1
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
2
|
Papadopoulou MT, Panagopoulou P, Paramera E, Pechlivanis A, Virgiliou C, Papakonstantinou E, Palabougiouki M, Ioannidou M, Vasileiou E, Tragiannidis A, Papakonstantinou E, Theodoridis G, Hatzipantelis E, Evangeliou A. Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia. Diagnostics (Basel) 2024; 14:682. [PMID: 38611595 PMCID: PMC11011894 DOI: 10.3390/diagnostics14070682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy. Despite high cure rates, several questions remain regarding predisposition, response to treatment, and prognosis of the disease. The role of intermediary metabolism in the individualized mechanistic pathways of the disease is unclear. We have hypothesized that children with any (sub)type of ALL have a distinct metabolomic fingerprint at diagnosis when compared: (i) to a control group; (ii) to children with a different (sub)type of ALL; (iii) to the end of the induction treatment. MATERIALS AND METHODS In this prospective case-control study (NCT03035344), plasma and urinary metabolites were analyzed in 34 children with ALL before the beginning (D0) and at the end of the induction treatment (D33). Their metabolic fingerprint was defined by targeted analysis of 106 metabolites and compared to that of an equal number of matched controls. Multivariate and univariate statistical analyses were performed using SIMCAP and scripts under the R programming language. RESULTS Metabolomic analysis showed distinct changes in patients with ALL compared to controls on both D0 and D33. The metabolomic fingerprint within the patient group differed significantly between common B-ALL and pre-B ALL and between D0 and D33, reflecting the effect of treatment. We have further identified the major components of this metabolic dysregulation, indicating shifts in fatty acid synthesis, transfer and oxidation, in amino acid and glycerophospholipid metabolism, and in the glutaminolysis/TCA cycle. CONCLUSIONS The disease type and time point-specific metabolic alterations observed in pediatric ALL are of particular interest as they may offer potential for the discovery of new prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Maria T. Papadopoulou
- 4th Pediatric Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece; (P.P.); (A.E.)
- Woman-Mother-Child Hospital, University Hospitals of Lyon, 69500 Bron, France
| | - Paraskevi Panagopoulou
- 4th Pediatric Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece; (P.P.); (A.E.)
| | | | - Alexandros Pechlivanis
- Department of Chemistry, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (A.P.)
- BIOMIC_Auth, Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (CIRI), Balkan Center, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Christina Virgiliou
- BIOMIC_Auth, Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (CIRI), Balkan Center, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
- Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Maria Palabougiouki
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Maria Ioannidou
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Eleni Vasileiou
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Athanasios Tragiannidis
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | | | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (A.P.)
- BIOMIC_Auth, Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (CIRI), Balkan Center, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Emmanuel Hatzipantelis
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Athanasios Evangeliou
- 4th Pediatric Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece; (P.P.); (A.E.)
- St Luke’s Hospital S.A., 55236 Pannorama, Greece
| |
Collapse
|
3
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
4
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
5
|
Martell E, Kuzmychova H, Senthil H, Kaul E, Chokshi CR, Venugopal C, Anderson CM, Singh SK, Sharif T. Compensatory cross-talk between autophagy and glycolysis regulates senescence and stemness in heterogeneous glioblastoma tumor subpopulations. Acta Neuropathol Commun 2023; 11:110. [PMID: 37420311 PMCID: PMC10327182 DOI: 10.1186/s40478-023-01604-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Despite tremendous research efforts, successful targeting of aberrant tumor metabolism in clinical practice has remained elusive. Tumor heterogeneity and plasticity may play a role in the clinical failure of metabolism-targeting interventions for treating cancer patients. Moreover, compensatory growth-related processes and adaptive responses exhibited by heterogeneous tumor subpopulations to metabolic inhibitors are poorly understood. Here, by using clinically-relevant patient-derived glioblastoma (GBM) cell models, we explore the cross-talk between glycolysis, autophagy, and senescence in maintaining tumor stemness. We found that stem cell-like GBM tumor subpopulations possessed higher basal levels of glycolytic activity and increased expression of several glycolysis-related enzymes including, GLUT1/SLC2A1, PFKP, ALDOA, GAPDH, ENO1, PKM2, and LDH, compared to their non-stem-like counterparts. Importantly, bioinformatics analysis also revealed that the mRNA expression of glycolytic enzymes positively correlates with stemness markers (CD133/PROM1 and SOX2) in patient GBM tumors. While treatment with glycolysis inhibitors induced senescence in stem cell-like GBM tumor subpopulations, as evidenced by increased β-galactosidase staining and upregulation of the cell cycle regulators p21Waf1/Cip1/CDKN1A and p16INK4A/CDKN2A, these cells maintained their aggressive stemness features and failed to undergo apoptotic cell death. Using various techniques including autophagy flux and EGFP-MAP1LC3B+ puncta formation analysis, we determined that inhibition of glycolysis led to the induction of autophagy in stem cell-like GBM tumor subpopulations, but not in their non-stem-like counterparts. Similarly, blocking autophagy in stem cell-like GBM tumor subpopulations induced senescence-associated growth arrest without hampering stemness capacity or inducing apoptosis while reciprocally upregulating glycolytic activity. Combinatorial treatment of stem cell-like GBM tumor subpopulations with autophagy and glycolysis inhibitors blocked the induction of senescence while drastically impairing their stemness capacity which drove cells towards apoptotic cell death. These findings identify a novel and complex compensatory interplay between glycolysis, autophagy, and senescence that helps maintain stemness in heterogeneous GBM tumor subpopulations and provides a survival advantage during metabolic stress.
Collapse
Affiliation(s)
- Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Helgi Kuzmychova
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Harshal Senthil
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Esha Kaul
- Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chirayu R Chokshi
- Department of Biochemistry, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
| | - Sheila K Singh
- Department of Biochemistry, McMaster University, Hamilton, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
6
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
7
|
Jiang Y, Xiang Y, Lin C, Zhang W, Yang Z, Xiang L, Xiao Y, Chen L, Ran Q, Li Z. Multifunctions of CRIF1 in cancers and mitochondrial dysfunction. Front Oncol 2022; 12:1009948. [PMID: 36263222 PMCID: PMC9574215 DOI: 10.3389/fonc.2022.1009948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sustaining proliferative signaling and enabling replicative immortality are two important hallmarks of cancer. The complex of cyclin-dependent kinase (CDK) and its cyclin plays a decisive role in the transformation of the cell cycle and is also critical in the initiation and progression of cancer. CRIF1, a multifunctional factor, plays a pivotal role in a series of cell biological progresses such as cell cycle, cell proliferation, and energy metabolism. CRIF1 is best known as a negative regulator of the cell cycle, on account of directly binding to Gadd45 family proteins or CDK2. In addition, CRIF1 acts as a regulator of several transcription factors such as Nur77 and STAT3 and partly determines the proliferation of cancer cells. Many studies showed that the expression of CRIF1 is significantly altered in cancers and potentially regarded as a tumor suppressor. This suggests that targeting CRIF1 would enhance the selectivity and sensitivity of cancer treatment. Moreover, CRIF1 might be an indispensable part of mitoribosome and is involved in the regulation of OXPHOS capacity. Further, CRIF1 is thought to be a novel target for the underlying mechanism of diseases with mitochondrial dysfunctions. In summary, this review would conclude the latest aspects of studies about CRIF1 in cancers and mitochondria-related diseases, shed new light on targeted therapy, and provide a more comprehensive holistic view.
Collapse
Affiliation(s)
- Yangzhou Jiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Chuanchuan Lin
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Lixin Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022; 11:24. [PMID: 35534478 PMCID: PMC9085865 DOI: 10.1038/s41389-022-00400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractLung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.
