1
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Benton D, Yee Chow H, Karchugina S, Chernoff J. Synergistic effect of PAK and Hippo pathway inhibitor combination in NF2-deficient Schwannoma. PLoS One 2024; 19:e0305121. [PMID: 39083549 PMCID: PMC11290668 DOI: 10.1371/journal.pone.0305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
Neurofibromatosis type 2 is a genetic disorder that results in the formation and progressive growth of schwannomas, ependymomas, and/or meningiomas. The NF2 gene encodes the Merlin protein, which links cell cortical elements to the actin cytoskeleton and regulates a number of key enzymes including Group I p21-activated kinases (PAKs), the Hippo-pathway kinase LATS, and mTORC. While PAK1 and PAK2 directly bind Merlin and transmit proliferation and survival signals when Merlin is mutated or absent, inhibition of Group 1 PAKs alone has not proven sufficient to completely stop the growth of NF2-deficient meningiomas or schwannomas in vivo, suggesting the need for a second pathway inhibitor. As the Hippo pathway is also activated in NF2-deficient cells, several inhibitors of the Hippo pathway have recently been developed in the form of YAP-TEAD binding inhibitors. These inhibitors prevent activation of pro-proliferation and anti-apoptotic Hippo pathway effectors. In this study, we show that PAK inhibition slows cell proliferation while TEAD inhibition promotes apoptotic cell death. Finally, we demonstrate the efficacy of PAK and TEAD inhibitor combinations in several NF2-deficient Schwannoma cell lines.
Collapse
Affiliation(s)
- Dorothy Benton
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Hoi Yee Chow
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Sofiia Karchugina
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Nagel A, Huegel J, Petrilli A, Rosario R, Victoria B, Hardin HM, Fernandez-Valle C. Simultaneous inhibition of PI3K and PAK in preclinical models of neurofibromatosis type 2-related schwannomatosis. Oncogene 2024; 43:921-930. [PMID: 38336988 PMCID: PMC10959746 DOI: 10.1038/s41388-024-02958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Anna Nagel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Julianne Huegel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alejandra Petrilli
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Haley M Hardin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
5
|
Fernandez-Valle C, Nagel A, Huegel J, Petrilli A, Rosario R, Victoria B, Hardin H. Simultaneous Inhibition of PI3K and PAK in Preclinical Models of Neurofibromatosis Type 2-related Schwannomatosis. RESEARCH SQUARE 2023:rs.3.rs-3405297. [PMID: 37886501 PMCID: PMC10602174 DOI: 10.21203/rs.3.rs-3405297/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2. Recommended treatments include surgical resection and radiation, both of which can leave patients with severe neurological deficits or increase the risk of future malignant tumors. Results of our previous pilot high-throughput drug screen identified phosphoinositide 3-kinase (PI3K) inhibitors as strong candidates based on loss of viability of mouse merlin-deficient Schwann cells (MD-SCs). Here we used novel human schwannoma model cells to conduct combination drug screens. We identified a class I PI3K inhibitor, pictilisib and p21 activated kinase (PAK) inhibitor, PF-3758309 as the top combination due to high synergy in cell viability assays. Both single and combination therapies significantly reduced growth of mouse MD-SCs in an orthotopic allograft mouse model. The inhibitor combination promoted cell cycle arrest and apoptosis in mouse merlin-deficient Schwann (MD-SCs) cells and cell cycle arrest in human MD-SCs. This study identifies the PI3K and PAK pathways as potential targets for combination drug treatment of NF2-related schwannomatosis.
Collapse
|
6
|
Prabhakar S, Beauchamp RL, Cheah PS, Yoshinaga A, Haidar EA, Lule S, Mani G, Maalouf K, Stemmer-Rachamimov A, Jung DH, Welling DB, Giovannini M, Plotkin SR, Maguire CA, Ramesh V, Breakefield XO. Gene replacement therapy in a schwannoma mouse model of neurofibromatosis type 2. Mol Ther Methods Clin Dev 2022; 26:169-180. [PMID: 35846573 PMCID: PMC9263409 DOI: 10.1016/j.omtm.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Loss of function of the neurofibromatosis type 2 (NF2) tumor suppressor gene leads to the formation of schwannomas, meningiomas, and ependymomas, comprising ∼50% of all sporadic cases of primary nervous system tumors. NF2 syndrome is an autosomal dominant condition, with bi-allelic inactivation of germline and somatic alleles resulting in loss of function of the encoded protein merlin and activation of mammalian target of rapamycin (mTOR) pathway signaling in NF2-deficient cells. Here we describe a gene replacement approach through direct intratumoral injection of an adeno-associated virus vector expressing merlin in a novel human schwannoma model in nude mice. In culture, the introduction of an AAV1 vector encoding merlin into CRISPR-modified human NF2-null arachnoidal cells (ACs) or Schwann cells (SCs) was associated with decreased size and mTORC1 pathway activation consistent with restored merlin activity. In vivo, a single injection of AAV1-merlin directly into human NF2-null SC-derived tumors growing in the sciatic nerve of nude mice led to regression of tumors over a 10-week period, associated with a decrease in dividing cells and an increase in apoptosis, in comparison with vehicle. These studies establish that merlin re-expression via gene replacement in NF2-null schwannomas is sufficient to cause tumor regression, thereby potentially providing an effective treatment for NF2.
