 gene expression conferred a poorer prognosis in NSCLC. In vitro, we found that overexpression of MMP19 promotes epithelial-mesenchymal transition, migration, and invasiveness in multiple NSCLC cell lines. Overexpression of MMP19 with a mutation at the catalytic site did not impair epithelial-mesenchymal transition or expression of prometastasis genes. We also found that miR-30 isoforms, a microRNA family predicted to target MMP19, is markedly down-regulated in human lung cancer and regulates MMP19 expression. CONCLUSIONS Taken together, these findings suggest that MMP19 is associated with the development and progression of NSCLC and may be a potential biomarker of disease severity and outcome.
Collapse
Affiliation(s)
- Guoying Yu
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee E, Pandey NB, Popel AS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Rev Mol Med 2015; 17:e3. [PMID: 25634527 PMCID: PMC4352000 DOI: 10.1017/erm.2015.2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumour and organ microenvironments are crucial for cancer progression and metastasis. Crosstalk between multiple non-malignant cell types in the microenvironments and cancer cells promotes tumour growth and metastasis. Blood and lymphatic endothelial cells (BEC and LEC) are two of the components in the microenvironments. Tumour blood vessels (BV), comprising BEC, serve as conduits for blood supply into the tumour, and are important for tumour growth as well as haematogenous tumour dissemination. Lymphatic vessels (LV), comprising LEC, which are relatively leaky compared with BV, are essential for lymphogenous tumour dissemination. In addition to describing the conventional roles of the BV and LV, we also discuss newly emerging roles of these endothelial cells: their crosstalk with cancer cells via molecules secreted by the BEC and LEC (also called angiocrine and lymphangiocrine factors). This review suggests that BEC and LEC in various microenvironments can be orchestrators of tumour progression and proposes new mechanism-based strategies to discover new therapies to supplement conventional anti-angiogenic and anti-lymphangiogenic therapies.
Collapse
Affiliation(s)
- Esak Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niranjan B. Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
14
|
Lochhead P, Chan AT, Nishihara R, Fuchs CS, Beck AH, Giovannucci E, Ogino S. Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 2015; 28:14-29. [PMID: 24925058 PMCID: PMC4265316 DOI: 10.1038/modpathol.2014.81] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
The term 'field effect' (also known as field defect, field cancerization, or field carcinogenesis) has been used to describe a field of cellular and molecular alteration, which predisposes to the development of neoplasms within that territory. We explore an expanded, integrative concept, 'etiologic field effect', which asserts that various etiologic factors (the exposome including dietary, lifestyle, environmental, microbial, hormonal, and genetic factors) and their interactions (the interactome) contribute to a tissue microenvironmental milieu that constitutes a 'field of susceptibility' to neoplasia initiation, evolution, and progression. Importantly, etiological fields predate the acquisition of molecular aberrations commonly considered to indicate presence of filed effect. Inspired by molecular pathological epidemiology (MPE) research, which examines the influence of etiologic factors on cellular and molecular alterations during disease course, an etiologically focused approach to field effect can: (1) broaden the horizons of our inquiry into cancer susceptibility and progression at molecular, cellular, and environmental levels, during all stages of tumor evolution; (2) embrace host-environment-tumor interactions (including gene-environment interactions) occurring in the tumor microenvironment; and, (3) help explain intriguing observations, such as shared molecular features between bilateral primary breast carcinomas, and between synchronous colorectal cancers, where similar molecular changes are absent from intervening normal colon. MPE research has identified a number of endogenous and environmental exposures which can influence not only molecular signatures in the genome, epigenome, transcriptome, proteome, metabolome and interactome, but also host immunity and tumor behavior. We anticipate that future technological advances will allow the development of in vivo biosensors capable of detecting and quantifying 'etiologic field effect' as abnormal network pathology patterns of cellular and microenvironmental responses to endogenous and exogenous exposures. Through an 'etiologic field effect' paradigm, and holistic systems pathology (systems biology) approaches to cancer biology, we can improve personalized prevention and treatment strategies for precision medicine.