Collapse
|
9
|
Mani S, Swargiary G, Ralph SJ. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2021; 62:50-73. [PMID: 34758363 DOI: 10.1016/j.mito.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia.
| |
Collapse
|
10
|
Ma DC, Anderson CM, Rodman SN, Buranasudja V, McCormick ML, Davis A, Loth E, Bodeker KL, Ahmann L, Parkhurst JR, Sun W, Follmer KR, Simons AL, Buatt JM, Spitz DR, Fath MA, Allen BG. Ketogenic Diet with Concurrent Chemoradiation in Head and Neck Squamous Cell Carcinoma: Preclinical and Phase 1 Trial Results. Radiat Res 2021; 196:213-224. [PMID: 34087943 DOI: 10.1667/rade-20-00150.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
Ketogenic diets (KD) are high in fat and low in carbohydrates, forcing cells to utilize mitochondrial fatty acid oxidation for energy production. Since cancer cells demonstrate increased mitochondrial oxidative stress relative to normal cells, we hypothesized that a KD may selectively enhance metabolic oxidative stress in head and neck cancer cells, sensitizing them to radiation and platinum-based chemotherapy without causing increased toxicity in surrounding normal tissues. This hypothesis was tested in preclinical murine xenografts and in a phase 1 clinical trial (NCT01975766). In this study, mice bearing human head and neck cancer xenografts (FaDu) were fed either standard mouse chow or KetoCal® KD (90% fat, 8% carbohydrate, 2% protein) and exposed to ionizing radiation. Tumors were harvested from mice to test for glutathione, a biomarker of oxidative stress. In parallel, patients with locally advanced head and neck cancer were enrolled in a phase 1 clinical trial where they consumed KD and received radiation with concurrent platinum-based chemotherapy. Subjects consumed KetoCal KD via percutaneous endoscopic gastrostomy (PEG) tube and were also allowed to orally consume water, sugar-free drinks, and foods approved by a dietitian. Oxidative stress markers including protein carbonyls and total glutathione were assessed in patient blood samples both pre-KD and while consuming the KD. Mice bearing FaDu xenografts that received radiation and KD demonstrated a slight improvement in tumor growth rate and survival compared to mice that received radiation alone; however a variation in responses was seen dependent on the fatty acid composition of the diet. In the phase 1 clinical trial, a total of twelve patients were enrolled in the study. Four patients completed five weeks of the KD as per protocol (with variance in compliance). Eight patients did not tolerate the diet with concurrent radiation and platinum-chemotherapy (5 were patient decision and 3 were removed from study due to toxicity). The median number of days consuming a KD in patients who did not complete the study was 5.5 (range: 2-8 days). Reasons for discontinuation included "stress of diet compliance" (1 patient), grade 2 nausea (3 patients), and grade 3 fatigue (1 patient). Three patients were removed from the trial due to dose-limiting toxicities including: grade 4 hyperuricemia (2 patients) and grade 3 acute pancreatitis (1 patient). Median weight loss was 2.95% for the KD-tolerant group and 7.92% for patients who did not tolerate the diet. In conclusion, the ketogenic diet shows promise as a treatment combined with radiation in preclinical mouse head and neck cancer xenografts. A phase 1 clinical trial evaluating the safety and tolerability of KD demonstrated difficulty with diet compliance when combined with standard-of care-radiation therapy and cisplatin chemotherapy.
Collapse
Affiliation(s)
- Daniel C Ma
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Carryn M Anderson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| | - Samuel N Rodman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Visarut Buranasudja
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Andrew Davis
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Elizabeth Loth
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Kellie L Bodeker
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| | - Logan Ahmann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Jessica R Parkhurst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Wenqing Sun
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Kayla R Follmer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246
| | - Andrean L Simons
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Department of Pathology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| | - John M Buatt
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Department of Pathology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52246.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52246
| |
Collapse
|
11
|
Benito I, Encío IJ, Milagro FI, Alfaro M, Martínez-Peñuela A, Barajas M, Marzo F. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in Combination with Quercetin Inhibit Colorectal Cancer Development in Apc Min/+ Mice. Int J Mol Sci 2021; 22:4906. [PMID: 34063173 PMCID: PMC8124226 DOI: 10.3390/ijms22094906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that flavonoids such as quercetin and probiotics such as Bifidobacterium bifidum (Bf) and Lactobacillus gasseri (Lg) could play a relevant role in inhibiting colon cancer cell growth. Our study investigated the role of dietary supplementation with microencapsulated probiotics (Bf and Lg) along with quercetin in the development of mouse colorectal cancer (CRC). Methods: Adenomatous polyposis coli/multiple intestinal neoplasia (ApcMin/+) mice were fed a standard diet or the same diet supplemented with microencapsulated probiotics (Bf and Lg strains, 107 CFU/100 g food) or both probiotics strains plus microencapsulated quercetin (15 mg/100 g food) for 73 days. Changes in body and organ weights, energy metabolism, intestinal microbiota, and colon tissue were determined. The expression of genes related to the Wnt pathway was also analyzed in colon samples. Results: Dietary supplementation with microencapsulated probiotics or microencapsulated probiotics plus quercetin reduced body weight loss and intestinal bleeding in ApcMin/+ mice. An improvement in energy expenditure was observed after 8 weeks but not after 10 weeks of treatment. A supplemented diet with microencapsulated Bf and Lg reduced the number of aberrant crypt foci (ACF) and adenomas by 45% and 60%, respectively, whereas the supplementation with Bf, Lg and quercetin decreased the number of ACF and adenomas by 57% and 80%, respectively. Microencapsulated Bf and Lg in combination with quercetin could exert inhibition of the canonical Wnt/β-catenin signaling pathway in the colon of ApcMin/+ mice Conclusions: The administration of microencapsulated Bf and Lg, individually or in combination with quercetin, inhibits the CRC development in ApcMin/+ mice.
Collapse
Affiliation(s)
- Iván Benito
- Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain; (I.B.); (M.A.)
| | - Ignacio J. Encío
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain;
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Alfaro
- Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain; (I.B.); (M.A.)
| | | | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain;
| | - Florencio Marzo
- Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain; (I.B.); (M.A.)
| |
Collapse
|
12
|
Guo L. Mitochondria and the permeability transition pore in cancer metabolic reprogramming. Biochem Pharmacol 2021; 188:114537. [PMID: 33811907 DOI: 10.1016/j.bcp.2021.114537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are a major source of ATP provision as well as cellular suicidal weapon store. Accumulating evidences demonstrate that mitochondrial bioenergetics, biosynthesis and signaling are important mediators of tumorigenesis. Metabolic plasticity enables cancer cell reprogramming to cope with cellular and environmental alterations, a process requires mitochondria biology. Mitochondrial metabolism emerges to be a promising arena for cancer therapeutic targets. The permeability transition pore (PTP) participates in physiological Ca2+ and ROS homeostasis as well as cell death depending on the open state. The hypothesis that PTP forms from F-ATP synthase provides clues to the potential collaborative role of mitochondrial respiration and PTP in regulating cancer cell fate and metabolic reprogramming.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
13
|
Wahl RL, Hicks RJ. PET Diagnosis and Response Monitoring in Oncology. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Scheid AD, Beadnell TC, Welch DR. Roles of mitochondria in the hallmarks of metastasis. Br J Cancer 2021; 124:124-135. [PMID: 33144695 PMCID: PMC7782743 DOI: 10.1038/s41416-020-01125-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Although mitochondrial contributions to cancer have been recognised for approximately a century, given that mitochondrial DNA (mtDNA) is dwarfed by the size of the nuclear genome (nDNA), nuclear genetics has represented a focal point in cancer biology, often at the expense of mtDNA and mitochondria. However, genomic sequencing and advances in in vivo models underscore the importance of mtDNA and mitochondria in cancer and metastasis. In this review, we explore the roles of mitochondria in the four defined 'hallmarks of metastasis': motility and invasion, microenvironment modulation, plasticity and colonisation. Biochemical processes within the mitochondria of both cancer cells and the stromal cells with which they interact are critical for each metastatic hallmark. We unravel complex dynamics in mitochondrial contributions to cancer, which are context-dependent and capable of either promoting metastasis or being leveraged to prevent it at various points of the metastatic cascade. Ultimately, mitochondrial contributions to cancer and metastasis are rooted in the capacity of these organelles to tune metabolic and genetic responses to dynamic microenvironmental cues.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Heartland Center for Mitochondrial Medicine, Kansas City, KS, USA
| | - Thomas C Beadnell
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Heartland Center for Mitochondrial Medicine, Kansas City, KS, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
- Heartland Center for Mitochondrial Medicine, Kansas City, KS, USA.
