1
|
Bhavana, Kohal R, Kumari P, Das Gupta G, Kumar Verma S. Druggable targets of protein tyrosine phosphatase Family, viz. PTP1B, SHP2, Cdc25, and LMW-PTP: Current scenario on medicinal Attributes, and SAR insights. Bioorg Chem 2024; 144:107121. [PMID: 38237392 DOI: 10.1016/j.bioorg.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Protein tyrosine phosphatases (PTPs) are the class of dephosphorylation enzymes that catalyze the removal of phosphate groups from tyrosine residues on proteins responsible for various cellular processes. Any disbalance in signal pathways mediated by PTPs leads to various disease conditions like diabetes, obesity, cancers, and autoimmune disorders. Amongst the PTP superfamily, PTP1B, SHP2, Cdc25, and LMW-PTP have been prioritized as druggable targets for developing medicinal agents. PTP1B is an intracellular PTP enzyme that downregulates insulin and leptin signaling pathways and is involved in insulin resistance and glucose homeostasis. SHP2 is involved in the RAS-MAPK pathway and T cell immunity. Cdk-cyclin complex activation occurs by Cdc25-PTPs involved in cell cycle regulation. LMW-PTPs are involved in PDGF/PDGFR, Eph/ephrin, and insulin signaling pathways, resulting in certain diseases like diabetes mellitus, obesity, and cancer. The signaling cascades of PTP1B, SHP2, Cdc25, and LMW-PTPs have been described to rationalize their medicinal importance in the pathophysiology of diabetes, obesity, and cancer. Their binding sites have been explored to overcome the hurdles in discovering target selective molecules with optimum potency. Recent developments in the synthetic molecules bearing heterocyclic moieties against these targets have been explored to gain insight into structural features. The elaborated SAR investigation revealed the effect of substituents on the potency and target selectivity, which can be implicated in the further discovery of newer medicinal agents targeting the druggable members of the PTP superfamily.
Collapse
Affiliation(s)
- Bhavana
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Rupali Kohal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Preety Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, (Punjab), India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, (Punjab), India.
| |
Collapse
|
2
|
Roussat M, Jungas T, Audouard C, Omerani S, Medevielle F, Agius E, Davy A, Pituello F, Bel-Vialar S. Control of G 2 Phase Duration by CDC25B Modulates the Switch from Direct to Indirect Neurogenesis in the Neocortex. J Neurosci 2023; 43:1154-1165. [PMID: 36596698 PMCID: PMC9962783 DOI: 10.1523/jneurosci.0825-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.
Collapse
Affiliation(s)
- Melanie Roussat
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sofiane Omerani
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Francois Medevielle
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Eric Agius
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Alice Davy
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Fabienne Pituello
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sophie Bel-Vialar
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| |
Collapse
|
3
|
Kase Y, Sato T, Okano Y, Okano H. The GADD45G/p38 MAPK/CDC25B signaling pathway enhances neurite outgrowth by promoting microtubule polymerization. iScience 2022; 25:104089. [PMID: 35497000 PMCID: PMC9042895 DOI: 10.1016/j.isci.2022.104089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
GADD45G, one of the genes containing the human-specific conserved deletion enhancer-sequence (hCONDEL), has contributed to the evolution of the human cerebrum, but its function in human neurons has not been established. Here, we show that the GADD45G/p38 MAPK/CDC25B signaling pathway promotes neurite outgrowth in human neurons by facilitating microtubule polymerization. This pathway ultimately promotes dephosphorylation of phosphorylated CRMP2 which in turn promotes microtubule assembly. We also found that GADD45G was highly expressed in developing human cerebral specimens. In addition, RK-682, which is the inhibitor of a phosphatase of p38 MAPK and was found in Streptomyces sp., was shown to promote microtubule polymerization and neurite outgrowth by enhancing p38 MAPK/CDC25B signaling. These in vitro and in vivo results indicate that GADD45G/p38 MAPK/CDC25B enhances neurite outgrowth in human neurons.
Collapse
Affiliation(s)
- Yoshitaka Kase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuji Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|
4
|
Zhao JZ, Ye Q, Wang L, Lee SC. Centrosome amplification in cancer and cancer-associated human diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188566. [PMID: 33992724 DOI: 10.1016/j.bbcan.2021.188566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/07/2022]
Abstract
Accumulated evidence from genetically modified cell and animal models indicates that centrosome amplification (CA) can initiate tumorigenesis with metastatic potential and enhance cell invasion. Multiple human diseases are associated with CA and carcinogenesis as well as metastasis, including infection with oncogenic viruses, type 2 diabetes, toxicosis by environmental pollution and inflammatory disease. In this review, we summarize (1) the evidence for the roles of CA in tumorigenesis and tumor cell invasion; (2) the association between diseases and carcinogenesis as well as metastasis; (3) the current knowledge of CA in the diseases; and (4) the signaling pathways of CA. We then give our own thinking and discuss perspectives relevant to CA in carcinogenesis and cancer metastasis in human diseases. In conclusion, investigations in this area might not only identify CA as a biological link between these diseases and the development of cancer but also prove the causal role of CA in cancer and progression under pathophysiological conditions, potentially taking cancer research into a new era.
Collapse
Affiliation(s)
- Ji Zhong Zhao
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qin Ye
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan, Shanxi, PR China
| | - Shao Chin Lee
- Institute of Biomedical Sciences and School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
5
|
Chen YC, Hsieh HH, Chang HC, Wang HC, Lin WJ, Lin JJ. CDC25B induces cellular senescence and correlates with tumor suppression in a p53-dependent manner. J Biol Chem 2021; 296:100564. [PMID: 33745968 PMCID: PMC8054198 DOI: 10.1016/j.jbc.2021.100564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 01/13/2023] Open
Abstract
The phosphatase cell division cycle 25B (Cdc25B) regulates cell cycle progression. Increased Cdc25B levels are often detected in cancer cell lines and human cancers and have been implicated in contributing to tumor growth, potentially by providing cancer cells with the ability to bypass checkpoint controls. However, the specific mechanism by which increased Cdc25B impacts tumor progression is not clear. Here we analyzed The Cancer Genome Atlas (TCGA) database and found that patients with high CDC25B expression had the expected poor survival. However, we also found that high CDC25B expression had a p53-dependent tumor suppressive effect in lung cancer and possibly several other cancer types. Looking in more detail at the tumor suppressive function of Cdc25B, we found that increased Cdc25B expression caused inhibition of cell growth in human normal fibroblasts. This effect was not due to alteration of specific cell cycle stage or inhibition of apoptosis, nor by induction of the DNA damage response. Instead, increased CDC25B expression led cells into senescence. We also found that p53 was required to induce senescence, which might explain the p53-dependent tumor suppressive function of Cdc25B. Mechanistically, we found that the Cdc25B phosphatase activity was required to induce senescence. Further analysis also found that Cdc25B stabilized p53 through binding and dephosphorylating p53. Together, this study identified a tumor-suppressive function of Cdc25B that is mediated through a p53-dependent senescence pathway.