Collapse
Affiliation(s)
- Paul Lochhead
- Gastrointestinal Research Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew T Chan
- 1] Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- 1] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA [2] Department of Nutrition, Harvard School of Public Health, Boston, MA, USA [3] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA [2] Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA [3] Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Elpek KG, Cremasco V, Shen H, Harvey CJ, Wucherpfennig KW, Goldstein DR, Monach PA, Turley SJ. The tumor microenvironment shapes lineage, transcriptional, and functional diversity of infiltrating myeloid cells. Cancer Immunol Res 2014; 2:655-67. [PMID: 24801837 DOI: 10.1158/2326-6066.cir-13-0209] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myeloid cells play important regulatory roles within the tumor environment by directly promoting tumor progression and modulating the function of tumor-infiltrating lymphocytes, and as such, they represent a potential therapeutic target for the treatment of cancer. Although distinct subsets of tumor-associated myeloid cells have been identified, a broader analysis of the complete myeloid cell landscape within individual tumors and also across different tumor types has been lacking. By establishing the developmental and transcriptomic signatures of infiltrating myeloid cells from multiple primary tumors, we found that tumor-associated macrophages (TAM) and tumor-associated neutrophils (TAN), while present within all tumors analyzed, exhibited strikingly different frequencies, gene expression profiles, and functions across cancer types. We also evaluated the impact of anatomic location and circulating factors on the myeloid cell composition of tumors. The makeup of the myeloid compartment was determined by the tumor microenvironment rather than the anatomic location of tumor development or tumor-derived circulating factors. Protumorigenic and hypoxia-associated genes were enriched in TAMs and TANs compared with splenic myeloid-derived suppressor cells. Although all TANs had an altered expression pattern of secretory effector molecules, in each tumor type they exhibited a unique cytokine, chemokine, and associated receptor expression profile. One such molecule, haptoglobin, was uniquely expressed by 4T1 TANs and identified as a possible diagnostic biomarker for tumors characterized by the accumulation of myeloid cells. Thus, we have identified considerable cancer-specific diversity in the lineage, gene expression, and function of tumor-infiltrating myeloid cells.
Collapse
Affiliation(s)
- Kutlu G Elpek
- Authors' Affiliations: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | - Viviana Cremasco
- Authors' Affiliations: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | - Hua Shen
- Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Christopher J Harvey
- Authors' Affiliations: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | - Kai W Wucherpfennig
- Authors' Affiliations: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | - Daniel R Goldstein
- Internal Medicine and Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | | | - Shannon J Turley
- Authors' Affiliations: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts; Departments of
| |
Collapse
|
16
|
Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol 2013; 4:122. [PMID: 23755018 PMCID: PMC3664773 DOI: 10.3389/fphys.2013.00122] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/10/2013] [Indexed: 01/28/2023] Open
Abstract
A secreted glycoprotein YKL-40 also named chitinase-3-like-1 is normally expressed by multiple cell types such as macrophages, chondrocytes, and vascular smooth muscle cells. However, a prominently high level of YKL-40 was found in a wide spectrum of human diseases including cancers and chronic inflammatory diseases where it was strongly expressed by cancerous cells and infiltrating macrophages. Here, we summarized recent important findings of YKL-40 derived from cancerous cells and smooth muscle cells during tumor angiogenesis and development. YKL-40 is a potent angiogenic factor capable of stimulating tumor vascularization mediated by endothelial cells and maintaining vascular integrity supported by smooth muscle cells. In addition, YKL-40 induces FAK-MAPK signaling and up-regulates VEGF receptor 2 in endothelial cells; but a neutralizing antibody (mAY) against YKL-40 inhibits its angiogenic activity. While YKL-40 is essential for angiogenesis, little is known about its functional role in tumor-associated macrophage (TAM)-mediated tumor development. Therefore, significant efforts are urgently needed to identify pathophysiological function of YKL-40 in the dynamic interaction between tumor cells and TAMs in the tumor microenvironment, which may offer substantial mechanistic insights into tumor angiogenesis and metastasis, and also point to a therapeutic target for treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Rong Shao
- Molecular and Cellular Biology Program, Morrill Science Center, University of Massachusetts Amherst, MA, USA ; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
17