- University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
15
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Altinoz MA, Ucal Y, Yilmaz MC, Kiris İ, Ozisik O, Sezerman U, Ozpinar A, Elmaci İ. Progesterone at high doses reduces the growth of U87 and A172 glioblastoma cells: Proteomic changes regarding metabolism and immunity. Cancer Med 2020; 9:5767-5780. [PMID: 32590878 PMCID: PMC7433824 DOI: 10.1002/cam4.3223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
While pregnancy may accelerate glioblastoma multiforme (GBM) growth, parity and progesterone (P4) containing treatments (ie, hormone replacement therapy) reduce the risk of GBM development. In parallel, low and high doses of P4 exert stimulating and inhibitory actions on GBM growth, respectively. The mechanisms behind the high‐dose P4‐suppression of GBM growth is unknown. In the present study, we assessed the changes in growth and proteomic profiles when high‐dose P4 (100 and 300 µM) was administered in human U87 and A172 GBM cell lines. The xCELLigence system was used to examine cell growth when different concentrations of P4 (20, 50, 100, and 300 µM) was administered. The protein profiles were determined by two‐dimensional gel electrophoresis in both cell lines when 100 and 300 µM P4 were administered. Finally, the pathways enriched by the differentially expressed proteins were assessed using bioinformatic tools. Increasing doses of P4 blocked the growth of both GBM cells. We identified 26 and 51 differentially expressed proteins (fc > 2) in A172 and U87 cell lines treated with P4, respectively. Only the pro‐tumorigenic mitochondrial ornithine aminotransferase and anti‐apoptotic mitochondrial 60 kDa heat shock protein were downregulated in A172 cell line and U87 cell line when treated with P4, respectively. Detoxification of reactive oxygen species, cellular response to stress, glucose metabolism, and immunity‐related proteins were altered in P4‐treated GBM cell lines. The paradox on the effect of low and high doses of P4 on GBM growth is gaining attention. The mechanism related to the high dose of P4 on GBM growth can be explained by the alterations in detoxification mechanisms, stress, and immune response and glucose metabolism. P4 suppresses GBM growth and as it is nontoxic in comparison to classical chemotherapeutics, it can be used as a new strategy in GBM treatment in the future.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Ucal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muazzez C Yilmaz
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İrem Kiris
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozan Ozisik
- Medical Genetics, Aix Marseille University, Inserm, MMG, Marseille, France
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aysel Ozpinar
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Maslak Hospital and School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
17
|
Mascaraque M, Delgado-Wicke P, Nuevo-Tapioles C, Gracia-Cazaña T, Abarca-Lachen E, González S, Cuezva JM, Gilaberte Y, Juarranz Á. Metformin as an Adjuvant to Photodynamic Therapy in Resistant Basal Cell Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12030668. [PMID: 32183017 PMCID: PMC7139992 DOI: 10.3390/cancers12030668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Photodynamic Therapy (PDT) with methyl-aminolevulinate (MAL-PDT) is being used for the treatment of Basal Cell Carcinoma (BCC), although resistant cells may appear. Normal differentiated cells depend primarily on mitochondrial oxidative phosphorylation (OXPHOS) to generate energy, but cancer cells switch this metabolism to aerobic glycolysis (Warburg effect), influencing the response to therapies. We have analyzed the expression of metabolic markers (β-F1-ATPase/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratio, pyruvate kinase M2 (PKM2), oxygen consume ratio, and lactate extracellular production) in the resistance to PDT of mouse BCC cell lines (named ASZ and CSZ, heterozygous for ptch1). We have also evaluated the ability of metformin (Metf), an antidiabetic type II compound that acts through inhibition of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway to sensitize resistant cells to PDT. The results obtained indicated that resistant cells showed an aerobic glycolysis metabolism. The treatment with Metf induced arrest in the G0/G1 phase and a reduction in the lactate extracellular production in all cell lines. The addition of Metf to MAL-PDT improved the cytotoxic effect on parental and resistant cells, which was not dependent on the PS protoporphyrin IX (PpIX) production. After Metf + MAL-PDT treatment, activation of pAMPK was detected, suppressing the mTOR pathway in most of the cells. Enhanced PDT-response with Metf was also observed in ASZ tumors. In conclusion, Metf increased the response to MAL-PDT in murine BCC cells resistant to PDT with aerobic glycolysis.
Collapse
Affiliation(s)
- Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.M.); (P.D.-W.)
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28034 Madrid, Spain
| | - Pablo Delgado-Wicke
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.M.); (P.D.-W.)
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28034 Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Centro de Biología Molecular-Severo Ochoa (CBMSO/CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (C.N.-T.); (J.M.C.)
| | | | - Edgar Abarca-Lachen
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain;
| | - Salvador González
- Departmento de Medicina y Especialidades Médicas, Universidad de Alcalá, 28801 Madrid, Spain;
| | - José M. Cuezva
- Centro de Biología Molecular-Severo Ochoa (CBMSO/CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Universidad Autónoma de Madrid, 28049 Madrid, Spain; (C.N.-T.); (J.M.C.)
| | - Yolanda Gilaberte
- Servicio de Dermatología, Hospital Miguel Servet, 50009 Zaragoza, Spain;
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.M.); (P.D.-W.)
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Metabolic reprogramming and disease progression in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165721. [PMID: 32057942 DOI: 10.1016/j.bbadis.2020.165721] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/19/2022]
Abstract
Genomics has contributed to the treatment of a fraction of cancer patients. However, there is a need to profile the proteins that define the phenotype of cancer and its pathogenesis. The reprogramming of metabolism is a major trait of the cancer phenotype with great potential for prognosis and targeted therapy. This review overviews the major changes reported in the steady-state levels of proteins of metabolism in primary carcinomas, paying attention to those enzymes that correlate with patients' survival. The upregulation of enzymes of glycolysis, pentose phosphate pathway, lipogenesis, glutaminolysis and the antioxidant defense is concurrent with the downregulation of mitochondrial proteins involved in oxidative phosphorylation, emphasizing the potential of mitochondrial metabolism as a promising therapeutic target in cancer. We stress that high-throughput quantitative expression profiling of differentially expressed proteins in large cohorts of carcinomas paired with normal tissues will accelerate translation of metabolism to a successful personalized medicine in cancer.
Collapse
|
19
|
TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers (Basel) 2019; 12:cancers12010068. [PMID: 31881713 PMCID: PMC7016696 DOI: 10.3390/cancers12010068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy. Despite progress in treatment, HCC is still one of the most lethal cancers. Therefore, deepening molecular mechanisms underlying HCC pathogenesis and development is required to uncover new therapeutic strategies. Metabolic reprogramming is emerging as a critical player in promoting tumor survival and proliferation to sustain increased metabolic needs of cancer cells. Among the metabolic pathways, the tricarboxylic acid (TCA) cycle is a primary route for bioenergetic, biosynthetic, and redox balance requirements of cells. In recent years, a large amount of evidence has highlighted the relevance of the TCA cycle rewiring in a variety of cancers. Indeed, aberrant gene expression of several key enzymes and changes in levels of critical metabolites have been observed in many solid human tumors. In this review, we summarize the role of the TCA cycle rewiring in HCC by reporting gene expression and activity dysregulation of enzymes relating not only to the TCA cycle but also to glutamine metabolism, malate/aspartate, and citrate/pyruvate shuttles. Regarding the transcriptional regulation, we focus on the link between NF-κB-HIF1 transcriptional factors and TCA cycle reprogramming. Finally, the potential of metabolic targets for new HCC treatments has been explored.
