1
|
Hu C, Huang H, Na J, Lumby C, Abozaid M, Holdren MA, Rao TJ, Karam R, Pesaran T, Weyandt JD, Csuy CM, Seelaus CA, Young CC, Fulk K, Heidari Z, Morais Lyra PC, Couch RE, Persons B, Polley EC, Gnanaolivu RD, Boddicker NJ, Monteiro ANA, Yadav S, Domchek SM, Richardson ME, Couch FJ. Functional analysis and clinical classification of 462 germline BRCA2 missense variants affecting the DNA binding domain. Am J Hum Genet 2024; 111:584-593. [PMID: 38417439 PMCID: PMC10940015 DOI: 10.1016/j.ajhg.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.
Collapse
Affiliation(s)
- Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Huaizhi Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Carolyn Lumby
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Mohamed Abozaid
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Megan A Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Tara J Rao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | | | | - Kelly Fulk
- Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | | | - Ronan E Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Benjamin Persons
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Eric C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Rohan D Gnanaolivu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Nicholas J Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | | | - Siddhartha Yadav
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Susan M Domchek
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
2
|
Guo Q, Ji S, Takeuchi K, Urasaki W, Suzuki A, Iwasaki Y, Saito H, Xu Z, Arai M, Nakamura S, Momozawa Y, Chiba N, Miki Y, Matsuura M, Sunada S. Functional evaluation of BRCA1/2 variants of unknown significance with homologous recombination assay and integrative in silico prediction model. J Hum Genet 2023; 68:849-857. [PMID: 37731132 DOI: 10.1038/s10038-023-01194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Numerous variants of unknown significance (VUSs) exist in hereditary breast and ovarian cancers. Although multiple methods have been developed to assess the significance of BRCA1/2 variants, functional discrepancies among these approaches remain. Therefore, a comprehensive functional evaluation system for these variants should be established. We performed conventional homologous recombination (HR) assays for 50 BRCA1 and 108 BRCA2 VUSs and complementarily predicted VUSs using a statistical logistic regression prediction model that integrated six in silico functional prediction tools. BRCA1/2 VUSs were classified according to the results of the integrative in vitro and in silico analyses. Using HR assays, we identified 10 BRCA1 and 4 BRCA2 VUSs as low-functional pathogenic variants. For in silico prediction, the statistical prediction model showed high accuracy for both BRCA1 and BRCA2 compared with each in silico prediction tool individually and predicted nine BRCA1 and seven BRCA2 variants to be pathogenic. Integrative functional evaluation in this study and the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines strongly suggested that seven BRCA1 variants (p.Glu272Gly, p.Lys1095Glu, p.Val1653Leu, p.Thr1681Pro, p.Phe1761Val, p.Thr1773Ile, and p.Gly1803Ser) and four BRCA2 variants (p.Trp31Gly, p.Ser2616Phe, p.Tyr2660Cys, and p.Leu2792Arg) were pathogenic. This study demonstrates that integrative evaluation using conventional HR assays and optimized in silico prediction comprehensively classified the significance of BRCA VUSs for future clinical applications.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shuting Ji
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuma Takeuchi
- Graduate School of Public Health, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Wataru Urasaki
- Department of Information Sciences, Tokyo University of Science, 2641 Yamazaki, Noda City, Chiba, 278-8510, Japan
| | - Asuka Suzuki
- Graduate School of Public Health, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yusuke Iwasaki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hiroko Saito
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Zeyu Xu
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masami Arai
- Department of Clinical Genetics, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Genetic Diagnosis, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Masaaki Matsuura
- Graduate School of Public Health, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Shigeaki Sunada
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Oncology, School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
3
|
Mishra AP, Hartford S, Chittela RK, Sahu S, Kharat SS, Alvaro-Aranda L, Contreras-Perez A, Sullivan T, Martin BK, Albaugh M, Southon E, Burkett S, Karim B, Carreira A, Tessarollo L, Sharan SK. Characterization of BRCA2 R3052Q variant in mice supports its functional impact as a low-risk variant. Cell Death Dis 2023; 14:753. [PMID: 37980415 PMCID: PMC10657400 DOI: 10.1038/s41419-023-06289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
4
|
Jimenez-Sainz J, Mathew J, Moore G, Lahiri S, Garbarino J, Eder JP, Rothenberg E, Jensen RB. BRCA2 BRC missense variants disrupt RAD51-dependent DNA repair. eLife 2022; 11:e79183. [PMID: 36098506 PMCID: PMC9545528 DOI: 10.7554/elife.79183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenic mutations in the BRCA2 tumor suppressor gene predispose to breast, ovarian, pancreatic, prostate, and other cancers. BRCA2 maintains genome stability through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) and replication fork protection. Nonsense or frameshift mutations leading to truncation of the BRCA2 protein are typically considered pathogenic; however, missense mutations resulting in single amino acid substitutions can be challenging to functionally interpret. The majority of missense mutations in BRCA2 have been classified as Variants of Uncertain Significance (VUS) with unknown functional consequences. In this study, we identified three BRCA2 VUS located within the BRC repeat region to determine their impact on canonical HDR and fork protection functions. We provide evidence that S1221P and T1980I, which map to conserved residues in the BRC2 and BRC7 repeats, compromise the cellular response to chemotherapeutics and ionizing radiation, and display deficits in fork protection. We further demonstrate biochemically that S1221P and T1980I disrupt RAD51 binding and diminish the ability of BRCA2 to stabilize RAD51-ssDNA complexes. The third variant, T1346I, located within the spacer region between BRC2 and BRC3 repeats, is fully functional. We conclude that T1346I is a benign allele, whereas S1221P and T1980I are hypomorphic disrupting the ability of BRCA2 to fully engage and stabilize RAD51 nucleoprotein filaments. Our results underscore the importance of correctly classifying BRCA2 VUS as pathogenic variants can impact both future cancer risk and guide therapy selection during cancer treatment.
Collapse
Affiliation(s)
| | - Joshua Mathew
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Sudipta Lahiri
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Jennifer Garbarino
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Joseph P Eder
- Department of Medical Oncology, Yale University School of Medicine, Yale Cancer CenterNew HavenUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York UniversityNew YorkUnited States
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| |
Collapse
|
5
|
Shinde S, Satpute DP, Behera SK, Kumar D. Computational Biology of BRCA2 in Male Breast Cancer, through Prediction of Probable nsSNPs, and Hit Identification. ACS OMEGA 2022; 7:30447-30461. [PMID: 36061650 PMCID: PMC9434626 DOI: 10.1021/acsomega.2c03851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Male breast cancer (MBC) is a relatively rare disease, but emerging data recommend the development of novel therapeutics considering its alarming threats. Compared to female breast cancer (FBC), MBC is reportedly associated with inferior outcomes (poor survival) owing to their late diagnosis and lack of adequate treatment. Treatment typically correlates with FBC, involving surgical removal of the breast tissue along with chemo/hormonal/radiation therapy, the tamoxifen being a standard adjuvant. Considering the distinct immunophenotypic (implying different pathogenesis and progression) differences from FBC, the identification of diagnostics, prognostics, and therapeutics for MBC is highly desirable. In this context, we have analyzed the most deleterious nsSNPs of BRCA2, a human tumor suppressor gene constituting the potential biomarker for tumors including MBC, to predict the structural changes associated with the mutants hampering the normal protein-protein and protein-ligand interactions, resulting in MBC progression. Among 27 nsSNPs confined to 21 rsIDs pertaining to MBC, the 19 nsSNPs constituting 14 rsIDs have been predicted as highly deleterious. We believe that these nsSNPs could serve as potential biomarkers for diagnostic and prognostic purposes and could be the pivotal target for MBC drug discovery. Subsequently, the study highlights the exploration of the key nsSNPs (of BRCA2 associated with the MBC) and its applications toward the identification of therapeutic hit TIP006136 following the homology modeling, virtual screening of 5284 phytochemicals retrieved from the TIPdb (a database of phytochemicals from indigenous plants in Taiwan) database, molecular docking (against native and mutant BRCA2), dynamic simulations (against native and mutant BRCA2), density functional theory (DFT), and molecular electrostatic potential. To the best of our knowledge, this is the first report to use diverse computational modules to investigate the important nsSNPs of BRCA2 related to MBC, implying that TIP006136 could be a potential hit and must be studied further (in vitro and in vivo) to establish its anticancer property and efficacy against MBC.
Collapse
Affiliation(s)
- Sangita
Dattatray Shinde
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Santosh Kumar Behera
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dinesh Kumar
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmadabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
6
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Jimenez-Sainz J, Krysztofiak A, Garbarino J, Rogers F, Jensen RB. The Pathogenic R3052W BRCA2 Variant Disrupts Homology-Directed Repair by Failing to Localize to the Nucleus. Front Genet 2022; 13:884210. [PMID: 35711920 PMCID: PMC9197106 DOI: 10.3389/fgene.2022.884210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The BRCA2 germline missense variant, R3052W, resides in the DNA binding domain and has been previously classified as a pathogenic allele. In this study, we sought to determine how R3052W alters the cellular functions of BRCA2 in the DNA damage response. The BRCA2 R3052W mutated protein exacerbates genome instability, is unable to rescue homology-directed repair, and fails to complement cell survival following exposure to PARP inhibitors and crosslinking drugs. Surprisingly, despite anticipated defects in DNA binding or RAD51-mediated DNA strand exchange, the BRCA2 R3052W protein mislocalizes to the cytoplasm precluding its ability to perform any DNA repair functions. Rather than acting as a simple loss-of-function mutation, R3052W behaves as a dominant negative allele, likely by sequestering RAD51 in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Hayward SB, Ciccia A. Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Curr Opin Genet Dev 2021; 71:171-181. [PMID: 34583241 PMCID: PMC8671205 DOI: 10.1016/j.gde.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-dependent genome editing enables the study of genes and mutations on a large scale. Here we review CRISPR-based functional genomics technologies that generate gene knockouts and single nucleotide variants (SNVs) and discuss how their use has provided new important insights into the function of homologous recombination (HR) genes. In particular, we highlight discoveries from CRISPR screens that have contributed to define the response to PARP inhibition in cells deficient for the HR genes BRCA1 and BRCA2, uncover genes whose loss causes synthetic lethality in combination with BRCA1/2 deficiency, and characterize the function of BRCA1/2 SNVs of uncertain clinical significance. Further use of these approaches, combined with next-generation CRISPR-based technologies, will aid to dissect the genetic network of the HR pathway, define the impact of HR mutations on cancer etiology and treatment, and develop novel targeted therapies for HR-deficient tumors.
Collapse
Affiliation(s)
- Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
9
|
Rosen SM, Joshi M, Hitt T, Beggs AH, Agrawal PB. Knockin mouse model of the human CFL2 p.A35T mutation results in a unique splicing defect and severe myopathy phenotype. Hum Mol Genet 2021; 29:1996-2003. [PMID: 32160286 DOI: 10.1093/hmg/ddaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Cofilin-2 is an actin-binding protein that is predominantly expressed in skeletal and cardiac muscles and belongs to the AC group of proteins, which includes cofilin-1 and destrin. In humans, cofilin-2 (CFL2) mutations have been associated with congenital myopathies that include nemaline and myofibrillar myopathy. To understand the pathogenicity of the human CFL2 mutation, p.A35T, that first linked cofilin-2 with the human disease, we created a knock-in mouse model. The Cfl2A35T/A35T (KI) mice were indistinguishable from their wild-type littermates at birth, but they rapidly worsened and died by postnatal day 9. The phenotypic, histopathologic and molecular findings mimicked the constitutive Cfl2-knockout (KO) mice described previously, including sarcomeric disruption and actin accumulations in skeletal muscles and negligible amounts of cofilin-2 protein. In addition, KI mice demonstrated a marked reduction in Cfl2 mRNA levels in various tissues including skeletal muscles. Further investigation revealed evidence of alternative splicing with the presence of two alternate transcripts of smaller size. These alternate transcripts were expressed at very low levels in the wild-type mice and were significantly upregulated in the mutant mice, indicating that pre-translational splicing defects may be a critical component of the disease mechanism associated with the mutation. Evidence of reduced expression of the full-length CFL2 transcript was also observed in the muscle biopsy sample of the patient with p.A35T mutation.