|
Ganesh K, Das A, Dickerson R, Khanna S, Parinandi NL, Gordillo GM, Sen CK, Roy S. Prostaglandin E₂ induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway. THE JOURNAL OF IMMUNOLOGY 2012; 189:2563-73. [PMID: 22844123 DOI: 10.4049/jimmunol.1102762] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monocytes and macrophages (m) are plastic cells whose functions are governed by microenvironmental cues. Wound fluid bathing the wound tissue reflects the wound microenvironment. Current literature on wound inflammation is primarily based on the study of blood monocyte-derived macrophages, cells that have never been exposed to the wound microenvironment. We sought to compare pair-matched monocyte-derived macrophages with m isolated from chronic wounds of patients. Oncostatin M (OSM) was differentially overexpressed in pair-matched wound m. Both PGE₂ and its metabolite 13,14-dihydro-15-keto-PGE₂ (PGE-M) were abundant in wound fluid and induced OSM in wound-site m. Consistently, induction of OSM mRNA was observed in m isolated from PGE₂-enriched polyvinyl alcohol sponges implanted in murine wounds. Treatment of human THP-1 cell-derived m with PGE₂ or PGE-M caused dose-dependent induction of OSM. Characterization of the signal transduction pathways demonstrated the involvement of EP4 receptor and cAMP signaling. In human m, PGE₂ phosphorylated Axl, a receptor tyrosine kinase (RTK). Axl phosphorylation was also induced by a cAMP analogue demonstrating interplay between the cAMP and RTK pathways. PGE₂-dependent Axl phosphorylation led to AP-1 transactivation, which is directly implicated in inducible expression of OSM. Treatment of human m or mice excisional wounds with recombinant OSM resulted in an anti-inflammatory response as manifested by attenuated expression of endotoxin-induced TNF-α and IL-1β. OSM treatment also improved wound closure during the early inflammatory phase of healing. In summary, this work recognizes PGE₂ in the wound fluid as a potent inducer of m OSM, a cytokine with an anti-inflammatory role in cutaneous wound healing.
Collapse
Affiliation(s)
- Kasturi Ganesh
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Brody E, Gold L, Mehan M, Ostroff R, Rohloff J, Walker J, Zichi D. Life's simple measures: unlocking the proteome. J Mol Biol 2012; 422:595-606. [PMID: 22721953 DOI: 10.1016/j.jmb.2012.06.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 01/22/2023]
Abstract
Using modified nucleotides and selecting for slow off-rates in the SELEX procedure, we have evolved a special class of aptamers, called SOMAmers (slow off-rate modified aptamers), which bind tightly and specifically to proteins in body fluids. We use these in a novel assay that yields 1:1 complexes of the SOMAmers with their cognate proteins in body fluids. Measuring the SOMAmer concentrations of the resultant complexes reflects the concentration of the proteins in the fluids. This is simply done by hybridization to complementary sequences on solid supports, but it can also be done by any other DNA quantification technology (including NexGen sequencing). We use measurements of over 1000 proteins in under 100 μL of serum or plasma to answer important medical questions, two of which are reviewed here. A number of bioinformatics methods have guided our discoveries, including principal component analysis. We use various methods to evaluate sample handling procedures in our clinical samples and can identify many parameters that corrupt proteomics analysis.
Collapse
Affiliation(s)
- Edward Brody
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA.
| | - Larry Gold
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Mike Mehan
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Rachel Ostroff
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - John Rohloff
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Jeff Walker
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Dom Zichi
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| |
Collapse
|
19
|
Sepper R, Prikk K, Metsis M, Sergejeva S, Pugatsjova N, Bragina O, Marran S, Fehniger TE. Mucin5B expression by lung alveolar macrophages is increased in long-term smokers. J Leukoc Biol 2012; 92:319-24. [PMID: 22591690 DOI: 10.1189/jlb.0111047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study investigated the expression of MUC5B by AMs in the lungs of cigarette smokers and nonsmokers. We analyzed MUC5B expression by measuring the levels of apomucin and mRNA in human BALF cells from 50 subjects (20 nonsmokers, 17 patients with CB, and 13 patients with COPD). apoMUC5B was observed in BALF mononuclear cells in 60% of all subjects, but a significantly higher frequency of apoMUC5B(+) cells was found in subjects with CB (95% CI, 4.5-24.9) or COPD (95% CI, 6.2-39.6) than in nonsmokers (95% CI, 0.5-2.5). apoMUC5B(+) mononuclear cells showed strong expression of CD163, confirming their identity as AMs. MUC5B mRNA expression was detected by ISH in AMs of subjects investigated, and real-time qPCR analysis confirmed MUC5B mRNA expression. In conclusion, MUC5B is expressed in a subset of lung AMs and long-term cigarette smoking may increase the level of MUC5B produced by these cells.