Collapse
|
20
|
Kano A, Iwasaki T, Shindo M. Bongkrekic acid facilitates glycolysis in cultured cells and induces cell death under low glucose conditions. Biochem Biophys Rep 2019; 20:100683. [PMID: 31517068 PMCID: PMC6728793 DOI: 10.1016/j.bbrep.2019.100683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Bongkrekic acid (BKA) inhibits adenine nucleotide translocator (ANT) and suppresses ADP/ATP exchange in the mitochondrial inner membrane. Previously, we demonstrated that BKA exhibited cytotoxic effects on 4T1 tumor cells, depending on the cell number in the culture, but not on NIH3T3 cells. However, the cause of this differential sensitivity was unelucidated. Here we demonstrate that BKA reduced the O2 consumption in both cell lines and increased the mitochondrial membrane potential, thereby facilitating glucose consumption. BKA reduced cellular ATP in 4T1 cells in a dose-dependent manner but not in NIH3T3 cells. The cellular ATP of 4T1 cells was decreased with a reduced glucose concentration in the media, but that of NIH3T3 cells remained constant. We also demonstrated that BKA-induced cell death in both cell lines in low glucose media; however, the susceptibility to the reduced glucose concentration was slightly higher in 4T1 cells, which may be attributed to the difference in the dependency on glycolysis as their energy source. These results indicate that 4T1 tumor cells rely heavily on glucose for energy production. Our data demonstrate that BKA disturbs ATP production in mitochondria and increases the susceptibility to a low glucose condition. Bongkrekic acid decreases cellular ATP in cancer cells. Bongkrekic acid decreases mitochondrial OXPHOS and enhances glycolysis in cells. Bongkrekic acid induces cell death under low glucose conditions.
Collapse
Affiliation(s)
- Arihiro Kano
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| | - Takuma Iwasaki
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan.,Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 819-0395, Japan
| |
Collapse
|
21
|
Cussó L, Musteanu M, Mulero F, Barbacid M, Desco M. Effects of a Ketogenic Diet on [ 18F]FDG-PET Imaging in a Mouse Model of Lung Cancer. Mol Imaging Biol 2019; 21:279-285. [PMID: 29968182 DOI: 10.1007/s11307-018-1233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Myocardial uptake can hamper visualization of lung tumors, atherosclerotic plaques, and inflammatory diseases in 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) studies because it leads to spillover in adjacent structures. Several preparatory pre-imaging protocols (including dietary restrictions and drugs) have been proposed to decrease physiological [18F]FDG uptake by the heart, although their effect on tumor glucose metabolism remains largely unknown. The objective of this study was to assess the effects of a ketogenic diet (as an alternative protocol to fasting) on tumor glucose metabolism assessed by [18F]FDG positron emission tomography (PET) in a mouse model of lung cancer. PROCEDURES PET scans were performed 60 min after injection of 18.5 MBq of [18F]FDG. PET data were collected for 45 min, and an x-ray computed tomograph (CT) image was acquired after the PET scan. A PET/CT study was obtained for each mouse after fasting and after the ketogenic diet. Quantitative data were obtained from regions of interest in the left ventricular myocardium and lung tumor. RESULTS Three days on a ketogenic diet decreased mean standard uptake value (SUVmean) in the myocardium (SUVmean 0.95 ± 0.36) more than one night of fasting (SUVmean 1.64 ± 0.93). Tumor uptake did not change under either dietary condition. CONCLUSIONS These results show that 3 days on high-fat diets prior to [18F]FDG-PET imaging does not change tumor glucose metabolism compared with one night of fasting, although high-fat diets suppress myocardial [18F]FDG uptake better than fasting.
Collapse
Affiliation(s)
- Lorena Cussó
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Leganés, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Mónica Musteanu
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Francisca Mulero
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Mariano Barbacid
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Leganés, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
22
|
García-Aguilar A, Martínez-Reyes I, Cuezva JM. Changes in the Turnover of the Cellular Proteome during Metabolic Reprogramming: A Role for mtROS in Proteostasis. J Proteome Res 2019; 18:3142-3155. [DOI: 10.1021/acs.jproteome.9b00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana García-Aguilar
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inmaculada Martínez-Reyes
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
23
|
Mitochondrial Retrograde Signalling and Metabolic Alterations in the Tumour Microenvironment. Cells 2019; 8:cells8030275. [PMID: 30909478 PMCID: PMC6468901 DOI: 10.3390/cells8030275] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
This review explores the molecular mechanisms that may be responsible for mitochondrial retrograde signalling related metabolic reprogramming in cancer and host cells in the tumour microenvironment and provides a summary of recent updates with regard to the functional modulation of diverse cells in the tumour microenvironment.
Collapse
|
24
|
Nájera L, Alonso‐Juarranz M, Garrido M, Ballestín C, Moya L, Martínez‐Díaz M, Carrillo R, Juarranz A, Rojo F, Cuezva J, Rodríguez‐Peralto J. Prognostic implications of markers of the metabolic phenotype in human cutaneous melanoma. Br J Dermatol 2019; 181:114-127. [DOI: 10.1111/bjd.17513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- L. Nájera
- Servicio de Anatomía Patológica Hospital Universitario Puerta de Hierro Majadahonda, MadridSpain
| | | | - M. Garrido
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
| | - C. Ballestín
- IIS‐Fundación Jiménez Diaz C/Reyes Católicos 2 28049 MadridSpain
| | - L. Moya
- Servicio de Anatomía Patológica Hospital Universitario Ramón y Cajal MadridSpain
| | - M. Martínez‐Díaz
- Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa CSIC‐UAM MadridSpain
| | - R. Carrillo
- Servicio de Anatomía Patológica Hospital Universitario Ramón y Cajal MadridSpain
| | - A. Juarranz
- Departamento de Biología Facultad de Ciencias Universidad Autónoma de Madrid C/Darwin, 2 28049 MadridSpain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) MadridSpain
| | - F. Rojo
- IIS‐Fundación Jiménez Diaz C/Reyes Católicos 2 28049 MadridSpain
| | - J.M. Cuezva
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
- Departamento de Biología Molecular Centro de Biología Molecular Severo Ochoa CSIC‐UAM MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII MadridSpain
| | - J.L. Rodríguez‐Peralto
- Instituto de Investigación Hospital 12 de Octubre Universidad Complutense de Madrid MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) ISCIII Madrid Spain
| |
Collapse
|
25
|
Cellular Gene Expression during Hepatitis C Virus Replication as Revealed by Ribosome Profiling. Int J Mol Sci 2019; 20:ijms20061321. [PMID: 30875926 PMCID: PMC6470931 DOI: 10.3390/ijms20061321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress. How HCV replication affects host mRNA translation and transcription at a genome wide level is not yet known. Methods: We used Riboseq (Ribosome Profiling) to analyze transcriptome and translatome changes in the Huh-7.5 hepatocarcinoma cell line replicating HCV for 6 days. Results: Established viral replication does not cause global changes in host gene expression—only around 30 genes are significantly differentially expressed. Upregulated genes are related to ER stress and HCV replication, and several regulated genes are known to be involved in HCC development. Some mRNAs (PPP1R15A/GADD34, DDIT3/CHOP, and TRIB3) may be subject to upstream open reading frame (uORF) mediated translation control. Transcriptional downregulation mainly affects mitochondrial respiratory chain complex core subunit genes. Conclusion: After establishing HCV replication, the lack of global changes in cellular gene expression indicates an adaptation to chronic infection, while the downregulation of mitochondrial respiratory chain genes indicates how a virus may further contribute to cancer cell-like metabolic reprogramming (“Warburg effect”) even in the hepatocellular carcinoma cells used here.