Collapse
Affiliation(s)
- Samantha M Rosen
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mugdha Joshi
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Hitt
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Lee M, Shorthouse D, Mahen R, Hall BA, Venkitaraman AR. Cancer-causing BRCA2 missense mutations disrupt an intracellular protein assembly mechanism to disable genome maintenance. Nucleic Acids Res 2021; 49:5588-5604. [PMID: 33978741 PMCID: PMC8191791 DOI: 10.1093/nar/gkab308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-causing missense mutations in the 3418 amino acid BRCA2 breast and ovarian cancer suppressor protein frequently affect a short (∼340 residue) segment in its carboxyl-terminal domain (DBD). Here, we identify a shared molecular mechanism underlying their pathogenicity. Pathogenic BRCA2 missense mutations cluster in the DBD’s helical domain (HD) and OB1-fold motifs, which engage the partner protein DSS1. Pathogenic - but not benign – DBD mutations weaken or abolish DSS1-BRCA2 assembly, provoking mutant BRCA2 oligomers that are excluded from the cell nucleus, and disable DNA repair by homologous DNA recombination (HDR). DSS1 inhibits the intracellular oligomerization of wildtype, but not mutant, forms of BRCA2. Remarkably, DSS1 expression corrects defective HDR in cells bearing pathogenic BRCA2 missense mutants with weakened, but not absent, DSS1 binding. Our findings identify a DSS1-mediated intracellular protein assembly mechanism that is disrupted by cancer-causing BRCA2 missense mutations, and suggest an approach for its therapeutic correction.
Collapse
Affiliation(s)
- Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - David Shorthouse
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Robert Mahen
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Benjamin A Hall
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.,The Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599 & Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove 138648, Singapore
| |
Collapse
|
11
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
12
|
Richardson ME, Hu C, Lee KY, LaDuca H, Fulk K, Durda KM, Deckman AM, Goldgar DE, Monteiro AN, Gnanaolivu R, Hart SN, Polley EC, Chao E, Pesaran T, Couch FJ. Strong functional data for pathogenicity or neutrality classify BRCA2 DNA-binding-domain variants of uncertain significance. Am J Hum Genet 2021; 108:458-468. [PMID: 33609447 PMCID: PMC8008494 DOI: 10.1016/j.ajhg.2021.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Determination of the clinical relevance of rare germline variants of uncertain significance (VUSs) in the BRCA2 cancer predisposition gene remains a challenge as a result of limited availability of data for use in classification models. However, laboratory-based functional data derived from validated functional assays of known sensitivity and specificity may influence the interpretation of VUSs. We evaluated 252 missense VUSs from the BRCA2 DNA-binding domain by using a homology-directed DNA repair (HDR) assay and identified 90 as non-functional and 162 as functional. The functional assay results were integrated with other available data sources into an ACMG/AMP rules-based classification framework used by a hereditary cancer testing laboratory. Of the 186 missense variants observed by the testing laboratory, 154 were classified as VUSs without functional data. However, after applying protein functional data, 86% (132/154) of the VUSs were reclassified as either likely pathogenic/pathogenic (39/132) or likely benign/benign (93/132), which impacted testing results for 1,900 individuals. These results indicate that validated functional assay data can have a substantial impact on VUS classification and associated clinical management for many individuals with inherited alterations in BRCA2.
Collapse
|
13
|
Cuella-Martin R, Hayward SB, Fan X, Chen X, Huang JW, Taglialatela A, Leuzzi G, Zhao J, Rabadan R, Lu C, Shen Y, Ciccia A. Functional interrogation of DNA damage response variants with base editing screens. Cell 2021; 184:1081-1097.e19. [PMID: 33606978 PMCID: PMC8018281 DOI: 10.1016/j.cell.2021.01.041] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/16/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.
Collapse
Affiliation(s)
- Raquel Cuella-Martin
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Fan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Yoshida R, Hagio T, Kaneyasu T, Gotoh O, Osako T, Tanaka N, Amino S, Yaguchi N, Nakashima E, Kitagawa D, Ueno T, Ohno S, Nakajima T, Nakamura S, Miki Y, Hirota T, Takahashi S, Matsuura M, Noda T, Mori S. Pathogenicity assessment of variants for breast cancer susceptibility genes based on BRCAness of tumor sample. Cancer Sci 2021; 112:1310-1319. [PMID: 33421217 PMCID: PMC7935793 DOI: 10.1111/cas.14803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
Genes involved in the homologous recombination repair pathway—as exemplified by BRCA1, BRCA2, PALB2, ATM, and CHEK2—are frequently associated with hereditary breast and ovarian cancer syndrome. Germline mutations in the loci of these genes with loss of heterozygosity or additional somatic truncation at the WT allele lead to the development of breast cancers with characteristic clinicopathological features and prominent genomic features of homologous recombination deficiency, otherwise referred to as “BRCAness.” Although clinical genetic testing for these and other genes has increased the chances of identifying pathogenic variants, there has also been an increase in the prevalence of variants of uncertain significance, which poses a challenge to patient care because of the difficulties associated with making further clinical decisions. To overcome this challenge, we sought to develop a methodology to reclassify the pathogenicity of these unknown variants using statistical modeling of BRCAness. The model was developed with Lasso logistic regression by comparing 116 genomic attributes derived from 37 BRCA1/2 biallelic mutant and 32 homologous recombination‐quiescent breast cancer exomes. The model showed 95.8% and 86.7% accuracies in the training cohort and The Cancer Genome Atlas validation cohort, respectively. Through application of the model for variant reclassification of homologous recombination‐associated hereditary breast and ovarian cancer causal genes and further assessment with clinicopathological features, we finally identified one likely pathogenic and five likely benign variants. As such, the BRCAness model developed from the tumor exome was robust and provided a reasonable basis for variant reclassification.
Collapse
Affiliation(s)
- Reiko Yoshida
- Department of Oncotherapeutic Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Department of Clinical Genetic Oncology, Cancer Institute Hospital (CIH), JFCR, Tokyo, Japan
| | - Taichi Hagio
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Tomoko Kaneyasu
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Osamu Gotoh
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Tomo Osako
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Norio Tanaka
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Sayuri Amino
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | - Noriko Yaguchi
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| | | | - Dai Kitagawa
- Breast Oncology Center, CIH, JFCR, Tokyo, Japan.,Department of Breast Surgical Oncology, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Shinji Ohno
- Breast Oncology Center, CIH, JFCR, Tokyo, Japan
| | - Takeshi Nakajima
- Department of Clinical Genetic Oncology, Cancer Institute Hospital (CIH), JFCR, Tokyo, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Yoshio Miki
- Division of Genetic Diagnosis, Cancer Institute, JFCR, Tokyo, Japan
| | - Toru Hirota
- Department of Cellular and Molecular Imaging of Cancer, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Division of Experimental Pathology, Cancer Institute, JFCR, Tokyo, Japan
| | - Shunji Takahashi
- Department of Oncotherapeutic Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Medical Oncology, CIH, JFCR, Tokyo, Japan
| | - Masaaki Matsuura
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tetsuo Noda
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Tokyo, Japan.,Cancer, Institute, JFCR, Tokyo, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, JFCR, Tokyo, Japan
| |
Collapse
|
15
|
Sanoguera-Miralles L, Valenzuela-Palomo A, Bueno-Martínez E, Llovet P, Díez-Gómez B, Caloca MJ, Pérez-Segura P, Fraile-Bethencourt E, Colmena M, Carvalho S, Allen J, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. Comprehensive Functional Characterization and Clinical Interpretation of 20 Splice-Site Variants of the RAD51C Gene. Cancers (Basel) 2020; 12:E3771. [PMID: 33333735 PMCID: PMC7765170 DOI: 10.3390/cancers12123771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - Patricia Llovet
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| | - María José Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
- Knight Cancer Research Building, 2720 S Moody Ave, Portland, OR 97201, USA
| | - Marta Colmena
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Leiden University Medical Center, Department of Human Genetics, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040 Madrid, Spain; (P.L.); (P.P.-S.); (M.C.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (L.S.-M.); (A.V.-P.); (E.B.-M.); (B.D.-G.); (E.F.-B.)
| |
Collapse
|
16
|
High-throughput functional evaluation of BRCA2 variants of unknown significance. Nat Commun 2020; 11:2573. [PMID: 32444794 PMCID: PMC7244490 DOI: 10.1038/s41467-020-16141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous nontruncating missense variants of the BRCA2 gene have been identified, but there is a lack of convincing evidence, such as familial data, demonstrating their clinical relevance and they thus remain unactionable. To assess the pathogenicity of variants of unknown significance (VUSs) within BRCA2, here we develop a method, the MANO-B method, for high-throughput functional evaluation utilizing BRCA2-deficient cells and poly (ADP-ribose) polymerase (PARP) inhibitors. The estimated sensitivity and specificity of this assay compared to those of the International Agency for Research on Cancer classification system is 95% and 95% (95% confidence intervals: 77–100% and 82–99%), respectively. We classify the functional impact of 186 BRCA2 VUSs with our computational pipeline, resulting in the classification of 126 variants as normal/likely normal, 23 as intermediate, and 37 as abnormal/likely abnormal. We further describe a simplified, on-demand annotation system that could be used as a companion diagnostic for PARP inhibitors in patients with unknown BRCA2 VUSs. Many germline variants are found in the BRCA2 gene, some of which pre-dispose women to breast and ovarian cancer. Here, the authors develop a method to determine the functional significance of BRCA2 variants and show that it is comparable to the IARC system of classifying variants.
Collapse
|
17
|
Ratta R, Guida A, Scotté F, Neuzillet Y, Teillet AB, Lebret T, Beuzeboc P. PARP inhibitors as a new therapeutic option in metastatic prostate cancer: a systematic review. Prostate Cancer Prostatic Dis 2020; 23:549-560. [DOI: 10.1038/s41391-020-0233-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023]
|
18
|
Variants of uncertain significance in the era of high-throughput genome sequencing: a lesson from breast and ovary cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:46. [PMID: 32127026 PMCID: PMC7055088 DOI: 10.1186/s13046-020-01554-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The promising expectations about personalized medicine have opened the path to routine large-scale sequencing and increased the importance of genetic counseling for hereditary cancers, among which hereditary breast and ovary cancers (HBOC) have a major impact. High-throughput sequencing, or Next-Generation Sequencing (NGS), has improved cancer patient management, ameliorating diagnosis and treatment decisions. In addition to its undeniable clinical utility, NGS is also unveiling a large number of variants that we are still not able to clearly define and classify, the variants of uncertain significance (VUS), which account for about 40% of total variants. At present, VUS use in the clinical context is challenging. Medical reports may omit this kind of data and, even when included, they limit the clinical utility of genetic information. This has prompted the scientific community to seek easily applicable tests to accurately classify VUS and increase the amount of usable information from NGS data. In this review, we will focus on NGS and classification systems for VUS investigation, with particular attention on HBOC-related genes and in vitro functional tests developed for ameliorating and accelerating variant classification in cancer.