Collapse
Affiliation(s)
- Ying-Chieh Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Hsien Hsieh
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsi-Chi Chang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Chiao Wang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Lam CW, Fong NC, Chan TYC, Lau KC, Ling TK, Mak DWY, Cheng X, Law CY. Centrosome-associated CDC25B is a novel disease-causing gene for a syndrome with cataracts, dilated cardiomyopathy, and multiple endocrinopathies. Clin Chim Acta 2020; 504:81-87. [PMID: 32027886 DOI: 10.1016/j.cca.2020.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
We describe a unique Chinese girl who presented with intrauterine growth retardation, delayed development, bilateral cataracts, hypothyroidism, growth hormone deficiency, and juvenile dilated cardiomyopathy. She was born to consanguineous parents with a history of one fetal and one infantile death in the family. She died from cardiac failure at the age of 12. In the pursuit of a diagnosis, the family was referred to the Clinics for Rare Diseases Referral and the University of Hong Kong Undiagnosed Disease Program. Whole-exome sequencing analysis revealed a homozygous non-sense variant, NM_021873:c.313G > T (p.Glu105*), in the CDC25B gene, a key regulator of the cell cycle. This variant was located in a region of homozygosity of 25 Mb on chromosome 20. Her parents and two asymptomatic sisters were confirmed to be carriers and one brother did not carry the variant. This is the first report of a natural human knockout of the CDC25B gene. Multiple endocrinopathies and fatal juvenile dilated cardiomyopathy suggests the potential for unfavorable complications in oncology patients receiving CDC25B inhibitors as an emerging targeted therapy.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | - Nai-Chung Fong
- Department of Paediatrics & Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | | | - Kwai-Cheung Lau
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Tsz-Ki Ling
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| | - Daniel Wai-Yau Mak
- Department of Paediatrics & Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China
| | - Xinqi Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chun-Yiu Law
- Division of Chemical Pathology, Department of Pathology, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
7
|
Calcium and phosphorylation double-regulating caltractin initiating target protein XPC function. Int J Biol Macromol 2019; 136:503-511. [DOI: 10.1016/j.ijbiomac.2019.06.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/22/2023]
|
8
|
Regulation of Microtubule Nucleation in Mouse Bone Marrow-Derived Mast Cells by Protein Tyrosine Phosphatase SHP-1. Cells 2019; 8:cells8040345. [PMID: 30979083 PMCID: PMC6523986 DOI: 10.3390/cells8040345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
Collapse
|
9
|
Tao L, Ma J, Han L, Xu H, Zeng Y, Yehui L, Li W, Ma K, Xiao B, Chen L. Early postmortem interval estimation based on Cdc25b mRNA in rat cardiac tissue. Leg Med (Tokyo) 2018; 35:18-24. [PMID: 30237007 DOI: 10.1016/j.legalmed.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/15/2018] [Accepted: 09/09/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE The postmortem interval (PMI) is the amount of time that has elapsed since the time of death. Over the years, many approaches have been developed to assess PMI, but their time frame of applicability has been only days to weeks. Our present pilot study aimed to find the sensitive mRNA marker if the degradation of mRNA could be used to estimate the early postmortem interval (up to 24 h). METHODS In our study, we use the microarray to screen 217 mRNAs markers of rat cardiac tissue. Then, real-time fluorescent quantitative PCR (qPCR) was used to validate of the candidate markers at 7 time points within 24 h and at temperatures of 25 °C and 35 °C. Another 27 rats were then used to verify the model. RESULTS Among all of the candidate markers, △Cq (cell division cycle 25 homolog B(Cdc25b)) had the best correlation coefficient with early postmortem interval and was used to build a new model using the R software. The results of verification testing demonstrated that the error rate was less than 15%, demonstrating the high predictive power of our mathematical model. CONCLUSION In this study, Cdc25b was found to be the sensitive marker to estimate early postmortem interval, and Rpl27 was found to be suitable for use as the endogenous control. Our work provided new leads for molecular approaches to early postmortem interval estimation using the significant mRNA markers established here.
Collapse
Affiliation(s)
- Li Tao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China
| | - Jianlong Ma
- Shenzhen Institute of Criminal Science and Technology, Investigation Department of Shenzhen Public Security Bureau, Key Laboratory of Forensic Pathology, Ministry of Public Security, Shenzhen, 518000,China
| | - Liujun Han
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China
| | - Hongmei Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China
| | - Yan Zeng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China; Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lyu Yehui
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China; Shanghai University of Medicine & Health Sciences, 279 ZhouzhuHwy, Shanghai 201318, China
| | - Wencan Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China; Forensic Lab, Criminal Science and Technology Institute, Pudong Branch, Shanghai Public Security Bureau, 255 Yanzhong Road, Shanghai 200125, China
| | - Kaijun Ma
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai 200082, China
| | - Bi Xiao
- Forensic Lab, Criminal Science and Technology Institute, Shanghai Public Security Bureau, 803 North Zhongshan Road, Shanghai 200082, China.
| | - Long Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131Dongan Road, Shanghai 200032, China.
| |
Collapse
|
10
|
Collin R, Doyon K, Mullins-Dansereau V, Karam M, Chabot-Roy G, Hillhouse EE, Orthwein A, Lesage S. Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion. Immunogenetics 2018; 70:495-509. [PMID: 29696366 DOI: 10.1007/s00251-018-1060-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4-CD8- double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.