Collapse
|
26
|
Scheid AD, Beadnell TC, Welch DR. The second genome: Effects of the mitochondrial genome on cancer progression. Adv Cancer Res 2019; 142:63-105. [PMID: 30885364 DOI: 10.1016/bs.acr.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of genetics in cancer has been recognized for centuries, but most studies elucidating genetic contributions to cancer have understandably focused on the nuclear genome. Mitochondrial contributions to cancer pathogenesis have been documented for decades, but how mitochondrial DNA (mtDNA) influences cancer progression and metastasis remains poorly understood. This lack of understanding stems from difficulty isolating the nuclear and mitochondrial genomes as experimental variables, which is critical for investigating direct mtDNA contributions to disease given extensive crosstalk exists between both genomes. Several in vitro and in vivo models have isolated mtDNA as an independent variable from the nuclear genome. This review compares and contrasts different models, their advantages and disadvantages for studying mtDNA contributions to cancer, focusing on the mitochondrial-nuclear exchange (MNX) mouse model and findings regarding tumor progression, metastasis, and other complex cancer-related phenotypes.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
27
|
Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR. Hypoxia-Modified Cancer Cell Metabolism. Front Cell Dev Biol 2019; 7:4. [PMID: 30761299 PMCID: PMC6362613 DOI: 10.3389/fcell.2019.00004] [Citation(s) in RCA: 340] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
While oxygen is critical to the continued existence of complex organisms, extreme levels of oxygen within a system, known as hypoxia (low levels of oxygen) and hyperoxia (excessive levels of oxygen), potentially promote stress within a defined biological environment. The consequences of tissue hypoxia, a result of a defective oxygen supply, vary in response to the gravity, extent and environment of the malfunction. Persistent pathological hypoxia is incompatible with normal biological functions, and as a result, multicellular organisms have been compelled to develop both organism-wide and cellular-level hypoxia solutions. Both direct, including oxidative phosphorylation down-regulation and inhibition of fatty-acid desaturation, and indirect processes, including altered hypoxia-sensitive transcription factor expression, facilitate the metabolic modifications that occur in response to hypoxia. Due to the dysfunctional vasculature associated with large areas of some cancers, sections of these tumors continue to develop in hypoxic environments. Crucial to drug development, a robust understanding of the significance of these metabolism changes will facilitate our understanding of cancer cell survival. This review defines our current knowledge base of several of the hypoxia-instigated modifications in cancer cell metabolism and exemplifies the correlation between metabolic change and its support of the hypoxic-adapted malignancy.
Collapse
Affiliation(s)
- Wafaa Al Tameemi
- Faculty of Medicine and Health Sciences, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Tina P. Dale
- Faculty of Medicine and Health Sciences, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Rakad M. Kh Al-Jumaily
- Faculty of Medicine and Health Sciences, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Nicholas R. Forsyth
- Faculty of Medicine and Health Sciences, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
28
|
Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:38-47. [PMID: 30321589 DOI: 10.1016/j.bbadis.2018.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
|
29
|
Stevens JF, Revel JS, Maier CS. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid Redox Signal 2018; 29:1589-1611. [PMID: 29084444 PMCID: PMC6207154 DOI: 10.1089/ars.2017.7404] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Humans are exposed daily to polyphenols in milligram-to-gram amounts through dietary consumption of fruits and vegetables. Polyphenols are also available as components of dietary supplements for improving general health. Although polyphenols are often advertised as antioxidants to explain health benefits, experimental evidence shows that their beneficial cancer preventing and controlling properties are more likely due to stimulation of pro-oxidant and proapoptotic pathways. Recent Advances: The understanding of the biological differences between cancer and normal cell, and especially the role that mitochondria play in carcinogenesis, has greatly advanced in recent years. These advances have resulted in a wealth of new information on polyphenol bioactivity in cell culture and animal models of cancer. Polyphenols appear to target oxidative phosphorylation and regulation of the mitochondrial membrane potential (MMP), glycolysis, pro-oxidant pathways, and antioxidant (adaptive) stress responses with greater selectivity in tumorigenic cells. CRITICAL ISSUES The ability of polyphenols to dissipate the MMP (Δψm) by a protonophore mechanism has been known for more than 50 years. However, researchers focus primarily on the downstream molecular effects of Δψm dissipation and mitochondrial uncoupling. We argue that the physicochemical properties of polyphenols are responsible for their anticancer properties by virtue of their protonophoric and pro-oxidant properties rather than their specific effects on downstream molecular targets. FUTURE DIRECTIONS Polyphenol-induced dissipation of Δψm is a physicochemical process that cancer cells cannot develop resistance against by gene mutation. Therefore, polyphenols should receive more attention as agents for cotherapy with cancer drugs to gain synergistic activity. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Johana S. Revel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| |
Collapse
|
30
|
Woolbright BL, Ayres M, Taylor JA. Metabolic changes in bladder cancer. Urol Oncol 2018; 36:327-337. [DOI: 10.1016/j.urolonc.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
|
31
|
Esparza-Moltó PB, Cuezva JM. The Role of Mitochondrial H +-ATP Synthase in Cancer. Front Oncol 2018; 8:53. [PMID: 29564224 PMCID: PMC5845864 DOI: 10.3389/fonc.2018.00053] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram energy metabolism by boosting aerobic glycolysis as a main pathway for the provision of metabolic energy and of precursors for anabolic purposes. Accordingly, the relative expression of the catalytic subunit of the mitochondrial H+-ATP synthase—the core hub of oxidative phosphorylation—is downregulated in human carcinomas when compared with its expression in normal tissues. Moreover, some prevalent carcinomas also upregulate the ATPase inhibitory factor 1 (IF1), which is the physiological inhibitor of the H+-ATP synthase. IF1 overexpression, both in cells in culture and in tissue-specific mouse models, is sufficient to reprogram energy metabolism to an enhanced glycolysis by limiting ATP production by the H+-ATP synthase. Furthermore, the IF1-mediated inhibition of the H+-ATP synthase promotes the production of mitochondrial ROS (mtROS). mtROS modulate signaling pathways favoring cellular proliferation and invasion, the activation of antioxidant defenses, resistance to cell death, and modulation of the tissue immune response, favoring the acquisition of several cancer traits. Consistently, IF1 expression is an independent marker of cancer prognosis. By contrast, inhibition of the H+-ATP synthase by α-ketoglutarate and the oncometabolite 2-hydroxyglutarate, reduces mTOR signaling, suppresses cancer cell growth, and contributes to lifespan extension in several model organisms. Hence, the H+-ATP synthase appears as a conserved hub in mitochondria-to-nucleus signaling controlling cell fate. Unraveling the molecular mechanisms responsible for IF1 upregulation in cancer and the signaling cascades that are modulated by the H+-ATP synthase are of utmost interest to decipher the metabolic and redox circuits contributing to cancer origin and progression.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre (i+12), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Morscher RJ, Aminzadeh-Gohari S, Hauser-Kronberger C, Feichtinger RG, Sperl W, Kofler B. Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget 2017; 7:17060-73. [PMID: 26959744 PMCID: PMC4941371 DOI: 10.18632/oncotarget.7929] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MYCN-amplification in high-grade Neuroblastoma (NB) tumors correlates with increased vascularization and therapy resistance. This study combines an anti-angiogenic approach with targeting NB metabolism for treatment. METHODS AND RESULTS Metronomic cyclophosphamide (MCP) monotherapy significantly inhibited NB growth and prolonged host survival. Growth inhibition was more pronounced in MYCN-amplified xenografts. Immunohistochemical evaluation of this subtype showed significant decrease in blood vessel density and intratumoral hemorrhage accompanied by blood vessel maturation and perivascular fibrosis. Up-regulation of VEGFA was not sufficient to compensate for the effects of the MCP regimen. Reduced Bcl-2 expression and increased caspase-3 cleavage were evident. In contrast non MYCN-amplified tumors developed resistance, which was accompanied by Bcl-2-up-regulation. Combining MCP with a ketogenic diet and/or calorie-restriction significantly enhanced the anti-tumor effect. Calorie-restricted ketogenic diet in combination with MCP resulted in tumor regression in all cases. CONCLUSIONS Our data show efficacy of combining an anti-angiogenic cyclophosphamide dosing regimen with dietary intervention in a preclinical NB model. These findings might open a new front in NB treatment.