Collapse
|
19
|
Esposito MV, Minopoli G, Esposito L, D'Argenio V, Di Maggio F, Sasso E, D'Aiuto M, Zambrano N, Salvatore F. A Functional Analysis of the Unclassified Pro2767Ser BRCA2 Variant Reveals Its Potential Pathogenicity that Acts by Hampering DNA Binding and Homology-Mediated DNA Repair. Cancers (Basel) 2019; 11:E1454. [PMID: 31569370 PMCID: PMC6826418 DOI: 10.3390/cancers11101454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
BRCA1 and BRCA2 are the genes most frequently associated with hereditary breast and ovarian cancer (HBOC). They are crucial for the maintenance of genome stability, particularly in the homologous recombination-mediated repair pathway of DNA double-strand breaks (HR-DSBR). Widespread BRCA1/2 next-generation sequencing (NGS) screening has revealed numerous variants of uncertain significance. Assessing the clinical significance of these variants is challenging, particularly regarding the clinical management of patients. Here, we report the functional characterization of the unclassified BRCA2 c.8299C > T variant, identified in a young breast cancer patient during BRCA1/2 NGS screening. This variant causes the change of Proline 2767 to Serine in the DNA binding domain (DBD) of the BRCA2 protein, necessary for the loading of RAD51 on ssDNA during the HR-DSBR. Our in silico analysis and 3D-structure modeling predicted that the p.Pro2767Ser substitution is likely to alter the BRCA2 DBD structure and function. Therefore, to evaluate the functional impact of the p.Pro2767Ser variant, we used a minigene encoding a truncated protein that contains the BRCA2 DBD and the nearby nuclear localization sequence. We found that the ectopically expressed truncated protein carrying the normal DBD, which retains the DNA binding function and lacks the central RAD51 binding domain, interferes with endogenous wild-type BRCA2 mediator functions in the HR-DSBR. We also demonstrated that the BRCA2 Pro2767Ser DBD is unable to compete with endogenous BRCA2 DNA binding, thereby suggesting that the p.Pro2767Ser substitution in the full-length protein causes the functional loss of BRCA2. Consequently, our data suggest that the p.Pro2767Ser variant should be considered pathogenic, thus supporting a revision of the ClinVar interpretation. Moreover, our experimental strategy could be a valid method with which to preliminarily evaluate the pathogenicity of the unclassified BRCA2 germline variants in the DBD and their risk of predisposing to HBOC.
Collapse
Affiliation(s)
- Maria Valeria Esposito
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Giuseppina Minopoli
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Federica Di Maggio
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Emanuele Sasso
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori-IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Nicola Zambrano
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
20
|
Parsons MT, Tudini E, Li H, Hahnen E, Wappenschmidt B, Feliubadaló L, Aalfs CM, Agata S, Aittomäki K, Alducci E, Alonso‐Cerezo MC, Arnold N, Auber B, Austin R, Azzollini J, Balmaña J, Barbieri E, Bartram CR, Blanco A, Blümcke B, Bonache S, Bonanni B, Borg Å, Bortesi B, Brunet J, Bruzzone C, Bucksch K, Cagnoli G, Caldés T, Caliebe A, Caligo MA, Calvello M, Capone GL, Caputo SM, Carnevali I, Carrasco E, Caux‐Moncoutier V, Cavalli P, Cini G, Clarke EM, Concolino P, Cops EJ, Cortesi L, Couch FJ, Darder E, de la Hoya M, Dean M, Debatin I, Del Valle J, Delnatte C, Derive N, Diez O, Ditsch N, Domchek SM, Dutrannoy V, Eccles DM, Ehrencrona H, Enders U, Evans DG, Farra C, Faust U, Felbor U, Feroce I, Fine M, Foulkes WD, Galvao HC, Gambino G, Gehrig A, Gensini F, Gerdes A, Germani A, Giesecke J, Gismondi V, Gómez C, Gómez Garcia EB, González S, Grau E, Grill S, Gross E, Guerrieri‐Gonzaga A, Guillaud‐Bataille M, Gutiérrez‐Enríquez S, Haaf T, Hackmann K, Hansen TV, Harris M, Hauke J, Heinrich T, Hellebrand H, Herold KN, Honisch E, Horvath J, Houdayer C, Hübbel V, Iglesias S, Izquierdo A, James PA, Janssen LA, Jeschke U, Kaulfuß S, Keupp K, Kiechle M, Kölbl A, Krieger S, Kruse TA, Kvist A, Lalloo F, Larsen M, Lattimore VL, Lautrup C, Ledig S, Leinert E, Lewis AL, Lim J, Loeffler M, López‐Fernández A, Lucci‐Cordisco E, Maass N, Manoukian S, Marabelli M, Matricardi L, Meindl A, Michelli RD, Moghadasi S, Moles‐Fernández A, Montagna M, Montalban G, Monteiro AN, Montes E, Mori L, Moserle L, Müller CR, Mundhenke C, Naldi N, Nathanson KL, Navarro M, Nevanlinna H, Nichols CB, Niederacher D, Nielsen HR, Ong K, Pachter N, Palmero EI, Papi L, Pedersen IS, Peissel B, Perez‐Segura P, Pfeifer K, Pineda M, Pohl‐Rescigno E, Poplawski NK, Porfirio B, Quante AS, Ramser J, Reis RM, Revillion F, Rhiem K, Riboli B, Ritter J, Rivera D, Rofes P, Rump A, Salinas M, Sánchez de Abajo AM, Schmidt G, Schoenwiese U, Seggewiß J, Solanes A, Steinemann D, Stiller M, Stoppa‐Lyonnet D, Sullivan KJ, Susman R, Sutter C, Tavtigian SV, Teo SH, Teulé A, Thomassen M, Tibiletti MG, Tischkowitz M, Tognazzo S, Toland AE, Tornero E, Törngren T, Torres‐Esquius S, Toss A, Trainer AH, Tucker KM, van Asperen CJ, van Mackelenbergh MT, Varesco L, Vargas‐Parra G, Varon R, Vega A, Velasco Á, Vesper A, Viel A, Vreeswijk MPG, Wagner SA, Waha A, Walker LC, Walters RJ, Wang‐Gohrke S, Weber BHF, Weichert W, Wieland K, Wiesmüller L, Witzel I, Wöckel A, Woodward ER, Zachariae S, Zampiga V, Zeder‐Göß C, Investigators KC, Lázaro C, De Nicolo A, Radice P, Engel C, Schmutzler RK, Goldgar DE, Spurdle AB. Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification. Hum Mutat 2019; 40:1557-1578. [PMID: 31131967 PMCID: PMC6772163 DOI: 10.1002/humu.23818] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/24/2022]
Abstract
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
Collapse
Affiliation(s)
- Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Hongyan Li
- Cancer Control and Population Science, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Lidia Feliubadaló
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Cora M. Aalfs
- Department of Clinical GeneticsAmsterdam UMCAmsterdamThe Netherlands
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Elisa Alducci
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | | | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
- Institute of Clinical Molecular Biology, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Bernd Auber
- Institute of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Rachel Austin
- Genetic Health QueenslandRoyal Brisbane and Women's HospitalBrisbaneAustralia
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Judith Balmaña
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
- Department of Medical OncologyUniversity Hospital of Vall d'HebronBarcelonaSpain
| | - Elena Barbieri
- Department of Oncology and HaematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Claus R. Bartram
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
| | - Ana Blanco
- Fundación Pública galega Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Britta Blümcke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Sandra Bonache
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences LundLund UniversityLundSweden
| | | | - Joan Brunet
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Carla Bruzzone
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Karolin Bucksch
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Giulia Cagnoli
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Trinidad Caldés
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Almuth Caliebe
- Institute of Human Genetics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | | | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Gabriele L. Capone
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Sandrine M. Caputo
- Service de GénétiqueInstitut CurieParisFrance
- Paris Sciences Lettres Research UniversityParisFrance
| | - Ileana Carnevali
- UO Anatomia PatologicaOspedale di Circolo ASST SettelaghiVareseItaly
| | - Estela Carrasco
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
| | | | | | - Giulia Cini
- Division of Functional Onco‐genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Edward M. Clarke
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Paola Concolino
- Fondazione Policlinico Universitario A.GemelliIRCCSRomeItaly
| | - Elisa J. Cops
- Parkville Familial Cancer CentrePeter MacCallum Cancer CenterMelbourneVictoriaAustralia
| | - Laura Cortesi
- Department of Oncology and HaematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Fergus J. Couch
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesota
| | - Esther Darder
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Michael Dean
- Laboratory of Translational Genomics, DCEGNational Cancer InstituteGaithersburgMaryland
| | - Irmgard Debatin
- Institute of Human GeneticsUniversity Hospital UlmUlmGermany
| | - Jesús Del Valle
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | | | - Nicolas Derive
- Service de GénétiqueInstitut CurieParisFrance
- Paris Sciences Lettres Research UniversityParisFrance
| | - Orland Diez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Clinical and Molecular Genetics AreaUniversity Hospital Vall d'HebronBarcelonaSpain
| | - Nina Ditsch
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | - Susan M. Domchek
- Basser Center for BRCA, Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Véronique Dutrannoy
- Institute of Medical and Human GeneticsCharité –Universitätsmedizin BerlinBerlinGermany
| | | | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Laboratory MedicineOffice for Medical Services ‐ Region SkåneLundSweden
- Division of Clinical Genetics, Department of Laboratory MedicineLund UniversityLundSweden
| | - Ute Enders
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - D. Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
| | - Chantal Farra
- Medical GeneticsAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ulrike Faust
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Ute Felbor
- Institute of Human GeneticsUniversity Medicine GreifswaldGreifswaldGermany
| | - Irene Feroce
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Miriam Fine
- Adult Genetics UnitRoyal Adelaide HospitalAdelaideAustralia
| | - William D. Foulkes
- Program in Cancer Genetics, Departments of Human Genetics and OncologyMcGill UniversityMontréalQCCanada
| | | | | | - Andrea Gehrig
- Department of Human GeneticsUniversity of WürzburgWürzburgGermany
| | - Francesca Gensini
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Anne‐Marie Gerdes
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant'Andrea University HospitalSapienza UniversityRomeItaly
| | - Jutta Giesecke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Viviana Gismondi
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Carolina Gómez
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Encarna B. Gómez Garcia
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Sara González
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Elia Grau
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Sabine Grill
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Eva Gross
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | | | | | | | - Thomas Haaf
- Department of Human GeneticsUniversity of WürzburgWürzburgGermany
| | - Karl Hackmann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav CarusTU DresdenDresdenGermany
| | - Thomas V.O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | | | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Heide Hellebrand
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | | | - Ellen Honisch
- Department of Gynecology and Obstetrics, University Hospital DüsseldorfHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Judit Horvath
- Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Claude Houdayer
- Department of Genetics, F76000 and Normandy University, UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized MedicineRouen University HospitalRouenFrance
| | - Verena Hübbel
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Silvia Iglesias
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Angel Izquierdo
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Paul A. James
- Parkville Familial Cancer CentrePeter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Linda A.M. Janssen
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Udo Jeschke
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | - Silke Kaulfuß
- Institute of Human GeneticsUniversity Medical Center GöttingenGöttingenGermany
| | - Katharina Keupp
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Marion Kiechle
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Alexandra Kölbl
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | - Sophie Krieger
- Laboratoire de Biologie Clinique et OncologiqueCentre Francois BaclesseCaenFrance
- Genomics and Personalized Medecine in Cancer and Neurological DisordersNormandy Centre for Genomic and Personalized MedicineRouenFrance
- Normandie UniversitéUNICAENCaenFrance
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Fiona Lalloo
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
| | - Mirjam Larsen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Vanessa L. Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Charlotte Lautrup
- Department of Clinical GeneticsAalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
| | - Susanne Ledig
- Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Elena Leinert
- Department of Gynaecology and ObstetricsUniversity Hospital UlmUlmGermany
| | | | - Joanna Lim
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Adrià López‐Fernández
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
| | - Emanuela Lucci‐Cordisco
- UOC Genetica Medica, Fondazione Policlinico Universitario A.Gemelli IRCCS and Istituto di Medicina GenomicaUniversità Cattolica del Sacro CuoreRomeItaly
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Laura Matricardi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Alfons Meindl
- Department of Gynecology and ObstetricsUniversity of MunichMunichGermany
| | | | - Setareh Moghadasi
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | | | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Gemma Montalban
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | | | - Eva Montes
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Luigi Mori
- Department of Clinical and Experimental Science, University of Brescia c/o 2nd Internal MedicineHospital of BresciaBresciaItaly
| | - Lidia Moserle
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | | | - Christoph Mundhenke
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Nadia Naldi