Collapse
Affiliation(s)
- Roxanne Collin
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Kathy Doyon
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Victor Mullins-Dansereau
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada.,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Geneviève Chabot-Roy
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Erin E Hillhouse
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Alexandre Orthwein
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada. .,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada. .,Department of Oncology, McGill University, Montréal, Québec, H4A 3J1, Canada.
| | - Sylvie Lesage
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada. .,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
11
|
Rogne M, Svaerd O, Madsen-Østerbye J, Hashim A, Tjønnfjord GE, Staerk J. Cytokinesis arrest and multiple centrosomes in B cell chronic lymphocytic leukaemia. J Cell Mol Med 2018. [PMID: 29516674 PMCID: PMC5908127 DOI: 10.1111/jcmm.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis failure leads to the emergence of tetraploid cells and multiple centrosomes. Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in adults and is characterized by clonal B cell expansion. Here, we show that a significant number of peripheral blood CLL cells are arrested in cytokinesis and that this event occurred after nuclear envelope reformation and before cytoplasmic abscission. mRNA expression data showed that several genes known to be crucial for cell cycle regulation, checkpoint and centromere function, such as ING4, ING5, CDKN1A and CDK4, were significantly dysregulated in CLL samples. Our results demonstrate that CLL cells exhibit difficulties in completing mitosis, which is different from but may, at least in part, explain the previously reported accumulation of CLL cells in G0/1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Oksana Svaerd
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Julia Madsen-Østerbye
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Adnan Hashim
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Judith Staerk
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Cui C, Zang T, Cao Y, Qin X, Zhang X. CDC25B is involved in the centrosomal microtubule nucleation in two-cell stage mouse embryos. Dev Growth Differ 2016; 58:714-726. [PMID: 27885657 DOI: 10.1111/dgd.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/21/2023]
Abstract
CDC25B has been demonstrated to activate the complex of CDK1/Cyclin B and trigger mitosis. We have recently demonstrated that p-CDC25B-Ser351 is located at the centrosomes of mouse oocytes and contributes to the release of mouse oocytes from prophase I arrest. But much less is known about CDC25B function at the centrosome in two-cell stage mouse embryos. Here we investigate the effect of CDC25B regulating the microtubules nucleation. Microinjection of anti-CDC25B antibody caused aberrant microtubule nucleation. In addition, embryos injected with anti-CDC25B antibody showed the marked absence of microtubule repolymerization and Nek2 foci after nocodazole washout. CDC25B overexpression caused microtubule-organizing center (MTOC) overduplication. Moreover, overexpression of CDC25B-▵65 mutant resulted in the loss of CDC25B localization in the perinuclear region and made CDC25B less efficient in inducing mitosis. We additionally identified that CDC25B is responsible for the pericentrin localization to the MTOC. Our data suggest an important role of CDC25B for microtubule nucleation and organization. N-terminal of CDC25B is required for regulating the microtubule dynamics and mitotic function.
Collapse
Affiliation(s)
- Cheng Cui
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Tianxia Zang
- Department of Endocrinology, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110034, Liaoning, China
| | - Yu Cao
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xin Qin
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xuewei Zhang
- Department of Physiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| |
Collapse
|
13
|
Evain-Bana E, Schiavo L, Bour C, Lanfranchi DA, Berardozzi S, Ghirga F, Bagrel D, Botta B, Hanquet G, Mori M. Synthesis, biological evaluation and molecular modeling studies on novel quinonoid inhibitors of CDC25 phosphatases. J Enzyme Inhib Med Chem 2016; 32:113-118. [PMID: 27774816 PMCID: PMC6010111 DOI: 10.1080/14756366.2016.1238364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cell division cycle 25 phosphatases (CDC25A, B, and C; E.C. 3.1.3.48) are key regulator of the cell cycle in human cells. Their aberrant expression has been associated with the insurgence and development of various types of cancer, and with a poor clinical prognosis. Therefore, CDC25 phosphatases are a valuable target for the development of small molecule inhibitors of therapeutic relevance. Here, we used an integrated strategy mixing organic chemistry with biological investigation and molecular modeling to study novel quinonoid derivatives as CDC25 inhibitors. The most promising molecules proved to inhibit CDC25 isoforms at single digit micromolar concentration, becoming valuable tools in chemical biology investigations and profitable leads for further optimization.
Collapse
Affiliation(s)
- Emilie Evain-Bana
- a Pôle Chimie Et Physique Moléculaire, UMR CNRS 7565, Laboratoire Structure et Réactivite des Systèmes Moléculaires Complexes , Université de Lorraine , Metz , France
| | - Lucie Schiavo
- b Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Laboratoire de Synthèse et Catalyze (UMR CNRS 7509) , Université de Strasbourg , Strasbourg , France
| | | | - Don Antoine Lanfranchi
- b Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Laboratoire de Synthèse et Catalyze (UMR CNRS 7509) , Université de Strasbourg , Strasbourg , France
| | - Simone Berardozzi
- d Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Roma , Rome , Italy.,e Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| | - Francesca Ghirga
- e Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| | - Denyse Bagrel
- a Pôle Chimie Et Physique Moléculaire, UMR CNRS 7565, Laboratoire Structure et Réactivite des Systèmes Moléculaires Complexes , Université de Lorraine , Metz , France
| | - Bruno Botta
- d Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Roma , Rome , Italy
| | - Gilles Hanquet
- b Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Laboratoire de Synthèse et Catalyze (UMR CNRS 7509) , Université de Strasbourg , Strasbourg , France
| | - Mattia Mori
- e Istituto Italiano di Tecnologia , Center for Life Nano Science@Sapienza , Rome , Italy
| |
Collapse
|
14
|
Ligand-based chemoinformatic discovery of a novel small molecule inhibitor targeting CDC25 dual specificity phosphatases and displaying in vitro efficacy against melanoma cells. Oncotarget 2016; 6:40202-22. [PMID: 26474275 PMCID: PMC4741889 DOI: 10.18632/oncotarget.5473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
CDC25 phosphatases are important regulators of the cell cycle and represent promising targets for anticancer drug discovery. We recently identified NSC 119915 as a new quinonoid CDC25 inhibitor with potent anticancer activity. In order to discover more active analogs of NSC 119915, we performed a range of ligand-based chemoinformatic methods against the full ZINC drug-like subset and the NCI lead-like set. Nine compounds (3, 5-9, 21, 24, and 25) were identified with Ki values for CDC25A, -B and -C ranging from 0.01 to 4.4 μM. One of these analogs, 7, showed a high antiproliferative effect on human melanoma cell lines, A2058 and SAN. Compound 7 arrested melanoma cells in G2/M, causing a reduction of the protein levels of CDC25A and, more consistently, of CDC25C. Furthermore, an intrinsic apoptotic pathway was induced, which was mediated by ROS, because it was reverted in the presence of antioxidant N-acetyl-cysteine (NAC). Finally, 7 decreased the protein levels of phosphorylated Akt and increased those of p53, thus contributing to the regulation of chemosensitivity through the control of downstream Akt pathways in melanoma cells. Taken together, our data emphasize that CDC25 could be considered as a possible oncotarget in melanoma cells and that compound 7 is a small molecule CDC25 inhibitor that merits to be further evaluated as a chemotherapeutic agent for melanoma, likely in combination with other therapeutic compounds.