Collapse
Affiliation(s)
- Raphael Johannes Morscher
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria.,Division of Medical Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Sepideh Aminzadeh-Gohari
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - René Günther Feichtinger
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Barbara Kofler
- Laura Bassi Centre of Expertise-THERAPEP, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
33
|
Fernandez-Martell A, Johari YB, James DC. Metabolic phenotyping of CHO cells varying in cellular biomass accumulation and maintenance during fed-batch culture. Biotechnol Bioeng 2017; 115:645-660. [DOI: 10.1002/bit.26485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | - Yusuf B. Johari
- Department of Chemical and Biological Engineering; University of Sheffield; Mappin St. Sheffield UK
| | - David C. James
- Department of Chemical and Biological Engineering; University of Sheffield; Mappin St. Sheffield UK
| |
Collapse
|
34
|
Abstract
PURPOSE Radiotherapy (RT) is a mainstay in the treatment of solid tumors and works by inducing free radical stress in tumor cells, leading to loss of reproductive integrity. The optimal treatment strategy has to consider damage to both tumor and normal cells and is determined by five factors known as the 5 R's of radiobiology: Reoxygenation, DNA repair, radiosensitivity, redistribution in the cell cycle and repopulation. The aim of this review is (i) to present evidence that these 5 R's are strongly influenced by cellular and whole-body metabolism that in turn can be modified through ketogenic therapy in form of ketogenic diets and short-term fasting and (ii) to stimulate new research into this field including some research questions deserving further study. CONCLUSIONS Preclinical and some preliminary clinical data support the hypothesis that ketogenic therapy could be utilized as a complementary treatment in order to improve the outcome after RT, both in terms of higher tumor control and in terms of lower normal tissue complication probability. The first effect relates to the metabolic shift from glycolysis toward mitochondrial metabolism that selectively increases ROS production and impairs ATP production in tumor cells. The second effect is based on the differential stress resistance phenomenon, which is achieved when glucose and growth factors are reduced and ketone bodies are elevated, reprogramming normal but not tumor cells from proliferation toward maintenance and stress resistance. Underlying both effects are metabolic differences between normal and tumor cells that ketogenic therapy seeks to exploit. Specifically, the recently discovered role of the ketone body β-hydroxybutyrate as an endogenous class-I histone deacetylase inhibitor suggests a dual role as a radioprotector of normal cells and a radiosensitzer of tumor cells that opens up exciting possibilities to employ ketogenic therapy as a cost-effective adjunct to radiotherapy against cancer.
Collapse
Affiliation(s)
- Rainer J Klement
- a Department of Radiotherapy and Radiation Oncology , Leopoldina Hospital , Schweinfurt , Germany
| |
Collapse
|
35
|
Peredo-Silva L, Fuentes-Retamal S, Sandoval-Acuña C, Pavani M, Maya JD, Castro-Castillo V, Madrid-Rojas M, Rebolledo S, Kemmerling U, Parra E, Ferreira J. Derivatives of alkyl gallate triphenylphosphonium exhibit antitumor activity in a syngeneic murine model of mammary adenocarcinoma. Toxicol Appl Pharmacol 2017; 329:334-346. [PMID: 28647477 DOI: 10.1016/j.taap.2017.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
We previously demonstrated that alkyl gallates coupled to triphenylphosphine have a selective and efficient antiproliferative effect by inducing mitochondrial uncoupling in vitro due to the increased mitochondrial transmembrane potential of tumor cells. Therefore, in this work, the in vivo antitumor activities of alkyl gallate triphenylphosphonium derivatives (TPP+C8, TPP+C10 and TPP+C12) were evaluated in a syngeneic murine model of breast cancer. We found that TPP+C10 increased the cytosolic ADP/ATP ratio and significantly increased the AMP levels in a concentration-dependent manner in TA3/Ha murine mammary adenocarcinoma cells. Interestingly, TPP+C10 induced a decrease in the levels of cellular proliferation markers and promoted caspase-3 activation in tumor-bearing mice. Additionally, TPP+C10 inhibited tumor growth in the syngeneic mouse model. Importantly, 30days of intraperitoneal (i.p.) administration of the combination of TPP+C10 (10mg/kg/48h) and the antibiotic doxycycline (10mg/kg/24h) completely eliminated the subcutaneous tumor burden in mice (n=6), without any relapses at 60days post-treatment. This enhancement of the individual activities of TPP+C10 and doxycycline is due to the uncoupling of oxidative phosphorylation by TPP+C10 and the inhibition of mitochondrial biogenesis by doxycycline, as demonstrated by loss of mitochondrial mass and overexpression of PGC1-α as an adaptive response. Moreover, i.p. administration of TPP+C10 (10mg/kg/24h) to healthy mice did not produce toxicity or damage in organs important for drug metabolism and excretion, as indicated by hematological, biochemical and histological assessments. These findings suggest that the combination of TPP+C10 with doxycycline is a valuable candidate therapy for breast cancer management.
Collapse
Affiliation(s)
- Liliana Peredo-Silva
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology, Czech Academy of Sciences, Průmyslová 595, Vestec, 25250, Prague, Czech Republic
| | - Mario Pavani
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Juan D Maya
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Vicente Castro-Castillo
- Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8380494, Chile
| | - Matías Madrid-Rojas
- Department of Chemistry, Faculty of Basic Sciences, Metropolitan University of Educational Sciences, Av. José Pedro Alessandri 774, Santiago 7760197, Chile
| | - Solange Rebolledo
- Department of Chemistry, Faculty of Basic Sciences, Metropolitan University of Educational Sciences, Av. José Pedro Alessandri 774, Santiago 7760197, Chile
| | - Ulrike Kemmerling
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile
| | - Eduardo Parra
- School of Medicine, Faculty of Health Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000007, Chile
| | - Jorge Ferreira
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 8380453, Chile.
| |
Collapse
|
36
|
Manley SJ, Liu W, Welch DR. The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. J Mol Med (Berl) 2017; 95:951-963. [PMID: 28597070 DOI: 10.1007/s00109-017-1552-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
The shift by cancer cells toward aerobic glycolysis (Warburg effect) confers selective advantages by utilizing nutrients (e.g., lipids, amino acids, and nucleotides) to build biomass. Lipogenesis is generally enhanced, and its inhibition diminishes proliferation and survival. Re-expression of the metastasis suppressor KISS1 in human melanoma cells results in greater mitochondrial biogenesis, inhibition of glycolysis, utilization of beta-oxidation to provide energy, elevated oxidation of exogenous fatty acids, and increased expression of early-phase lipogenesis genes at both mRNA and protein levels. Correspondingly, the energy sensor AMPKβ is phosphorylated, resulting in inhibitory phosphorylation of acetyl-CoA carboxylase (ACC), which is linked to enhanced beta-oxidation. Furthermore, PGC1α is required for KISS1-mediated phosphorylation of ACC and metastasis suppression. Collectively, these data further support the linkages between macromolecular metabolism and metastasis. KEY MESSAGES • KISS1 alters fatty acid metabolism. • There may be connections between metastasis and metabolism. • PGC1alpha appears to be downstream mediator of KISS1 metastasis suppression.