- Division of OncologyUniversity Hospital of ParmaParmaItaly
| | - Katherine L. Nathanson
- Basser Center for BRCA, Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Matilde Navarro
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Cassandra B. Nichols
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthAustralia
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital DüsseldorfHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | | | - Kai‐ren Ong
- West Midlands Regional Genetics ServiceBirmingham Women's Hospital Healthcare NHS TrustBirminghamUK
| | - Nicholas Pachter
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthAustralia
- Faculty of Health and Medical SciencesUniversity of Western AustraliaPerthAustralia
| | - Edenir I. Palmero
- Molecular Oncology Research CenterBarretos Cancer HospitalSão PauloBrazil
- Barretos School of Health SciencesDr. Paulo Prata ‐ FACISBSão PauloBrazil
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Inge Sokilde Pedersen
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Molecular DiagnosticsAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and HematologyFondazione IRCCS Istituto Nazionale dei Tumori di MilanoMilanItaly
| | - Pedro Perez‐Segura
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Katharina Pfeifer
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Marta Pineda
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Esther Pohl‐Rescigno
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Nicola K. Poplawski
- Adult Genetics UnitRoyal Adelaide HospitalAdelaideAustralia
- School of Paediatrics and Reproductive HealthUniversity of AdelaideAdelaideAustralia
| | - Berardino Porfirio
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', Medical Genetics UnitUniversity of FlorenceFlorenceItaly
| | - Anne S. Quante
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der TechnischenUniversität MünchenMunichGermany
| | - Rui M. Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalSão PauloBrazil
- Health Sciences SchoolUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaPortugal
| | - Françoise Revillion
- Laboratoire d'Oncogenetique Moleculaire HumaineCentre Oscar LambretLilleFrance
| | - Kerstin Rhiem
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | | | - Julia Ritter
- Institute of Medical and Human GeneticsCharité –Universitätsmedizin BerlinBerlinGermany
| | - Daniela Rivera
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Paula Rofes
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav CarusTU DresdenDresdenGermany
| | - Monica Salinas
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Ana María Sánchez de Abajo
- Servicio de Análisis Clínicos y Bioquímica Clínica, Complejo HospitalarioUniversitario Insular Materno‐Infantil de Gran CanariaLas Palmas de Gran CanaríaSpain
| | - Gunnar Schmidt
- Institute of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Ulrike Schoenwiese
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Jochen Seggewiß
- Institute of Human GeneticsUniversity of MünsterMünsterGermany
| | - Ares Solanes
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Doris Steinemann
- Institute of Human GeneticsHannover Medical SchoolHannoverGermany
| | - Mathias Stiller
- Institute of Human GeneticsUniversity Hospital LeipzigLeipzigGermany
| | - Dominique Stoppa‐Lyonnet
- Service de GénétiqueInstitut CurieParisFrance
- Department of Tumour BiologyINSERM U830ParisFrance
- Université Paris DescartesParisFrance
| | - Kelly J. Sullivan
- Genetic Health Service NZ‐ Northern HubAuckland District Health BoardAucklandNew Zealand
| | - Rachel Susman
- Genetic Health QueenslandRoyal Brisbane and Women's HospitalBrisbaneAustralia
| | - Christian Sutter
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
| | - Sean V. Tavtigian
- Department of Oncological ServicesUniversity of Utah School of MedicineSalt Lake CityUtah
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity MalayaKuala LumpurMalaysia
| | - Alex Teulé
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | | | - Marc Tischkowitz
- Department of Medical GeneticsUniversity of CambridgeCambridgeUK
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOVIRCCSPaduaItaly
| | - Amanda E. Toland
- Department of Cancer Biology and GeneticsThe Ohio State UniversityColumbusOhio
| | - Eva Tornero
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Therese Törngren
- Division of Oncology and Pathology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Sara Torres‐Esquius
- High Risk and Cancer Prevention GroupVall d'Hebron Institute of OncologyBarcelonaSpain
| | - Angela Toss
- Department of Oncology and HaematologyUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alison H. Trainer
- Parkville Familial Cancer CentrePeter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Department of medicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Katherine M. Tucker
- Prince of Wales Clinical SchoolUniversity of NSWSydneyNew South WalesAustralia
- Hereditary Cancer Clinic, Department of Medical OncologyPrince of Wales HospitalRandwickNew South WalesAustralia
| | | | - Marion T. van Mackelenbergh
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig‐Holstein, Campus KielChristian‐Albrechts University KielKielGermany
| | - Liliana Varesco
- Unit of Hereditary CancerIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Gardenia Vargas‐Parra
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Raymonda Varon
- Institute of Medical and Human GeneticsCharité –Universitätsmedizin BerlinBerlinGermany
| | - Ana Vega
- Fundación Pública galega Medicina Xenómica‐SERGASGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | - Ángela Velasco
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | - Anne‐Sophie Vesper
- Department of Gynecology and Obstetrics, University Hospital DüsseldorfHeinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Alessandra Viel
- Division of Functional Onco‐genomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | | | - Sebastian A. Wagner
- Department of MedicineHematology/Oncology, Goethe‐University FrankfurtFrankfurtGermany
| | - Anke Waha
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Rhiannon J. Walters
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Shan Wang‐Gohrke
- Department of Gynaecology and ObstetricsUniversity Hospital UlmUlmGermany
| | | | - Wilko Weichert
- Institute of PathologyTechnische Universität MünchenMunichGermany
| | - Kerstin Wieland
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Lisa Wiesmüller
- Department of Gynaecology and ObstetricsUniversity Hospital UlmUlmGermany
| | - Isabell Witzel
- Department of GynecologyUniversity Medical Center HamburgHamburgGermany
| | - Achim Wöckel
- Department of Gynecology and ObstetricsUniversity Hospital WürzburgWürzburgGermany
| | - Emma R. Woodward
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation TrustSt. Mary's HospitalManchesterUK
| | - Silke Zachariae
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Valentina Zampiga
- Biosciences LaboratoryIstituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCSMeldolaItaly
| | | | - KConFab Investigators
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
- Research DepartmentPeter MacCallum Cancer CenterMelbourneVictoriaAustralia
| | - Conxi Lázaro
- Hereditary Cancer Program, ONCOBELL‐IDIBELL‐IDIBGI‐IGTP, Catalan Institute of OncologyCIBERONCBarcelonaSpain
| | | | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - David E. Goldgar
- Department of Dermatology, Huntsman Cancer InstituteUniversity of Utah School of MedicineSalt Lake CityUtah
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
21
|
Toh MR, Chong ST, Chan SH, Low CE, Ishak NDB, Lim JQ, Courtney E, Ngeow J. Functional analysis of clinical BARD1 germline variants. Cold Spring Harb Mol Case Stud 2019; 5:a004093. [PMID: 31371347 PMCID: PMC6672023 DOI: 10.1101/mcs.a004093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Germline pathogenic variants in BRCA1/2 account for one-third of familial breast cancers. The majority of BRCA1 function requires heterodimerization with BARD1. In contrast to BRCA1, BARD1 is a low-penetrance gene with an unclear clinical relevance, partly because of limited functional evidence. Using patient-derived lymphoblastoid cells, we functionally characterized two pathogenic variants (c.1833dupT, c.2099delG) and three variants of uncertain significance (VUSs) (c.73G>C, c.1217G>A, c.1918C>A). Three of these patients had breast cancers, whereas the remaining had colorectal cancers (n = 3). Both patients with pathogenic variants (c.1833dupT, c.2099delG) developed breast cancers with aggressive disease phenotypes such as triple-negative breast cancer and high cancer grades. As BARD1 encompasses multiple functional domains, including those of apoptosis and homologous recombination repair, we hypothesized that the function being impaired would correspond with the domain where the variant was located. Variants c.1918C>A, c.1833dupT, c.1217G>A, and c.2099delG, located within and proximal to apoptotic domains of ankyrin and BRCT, were associated with impaired apoptosis. Conversely, apoptosis function was preserved in c.73G>C, which was distant from the ankyrin domain. All variants displayed normal BRCA1 heterodimerization and RAD51 colocalization, consistent with their location being distal to BRCA1-and RAD51-binding domains. In view of deficient apoptosis, VUSs (c.1217G>A and c.1918C>A) may be pathogenic or likely pathogenic variants. In summary, functional analysis of BARD1 VUSs requires a combination of assays and, more importantly, the use of appropriate functional assays with consideration to the variant's location.
Collapse
Affiliation(s)
- Ming Ren Toh
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Siao Ting Chong
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Sock Hoai Chan
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Chen Ee Low
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | | | - Jing Quan Lim
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Eliza Courtney
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Joanne Ngeow
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| |
Collapse
|
22
|
Abstract
Hereditary breast and ovarian cancer is an inherited syndrome associated with BRCA1/2 germline defects. The identified mutations are classified as missense, large deletion, insertion, nonsense and splice-site variants with a deleterious impact on BRCA1/2 function. Part of these forms the well-documented truncating mutations, and missense variants represent a clinical dilemma as the pathogenic role is yet to be clearly shown. In this systematic review, we collected these missense variations with a documented deleterious function. We focused on English language articles from MEDLINE. This study included all BRCA1/2 germline missense mutations identified in breast and ovarian cancer patients. The method of this study followed the 'PRISMA statement for reporting systematic reviews and meta-analyses'. A total of 61 BRCA1/2 germline and pathogenic missense mutations were identified: 70.5% affected BRCA1 and 29.5% BRCA2, respectively. In BRCA1, the majority of mutations were located in the BRCA C-terminus (48.8%), leading to a disruption of function. Conversely, no specific associations were verified between mutations and the BRCA2 gene. The European population was the most affected by BRCA1 and the Asian population by BRCA2 mutant patterns. The identification of novel BRCA1/2 missense mutations requires specific genetic tests to assess pathogenicity. With this systematic review, we are, to the best of our knowledge, the first to collect the overall amount of data on these pathogenic mutants with the aim of improving the management of carriers and their kindred.
Collapse
|
23
|
Brandão RD, Mensaert K, López‐Perolio I, Tserpelis D, Xenakis M, Lattimore V, Walker LC, Kvist A, Vega A, Gutiérrez‐Enríquez S, Díez O, de la Hoya M, Spurdle AB, De Meyer T, Blok MJ. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int J Cancer 2019; 145:401-414. [PMID: 30623411 PMCID: PMC6635756 DOI: 10.1002/ijc.32114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
Collapse
Affiliation(s)
- Rita D. Brandão
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
| | - Irene López‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Demis Tserpelis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Markos Xenakis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical SciencesLund UniversityLundSweden
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐Servicio Galgo de SaúdeGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | | | - Orland Díez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d'HebronBarcelonaSpain
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
- CRIG (Cancer Research Institute Ghent)Ghent UniversityGhentBelgium
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| |
Collapse
|
24
|
Reinterpretation of BRCA1 and BRCA2 variants of uncertain significance in patients with hereditary breast/ovarian cancer using the ACMG/AMP 2015 guidelines. Breast Cancer 2019; 26:510-519. [PMID: 30725392 DOI: 10.1007/s12282-019-00951-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although BRCA1 or BRCA2 (BRCA1/2) genetic testing plays an important role in determining treatment modalities in patients with hereditary breast and ovarian cancer, sequence variants with unknown clinical significance or variant of uncertain significance (VUS) have limited use in medical decision-making. With vast quantities of gene-related data being updated, the clinical significance of VUS may change over time. We reinterpreted the sequence variant previously reported as BRCA1/2 VUS results in patients with breast or ovarian cancer and assessed whether the clinical significance of VUS was changed. METHODS We retrospectively reviewed medical records of 423 breast or ovarian cancer patients who underwent BRCA1/2 genetic testing from 2010 to 2017. The VUSs in BRCA1/2 were reanalyzed using the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines (ACMG/AMP 2015 guidelines) and the VUS was reclassified into five categories: "pathogenic", "likely pathogenic", "VUS", "likely benign", and "benign". RESULTS A total of 75 patients (48 sequence types of VUS) were identified as carrying either one or more VUS in BRCA1/2. Among the 75 patients, two patients (2.7%) were reclassified as "likely pathogenic", 30 patients (40.0%) were reclassified as either "benign" or "likely benign", and the remaining 43 patients (57.3%) were still classified as VUS category. CONCLUSIONS Since the clinical significance of VUS in BRCA1/2 may vary from time to time, reinterpretation of the VUS results could contribute to clinical decision-making.