Collapse
Affiliation(s)
- Ruth Sepper
- Institute of Clinical Medicine, Tallinn University of Technology, Tallinn, Estonia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Persson J, Beyer I, Yumul R, Li Z, Kiem HP, Roffler S, Lieber A. Immuno-therapy with anti-CTLA4 antibodies in tolerized and non-tolerized mouse tumor models. PLoS One 2011; 6:e22303. [PMID: 21779410 PMCID: PMC3136517 DOI: 10.1371/journal.pone.0022303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/23/2011] [Indexed: 11/23/2022] Open
Abstract
Monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA4) are a novel form of cancer immunotherapy. While preclinical studies in mouse tumor models have shown anti-tumor efficacy of anti-CTLA4 injection or expression, anti-CTLA4 treatment in patients with advanced cancers had disappointing therapeutic benefit. These discrepancies have to be addressed in more adequate pre-clinical models. We employed two tumor models. The first model is based on C57Bl/6 mice and syngeneic TC-1 tumors expressing HPV16 E6/E7. In this model, the HPV antigens are neo-antigens, against which no central tolerance exists. The second model involves mice transgenic for the proto-oncogen neu and syngeneic mouse mammary carcinoma (MMC) cells. In this model tolerance to Neu involves both central and peripheral mechanisms. Anti-CTLA4 delivery as a protein or expression from gene-modified tumor cells were therapeutically efficacious in the non-tolerized TC-1 tumor model, but had no effect in the MMC-model. We also used the two tumor models to test an immuno-gene therapy approach for anti-CTLA4. Recently, we used an approach based on hematopoietic stem cells (HSC) to deliver the relaxin gene to tumors and showed that this approach facilitates pre-existing anti-tumor T-cells to control tumor growth in the MMC tumor model. However, unexpectedly, when used for anti-CTLA4 gene delivery in this study, the HSC-based approach was therapeutically detrimental in both the TC-1 and MMC models. Anti-CTLA4 expression in these models resulted in an increase in the number of intratumoral CD1d+ NKT cells and in the expression of TGF-β1. At the same time, levels of pro-inflammatory cytokines and chemokines, which potentially can support anti-tumor T-cell responses, were lower in tumors of mice that received anti-CTLA4-HSC therapy. The differences in outcomes between the tolerized and non-tolerized models also provide a potential explanation for the low efficacy of CTLA4 blockage approaches in cancer immunotherapy trials.
Collapse
Affiliation(s)
- Jonas Persson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ines Beyer
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Roma Yumul
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - ZongYi Li
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steve Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - André Lieber
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Pathology University of Washington, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Controlled extracellular matrix degradation in breast cancer tumors improves therapy by trastuzumab. Mol Ther 2010; 19:479-89. [PMID: 21081901 DOI: 10.1038/mt.2010.256] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extracellular matrix (ECM) in solid tumors affects the effectiveness of therapeutics through blocking of intratumoral diffusion and/or physical masking of target receptors on malignant cells. In immunohistochemical studies of tumor sections from breast cancer patients and xenografts, we observed colocalization of ECM proteins and Her2/neu, a tumor-associated antigen that is the target for the widely used monoclonal antibody trastuzumab (Herceptin). We tested whether intratumoral expression of the peptide hormone relaxin (Rlx) would result in ECM degradation and the improvement of trastuzumab therapy. As viral gene delivery into epithelial tumors with extensive tumor ECM is inefficient, we used a hematopoietic stem cell (HSC)-based approach to deliver the Rlx gene to the tumor. In mouse models with syngeneic breast cancer tumors, HSC-mediated intratumoral Rlx expression resulted in a decrease of ECM proteins and enabled control of tumor growth. Moreover, in a model with Her2/neu-positive BT474-M1 tumors and more treatment-refractory tumors derived from HCC1954 cells, we observed a significant delay of tumor growth when trastuzumab therapy was combined with Rlx expression. Our results have implications for antibody therapy of cancer as well as for other anticancer treatment approaches that are based on T-cells or encapsulated chemotherapy drugs.