Collapse
|
15
|
David L, Fernandez-Vidal A, Bertoli S, Grgurevic S, Lepage B, Deshaies D, Prade N, Cartel M, Larrue C, Sarry JE, Delabesse E, Cazaux C, Didier C, Récher C, Manenti S, Hoffmann JS. CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal 2016; 9:ra90. [PMID: 27625304 DOI: 10.1126/scisignal.aac9704] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognostic marker associated with shorter overall, event-free, and relapse-free survivals and determined that the expression of CHEK1 can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression of DNA replication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoring CHEK1 expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.
Collapse
Affiliation(s)
- Laure David
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Anne Fernandez-Vidal
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Sarah Bertoli
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059 Toulouse, Cedex 9, France
| | - Srdana Grgurevic
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Benoît Lepage
- Université Paul Sabatier, Toulouse, France. Département d'Epidémiologie, Economie de la Santé et Santé Publique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1027, Epidémiologie et analyses en santé publique: Risques, maladies chroniques et handicaps, Faculté de médecine, Toulouse, France
| | - Dominique Deshaies
- Département d'Epidémiologie, Economie de la Santé et Santé Publique, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Naïs Prade
- Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Maëlle Cartel
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Clément Larrue
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Jean-Emmanuel Sarry
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Eric Delabesse
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Christophe Cazaux
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Christine Didier
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France
| | - Christian Récher
- Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France. Service d'hématologie, Institut Universitaire du Cancer Toulouse-Oncopole, 1 avenue Irène Joliot-Curie, 31059 Toulouse, Cedex 9, France.
| | - Stéphane Manenti
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France.
| | - Jean-Sébastien Hoffmann
- Equipe Labellisée, La Ligue Contre Le Cancer, Toulouse, France. Laboratoire d'Excellence Toulouse Cancer Labex TOUCAN, Cancer Research Center of Toulouse, Inserm U1037, CNRS ERL5294, Toulouse, France. Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
16
|
Alchab F, Sibille E, Ettouati L, Bana E, Bouaziz Z, Mularoni A, Monniot E, Bagrel D, Jose J, Le Borgne M, Chaimbault P. Screening of indeno[1,2-b]indoloquinones by MALDI-MS: a new set of potential CDC25 phosphatase inhibitors brought to light. J Enzyme Inhib Med Chem 2016; 31:25-32. [PMID: 27362889 DOI: 10.1080/14756366.2016.1201480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Quinones and quinones-like compounds are potential candidates for the inhibition of CDC25 phosphatases. The combination of MALDI-MS analyses and biological studies was used to develop a rapid screening of a targeted library of indeno[1,2-b]indoloquinone derivatives. The screening protocol using MALDI-TOFMS and MALDI-FTICRMS highlighted four new promising candidates. Biological investigations showed that only compounds 5c-f inhibited CDC25A and -C phosphatases, with IC50 values around the micromolar range. The direct use of a screening method based on MALDI-MS technology allowed achieving fast scaffold identification of a new class of potent inhibitors of CDC25 phosphatases. These four molecules appeared as novel molecules of a new class of CDC25 inhibitors. Assessment of 5c-e in an MRC5 proliferation assay provided an early indicator of toxicity to mammalian cells. Compound 5d seems the most promising hit for developing new CDC25 inhibitors.
Collapse
Affiliation(s)
- Faten Alchab
- a Université de Lyon, Université Lyon 1, Faculté de Pharmacie ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry , SFR Santé Lyon-Est CNRS UMS3453 INSERM US7, Lyon cedex 8 , France.,b Tishreen University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Drug Monitoring, Organic Chemistry Laboratory , Boulevard Aleppo , Latakia , Syria
| | - Estelle Sibille
- c Université de Lorraine, Laboratoire de Chimie et de Physique Approche Multiéchelle des Milieux Complexes (LCP-A2MC), UMR CNRS 7565, Institut Jean Barriol FR2843 , Metz cedex 3 , France
| | - Laurent Ettouati
- a Université de Lyon, Université Lyon 1, Faculté de Pharmacie ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry , SFR Santé Lyon-Est CNRS UMS3453 INSERM US7, Lyon cedex 8 , France
| | - Emilie Bana
- d Université de Lorraine, Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR CNRS 7565, Institut Jean Barriol FR2843 , Metz cedex 3 , France , and
| | - Zouhair Bouaziz
- a Université de Lyon, Université Lyon 1, Faculté de Pharmacie ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry , SFR Santé Lyon-Est CNRS UMS3453 INSERM US7, Lyon cedex 8 , France
| | - Angélique Mularoni
- a Université de Lyon, Université Lyon 1, Faculté de Pharmacie ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry , SFR Santé Lyon-Est CNRS UMS3453 INSERM US7, Lyon cedex 8 , France
| | - Elodie Monniot
- a Université de Lyon, Université Lyon 1, Faculté de Pharmacie ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry , SFR Santé Lyon-Est CNRS UMS3453 INSERM US7, Lyon cedex 8 , France
| | - Denyse Bagrel
- d Université de Lorraine, Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR CNRS 7565, Institut Jean Barriol FR2843 , Metz cedex 3 , France , and
| | - Joachim Jose
- e Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westfälische Wilhelms-University Münster , Münster , Germany
| | - Marc Le Borgne
- a Université de Lyon, Université Lyon 1, Faculté de Pharmacie ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry , SFR Santé Lyon-Est CNRS UMS3453 INSERM US7, Lyon cedex 8 , France
| | - Patrick Chaimbault
- d Université de Lorraine, Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR CNRS 7565, Institut Jean Barriol FR2843 , Metz cedex 3 , France , and
| |
Collapse
|
17
|
Lats1 suppresses centrosome overduplication by modulating the stability of Cdc25B. Sci Rep 2015; 5:16173. [PMID: 26530630 PMCID: PMC4632022 DOI: 10.1038/srep16173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Numerical aberration of the centrosome results in chromosome missegregation, eventually leading to chromosomal instability, a hallmark of human tumor malignancy. Large tumor suppressors 1 and 2 (Lats1 and Lats2) are central kinases in the Hippo pathway and regulate development and tumorigenesis by coordinating the balance between cell proliferation and apoptosis. Importantly, Lats1 and Lats2 also play pivotal roles in cell cycle checkpoint and mitosis. The Lats proteins localize at centrosomes, but their centrosomal functions remain elusive. Here, we generated Lats1-null knockout (Lats1−/−) mice and established Lats1-null mouse embryonic fibroblasts (MEFs). In Lats1−/− MEFs, centrosomes were markedly overduplicated, leading to severe mitotic defects such as chromosome missegregation and cytokinesis failure. We also found that Lats1 physically interacts with Cdc25B phosphatase that localizes both at the centrosome and in the nucleus and regulates the linkage between the centrosome cycle and mitotic progression. Although Lats1 did not phosphorylate Cdc25B, loss of Lats1 in MEFs caused abnormal accumulation of Cdc25B protein and hyperactivation of Cdk2 toward nucleophosmin (NPM/B23), one of the licensing factors involved in centriole duplication. Taken together, these data suggest that Lats1 regulates Cdc25B protein level and subsequent Cdk2 activity, thereby suppressing centrosome overduplication during interphase.