Collapse
|
25
|
Caleca L, Colombo M, van Overeem Hansen T, Lázaro C, Manoukian S, Parsons MT, Spurdle AB, Radice P. GFP-Fragment Reassembly Screens for the Functional Characterization of Variants of Uncertain Significance in Protein Interaction Domains of the BRCA1 and BRCA2 Genes. Cancers (Basel) 2019; 11:E151. [PMID: 30696104 PMCID: PMC6406614 DOI: 10.3390/cancers11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Genetic testing for BRCA1 and BRCA2 genes has led to the identification of many unique variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is conditioned by the amount of necessary data, which are difficult to obtain if a variant is rare. As an alternative, variants mapping to the coding regions can be examined using in vitro functional assays. BRCA1 and BRCA2 proteins promote genome protection by interacting with different proteins. In this study, we assessed the functional effect of two sets of variants in BRCA genes by exploiting the green fluorescent protein (GFP)-reassembly in vitro assay, which was set-up to test the BRCA1/BARD1, BRCA1/UbcH5a, and BRCA2/DSS1 interactions. Based on the findings observed for the validation panels of previously classified variants, BRCA1/UbcH5a and BRCA2/DSS1 binding assays showed 100% sensitivity and specificity in identifying pathogenic and non-pathogenic variants. While the actual efficiency of these assays in assessing the clinical significance of BRCA VUS has to be verified using larger validation panels, our results suggest that the GFP-reassembly assay is a robust method to identify variants affecting normal protein functioning and contributes to the classification of VUS.
Collapse
Affiliation(s)
- Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Thomas van Overeem Hansen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology. Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08900 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
26
|
Heczkova M, Machackova E, Macinga P, Gallmeier E, Cahova M, Spicak J, Jirsa M, Foretova L, Hucl T. Functional evaluation of variants of unknown significance in the BRCA2 gene identified in genetic testing. Cancer Biol Ther 2019; 20:633-641. [PMID: 30638113 DOI: 10.1080/15384047.2018.1550566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Heterozygous germline BRCA2 mutations predispose to breast, ovarian, pancreatic and other types of cancer. The presence of a pathogenic mutation in patients or their family members warrants close surveillance or prophylactic surgery. Besides clearly pathogenic mutations, variants leading only to a single amino acid substitution are often identified. The influence of such variants on cancer risk is often unknown, making their presence a major clinical problem. When genetic methods are insufficient to classify these variants, functional assays with various cellular models are performed. We developed and applied a new syngeneic model of human cancer cells to test all variants of unknown significance in exon 18 identified by genetic testing of high-risk cancer patients in the Czech Republic, via introduction of constructs containing each of these variants into the wild-type allele of BRCA2-heterozygous DLD1 cells (BRCA2wt/Δex11). We found unaffected DNA repair function of BRCA2 in cell lines BRCA27997G>C/Δex11, BRCA28111C>T/Δex11, BRCA28149G>T/Δex11, BRCA28182G>A/Δex11, and BRCA28182G>T/Δex11, whereas the cell line BRCA28168A>G/Δex11 and the nonsense mutation carrying line BRCA28305G>T/Δex11 did affect protein function. Targeting the BRCA2 wild-type allele with a construct carrying the variant c.7988A> G resulted in incorporation exclusively into the already defective allele in all viable clones, strongly suggesting a detrimental phenotype. Our model thus offers a valuable tool for the functional evaluation of unclassified variants in the BRCA2 gene and provides a stable and distributable cellular resource for further research.
Collapse
Affiliation(s)
- Marie Heczkova
- a Center for Experimental Medicine , Institute of Clinical and Experimental Medicine , Prague , Czech Republic
| | - Eva Machackova
- b Department of Cancer Epidemiology and Genetics , Masaryk Memorial Cancer Institute , Brno , Czech Republic
| | - Peter Macinga
- c Department of Gastroenterology and Hepatology , Institute of Clinical and Experimental Medicine , Prague , Czech Republic
| | - Eike Gallmeier
- d Department of Internal Medicine , Philipps University of Marburg , Marburg , Germany
| | - Monika Cahova
- a Center for Experimental Medicine , Institute of Clinical and Experimental Medicine , Prague , Czech Republic
| | - Julius Spicak
- c Department of Gastroenterology and Hepatology , Institute of Clinical and Experimental Medicine , Prague , Czech Republic
| | - Milan Jirsa
- a Center for Experimental Medicine , Institute of Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lenka Foretova
- b Department of Cancer Epidemiology and Genetics , Masaryk Memorial Cancer Institute , Brno , Czech Republic
| | - Tomas Hucl
- a Center for Experimental Medicine , Institute of Clinical and Experimental Medicine , Prague , Czech Republic.,c Department of Gastroenterology and Hepatology , Institute of Clinical and Experimental Medicine , Prague , Czech Republic
| |
Collapse
|
27
|
Bizzi MF, Bolger GB, Korbonits M, Ribeiro-Oliveira Jr. A. Phosphodiesterases and cAMP Pathway in Pituitary Diseases. Front Endocrinol (Lausanne) 2019; 10:141. [PMID: 30941100 PMCID: PMC6433792 DOI: 10.3389/fendo.2019.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Human phosphodiesterases (PDEs) comprise a complex superfamily of enzymes derived from 24 genes separated into 11 PDE gene families (PDEs 1-11), expressed in different tissues and cells, including heart and brain. The isoforms PDE4, PDE7, and PDE8 are specific for the second messenger cAMP, which is responsible for mediating diverse physiological actions involving different hormones and neurotransmitters. The cAMP pathway plays an important role in the development and function of endocrine tissues while phosphodiesterases are responsible for ensuring the appropriate intensity of the actions of this pathway by hydrolyzing cAMP to its inactive form 5'-AMP. PDE1, PDE2, PDE4, and PDE11A are highly expressed in the pituitary, and overexpression of some PDE4 isoforms have been demonstrated in different pituitary adenoma subtypes. This observed over-expression in pituitary adenomas, although of unknown etiology, has been considered a compensatory response to tumorigenesis. PDE4A4/5 has a unique interaction with the co-chaperone aryl hydrocarbon receptor-interacting protein (AIP), a protein implicated in somatotroph tumorigenesis via germline loss-of-function mutations. Based on the association of low PDE4A4 expression with germline AIP-mutation-positive samples, the available data suggest that lack of AIP hinders the upregulation of PDE4A4 protein seen in sporadic somatotrophinomas. This unique disturbance of the cAMP-PDE pathway observed in the majority of AIP-mutation positive adenomas could contribute to their well-described poor response to somatostatin analogs and may support a role in tumorigenesis.
Collapse
Affiliation(s)
- Mariana Ferreira Bizzi
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Graeme B. Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Márta Korbonits
- Center for Endocrinology, Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Ribeiro-Oliveira Jr.
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Antonio Ribeiro-Oliveira Jr.
| |
Collapse
|
28
|
Affiliation(s)
- Veroushka Ballester
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York
| | - Marcia Cruz-Correa
- Departments of Medicine, Biochemistry and Surgery, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico; Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico.
| |
Collapse
|
29
|
Zuntini R, Ferrari S, Bonora E, Buscherini F, Bertonazzi B, Grippa M, Godino L, Miccoli S, Turchetti D. Dealing With BRCA1/2 Unclassified Variants in a Cancer Genetics Clinic: Does Cosegregation Analysis Help? Front Genet 2018; 9:378. [PMID: 30254663 PMCID: PMC6141711 DOI: 10.3389/fgene.2018.00378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Detection of variants of uncertain significance (VUSs) in BRCA1 and BRCA2 genes poses relevant challenges for counseling and managing patients. VUS carriers should be managed similarly to probands with no BRCA1/2 variants detected, and predictive genetic testing in relatives is discouraged. However, miscomprehension of VUSs is common and can lead to inaccurate risk perception and biased decisions about prophylactic surgery. Therefore, efforts are needed to improve VUS evaluation and communication at an individual level. Aims: We aimed at investigating whether cosegregation analysis, integrated with a careful review of available functional data and in silico predictions, may improve VUSs interpretation and counseling in individual families. Methods: Patients with Breast Cancer (BC) and/or Ovarian Cancer (OC) fulfilling established criteria were offered genetic counseling and BRCA1/2 testing; VUSs identified in index cases were checked in other relatives affected by BC/OC whenever possible. As an alternative, if BC/OC clustered only in one branch of the family, the parental origin of the VUS was investigated. Public prediction tools and databases were used to collect additional information on the variants analyzed. Results: Out of 1045 patients undergoing BRCA1/2 testing in the period October 2011–April 2018, 66 (6.3%) carried class 3 VUSs. Cosegregation analysis was performed for 13 VUSs in 11 kindreds. Seven VUSs (53.8%) did not cosegregate with breast/ovarian cancer in the family, which provided evidence against their role in cancer clustering in those families. Among the 6 cosegregating VUSs, for two (BRCA1 c.5152+2T>G and BRCA2 c.7975A>G) additional evidence exists from databases and in silico tools supporting their pathogenicity, which reinforces the hypothesis they may have had a predisposing effect in respective families. For the remaining four VUSs (31%), cosegregation analysis failed to provide relevant information. Conclusion: Our findings suggest that cosegregation analysis in a clinical context may be helpful to improve test result interpretation in the specific family and, therefore, should be offered whenever possible. Besides, obtaining and sharing cosegregation data helps gathering evidence that may eventually contribute to VUS classification.
Collapse
Affiliation(s)
- Roberta Zuntini
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Simona Ferrari
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Elena Bonora
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Francesco Buscherini
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Benedetta Bertonazzi
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Mina Grippa
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Lea Godino
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Sara Miccoli
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| | - Daniela Turchetti
- UO Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna Policlinico S.Orsola-Malpighi and Centro di Ricerca sui Tumori Ereditari, Dipartimento di Scienze Mediche e Chirurgiche, Universitá di Bologna, Bologna, Italy
| |
Collapse
|
30
|
Farber-Katz S, Hsuan V, Wu S, Landrith T, Vuong H, Xu D, Li B, Hoo J, Lam S, Nashed S, Toppmeyer D, Gray P, Haynes G, Lu HM, Elliott A, Tippin Davis B, Karam R. Quantitative Analysis of BRCA1 and BRCA2 Germline Splicing Variants Using a Novel RNA-Massively Parallel Sequencing Assay. Front Oncol 2018; 8:286. [PMID: 30101128 PMCID: PMC6072868 DOI: 10.3389/fonc.2018.00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
Clinical genetic testing for hereditary breast and ovarian cancer (HBOC) is becoming widespread. However, the interpretation of variants of unknown significance (VUS) in HBOC genes, such as the clinically actionable genes BRCA1 and BRCA2, remain a challenge. Among the variants that are frequently classified as VUS are those with unclear effects on splicing. In order to address this issue we developed a high-throughput RNA-massively parallel sequencing assay—CloneSeq—capable to perform quantitative and qualitative analysis of transcripts in cell lines and HBOC patients. This assay is based on cloning of RT-PCR products followed by massive parallel sequencing of the cloned transcripts. To validate this assay we compared it to the RNA splicing assays recommended by members of the ENIGMA (Evidence-based Network for the Interpretation of Germline Mutant Alleles) consortium. This comparison was performed using well-characterized lymphoblastoid cell lines (LCLs) generated from carriers of the BRCA1 or BRCA2 germline variants that have been previously described to be associated with splicing defects. CloneSeq was able to replicate the ENIGMA results, in addition to providing quantitative characterization of BRCA1 and BRCA2 germline splicing alterations in a high-throughput fashion. Furthermore, CloneSeq was used to analyze blood samples obtained from carriers of BRCA1 or BRCA2 germline sequence variants, including the novel uncharacterized alteration BRCA1 c.5152+5G>T, which was identified in a HBOC family. CloneSeq provided a high-resolution picture of all the transcripts induced by BRCA1 c.5152+5G>T, indicating it results in significant levels of exon skipping. This analysis proved to be important for the classification of BRCA1 c.5152+5G>T as a clinically actionable likely pathogenic variant. Reclassifications such as these are fundamental in order to offer preventive measures, targeted treatment, and pre-symptomatic screening to the correct individuals.