Collapse
Affiliation(s)
- Sharon J Manley
- Department of Cancer Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 1071, Kansas City, KS, 66160, USA
| | - Wen Liu
- Department of Cancer Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 1071, Kansas City, KS, 66160, USA
- Department of Cancer Biology, Duke University Cancer Center, Durham, NC, USA
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 1071, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, Lawrence, KS, USA.
| |
Collapse
|
37
|
Esparza-Moltó PB, Nuevo-Tapioles C, Cuezva JM. Regulation of the H +-ATP synthase by IF1: a role in mitohormesis. Cell Mol Life Sci 2017; 74:2151-2166. [PMID: 28168445 PMCID: PMC5425498 DOI: 10.1007/s00018-017-2462-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/18/2023]
Abstract
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
38
|
PPAR-delta promotes survival of chronic lymphocytic leukemia cells in energetically unfavorable conditions. Leukemia 2017; 31:1905-1914. [PMID: 28050012 DOI: 10.1038/leu.2016.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
Abstract
Targeting the mechanisms that allow chronic lymphocytic leukemia (CLL) cells to survive in harsh cancer microenvironments should improve patient outcomes. The nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) sustains other cancers, and in silico analysis showed higher PPARD expression in CLL cells than normal lymphocytes and other hematologic cancers. A direct association was found between PPARδ protein levels in CLL cells and clinical score. Transgenic expression of PPARδ increased the growth and survival of CD5+ Daudi cells and primary CLL cells in stressful conditions including exhausted tissue culture media, low extracellular glucose, hypoxia and exposure to cytotoxic drugs. Glucocorticoids and synthetic PPARδ agonists up-regulated PPARD expression and also protected Daudi and primary CLL cells from metabolic stressors. Survival in low glucose was related to increased antioxidant expression, substrate utilization and mitochondrial performance, and was reversed by genetic deletion and synthetic PPARδ antagonists. These findings suggest PPARδ conditions CLL cells to survive in harsh microenvironmental conditions by reducing oxidative stress and increasing metabolic efficiency. Targeting PPARδ may be beneficial in the treatment of CLL.
Collapse
|
39
|
Zhang Q, Liang Z, Gao Y, Teng M, Niu L. Differentially expressed mitochondrial genes in breast cancer cells: Potential new targets for anti-cancer therapies. Gene 2017; 596:45-52. [DOI: 10.1016/j.gene.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023]
|
40
|
Huebbers CU, Adam AC, Preuss SF, Schiffer T, Schilder S, Guntinas-Lichius O, Schmidt M, Klussmann JP, Wiesner RJ. High glucose uptake unexpectedly is accompanied by high levels of the mitochondrial ß-F1-ATPase subunit in head and neck squamous cell carcinoma. Oncotarget 2016; 6:36172-84. [PMID: 26452026 PMCID: PMC4742169 DOI: 10.18632/oncotarget.5459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/24/2015] [Indexed: 12/13/2022] Open
Abstract
A hallmark of solid tumors is the consumption of large amounts of glucose and production of lactate, also known as Warburg-like metabolism. This metabolic phenotype is typical for aggressive tumor growth, and can be visualized by 18F-fluorodeoxyglucose (18F-FDG) uptake detected by positron emission tomography (PET). High 18F-FDG uptake inversely correlates with survival and goes along with reduced expression of the catalytic beta-subunit of the H+-ATP synthase (β-F1-ATPase) in several tumor entities analyzed so far. For this study we characterized a series of 15 head and neck squamous cell carcinoma (HNSCC) by (i) determining 18F-FDG-uptake; (ii) quantitative expression analysis of β-F1-ATPase (Complex V), NDUF-S1 (Complex I) and COX1 (Complex IV) of the mitochondrial electron transport chain (ETC), as well as Hsp60 (mitochondrial mass) and GAPDH (glycolysis) in tumor cells; (iii) sequencing of the mtDNA of representative tumor samples. Whereas high 18F-FDG-uptake also correlates with poor prognosis in HNSCC, it surprisingly is accompanied by high levels of β-F1-ATPase, but not by any of the other analyzed proteins. In conclusion, we here describe a completely new phenotype of metabolic adaptation possibly enabling those tumors with highest levels of β-F1-ATPase to rapidly proliferate even in hypoxic zones, which are typical for HNSCC.
Collapse
Affiliation(s)
- Christian U Huebbers
- Jean-Uhrmacher-Institute for Otorhinolaryngological Research, University of Köln, 50924 Köln, Germany
| | - Alexander C Adam
- Department of Pathology, Medical Faculty, University of Köln, 50924 Köln, Germany
| | - Simon F Preuss
- Department of Otolaryngology, Medical Faculty, University of Köln, 50924 Köln, Germany
| | - Theresa Schiffer
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Köln, 50931 Köln, Germany
| | - Sarah Schilder
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Köln, 50931 Köln, Germany
| | | | - Matthias Schmidt
- Department of Nuclear Medicine, Medical Faculty, University of Köln, 50924 Köln, Germany
| | - Jens P Klussmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Giessen, 35385 Giessen, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Köln, 50931 Köln, Germany.,Center for Molecular Medicine Cologne, CMMC, University of Köln, 50931 Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-associated Diseases (CECAD), 50674 Köln, Germany
| |
Collapse
|
41
|
The reduced concentration of citrate in cancer cells: An indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updat 2016; 29:47-53. [PMID: 27912843 DOI: 10.1016/j.drup.2016.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proliferating cells reduce their oxidative metabolism and rely more on glycolysis, even in the presence of O2 (Warburg effect). This shift in metabolism reduces citrate biosynthesis and diminishes intracellular acidity, both of which promote glycolysis sustaining tumor growth. Because citrate is the donor of acetyl-CoA, its reduced production favors a deacetylation state of proteins favoring resistance to apoptosis and epigenetic changes, both processes contributing to tumor aggressiveness. Citrate levels could be monitored as an indicator of cancer aggressiveness (as already shown in human prostate cancer) and/or could serve as a biomarker for response to therapy. Strategies aiming to increase cytosolic citrate should be developed and tested in humans, knowing that experimental studies have shown that administration of citrate and/or inhibition of ACLY arrest tumor growth, inhibit the expression of the key anti-apoptotic factor Mcl-1, reverse cell dedifferentiation and increase sensibility to cisplatin.
Collapse
|
42
|
Wen R, Dhar S. Turn up the cellular power generator with vitamin E analogue formulation. Chem Sci 2016; 7:5559-5567. [PMID: 30034696 PMCID: PMC6022097 DOI: 10.1039/c6sc00481d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/07/2016] [Indexed: 01/22/2023] Open
Abstract
The down regulation of the cellular power generator, adenosine triphosphate (ATP) synthase, in various cancer cells plays an obstructive role in mitochondria-mediated cell death. Cancer cells up-regulate ATPase inhibitory factor 1 (IF1) and down-regulate β-F1-ATPase of ATP synthase to enhance aerobic glycolysis for tumor growth via inhibiting total ATP synthase activity in the oxidative phosphorylation (OXPHOS) pathway. Alpha-tocopheryl succinate (α-TOS), one of the most bioactive derivatives of vitamin E, can selectively induce apoptosis in numerous cancer cells. The cancer cell selective apoptosis inducing property of α-TOS is correlated to: mitochondrial destabilization, inhibition of anti-apoptotic B cell lymphoma 2 (Bcl2) and protein kinase C (PKC), caspase 3 activation, production of mitochondrial reactive oxygen species (ROS), and inhibition of succinate dehydrogenase activity of mitochondrial complex II, and interaction with complex I to some extent. There is no report which elucidates the effects of α-TOS on the cellular power generator, complex V or ATP synthase. Here, we report the activation of mitochondrial ATP synthase using a suitably designed chemical formulation of α-TOS for the first time. A mitochondria targeted α-TOS nanoparticle formulation demonstrated enhanced cytotoxicity and mitochondrial activities in cancer cells by inhibiting Bcl2 protein and activating ATP synthase. The modulation of ATP synthase in cancer cells by the engineered formulation of α-TOS can be promising for solid cancers with compromised ATP synthase.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory , Department of Chemistry , University of Georgia , Room 679 , Athens , GA 30602 , USA . ; ; Tel: +1-706-542-1012 ; http://shanta.uga.edu/
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory , Department of Chemistry , University of Georgia , Room 679 , Athens , GA 30602 , USA . ; ; Tel: +1-706-542-1012 ; http://shanta.uga.edu/
| |
Collapse
|
43
|
García-Bermúdez J, Cuezva JM. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1167-1182. [PMID: 26876430 DOI: 10.1016/j.bbabio.2016.02.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/28/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
In this contribution we summarize most of the findings reported for the molecular and cellular biology of the physiological inhibitor of the mitochondrial H(+)-ATP synthase, the engine of oxidative phosphorylation (OXPHOS) and gate of cell death. We first describe the structure and major mechanisms and molecules that regulate the activity of the ATP synthase placing the ATPase Inhibitory Factor 1 (IF1) as a major determinant in the regulation of the activity of the ATP synthase and hence of OXPHOS. Next, we summarize the post-transcriptional mechanisms that regulate the expression of IF1 and emphasize, in addition to the regulation afforded by the protonation state of histidine residues, that the activity of IF1 as an inhibitor of the ATP synthase is also regulated by phosphorylation of a serine residue. Phosphorylation of S39 in IF1 by the action of a mitochondrial cAMP-dependent protein kinase A hampers its interaction with the ATP synthase, i.e., only dephosphorylated IF1 interacts with the enzyme. Upon IF1 interaction with the ATP synthase both the synthetic and hydrolytic activities of the engine of OXPHOS are inhibited. These findings are further placed into the physiological context to stress the emerging roles played by IF1 in metabolic reprogramming in cancer, in hypoxia and in cellular differentiation. We review also the implication of IF1 in other cellular situations that involve the malfunctioning of mitochondria. Special emphasis is given to the role of IF1 as driver of the generation of a reactive oxygen species signal that, emanating from mitochondria, is able to reprogram the nucleus of the cell to confer by various signaling pathways a cell-death resistant phenotype against oxidative stress. Overall, our intention is to highlight the urgent need of further investigations in the molecular and cellular biology of IF1 and of its target, the ATP synthase, to unveil new therapeutic strategies in human pathology. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Javier García-Bermúdez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER-ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
44
|
Tran Q, Lee H, Park J, Kim SH, Park J. Targeting Cancer Metabolism - Revisiting the Warburg Effects. Toxicol Res 2016; 32:177-93. [PMID: 27437085 PMCID: PMC4946416 DOI: 10.5487/tr.2016.32.3.177] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/21/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022] Open
Abstract
After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism.