Collapse
|
18
|
Agius E, Bel-Vialar S, Bonnet F, Pituello F. Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell Tissue Res 2014; 359:201-13. [PMID: 25260908 DOI: 10.1007/s00441-014-1998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Abstract
Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.
Collapse
Affiliation(s)
- Eric Agius
- Université Toulouse 3; Centre de Biologie du Développement (CBD), 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
19
|
Thomas Y, Peter M, Mechali F, Blanchard JM, Coux O, Baldin V. Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle 2014; 13:3867-77. [PMID: 25558830 PMCID: PMC4615109 DOI: 10.4161/15384101.2014.972882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022] Open
Abstract
CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein βTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.
Collapse
Affiliation(s)
- Yann Thomas
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
| | - Marion Peter
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
- Institut de Génétique Moléculaire de Montpellier (IGMM); Center National de la Recherche Scientifique (CNRS); Montpellier, France
| | - Francisca Mechali
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| | - Jean-Marie Blanchard
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
- Institut de Génétique Moléculaire de Montpellier (IGMM); Center National de la Recherche Scientifique (CNRS); Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| |
Collapse
|
20
|
Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, Dicato M, Diederich M, Bagrel D. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog 2013; 54:229-41. [PMID: 24155226 DOI: 10.1002/mc.22094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 11/11/2022]
Abstract
Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure.
Collapse
Affiliation(s)
- Emilie Bana
- Laboratoire "Structure et Réactivité des Systèmes Moléculaires Complexes, UMR CNRS 7565, Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, Metz, France; Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reikvam H, Tamburini J, Skrede S, Holdhus R, Poulain L, Ersvaer E, Hatfield KJ, Bruserud Ø. Antileukaemic effect of PI3K-mTOR inhibitors in acute myeloid leukaemia-gene expression profiles reveal CDC25B expression as determinate of pharmacological effect. Br J Haematol 2013; 164:200-11. [PMID: 24383842 DOI: 10.1111/bjh.12611] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/06/2013] [Indexed: 01/10/2023]
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous malignancy. Intracellular signalling through the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway is important for regulation of cellular growth and metabolism, and inhibitors of this pathway is considered for AML treatment. Primary human AML cells, derived from 96 consecutive adult patients, were examined. The effects of two mTOR inhibitors (rapamycin, temsirolimus) and two PI3K inhibitors (GDC-0941, 3-methyladenine) were studied, and we investigated cytokine-dependent proliferation, regulation of apoptosis and global gene expression profiles. Only a subset of patients demonstrated strong antiproliferative effects of PI3K-mTOR inhibitors. Unsupervised hierarchical clustering analysis identified two main clusters of patients; one subset showing weak or absent antiproliferative effects (59%) and another group showing a strong growth inhibition for all drugs and concentrations examined (41%). Global gene expression analyses showed that patients with AML cell resistance against PI3K-mTOR inhibitors showed increased mRNA expression of the CDC25B gene that encodes the cell cycle regulator Cell Division Cycle 25B. The antileukaemic effect of PI3K-Akt-mTOR inhibition varies between patients, and resistance to these inhibitors is associated with the expression of the cell cycle regulator CDC25B, which is known to crosstalk with the PI3K-Akt-mTOR pathway and mediate rapamycin resistance in experimental models.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway; Division of Haematology, Department of Medicine, Haukeland University, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fodrin in centrosomes: implication of a role of fodrin in the transport of gamma-tubulin complex in brain. PLoS One 2013; 8:e76613. [PMID: 24098540 PMCID: PMC3788121 DOI: 10.1371/journal.pone.0076613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Gamma-tubulin is the major protein involved in the nucleation of microtubules from centrosomes in eukaryotic cells. It is present in both cytoplasm and centrosome. However, before centrosome maturation prior to mitosis, gamma-tubulin concentration increases dramatically in the centrosome, the mechanism of which is not known. Earlier it was reported that cytoplasmic gamma-tubulin complex isolated from goat brain contains non-erythroid spectrin/fodrin. The major role of erythroid spectrin is to help in the membrane organisation and integrity. However, fodrin or non-erythroid spectrin has a distinct pattern of localisation in brain cells and evidently some special functions over its erythroid counterpart. In this study, we show that fodrin and γ-tubulin are present together in both the cytoplasm and centrosomes in all brain cells except differentiated neurons and astrocytes. Immunoprecipitation studies in purified centrosomes from brain tissue and brain cell lines confirm that fodrin and γ-tubulin interact with each other in centrosomes. Fodrin dissociates from centrosome just after the onset of mitosis, when the concentration of γ-tubulin attains a maximum at centrosomes. Further it is observed that the interaction between fodrin and γ-tubulin in the centrosome is dependent on actin as depolymerisation of microfilaments stops fodrin localization. Image analysis revealed that γ-tubulin concentration also decreased drastically in the centrosome under this condition. This indicates towards a role of fodrin as a regulatory transporter of γ-tubulin to the centrosomes for normal progression of mitosis.
Collapse
|
23
|
Boutros R, Mondesert O, Lorenzo C, Astuti P, McArthur G, Chircop M, Ducommun B, Gabrielli B. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PLoS One 2013; 8:e67822. [PMID: 23840880 PMCID: PMC3698172 DOI: 10.1371/journal.pone.0067822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/21/2013] [Indexed: 12/23/2022] Open
Abstract
CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 "foci". These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1) at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability.