Collapse
|
22
|
Abstract
Selected inflammatory conditions increase the risk of cancer. An inflammatory component is present also in the micro-environment of tumours epidemiologically unrelated to inflammation. An intrinsic (driven by genetic events that cause neoplasia) and an extrinsic (driven by inflammatory conditions which predispose to cancer) pathway link inflammation and cancer. Smouldering inflammation in the tumour microenvironment contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, response to hormones, and chemotherapeutic agents. Emerging evidence also suggests that cancer-related inflammation promotes genetic instability. Thus, cancer-related inflammation represents a target for innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, Via Manzoni 56, Rozzano, Milan, Italy.
| | | | | |
Collapse
|
23
|
Mateen S, Tyagi A, Agarwal C, Singh RP, Agarwal R. Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Mol Carcinog 2010; 49:247-58. [PMID: 19908243 DOI: 10.1002/mc.20595] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies show that silibinin possesses a strong antineoplastic potential against many cancers; however, its efficacy and underlying molecular mechanisms in nonsmall cell lung cancer (NSCLC) are not well defined. Herein, we assessed silibinin activity on prime endpoints and key molecular targets such as cell number, cell-cycle progression, and cell-cycle regulatory molecules in three cell lines representing different NSCLC subtypes, namely large cell carcinoma cells (H1299 and H460) and a bronchioalveolar carcinoma cell line (H322). Silibinin treatment (10-75 microM) inhibited cell growth and targeted cell-cycle progressing causing a prominent G(1) arrest in dose- and time-dependent manner. In mechanistic studies, silibinin (50-75 microM) modulated the protein levels of cyclin-dependent kinases (CDKs) (4, 6, and 2), cyclins (D1, D3, and E), CDKIs (p18/INK4C, p21/Cip1, and p27/Kip1) in a differential manner in these three cell lines. Consistent with these observations, silibinin caused a reduction in kinase activity of CDK4 and 2 in all cell lines except no effect on CDK4 kinase activity in H460 cells, and concomitantly reduced Rb phosphorylation. Together, for the first time, these results identify potential molecular targets and anticancer effects of silibinin in NSCLC cells representing different NSCLC subtypes.
Collapse
Affiliation(s)
- Samiha Mateen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
24
|
Neumann J, Feuerhake F, Kayser G, Wiech T, Aumann K, Passlick B, Fisch P, Werner M, Zur Hausen A. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study. BMC Cancer 2010; 10:77. [PMID: 20196851 PMCID: PMC2843676 DOI: 10.1186/1471-2407-10-77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 03/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. METHODS Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. RESULTS Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. CONCLUSIONS In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures.
Collapse
Affiliation(s)
- Jens Neumann
- Institute of Pathology, University Hospital Freiburg, Breisacher Str 115a, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun S, Schiller JH, Spinola M, Minna JD. The Future of Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Cerner D. Reply: Increased Lipoprotein Lipase Activity in Non-small Cell Lung Cancer Tissue Predicts Shorter Patient Survival. Arch Med Res 2010; 41:65. [DOI: 10.1016/j.arcmed.2009.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/30/2009] [Indexed: 11/25/2022]
|
27
|
Gibbons MA, Sethi T. Chronic obstructive pulmonary disease and lung cancer: inflammation, the missing link. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/thy.09.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Li L, Dragulev B, Zigrino P, Mauch C, Fox JW. The invasive potential of human melanoma cell lines correlates with their ability to alter fibroblast gene expression in vitro and the stromal microenvironment in vivo. Int J Cancer 2009; 125:1796-804. [PMID: 19569239 DOI: 10.1002/ijc.24463] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment is thought to play an important role in invasion and metastasis. Previously, we have shown that signaling from melanoma cells can alter the gene expression profiles of fibroblasts in vitro and in vivo. To investigate whether the capacity to signal fibroblasts and alter host gene expression profiles is correlated to the invasive potential of specific human melanoma cell lines, we assayed changes in gene expression of fibroblasts when cocultured with the human melanoma cell lines BLM, MV3, A2058, SK-mel28 and WM164. Results indicated that the gene expression of key chemokines and cytokines, such as IL-1B, IL-8, IL-6 and CCL2/MCP1, was significantly upregulated in fibroblasts cocultured with the invasive melanoma lines BLM and MV3 compared to fibroblasts cocultured with noninvasive WM164 cells. The results were verified by quantitative RT-PCR as well as by protein assay and supported by immunohistochemistry of human invasive melanoma. Furthermore, a role for fibroblast-secreted IL-1B in the invasion of melanoma was demonstrated in vitro, where siRNA silencing of IL-1B in melanoma-stimulated fibroblasts resulted in a diminution of melanoma invasion. Although CCL2/MCP1, a chemoattractant for macrophages, was shown to be upregulated in fibroblasts cocultured with metastatic melanoma cell lines, immunohistochemical analysis of human melanoma also indicated CCL2/MCP1 production associated with the melanoma. In summary, these experiments indicate that the invasiveness of melanoma can partly be correlated to its ability to stimulate host stromal fibroblasts to give rise to the secretion of chemokines that generate a microenvironment that is conductive for melanoma invasion and metastasis.