Collapse
Affiliation(s)
- Quangdon Tran
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyunji Lee
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jisoo Park
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jongsun Park
- Department of Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
45
|
Song K, Li M, Xu X, Xuan LI, Huang G, Liu Q. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia. Oncol Lett 2016; 12:334-342. [PMID: 27347147 DOI: 10.3892/ol.2016.4600] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/08/2016] [Indexed: 12/18/2022] Open
Abstract
Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML.
Collapse
Affiliation(s)
- Kui Song
- Department of Hematology, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China; Department of Hematology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528400, P.R. China
| | - Min Li
- Department of Pharmacy, The First Affiliated Hospital of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Xiaojun Xu
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, Guangdong 528400, P.R. China; Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - L I Xuan
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guinian Huang
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
46
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, An F, Li Y. Quantitative Proteomic Analysis of Duck Ovarian Follicles Infected with Duck Tembusu Virus by Label-Free LC-MS. Front Microbiol 2016; 7:463. [PMID: 27066001 PMCID: PMC4815560 DOI: 10.3389/fmicb.2016.00463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. DTMUV infection mainly results in significant decreases in egg production in egg-laying ducks within 1–2 weeks post infection. However, information on the comparative protein expression of host tissues in response to DTMUV infection is limited. In the present study, the cellular protein response to DTMUV infection in duck ovarian follicles was analyzed using nano-flow high-performance liquid chromatography-electrospray tandem mass spectrometry. Quantitative proteomic analysis revealed 131 differentially expressed proteins, among which 53 were up regulated and 78 were down regulated. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and mitochondrial pathway. Some selected proteins that were found to be regulated in DTMUV-infected tissues were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, western blot analysis was used to validate the changes of some selected proteins on translational level. To our knowledge, this study is the first to analyze the proteomic changes in duck ovarian follicles following DTMUV infection. The protein-related information obtained in this study may be useful to understand the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Fengjiao An
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
47
|
Sengupta D, Pratx G. Imaging metabolic heterogeneity in cancer. Mol Cancer 2016; 15:4. [PMID: 26739333 PMCID: PMC4704434 DOI: 10.1186/s12943-015-0481-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023] Open
Abstract
As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.
Collapse
Affiliation(s)
- Debanti Sengupta
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Guillem Pratx
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
48
|
Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol 2015; 9:1485-93. [PMID: 25170642 DOI: 10.1097/jto.0000000000000286] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Biological features of non-small-cell lung carcinomas (NSCLCs) are important determinants for prognosis. In this study, differences in glucose metabolism between adeno- and squamous cell NSCLCs were quantified using the hypoxia and glycolysis-related markers glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), monocarboxylate transporter 1 (MCT1) and 4 (MCT4) vasculature, and 18-fluoro-2-deoxyglucose (FDG)-uptake. Relevance of these markers for disease-free survival (DFS) was analyzed. METHODS Patients with curatively resected stage I to II and resectable stage IIIA, cN0-1 adeno- or squamous cell NSCLC, of whom fresh-frozen lung resection biopsies and pretreatment FDG-positron emission tomography (PET) scans were available, were included in this study (n = 108). FDG-uptake was quantified by calculating total lesion glycolysis (TLG). Metabolic marker expression was measured by immunofluorescent staining (protein) and quantitative polymerase chain reaction (messenger ribonucleic acid [mRNA]). Patients were retrospectively evaluated for DFS. RESULTS mRNA and protein expression of metabolic markers, with the exception of MCT4, and TLG were higher in squamous cell carcinomas than in adenocarcinomas, whereas adenocarcinomas were better vascularized. Adenocarcinomas had a worse DFS compared with squamous cell carcinomas (p = 0.016) based on the potential to metastasize. High TLG was associated with a worse DFS only in adenocarcinomas. CONCLUSION Our findings suggest that the adenocarcinomas exhibit glycolysis under normoxic conditions, whereas squamous cell carcinomas are exposed to diffusion-limited hypoxia resulting in a very high anaerobic glycolytic rate. Although squamous cell carcinomas have a higher FDG-uptake, in general regarded as a poor prognostic factor, adenocarcinomas have a higher metastatic potential and a worse DFS. These findings show that FDG-PET should be interpreted in relation to histology. This may improve the prognostic potential of FDG-PET and may aid in exploiting FDG-PET in treatment strategies allied to histology.
Collapse
|
49
|
Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, Sperl W, Kofler B. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS One 2015; 10:e0129802. [PMID: 26053068 PMCID: PMC4459995 DOI: 10.1371/journal.pone.0129802] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. METHODS Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). RESULTS Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. CONCLUSIONS Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose that a ketogenic diet and/or calorie restriction should be further evaluated as a possible adjuvant therapy for patients undergoing treatment for neuroblastoma.
Collapse
Affiliation(s)
- Raphael Johannes Morscher
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
- Division of Medical Genetics, Medical University Innsbruck, Innsbruck, Tirol, Austria
- * E-mail:
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | - René Gunther Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| | | | - Roland Lang
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Neureiter
- Department of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
50
|
Isayev O, Rausch V, Bauer N, Liu L, Fan P, Zhang Y, Gladkich J, Nwaeburu CC, Mattern J, Mollenhauer M, Rückert F, Zach S, Haberkorn U, Gross W, Schönsiegel F, Bazhin AV, Herr I. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine. Oncotarget 2015; 5:5177-89. [PMID: 25015789 PMCID: PMC4148131 DOI: 10.18632/oncotarget.2120] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.
Collapse
Affiliation(s)
- Orkhan Isayev
- Molecular OncoSurgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; General and Transplantation Surgery, University Hospital Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ingrid Herr
- Molecular OncoSurgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany; General and Transplantation Surgery, University Hospital Heidelberg, Germany
| |
Collapse
|