Collapse
Affiliation(s)
- Rose Boutros
- Princess Alexandra Hospital, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Collins JC, Armstrong A, Chapman KL, Cordingley HC, Jaxa-Chamiec AA, Judd KE, Mann DJ, Scott KA, Tralau-Stewart CJ, Low CMR. Prospective use of molecular field points in ligand-based virtual screening: efficient identification of new reversible Cdc25 inhibitors. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00047h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Karakaya K, Herbst F, Ball C, Glimm H, Krämer A, Löffler H. Overexpression of EVI1 interferes with cytokinesis and leads to accumulation of cells with supernumerary centrosomes in G0/1 phase. Cell Cycle 2012; 11:3492-503. [PMID: 22894935 DOI: 10.4161/cc.21801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ectopic viral integration site 1 (EVI1), a transcription factor frequently overexpressed in myeloid neoplasias, has been implicated in the generation of malignancy-associated centrosomal aberrations and chromosomal instability. Here, we sought to investigate the underlying cause of centrosome amplification in EVI1-overexpressing cells. We found that overexpression of EVI1-HA in U2OS cells induced supernumerary centrosomes, which were consistently associated with enlarged nuclei or binuclear cells. Live cell imaging experiments identified cytokinesis failure as the underlying cause of this phenotype. In accordance with previous reports, EVI1 overexpression induced a partial cell cycle arrest in G0/1 phase, accompanied by elevated cyclin D1 and p21 levels, reduced Cdk2 activity and activation of the p53 pathway. Supernumerary centrosomes predominantly occurred in resting cells, as identified by low levels of the proliferation marker Ki-67, leading to the conclusion that they result from tetraploidization after cytokinesis failure and are confined to G0/1-arrested tetraploid cells. Depletion of p53 using siRNA revealed that further polyploidization of these cells was inhibited by the p53-dependent tetraploidy checkpoint.
Collapse
Affiliation(s)
- Kadin Karakaya
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg; Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Löffler H, Fechter A, Liu FY, Poppelreuther S, Krämer A. DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene 2012; 32:2963-72. [PMID: 22824794 DOI: 10.1038/onc.2012.310] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Centrosome amplification is a frequent phenomenon in malignancies and may facilitate tumorigenesis by promoting chromosomal instability. On the other hand, a centrosome inactivation checkpoint comprising centrosome amplification leading to elimination of cells by mitotic catastrophe has been described in response to DNA damage by ionizing radiation or cytostatic drugs. So far, the exact nature of DNA damage-induced centrosome amplification, which might be overduplication or fragmentation of existing centrosomes, has been controversial. To solve this controversy, we have established a method to distinguish between these two possibilities using A549 cells expressing photoconvertible CETN2-Dendra2. In response to various DNA-damaging treatments, centrosome amplification but not fragmentation was observed. Moreover, centrosome amplification was preceded by excessive formation of centrin-containing centriolar satellites, which were identified as de novo-generated atypical centrin dots staining positive for centriolar satellite markers but negative or only weakly positive for other established centrosomal markers, and which could be verified as centriolar satellites using immunogold electron microscopy. In line with this notion, disruption of dynein-mediated recruitment of centrosomal proteins via centriolar satellites suppressed centrosome amplification after DNA damage, and excessive formation of centriolar satellites could be inhibited by interference with Chk1, a known mediator of centrosome amplification in response to DNA damage. In conclusion, we provide a model in which a Chk1-mediated DNA damage checkpoint induces excessive formation of centriolar satellites constituting assembly platforms for centrosomal proteins, which subsequently leads to centrosome amplification.
Collapse
Affiliation(s)
- H Löffler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Reboutier D, Troadec MB, Cremet JY, Fukasawa K, Prigent C. Nucleophosmin/B23 activates Aurora A at the centrosome through phosphorylation of serine 89. ACTA ACUST UNITED AC 2012; 197:19-26. [PMID: 22451695 PMCID: PMC3317798 DOI: 10.1083/jcb.201107134] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aurora A, which is known to be activated by autophosphorylation at Thr288, is also locally activated during centrosomal maturation by nucleophosmin-mediated phosphorylation at Ser89. Aurora A (AurA) is a major mitotic protein kinase involved in centrosome maturation and spindle assembly. Nucleophosmin/B23 (NPM) is a pleiotropic nucleolar protein involved in a variety of cellular processes including centrosome maturation. In the present study, we report that NPM is a strong activator of AurA kinase activity. NPM and AurA coimmunoprecipitate and colocalize to centrosomes in G2 phase, where AurA becomes active. In contrast with previously characterized AurA activators, NPM does not trigger autophosphorylation of AurA on threonine 288. NPM induces phosphorylation of AurA on serine 89, and this phosphorylation is necessary for activation of AurA. These data were confirmed in vivo, as depletion of NPM by ribonucleic acid interference eliminated phosphorylation of CDC25B on S353 at the centrosome, indicating a local loss of AurA activity. Our data demonstrate that NPM is a strong activator of AurA kinase activity at the centrosome and support a novel mechanism of activation for AurA.
Collapse
Affiliation(s)
- David Reboutier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR6290, 35043 Rennes, France
| | | | | | | | | |
Collapse
|
28
|
Deng X, Feng C, Wang EH, Zhu YQ, Cui C, Zong ZH, Li GS, Liu C, Meng J, Yu BZ. Influence of proline-rich inositol polyphosphate 5-phosphatase, on early development of fertilized mouse eggs, via inhibition of phosphorylation of Akt. Cell Prolif 2011; 44:156-65. [PMID: 21401757 DOI: 10.1111/j.1365-2184.2011.00743.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Proline-rich inositol polyphosphate 5-phosphatase (PIPP) is one of the signal-modifying enzymes that play pivotal regulatory roles in PI3K signalling pathway. The aim of this study was to determine the role of PIPP in early development of fertilized mouse eggs, via inhibition of Akt activity and subsequent downstream signalling events. MATERIALS AND METHODS The mRNA transcript levels of endogenous PIPP and Akt1, Akt2, Akt3 were detected in G(1) , S, G(2) and M phases of fertilized mouse eggs by RT-PCR. Levels of exogenous PIPP, phosphorylated Akt at Ser473, dephosphorylated cdc2 at Tyr15 and levels of CCNB1, were detected respectively by immunoblotting. Changes in Akt localization were observed by fluoroimmunoassay; meanwhile, changes in activity of Akt and its downstream MPF were detected. Percentages of cells undergoing division were determined by counting, using a dissecting microscope. RESULTS PIPP and Akt1 transcripts were detectable in G(1), S, G(2) and M phases of fertilized mouse eggs, but Akt2 and Akt3 were not. We also observed that overexpression of PIPP in fertilized eggs decreased expression of phosphorylated Akt at Ser473 and altered membrane localization of phosphorylated Akt at Ser473 specifically. Furthermore, overexpression of PIPP resulted in decreases in mitosis-phase promoting factor activity, level of dephosphorylated cdc2 at Tyr15 and cleavage rate of fertilized mouse eggs. CONCLUSIONS Our data suggest, for the first time, that PIPP may affect development of fertilized mouse eggs by inhibition of level of phosphorylated Akt at Ser473 and subsequent inhibition of downstream signal cascades.