Collapse
Affiliation(s)
- Ling Li
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908-0734, USA
| | | | | | | | | |
Collapse
|
29
|
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30:1073-81. [PMID: 19468060 DOI: 10.1093/carcin/bgp127] [Citation(s) in RCA: 2000] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory conditions in selected organs increase the risk of cancer. An inflammatory component is present also in the microenvironment of tumors that are not epidemiologically related to inflammation. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. In the tumor microenvironment, smoldering inflammation contributes to proliferation and survival of malignant cells, angiogenesis, metastasis, subversion of adaptive immunity, reduced response to hormones and chemotherapeutic agents. Recent data suggest that an additional mechanism involved in cancer-related inflammation (CRI) is induction of genetic instability by inflammatory mediators, leading to accumulation of random genetic alterations in cancer cells. In a seminal contribution, Hanahan and Weinberg [(2000) Cell, 100, 57-70] identified the six hallmarks of cancer. We surmise that CRI represents the seventh hallmark.
Collapse
|
30
|
Dubey S, Powell CA. Update in lung cancer 2008. Am J Respir Crit Care Med 2009; 179:860-8. [PMID: 19423719 PMCID: PMC2720086 DOI: 10.1164/rccm.200902-0289up] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 02/23/2009] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sarita Dubey
- Division of Hematology and Oncology, University of California, San Francisco, California, USA
| | | |
Collapse
|
31
|
Abstract
Current approaches for treatment of late-stage breast cancer rarely result in a long-term cure. In part this is due to tumor stroma that prevents access of systemically or intratumorally applied therapeutics. We propose a stem cell gene therapy approach for controlled tumor stroma degradation that uses the pathophysiologic process of recruitment of inflammatory cells into the tumor. This approach involves genetic modification of hematopoietic stem cells (HSCs) and their subsequent transplantation into tumor-bearing mice. We show that inducible, intratumoral expression of relaxin (Rlx) either by transplanting tumor cells that contained the Rlx gene or by transplantation of mouse HSCs transduced with an Rlx-expressing lentivirus vector delays tumor growth in a mouse model of breast cancer. The antitumor effect of Rlx was mediated through degradation of tumor stroma, which provided increased access of infiltrating antitumor immune cells to their target tumor cells. Furthermore, we have shown in a human/mouse chimeric model that genetically modified HSCs expressing a transgene can access the tumor site. Our findings are relevant for cancer gene therapy and immunotherapy.
Collapse
|
32
|
Steiling K, Ryan J, Brody JS, Spira A. The field of tissue injury in the lung and airway. Cancer Prev Res (Phila) 2009; 1:396-403. [PMID: 19138985 DOI: 10.1158/1940-6207.capr-08-0174] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The concept of field cancerization was first introduced over 6 decades ago in the setting of oral cancer. Later, field cancerization involving histologic and molecular changes of neoplasms and adjacent tissue began to be characterized in smokers with or without lung cancer. Investigators also described a diffuse, nonneoplastic field of molecular injury throughout the respiratory tract that is attributable to cigarette smoking and susceptibility to smoking-induced lung disease. The potential molecular origins of field cancerization and the field of injury following cigarette smoke exposure in lung and airway epithelia are critical to understanding their potential impact on clinical diagnostics and therapeutics for smoking-induced lung disease.