Collapse
Affiliation(s)
- Suzette Farber-Katz
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Vickie Hsuan
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Sitao Wu
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Tyler Landrith
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Huy Vuong
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Dong Xu
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Bing Li
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Jayne Hoo
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Stephanie Lam
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Sarah Nashed
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Deborah Toppmeyer
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Phillip Gray
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Ginger Haynes
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| | - Hsiao-Mei Lu
- Department of Bioinformatics, Ambry Genetics, Aliso Viejo, CA, United States
| | - Aaron Elliott
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Brigette Tippin Davis
- Department of Research and Development, Ambry Genetics, Aliso Viejo, CA, United States
| | - Rachid Karam
- Translational Genomics Laboratory, Ambry Genetics, Aliso Viejo, CA, United States
| |
Collapse
|
31
|
Montalban G, Fraile-Bethencourt E, López-Perolio I, Pérez-Segura P, Infante M, Durán M, Alonso-Cerezo MC, López-Fernández A, Diez O, de la Hoya M, Velasco EA, Gutiérrez-Enríquez S. Characterization of spliceogenic variants located in regions linked to high levels of alternative splicing: BRCA2 c.7976+5G > T as a case study. Hum Mutat 2018; 39:1155-1160. [PMID: 29969168 DOI: 10.1002/humu.23583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
Abstract
Many BRCA1 and BRCA2 (BRCA1/2) genetic variants have been studied at mRNA level and linked to hereditary breast and ovarian cancer due to splicing alteration. In silico tools are reliable when assessing variants located in consensus splice sites, but we may identify variants in complex genomic contexts for which bioinformatics is not precise enough. In this study, we characterize BRCA2 c.7976 + 5G > T variant located in intron 17 which has an atypical donor site (GC). This variant was identified in three unrelated Spanish families and we have detected exon 17 skipping as the predominant transcript occurring in carriers. We have also detected several isoforms (Δ16-18, Δ17,18, Δ18, and ▼17q224 ) at different expression levels among carriers and controls. This study remarks the challenge of interpreting genetic variants when multiple alternative isoforms are present, and that caution must be taken when using in silico tools to identify potential spliceogenic variants located in GC-AG introns.
Collapse
Affiliation(s)
- Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Eugenia Fraile-Bethencourt
- Splicing and genetic susceptibility to cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Irene López-Perolio
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Mar Infante
- Cancer Genetics, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Mercedes Durán
- Cancer Genetics, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - María Concepción Alonso-Cerezo
- Genética Clínica. Servicio Análisis Clínicos. Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, Madrid, Spain
| | - Adrià López-Fernández
- High Risk and Cancer Prevention Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orland Diez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco
- Splicing and genetic susceptibility to cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | | |
Collapse
|
32
|
Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models. Genet Med 2018; 21:71-80. [PMID: 29884841 PMCID: PMC6287763 DOI: 10.1038/s41436-018-0018-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose: To improve methods for predicting the impact of missense variants of
uncertain significance (VUS) in BRCA1 and
BRCA2 on protein function. Methods: Functional data for 248 BRCA1 and 207
BRCA2 variants from assays with established high
sensitivity and specificity for damaging variants were used to recalibrate
40 in silico algorithms predicting the impact of variants
on protein activity. Additional RandomForest (RF) and Naïve Voting
Method (NVM) meta-predictors for both BRCA1 and
BRCA2 were developed to increase predictive
accuracy. Results: Optimized thresholds for in silico prediction models
significantly improved the accuracy of predicted functional effects for
BRCA1 and BRCA2 variants. In addition,
new BRCA1-RF and BRCA2-RF meta-predictors showed AUC values of 0.92
(95%CI:0.88–0.96) and 0.90 (95%CI:0.84–0.95), respectively.
Similarly, the BRCA1-NVM and BRCA2-NVM models had AUCs of 0.93 and 0.90. The
RF and NVM models were used to predict the pathogenicity of all possible
missense variants in BRCA1 and BRCA2. Conclusion: The recalibrated algorithms and new meta-predictors significantly
improved upon current models for predicting the impact of variants in cancer
risk-associated domains of BRCA1 and
BRCA2. Prediction of the functional impact of all possible
variants in BRCA1 and BRCA2 provides
important information about the clinical relevance of variants in these
genes.
Collapse
|
33
|
Rechsteiner M, Dedes K, Fink D, Pestalozzi B, Sobottka B, Moch H, Wild P, Varga Z. Somatic BRCA1 mutations in clinically sporadic breast cancer with medullary histological features. J Cancer Res Clin Oncol 2018; 144:865-874. [PMID: 29453630 PMCID: PMC5916977 DOI: 10.1007/s00432-018-2609-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of somatic BRCA1/2 gene mutations in breast cancer is getting increasing attention in view of hereditary disease. The medullary phenotype and triple negative intrinsic subtypes are often, but not exclusively encountered in BRCA1 germline mutated breast cancer, whilst for BRCA2, no association to specific histological features are known. In this study, we addressed the relationship between morphological medullary phenotype and BRCA1/2 somatic mutations in breast cancer without known positive family anamnesis. METHODS 32 clinically sporadic breast cancers with medullary features were analyzed for somatic BRCA1/2 mutations (all coding exons) with next-generation sequencing technology. Paraffin-embedded formalin-fixed breast cancer samples from all patients were analyzed. RESULTS Three of 32 tumors (9%) had pathogenic (ARUP class-5) BRCA1 gene alterations. Two of these pathogenic variants exhibited deletions leading to frameshift mutations (p.Glu23fs, p.Val1234fs), and the remaining single-nucleotid-variant resulted in premature STOP codon (p.Glu60Ter). In one patient, the same pathogenic BRCA1 mutation was detected (p.Glu23fs) in normal breast tissue. Retrospective follow-up in two patients revealed a positive family history for breast cancer and consecutive germline mutation testing confirmed presence of BRCA1 mutations. No somatic pathogenic BRCA2 mutations were detected. CONCLUSIONS BRCA1 mutation testing may be useful in clinically sporadic breast cancer patients with medullary features to identify potential mutation carriers independently from intrinsic molecular subtype. Formalin-fixed paraffin-embedded cancer tissue can undergo testing within a routine molecular-diagnostic setting as a clinical BRCA1/2 mutation screening strategy.
Collapse
Affiliation(s)
- Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Konstantin Dedes
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | | | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Peter Wild
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091, Zurich, Switzerland.
| |
Collapse
|
34
|
Guidugli L, Shimelis H, Masica DL, Pankratz VS, Lipton GB, Singh N, Hu C, Monteiro AN, Lindor NM, Goldgar DE, Karchin R, Iversen ES, Couch FJ. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. Am J Hum Genet 2018. [DOI: 10.1016/j.ajhg.2017.12.013 helena] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
|
35
|
Guidugli L, Shimelis H, Masica DL, Pankratz VS, Lipton GB, Singh N, Hu C, Monteiro ANA, Lindor NM, Goldgar DE, Karchin R, Iversen ES, Couch FJ. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. Am J Hum Genet 2018; 102:233-248. [PMID: 29394989 DOI: 10.1016/j.ajhg.2017.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022] Open
Abstract
Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ?99% probability of pathogenicity, and 73 had ?95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS.
Collapse
Affiliation(s)
- Lucia Guidugli
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hermela Shimelis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vernon S Pankratz
- Division of Nephrology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Namit Singh
- Department of Structural Biology, University of California, San Diego, San Diego, CA 92093, USA
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah, Salt Lake City, UT 84132, USA
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
36
|
Wu H, Wu X, Liang Z. Impact of germline and somatic BRCA1/2 mutations: tumor spectrum and detection platforms. Gene Ther 2017; 24:601-609. [PMID: 28771233 DOI: 10.1038/gt.2017.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
The BRCA1/2 genes are long and complex and mutation carriers are at risk of developing malignancies, mainly of gynecological origin. Various mutations arise in these genes and their characterization is a time-consuming, cost intensive, complicated process. Tumors of BRCA1/2 origin have distinct molecular and histological features that can impact responses to therapy. Therefore, detection of these mutations constitutes an important step in the risk assessment, prevention strategy and treatment of subjects. Although Sanger sequencing is the gold standard for the detection of genetic mutations, several next generation sequencing-based high throughput platforms have been developed and adapted for the detection of BRCA1/2 mutations. This review provides a comprehensive overview of the sequencing platforms available for the screening and identification of these mutations. We also summarize what is known about the different types of mutations that arise in these genes and the tumor spectra they result in. Finally, we present a short discussion on existing clinical guidelines which assist physicians in the decision-making process. These parameters have important consequences for the management of patients and an urgent need exists for the development of detection platforms that are cost effective and can provide clinicians with conclusive results within a significantly shorter time.
Collapse
Affiliation(s)
- H Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Z Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
CONCEPTOS SOBRE GENÉTICA HUMANA PARA LA COMPRENSIÓN E INTERPRETACIÓN DE LAS MUTACIONES EN CÁNCER Y OTRAS PATOLOGÍAS HEREDITARIAS. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Alvarez C, Tapia T, Perez-Moreno E, Gajardo-Meneses P, Ruiz C, Rios M, Missarelli C, Silva M, Cruz A, Matamala L, Carvajal-Carmona L, Camus M, Carvallo P. BRCA1 and BRCA2 founder mutations account for 78% of germline carriers among hereditary breast cancer families in Chile. Oncotarget 2017; 8:74233-74243. [PMID: 29088781 PMCID: PMC5650336 DOI: 10.18632/oncotarget.18815] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Identifying founder mutations in BRCA1 and BRCA2 in specific populations constitute a valuable opportunity for genetic screening. Several studies from different populations have reported recurrent and/or founder mutations representing a relevant proportion of BRCA mutation carriers. In Latin America, only few founder mutations have been described. We screened 453 Chilean patients with hereditary breast cancer for mutations in BRCA1 and BRCA2. For recurrent mutations, we genotyped 11 microsatellite markers in BRCA1 and BRCA2 in order to determine a founder effect through haplotype analysis. We found a total of 25 mutations (6 novel) in 71 index patients among which, nine are present exclusively in Chilean patients. Our analysis revealed the presence of nine founder mutations, 4 in BRCA1 and 5 in BRCA2, shared by 2 to 10 unrelated families and spread in different regions of Chile. Our panel contains the highest amount of founder mutations until today and represents the highest percentage (78%) of BRCA1 and BRCA2 mutation carriers. We suggest that the dramatic reduction of Amerindian population due to smallpox and wars with Spanish conquerors, a scarce population increase during 300 years, and the geographic position of Chile constituted a favorable scenario to establish founder genetic markers in our population.
Collapse
Affiliation(s)
- Carolina Alvarez
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Teresa Tapia
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elisa Perez-Moreno
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Gajardo-Meneses
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Ruiz
- Centro de Cáncer, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mabel Rios
- Unidad de Patología Mamaria, Hospital Base de Valdivia, Valdivia, Chile
| | | | - Mariela Silva
- Unidad de Patología Mamaria, Hospital Base de Valdivia, Valdivia, Chile
| | - Adolfo Cruz
- Unidad de Patología Mamaria, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Luis Matamala
- Unidad de Patología Mamaria, Hospital Regional de Antofagasta, Antofagasta, Chile
| | - Luis Carvajal-Carmona
- Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California, USA
| | - Mauricio Camus
- Centro de Cáncer, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pilar Carvallo
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
39
|
Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, Calléja FMGR, Meeks H, Hallberg E, Hinton J, Lilyquist J, Hu C, Aalfs CM, Aittomäki K, Andrulis I, Anton-Culver H, Arndt V, Beckmann MW, Benitez J, Bogdanova NV, Bojesen SE, Bolla MK, Borresen-Dale AL, Brauch H, Brennan P, Brenner H, Broeks A, Brouwers B, Brüning T, Burwinkel B, Chang-Claude J, Chenevix-Trench G, Cheng CY, Choi JY, Collée JM, Cox A, Cross SS, Czene K, Darabi H, Dennis J, Dörk T, Dos-Santos-Silva I, Dunning AM, Fasching PA, Figueroa J, Flyger H, García-Closas M, Giles GG, Glendon G, Guénel P, Haiman CA, Hall P, Hamann U, Hartman M, Hogervorst FB, Hollestelle A, Hopper JL, Ito H, Jakubowska A, Kang D, Kosma VM, Kristensen V, Lai KN, Lambrechts D, Marchand LL, Li J, Lindblom A, Lophatananon A, Lubinski J, Machackova E, Mannermaa A, Margolin S, Marme F, Matsuo K, Miao H, Michailidou K, Milne RL, Muir K, Neuhausen SL, Nevanlinna H, Olson JE, Olswold C, Oosterwijk JJC, Osorio A, Peterlongo P, Peto J, Pharoah PDP, Pylkäs K, Radice P, Rashid MU, Rhenius V, Rudolph A, Sangrajrang S, Sawyer EJ, Schmidt MK, Schoemaker MJ, Seynaeve C, Shah M, Shen CY, Shrubsole M, Shu XO, Slager S, Southey MC, Stram DO, Swerdlow A, Teo SH, Tomlinson I, Torres D, Truong T, van Asperen CJ, van der Kolk LE, Wang Q, Winqvist R, Wu AH, Yu JC, Zheng W, Zheng Y, Leary J, Walker L, Foretova L, Fostira F, Claes KBM, Varesco L, Moghadasi S, Easton DF, Spurdle A, Devilee P, Vrieling H, Monteiro ANA, Goldgar DE, Carreira A, Vreeswijk MPG, Couch FJ. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Res 2017; 77:2789-2799. [PMID: 28283652 PMCID: PMC5508554 DOI: 10.1158/0008-5472.can-16-2568] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.