Collapse
Affiliation(s)
- X Deng
- Experimental Center of the Functional Subjects, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biol Cell 2011; 103:55-68. [PMID: 21091437 PMCID: PMC3025493 DOI: 10.1042/bc20100111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background information. CDC25 (cell division cycle 25) phosphatases function as activators of CDK (cyclin-dependent kinase)–cyclin complexes to regulate progression through the CDC. We have recently identified a pool of CDC25B at the centrosome of interphase cells that plays a role in regulating centrosome numbers. Results. In the present study, we demonstrate that CDC25B forms a close association with Ctn (centrin) proteins at the centrosome. This interaction involves both N- and C-terminal regions of CDC25B and requires CDC25B binding to its CDK–cyclin substrates. However, the interaction is not dependent on the enzyme activity of CDC25B. Although CDC25B appears to bind indirectly to Ctn2, this association is pertinent to CDC25B localization at the centrosome. We further demonstrate that CDC25B plays a role in maintaining the overall integrity of the centrosome, by regulating the centrosome levels of multiple centrosome proteins, including that of Ctn2. Conclusions. Our results therefore suggest that CDC25B associates with a Ctn2-containing multiprotein complex in the cytoplasm, which targets it to the centrosome, where it plays a role in maintaining the centrosome levels of Ctn2 and a number of other centrosome components.
Collapse
|
30
|
Young LM, Pagano M. Cdc25 phosphatases: differential regulation by ubiquitin-mediated proteolysis. Cell Cycle 2011; 9:4613-4. [PMID: 21260951 DOI: 10.4161/cc.9.23.13934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Musgrove EA, Sutherland RL. RB in breast cancer: differential effects in estrogen receptor-positive and estrogen receptor-negative disease. Cell Cycle 2011; 9:4607. [PMID: 21260944 DOI: 10.4161/cc.9.23.13889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
32
|
Franckhauser C, Mamaeva D, Heron-Milhavet L, Fernandez A, Lamb NJC. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells. PLoS One 2010; 5:e11798. [PMID: 20668692 PMCID: PMC2909920 DOI: 10.1371/journal.pone.0011798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/06/2010] [Indexed: 12/24/2022] Open
Abstract
Background The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. Methodology/Principal Findings Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD) binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. Conclusions/Significance These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C/cdk1 multi-site auto amplification loop is implausible.
Collapse
Affiliation(s)
| | | | | | | | - Ned J. C. Lamb
- Cell Biology Unit, Institute de Genetique Humain, CNRS-UPR1142, Montpellier, France
- * E-mail:
| |
Collapse
|
33
|
Bugler B, Schmitt E, Aressy B, Ducommun B. Unscheduled expression of CDC25B in S-phase leads to replicative stress and DNA damage. Mol Cancer 2010; 9:29. [PMID: 20128929 PMCID: PMC2825247 DOI: 10.1186/1476-4598-9-29] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/04/2010] [Indexed: 01/18/2023] Open
Abstract
Background CDC25B phosphatase is a cell cycle regulator that plays a critical role in checkpoint control. Up-regulation of CDC25B expression has been documented in a variety of human cancers, however, the relationships with the alteration of the molecular mechanisms that lead to oncogenesis still remain unclear. To address this issue we have investigated, in model cell lines, the consequences of unscheduled and elevated CDC25B levels. Results We report that increased CDC25B expression leads to DNA damage in the absence of genotoxic treatment. H2AX phosphorylation is detected in S-phase cells and requires active replication. We also report that CDC25B expression impairs DNA replication and results in an increased recruitment of the CDC45 replication factor onto chromatin. Finally, we observed chromosomal aberrations that are also enhanced upon CDC25B expression. Conclusion Overall, our results demonstrate that a moderate and unscheduled increase in CDC25B level, as observed in a number of human tumours, is sufficient to overcome the S-phase checkpoint efficiency thus leading to replicative stress and genomic instability.
Collapse
|
34
|
Cavelier C, Didier C, Prade N, Mansat-De Mas V, Manenti S, Recher C, Demur C, Ducommun B. Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res 2009; 69:8652-61. [PMID: 19843865 DOI: 10.1158/0008-5472.can-09-0939] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genomic instability in solid tumors participates in the oncogenetic process and is associated with the activation of the DNA damage response pathway. Here, we report the activation of the constitutive DNA damage and checkpoint pathway associated with complex karyotypes in samples from patients with acute myeloid leukemia (AML). We show that antagonizing CHK1 kinase with a small inhibitory compound or by RNA interference strongly reduces the clonogenic properties of high-DNA damage level AML samples, particularly those with complex karyotypes. Moreover, we observe a beneficial effect of CHK1 inhibition in high-DNA damage level AML samples treated with 1-beta-d-arabinofuranosylcytosine. In contrast, CHK1 inhibition has no effect on the clonogenic properties of normal hematopoietic progenitors. All together, our results indicate that CHK1 inhibition may represent an attractive therapeutic opportunity in AML with complex karyotype.