Collapse
Affiliation(s)
- Katrina Steiling
- The Pulmonary Center, Boston University Medical Center, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Worldwide over 1 million people die due to lung cancer each year. It is estimated that cigarette smoking explains almost 90% of lung cancer risk in men and 70 to 80% in women. Clinically evident lung cancers have multiple genetic and epigenetic abnormalities. These abnormalities may result in activation of oncogenes and inactivation of tumor-suppressor genes. Chronic inflammation, which is known to promote cancer, may result both from smoking and from genetic abnormalities. These mediators in turn may be responsible for increased macrophage recruitment, delayed neutrophil clearance, and increase in reactive oxygen species (ROS). Thus, the pulmonary environment presents a unique milieu in which lung carcinogenesis proceeds in complicity with the host cellular network. The pulmonary diseases that are associated with the greatest risk for lung cancer are characterized by abundant and deregulated inflammation. Pulmonary disorders such as chronic obstructive pulmonary disease (COPD)/emphysema are characterized by profound abnormalities in inflammatory and fibrotic pathways. The cytokines and growth factors aberrantly produced in COPD and the developing tumor microenvironment have been found to have deleterious properties that simultaneously pave the way for both epithelial-mesenchymal transition (EMT) and destruction of specific host cell-mediated immune responses. Full definition of these pathways will afford the opportunity to intervene in specific inflammatory events mediating lung tumorigenesis and resistance to therapy.
Collapse
|
34
|
Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 2008; 113:1992-2002. [PMID: 19060246 DOI: 10.1182/blood-2008-02-133751] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Enhanced angiogenesis is a hallmark of cancer. Pleiotrophin (PTN) is an angiogenic factor that is produced by many different human cancers and stimulates tumor blood vessel formation when it is expressed in malignant cancer cells. Recent studies show that monocytes may give rise to vascular endothelium. In these studies, we show that PTN combined with macrophage colony-stimulating factor (M-CSF) induces expression of vascular endothelial cell (VEC) genes and proteins in human monocyte cell lines and monocytes from human peripheral blood (PB). Monocytes induce VEC gene expression and develop tube-like structures when they are exposed to serum or cultured with bone marrow (BM) from patients with multiple myeloma (MM) that express PTN, effects specifically blocked with antiPTN antibodies. When coinjected with human MM cells into severe combined immunodeficient (SCID) mice, green fluorescent protein (GFP)-marked human monocytes were found incorporated into tumor blood vessels and expressed human VEC protein markers and genes that were blocked by anti-PTN antibody. Our results suggest that vasculogenesis in human MM may develop from tumoral production of PTN, which orchestrates the transdifferentiation of monocytes into VECs.
Collapse
|
35
|
Naxerova K, Bult CJ, Peaston A, Fancher K, Knowles BB, Kasif S, Kohane IS. Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers. Genome Biol 2008; 9:R108. [PMID: 18611264 PMCID: PMC2530866 DOI: 10.1186/gb-2008-9-7-r108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/31/2008] [Accepted: 07/08/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In recent years, the molecular underpinnings of the long-observed resemblance between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional profiling has revealed similar gene expression signatures in several tumor types and early developmental stages of their tissue of origin. However, it remains unclear whether such a relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental component of different tumor types and to which degree the resemblance between cancer and development is a tissue-specific phenomenon. RESULTS We defined a developmental landscape by summarizing the main features of ten developmental time courses and projected gene expression from a variety of human tumor types onto this landscape. This comparison demonstrates a clear imprint of developmental gene expression in a wide range of tumors and with respect to different, even non-cognate developmental backgrounds. Our analysis reveals three classes of cancers with developmentally distinct transcriptional patterns. We characterize the biological processes dominating these classes and validate the class distinction with respect to a new time series of murine embryonic lung development. Finally, we identify a set of genes that are upregulated in most cancers and we show that this signature is active in early development. CONCLUSION This systematic and quantitative overview of the relationship between the neoplastic and developmental transcriptome spanning dozens of tissues provides a reliable outline of global trends in cancer gene expression, reveals potentially clinically relevant differences in the gene expression of different cancer types and represents a reference framework for interpretation of smaller-scale functional studies.
Collapse
Affiliation(s)
- Kamila Naxerova
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Longwood Avenue, Boston, MA 02115, USA
| | - Carol J Bult
- The Jackson Laboratory, Main Street, Bar Harbor, ME 04609, USA
| | - Anne Peaston
- The Jackson Laboratory, Main Street, Bar Harbor, ME 04609, USA
| | - Karen Fancher
- The Jackson Laboratory, Main Street, Bar Harbor, ME 04609, USA
| | | | - Simon Kasif
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Longwood Avenue, Boston, MA 02115, USA
- Department of Biomedical Engineering, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Isaac S Kohane
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|