Collapse
Affiliation(s)
- Hermela Shimelis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Romy L S Mesman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Asa Ehlen
- Genotoxic Stress and Cancer, Institut Curie, Orsay, France
| | - Lucia Guidugli
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | | | | | - Huong Meeks
- Cancer Control and Population Sciences, University of Utah, Salt Lake City, Utah
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jamie Hinton
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jenna Lilyquist
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cora M Aalfs
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, California
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlevand Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Anne-Lise Borresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Barbara Brouwers
- Laboratory of Experimental Oncology, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ching-Yu Cheng
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joe Dennis
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M Dunning
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, United Kingdom
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Frans B Hogervorst
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Veli-Matti Kosma
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | - Kah-Nyin Lai
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | | | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Keitaro Matsuo
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hui Miao
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jan J C Oosterwijk
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Ana Osorio
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Paolo Peterlongo
- IFOM, The FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad Usman Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Valerie Rhenius
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, United Kingdom
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mitul Shah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Martha Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Soo H Teo
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lizet E van der Kolk
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Qin Wang
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jyh-Cherng Yu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jennifer Leary
- Westmead Millenium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Logan Walker
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, Institute of Radioisotopes and Radiodiagnostic Products (IRRP), Athens, Greece
| | | | - Liliana Varesco
- Unit of Hereditary Cancers, IRCCS AOU San Martino, Genova, Italy
| | - Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Amanda Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Science, University of South Florida, Tampa, Florida
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah, Salt Lake City, Utah
| | - Aura Carreira
- Genotoxic Stress and Cancer, Institut Curie, Orsay, France
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
40
|
Golan T, Raitses-Gurevich M, Kelley RK, Bocobo AG, Borgida A, Shroff RT, Holter S, Gallinger S, Ahn DH, Aderka D, Apurva J, Bekaii-Saab T, Friedman E, Javle M. Overall Survival and Clinical Characteristics of BRCA-Associated Cholangiocarcinoma: A Multicenter Retrospective Study. Oncologist 2017; 22:804-810. [PMID: 28487467 DOI: 10.1634/theoncologist.2016-0415] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Biliary tract malignancies, in particular cholangiocarcinomas (CCA), are rare tumors that carry a poor prognosis. BRCA2 mutation carriers have an increased risk of developing CCA with a reported relative risk of ∼5 according to the Breast Cancer Linkage Consortium. In addition to this risk, there are potential therapeutic implications in those harboring somatic and/or germline (GL) BRCA mutations. Therefore, it is important to define the clinical characteristics of GL/somatic BRCA1/2 variants in CCA patients. MATERIALS AND METHODS We performed a multicenter retrospective analysis of CCA patients diagnosed between January 2000 and December 2013 with GL or somatic variants in BRCA1/2 genes detected by GL mutations testing and/or by tumor next generation sequencing. Cases were identified from clinical databases at participating institutions. Data including demographics, clinical history, surgical procedures, and systemic chemotherapy or radiation were extracted from patients' records. RESULTS Overall, 18 cases were identified: 5 carriers of GL BRCA1/2 mutations (4 BRCA2; 1 BRCA1) and 13 harboring somatic variations (7 BRCA1; 6 BRCA2). Mean age at diagnosis was 60, SD ± 10 years (range 36-75 years), with male and female prevalence rates of 61.2% and 38.8%, respectively. Stage at diagnosis was I (n = 4), II (n = 3), III (n = 3), and IV (n = 8). Six patients had extrahepatic CCA and the rest intrahepatic CCA. Thirteen patients received platinum-based therapy and four were treated with poly ADP ribose polymerase inhibitors, of whom one experienced sustained disease response with a progression-free survival of 42.6 months. Median overall survival from diagnosis for patients with stage I/II in this study was 40.3 months (95% confidence interval [CI], 6.73-108.15) and with stages III/IV was 25 months (95% CI, 15.23-40.57). CONCLUSION BRCA-associated CCA is uncommon. This multicenter retrospective study provides a thorough clinical analysis of a BRCA-associated CCA cohort, which can serve as a benchmark for future development and design of expanded analyses and clinical trials. IMPLICATIONS FOR PRACTICE BRCA-associated CCA is uncommon but a very important subtype of hepatic malignancies, due to its rising prevalence. Better clinical characterization of this subtype might allow application of targeted therapy for CCA patients with germline or somatic mutations in BRCA1/2 genes, especially due to previously reported success of such therapies in other BRCA-associated malignancies. Thus this study, first of its kind, provides a basis for future multi-centered analyses in larger cohorts, as well as clinical trials. Additionally, this study emphasizes the importance of both germline and somatic genotyping for all CCA patients.
Collapse
Affiliation(s)
- Talia Golan
- Department of Oncology, Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Raitses-Gurevich
- Department of Oncology, Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Robin K Kelley
- The University of California, San Francisco Medical Center, San Francisco, California, USA
| | - Andrea G Bocobo
- The University of California, San Francisco Medical Center, San Francisco, California, USA
| | - Ayelet Borgida
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rachna T Shroff
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Spring Holter
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Dan Aderka
- Department of Oncology, Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jain Apurva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Eitan Friedman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Milind Javle
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
41
|
Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet 2017; 13:e1006691. [PMID: 28339459 PMCID: PMC5384790 DOI: 10.1371/journal.pgen.1006691] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/07/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022] Open
Abstract
Mutation screening of the breast cancer genes BRCA1 and BRCA2 identifies a large fraction of variants of uncertain clinical significance (VUS) whose functional and clinical interpretations pose a challenge for genomic medicine. Likewise, an increasing amount of evidence indicates that genetic variants can have deleterious effects on pre-mRNA splicing. Our goal was to investigate the impact on splicing of a set of reported variants of BRCA2 exons 17 and 18 to assess their role in hereditary breast cancer and to identify critical regulatory elements that may constitute hotspots for spliceogenic variants. A splicing reporter minigene with BRCA2 exons 14 to-20 (MGBR2_ex14-20) was constructed in the pSAD vector. Fifty-two candidate variants were selected with splicing prediction programs, introduced in MGBR2_ex14-20 by site-directed mutagenesis and assayed in triplicate in MCF-7 cells. Wild type MGBR2_ex14-20 produced a stable transcript of the expected size (1,806 nucleotides) and structure (V1-[BRCA2_exons_14–20]–V2). Functional mapping by microdeletions revealed essential sequences for exon recognition on the 3’ end of exon 17 (c.7944-7973) and the 5’ end of exon 18 (c.7979-7988, c.7999-8013). Thirty out of the 52 selected variants induced anomalous splicing in minigene assays with >16 different aberrant transcripts, where exon skipping was the most common event. A wide range of splicing motifs were affected including the canonical splice sites (15 variants), novel alternative sites (3 variants), the polypyrimidine tract (3 variants) and enhancers/silencers (9 variants). According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), 20 variants could be classified as pathogenic (c.7806-2A>G, c.7806-1G>A, c.7806-1G>T, c.7806-1_7806-2dup, c.7976+1G>A, c.7977-3_7978del, c.7977-2A>T, c.7977-1G>T, c.7977-1G>C, c.8009C>A, c.8331+1G>T and c.8331+2T>C) or likely pathogenic (c.7806-9T>G, c.7976G>C, c.7976G>A, c.7977-7C>G, c.7985C>G, c.8023A>G, c.8035G>T and c.8331G>A), accounting for 30.8% of all pathogenic/likely pathogenic variants of exons 17–18 at the BRCA Share database. The remaining 8 variants (c.7975A>G, c.7977-6T>G, c.7988A>T, c.7992T>A, c.8007A>G, c.8009C>T, c.8009C>G, and c.8072C>T) induced partial splicing anomalies with important ratios of the full-length transcript (≥70%), so that they remained classified as VUS. Aberrant splicing is therefore especially prevalent in BRCA2 exons 17 and 18 due to the presence of active ESEs involved in exon recognition. Splicing functional assays with minigenes are a valuable strategy for the initial characterization of the splicing outcomes and the subsequent clinical interpretation of variants of any disease-gene, although these results should be checked, whenever possible, against patient RNA. A significant proportion of disease-causing mutations of inherited disorders impair splicing. Massive sequencing projects of genetic diseases generate thousands of sequence variations that require functional and clinical interpretations. We have shown that splicing reporter minigenes of the breast cancer genes BRCA1 and BRCA2 are useful tools to functionally test DNA variants. In this work, we have constructed a 7-exon BRCA2 minigene (exons 14 to 20) where we mapped critical splicing regulatory sequences and tested 52 selected variants of exons 17 and 18 detected in breast cancer patients. We finely located three DNA segments on both exons that presumably contain splicing enhancer sequences. We observed that a total of 30 variants of any type disrupted the splicing patterns and, given the severity of their outcomes, we classified 20 of them as pathogenic or likely pathogenic. We also showed that a wide range of splicing elements were affected including canonical and novel 5’ and 3’ splice sites, the polypyrimidine tract and enhancer and silencer sequences. We concluded that splicing aberrations are frequent in Hereditary Breast and Ovarian Cancer and that minigenes are valuable tools to functionally classify DNA variants of any human disease gene under the splicing viewpoint.
Collapse
|
42
|
Lin PH, Kuo WH, Huang AC, Lu YS, Lin CH, Kuo SH, Wang MY, Liu CY, Cheng FTF, Yeh MH, Li HY, Yang YH, Hsu YH, Fan SC, Li LY, Yu SL, Chang KJ, Chen PL, Ni YH, Huang CS. Multiple gene sequencing for risk assessment in patients with early-onset or familial breast cancer. Oncotarget 2016; 7:8310-20. [PMID: 26824983 PMCID: PMC4884994 DOI: 10.18632/oncotarget.7027] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 12/31/2022] Open
Abstract
Since BRCA mutations are only responsible for 10–20% of cases of breast cancer in patients with early-onset or a family history and since next-generation sequencing technology allows the simultaneous sequencing of a large number of target genes, testing for multiple cancer-predisposing genes is now being considered, but its significance in clinical practice remains unclear. We then developed a sequencing panel containing 68 genes that had cancer risk association for patients with early-onset or familial breast cancer. A total of 133 patients were enrolled and 30 (22.6%) were found to carry germline deleterious mutations, 9 in BRCA1, 11 in BRCA2, 2 in RAD50, 2 in TP53 and one each in ATM, BRIP1, FANCI, MSH2, MUTYH, and RAD51C. Triple-negative breast cancer (TNBC) was associated with the highest mutation rate (45.5%, p = 0.025). Seven of the 9 BRCA1 mutations and the single FANCI mutation were in the TNBC group; 9 of the 11 BRCA2, 1 of the 2 RAD50 as well as BRIP1, MSH2, MUTYH, and RAD51C mutations were in the hormone receptor (HR)(+)Her2(−) group, and the other RAD50, ATM, and TP53 mutations were in the HR(+)Her2(+) group. Mutation carriers were considered as high-risk to develop malignancy and advised to receive cancer screening. Screening protocols of non-BRCA genes were based on their biologic functions; for example, patients carrying RAD51C mutation received a screening protocol similar to that for BRCA, since BRCA and RAD51C are both involved in homologous recombination. In conclusion, we consider that multiple gene sequencing in cancer risk assessment is clinically valuable.