Collapse
Affiliation(s)
- Cindy Cavelier
- Université de Toulouse, LBCMCP, Centre National de la Recherche Scientifique, LBCMCP-UMR5088, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
SADB phosphorylation of γ-tubulin regulates centrosome duplication. Nat Cell Biol 2009; 11:1081-92. [DOI: 10.1038/ncb1921] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/01/2009] [Indexed: 12/24/2022]
|
36
|
Kolb S, Mondésert O, Goddard ML, Jullien D, Villoutreix BO, Ducommun B, Garbay C, Braud E. Development of novel thiazolopyrimidines as CDC25B phosphatase inhibitors. ChemMedChem 2009; 4:633-48. [PMID: 19212959 DOI: 10.1002/cmdc.200800415] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of CDC25 phosphatase inhibitors is an interesting approach toward new antitumor agents, as CDC25 play key roles in cell-cycle regulation and are overexpressed in numerous cancers. We previously reported a novel compound belonging to the thiazolopyrimidine family that inhibits CDC25 activity with an IC(50) value of 13 microM and displays cytotoxic properties against HeLa cells. Structural modifications were subsequently conducted on this new pharmacophore which led to a library of 45 thiazolopyrimidines. Regarding the in vitro effects, 14 compounds inhibit CDC25B with IC(50)<20 microM, with the most efficient inhibitor 44 improving the potency to 4.5 microM. Steady-state kinetics were performed and showed a mixed inhibition pattern for all tested compounds. Furthermore, 44 was able to revert the bypass of genotoxicity-induced G(2) arrest upon CDC25B overexpression, indicating that this compound targets the dual-specificity phosphatase in cultured cells. Finally, the cytotoxic activities of the compounds were determined against two human cancer cell lines. The results indicate that the prostatic LNCaP cell line is more sensitive to these derivatives than the pancreatic adenocarcinoma MiaPaCa-2 line. With its interesting enzymatic and cellular properties, compound 44 appears to be a promising CDC25B inhibitor for further development.
Collapse
|
37
|
Lobjois V, Jullien D, Bouché JP, Ducommun B. The polo-like kinase 1 regulates CDC25B-dependent mitosis entry. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:462-8. [PMID: 19185590 DOI: 10.1016/j.bbamcr.2008.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 12/19/2022]
Abstract
Activation of cyclin-dependent kinase complexes (CDK) at key cell cycle transitions is dependent on their dephosphorylation by CDC25 dual-specificity phosphatases (CDC25A, B and C in human). The CDC25B phosphatase plays an essential role in controlling the activity of CDK1-cyclin B complexes at the entry into mitosis and together with polo-like kinase 1 (PLK1) in regulating the resumption of cell cycle progression after DNA damage-dependent checkpoint arrest in G2. In this study, we analysed the regulation of CDC25B-dependent mitosis entry by PLK1. We demonstrate that PLK1 activity is essential for the relocation of CDC25B from the cytoplasm to the nucleus. By gain and loss of function analyses, we show that PLK1 stimulates CDC25B-induced mitotic entry in both normal conditions and after DNA-damage induced G2/M arrest. Our results support a model in which the relocalisation of CDC25B to the nucleus at the G2-M transition by PLK1 regulates its mitotic inducing activity.
Collapse
Affiliation(s)
- Valerie Lobjois
- Université de Toulouse, LBCMCP, 118 Route de Narbonne, CNRS, LBCMCP-UMR5088, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
38
|
Kiyokawa H, Ray D. In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets. Anticancer Agents Med Chem 2009; 8:832-6. [PMID: 19075565 DOI: 10.2174/187152008786847693] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CDC25 phosphatases are not only rate-limiting activators of cyclin-dependent kinases (CDKs) but also important targets of the CHK1/CHK2-mediated checkpoint pathway. Each isoform of the mammalian CDC25 family seems to exert unique biological functions. CDC25A is a critical regulator for both G1-S and G2-M transitions and essential for embryonic cell proliferation after the blastocyst stage. CDC25B is dispensable for embryogenesis but required for meiotic progression of oocytes in a manner analogous to Drosophila Twine or C. elegans cdc-25.1. Moreover, CDC25A and CDC25B appear to regulate different events or stages of mitosis. CDC25B may mediate the activation of CDK1/Cyclin B at the centrosome during prophase, while CDC25A may be required for the subsequent full activation of nuclear CDK1/Cyclin B. CDC25C is dispensable for both mitotic and meiotic divisions, although it is highly regulated during the processes. Excessive levels of CDC25A and CDC25B are often observed in various human cancer tissues. Deregulated expression of these phosphatases allows cells to overcome DNA damage-induced checkpoint, leading to genomic instability. Studies using mouse models demonstrated that deregulated expression of CDC25A significantly promotes RAS- or NEU-induced mammary tumor development with chromosomal aberrations, whereas decreased CDC25A expression in heterozygous knockout mice delays tumorigenesis. These biological properties of CDC25 phosphatases provide significant insight into the pathobiology of cancer and scientific foundation for anti-CDC25 therapeutic intervention.
Collapse
Affiliation(s)
- Hiroaki Kiyokawa
- Department of Molecular Pharmacology and Biological Chemistry, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
39
|
Shen E, Lei Y, Liu Q, Zheng Y, Song C, Marc J, Wang Y, Sun L, Liang Q. Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression. Exp Cell Res 2009; 315:1100-16. [PMID: 19331820 DOI: 10.1016/j.yexcr.2009.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. 7022388) and highly homologous with the 3'-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with alpha-tubulin, gamma-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression.
Collapse
Affiliation(s)
- Enzhi Shen
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Braud E, Goddard ML, Kolb S, Brun MP, Mondésert O, Quaranta M, Gresh N, Ducommun B, Garbay C. Novel naphthoquinone and quinolinedione inhibitors of CDC25 phosphatase activity with antiproliferative properties. Bioorg Med Chem 2008; 16:9040-9. [PMID: 18789703 DOI: 10.1016/j.bmc.2008.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/29/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
CDC25 phosphatases are considered as attractive targets for anti-cancer therapy. To date, quinone derivatives are among the most potent inhibitors of CDC25 phosphatase activity. We present in this paper the synthesis and the biological evaluation of new quinolinedione and naphthoquinone derivatives, containing carboxylic or malonic acids groups introduced to mimic the role of the phosphate moieties of Cyclin-Dependent Kinase complexes. The most efficient compounds show inhibitory activity against CDC25B with IC(50) values in the 10 microM range, and are cytotoxic against HeLa cells.
Collapse
Affiliation(s)
- Emmanuelle Braud
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 rue des Saints-Pères, Paris F-75006, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wu J, Cho HP, Rhee DB, Johnson DK, Dunlap J, Liu Y, Wang Y. Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. ACTA ACUST UNITED AC 2008; 181:475-83. [PMID: 18458157 PMCID: PMC2364701 DOI: 10.1083/jcb.200710127] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S phase–arrested cells and proteasome inhibitor Z-L3VS–treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle.
Collapse
Affiliation(s)
- Jun Wu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | |
Collapse
|