Collapse
Affiliation(s)
- Po-Han Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ai-Chu Huang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Hung Lin
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Ming-Hsin Yeh
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Huei-Ying Li
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hsuan Yang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hua Hsu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Chih Fan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Long-Yuan Li
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Sung-Liang Yu
- Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - King-Jen Chang
- Department of Surgery, Cheng Ching Hospital, Taichung, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
43
|
Spurdle AB, Domchek S, Robson M, Buys S, Radice P, de la Hoya M, Devilee P, Monteiro ANA, Southey M, Eccles D, Couch FJ, Goldgar DE. Response: Table 1. J Natl Cancer Inst 2016; 108:djw173. [DOI: 10.1093/jnci/djw173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
|
44
|
Riahi A, Messaoudi A, Mrad R, Fourati A, Chabouni-Bouhamed H, Kharrat M. Molecular characterization, homology modeling and docking studies of the R2787H missense variation in BRCA2 gene: Association with breast cancer. J Theor Biol 2016; 403:188-196. [DOI: 10.1016/j.jtbi.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/12/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
45
|
Vallée MP, Di Sera TL, Nix DA, Paquette AM, Parsons MT, Bell R, Hoffman A, Hogervorst FBL, Goldgar DE, Spurdle AB, Tavtigian SV. Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants. Hum Mutat 2016; 37:627-39. [PMID: 26913838 PMCID: PMC4907813 DOI: 10.1002/humu.22973] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023]
Abstract
Clinical mutation screening of the cancer susceptibility genes BRCA1 and BRCA2 generates many unclassified variants (UVs). Most of these UVs are either rare missense substitutions or nucleotide substitutions near the splice junctions of the protein coding exons. Previously, we developed a quantitative method for evaluation of BRCA gene UVs—the “integrated evaluation”—that combines a sequence analysis‐based prior probability of pathogenicity with patient and/or tumor observational data to arrive at a posterior probability of pathogenicity. One limitation of the sequence analysis‐based prior has been that it evaluates UVs from the perspective of missense substitution severity but not probability to disrupt normal mRNA splicing. Here, we calibrated output from the splice‐site fitness program MaxEntScan to generate spliceogenicity‐based prior probabilities of pathogenicity for BRCA gene variants; these range from 0.97 for variants with high probability to damage a donor or acceptor to 0.02 for exonic variants that do not impact a splice junction and are unlikely to create a de novo donor. We created a database http://priors.hci.utah.edu/PRIORS/ that provides the combined missense substitution severity and spliceogenicity‐based probability of pathogenicity for BRCA gene single‐nucleotide substitutions. We also updated the BRCA gene Ex‐UV LOVD, available at http://hci‐exlovd.hci.utah.edu, with 77 re‐evaluable variants.
Collapse
Affiliation(s)
- Maxime P Vallée
- Department of Molecular Medicine, CHUQ Research Center, Quebec City, Canada
| | - Tonya L Di Sera
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - David A Nix
- ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew M Paquette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Russel Bell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrea Hoffman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
46
|
Fackenthal JD, Yoshimatsu T, Zhang B, de Garibay GR, Colombo M, De Vecchi G, Ayoub SC, Lal K, Olopade OI, Vega A, Santamariña M, Blanco A, Wappenschmidt B, Becker A, Houdayer C, Walker LC, López-Perolio I, Thomassen M, Parsons M, Whiley P, Blok MJ, Brandão RD, Tserpelis D, Baralle D, Montalban G, Gutiérrez-Enríquez S, Díez O, Lazaro C, Spurdle AB, Radice P, de la Hoya M. Naturally occurring BRCA2 alternative mRNA splicing events in clinically relevant samples. J Med Genet 2016; 53:548-58. [PMID: 27060066 DOI: 10.1136/jmedgenet-2015-103570] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND BRCA1 and BRCA2 are the two principal tumour suppressor genes associated with inherited high risk of breast and ovarian cancer. Genetic testing of BRCA1/2 will often reveal one or more sequence variants of uncertain clinical significance, some of which may affect normal splicing patterns and thereby disrupt gene function. mRNA analyses are therefore among the tests used to interpret the clinical significance of some genetic variants. However, these could be confounded by the appearance of naturally occurring alternative transcripts unrelated to germline sequence variation or defects in gene function. To understand which novel splicing events are associated with splicing mutations and which are part of the normal BRCA2 splicing repertoire, a study was undertaken by members of the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium to characterise the spectrum of naturally occurring BRCA2 mRNA alternate-splicing events. METHODS mRNA was prepared from several blood and breast tissue-derived cells and cell lines by contributing ENIGMA laboratories. cDNA representing BRCA2 alternate splice sites was amplified and visualised using capillary or agarose gel electrophoresis, followed by sequencing. RESULTS We demonstrate the existence of 24 different BRCA2 mRNA alternate-splicing events in lymphoblastoid cell lines and both breast cancer and non-cancerous breast cell lines. CONCLUSIONS These naturally occurring alternate-splicing events contribute to the array of cDNA fragments that may be seen in assays for mutation-associated splicing defects. Caution must be observed in assigning alternate-splicing events to potential splicing mutations.
Collapse
Affiliation(s)
| | - Toshio Yoshimatsu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Bifeng Zhang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Samantha C Ayoub
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Kumar Lal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Marta Santamariña
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Ana Blanco
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
| | - Barbara Wappenschmidt
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Alexandra Becker
- Medical Faculty, Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO) and Center for Molecular Medicine Cologne (CMMC), University of Cologne and University Hospital Cologne, Germany
| | - Claude Houdayer
- Service de Génétique and INSERM U830, Institut Curie and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Logan C Walker
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Irene López-Perolio
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Michael Parsons
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Phillip Whiley
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rita D Brandão
- Maastricht Science Programme, Faculty of Humanities and Sciences, Maastricht University, Maastricht, The Netherlands
| | - Demis Tserpelis
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diana Baralle
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autonoma de Barcelona, Barcelona, Spain Clinical and Molecular Genetics Area, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | | | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milano, Italy
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
47
|
The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015; 163:1011-25. [PMID: 26544944 PMCID: PMC4695400 DOI: 10.1016/j.cell.2015.10.025] [Citation(s) in RCA: 2217] [Impact Index Per Article: 221.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/14/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022]
Abstract
There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.
Collapse
|
48
|
Ballester V, Boardman L. Next Generation Multigene Panel Testing: The Next Step for Identification of Hereditary Colorectal Cancer Syndromes? Gastroenterology 2015; 149:526-8. [PMID: 26226575 DOI: 10.1053/j.gastro.2015.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Veroushka Ballester
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Lisa Boardman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
49
|
Kluska A, Balabas A, Paziewska A, Kulecka M, Nowakowska D, Mikula M, Ostrowski J. New recurrent BRCA1/2 mutations in Polish patients with familial breast/ovarian cancer detected by next generation sequencing. BMC Med Genomics 2015; 8:19. [PMID: 25948282 PMCID: PMC4429836 DOI: 10.1186/s12920-015-0092-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/23/2015] [Indexed: 12/19/2022] Open
Abstract
Background Targeted PCR-based genetic testing for BRCA1 and BRCA2 can be performed at a lower cost than full gene testing; however, it may overlook mutations responsible for familial breast and/or ovarian cancers. In the present study, we report the utility of next generation sequencing (NGS) to identify new pathogenic variants of BRCA1/2. Methods BRCA1 and BRCA2 exons were amplified using the Ion AmpliSeq BRCA1/2 Panel and sequenced on the Ion Torrent PGM sequencer in 512 women with familial and/or only early onset breast and/or ovarian cancers who were negative for selected BRCA1/2 mutations. Results 146 single nucleotide variants (SNVs) and 32 indels were identified. Of them, 14 SNVs and 17 indels were considered as pathogenic or likely pathogenic. One and 18 pathogenic mutations had been detected previously in the Polish and other populations, respectively, and 12 deleterious mutations were previously unknown. Eight mutations were recurrent; Q563X (BRCA1), N3124I (BRCA2) and c.4516delG (BRCA1) were found in eight, six and four patients, respectively, and two other mutations (c.9118-2A > G and c.7249delCA in BRCA2) were detected in three patients each. Altogether, BRCA1/2 pathogenic mutations were identified in 52 out of 512 (10%) patients. Conclusions NGS substantially improved the detection rates of a wide spectrum of mutations in Polish patients with familial breast and/or ovarian cancer. Although targeted screening for specific BRCA1 mutations can be offered to all Polish breast or ovarian cancer patients, NGS-based testing is justified in patients with breast or ovarian cancer likely related to BRCA1/2 who test negative for the selected BRCA1/2 pathogenic mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Warsaw, Poland.
| | - Aneta Balabas
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Warsaw, Poland.
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, 01-813, Warsaw, Poland.
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, 01-813, Warsaw, Poland.
| | - Dorota Nowakowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Warsaw, Poland.
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Warsaw, Poland.
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781, Warsaw, Poland. .,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, 01-813, Warsaw, Poland.
| |
Collapse
|
50
|
Gambino G, Tancredi M, Falaschi E, Aretini P, Caligo MA. Characterization of three alternative transcripts of the BRCA1 gene in patients with breast cancer and a family history of breast and/or ovarian cancer who tested negative for pathogenic mutations. Int J Mol Med 2015; 35:950-6. [PMID: 25683334 PMCID: PMC4356434 DOI: 10.3892/ijmm.2015.2103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/28/2015] [Indexed: 12/24/2022] Open
Abstract
The study of BRCA1 and BRCA2 genes and their alterations has been essential to the understanding of the development of familial breast and ovarian cancers. Many of the variants identified have an unknown pathogenic significance. These include variants which determine alternative mRNA splicing, identified in the intronic regions and those are capable of destroying the splicing ability. The aim of this study was to detect BRCA1/BRCA2 aberrant transcripts resulting from alternative splicing, in women with a known family history and/or early onset of breast and/or ovarian cancer, tested wild-type for BRCA1 and BRCA2. The identification and characterization of aberrant transcripts through the analysis of mRNA levels in blood lymphocytes may help us to recognize families otherwise misclassified as wild-type BRCA1 and BRCA2. Blood samples were collected from 13 women that had a family history of breast and/or ovarian cancer and tested negative for pathogenic mutations in the BRCA1 and BRCA2 genes. Total RNA was analyzed for the presence of BRCA1 and BRCA2 naturally occuring and pathological transcripts using RT-PCR. In 2 out of the 13 samples, 2 alternative transcripts of the BRCA1 gene were identified. These were probably pathogenic as they lacked exon 17 and exon 15, respectively, giving rise to a truncated protein. In addition to these, we identified the Δ17–19 transcript in 1 patient, which gives rise to a protein with an in-frame deletion of 69 amino acids. In conclusion, this study on alternative transcripts of the BRCA1 and BRCA2 genes revealed the presence of isoforms (prevalence of 15%) in blood samples from women with breast and ovarian cancer that were probably pathogenic, that were not detected by conventional methods of mutation screening based on direct sequencing of all coding regions, intron-exons junctions and MLPA analysis.
Collapse
Affiliation(s)
- Gaetana Gambino
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa 56126, Italy
| | - Mariella Tancredi
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa 56126, Italy
| | - Elisabetta Falaschi
- Section of Genetic Oncology, Santa Chiara University Hospital, Pisa 56126, Italy
| | - Paolo Aretini
- Fondazione Pisana per la Scienza - ONLUS, Pisa 56126, Italy
| | - Maria Adelaide Caligo
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa 56126, Italy
| |
Collapse
|