Collapse
Affiliation(s)
- Shilpa Prabhakar
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roberta L. Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pike See Cheah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Molecular Imaging Research, Massachusetts General Hospital, 25 Shattuck St, Boston, MA 02115, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, JALAN UNIVERSITI 1 Serdang, 43400 Seri Kembangan, Selangor, Malaysia
| | - Akiko Yoshinaga
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Edwina Abou Haidar
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sevda Lule
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Gayathri Mani
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Katia Maalouf
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David H. Jung
- Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02114, USA
| | - D. Bradley Welling
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear and Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Scott R. Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Casey A. Maguire
- Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Vijaya Ramesh
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xandra O. Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Weber SM, Brossier NM, Prechtl A, Barnes S, Wilson LS, Brosius SN, Longo JF, Carroll SL. R-Ras subfamily proteins elicit distinct physiologic effects and phosphoproteome alterations in neurofibromin-null MPNST cells. Cell Commun Signal 2021; 19:95. [PMID: 34530870 PMCID: PMC8447793 DOI: 10.1186/s12964-021-00773-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background Loss of the Ras GTPase-activating protein neurofibromin promotes nervous system tumor pathogenesis in patients with neurofibromatosis type 1 (NF1). Neurofibromin loss potentially hyperactivates classic Ras (H-Ras, N-Ras, K-Ras), M-Ras, and R-Ras (R-Ras, R-Ras2/TC21) subfamily proteins. We have shown that classic Ras proteins promote proliferation and survival, but not migration, in malignant peripheral nerve sheath tumor (MPNST) cells. However, it is unclear whether R-Ras, R-Ras2 and M-Ras are expressed and hyperactivated in MPNSTs and, if so, whether they contribute to MPNST pathogenesis. We assessed the expression and activation of these proteins in MPNST cells and inhibited them to determine the effect this had on proliferation, migration, invasion, survival and the phosphoproteome. Methods NF1-associated (ST88-14, 90-8, NMS2, NMS-PC, S462, T265-2c) and sporadic (STS-26T, YST-1) MPNST lines were used. Cells were transfected with doxycycline-inducible vectors expressing either a pan-inhibitor of the R-Ras subfamily [dominant negative (DN) R-Ras] or enhanced green fluorescent protein (eGFP). Methodologies used included immunoblotting, immunocytochemistry, PCR, Transwell migration, 3H-thymidine incorporation, calcein cleavage assays and shRNA knockdowns. Proteins in cells with or without DN R-Ras expression were differentially labeled with SILAC and mass spectrometry was used to identify phosphoproteins and determine their relative quantities in the presence and absence of DN R-Ras. Validation of R-Ras and R-Ras2 action and R-Ras regulated networks was performed using genetic and/or pharmacologic approaches. Results R-Ras2 was uniformly expressed in MPNST cells, with R-Ras present in a major subset. Both proteins were activated in neurofibromin-null MPNST cells. Consistent with classical Ras inhibition, DN R-Ras and R-Ras2 knockdown inhibited proliferation. However, DN R-Ras inhibition impaired migration and invasion but not survival. Mass spectrometry-based phosphoproteomics identified thirteen protein networks distinctly regulated by DN R-Ras, including multiple networks regulating cellular movement and morphology. ROCK1 was a prominent mediator in these networks. DN R-Ras expression and RRAS and RRAS2 knockdown inhibited migration and ROCK1 phosphorylation; ROCK1 inhibition similarly impaired migration and invasion, altered cellular morphology and triggered the accumulation of large intracellular vesicles. Conclusions R-Ras proteins function distinctly from classic Ras proteins by regulating distinct signaling pathways that promote MPNST tumorigenesis by mediating migration and invasion. Plain English Summary Mutations of the NF1 gene potentially results in the activation of multiple Ras proteins, which are key regulators of many biologic effects. The protein encoded by the NF1 gene, neurofibromin, acts as an inhibitor of both classic Ras and R-Ras proteins; loss of neurofibromin could cause these Ras proteins to become persistently active, leading to the development of cancer. We have previously shown that three related Ras proteins (the classic Ras proteins) are highly activated in malignant peripheral nerve sheath tumor (MPNST) cells with neurofibromin loss and that they drive cancer cell proliferation and survival by activating multiple cellular signaling pathways. Here, we examined the expression, activation and action of R-Ras proteins in MPNST cells that have lost neurofibromin. Both R-Ras and R-Ras2 are expressed in MPNST cells and activated. Inhibition of R-Ras action inhibited proliferation, migration and invasion but not survival. We examined the activation of cytoplasmic signaling pathways in the presence and absence of R-Ras signaling and found that R-Ras proteins regulated 13 signaling pathways distinct from those regulated by classic Ras proteins. Closer study of an R-Ras regulated pathway containing the signaling protein ROCK1 showed that inhibition of either R-Ras, R-Ras2 or ROCK1 similarly impaired cellular migration and invasion and altered cellular morphology. Inhibition of R-Ras/R-Ras2 and ROCK1 signaling also triggered the accumulation of abnormal intracellular vesicles, indicating that these signaling molecules regulate the movement of proteins and other molecules in the cellular interior. Video Abstract
![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00773-4.
Collapse
Affiliation(s)
- Shannon M Weber
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nicole M Brossier
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Pediatrics, St. Louis Children's Hospital, St. Louis, USA
| | - Amanda Prechtl
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephen Barnes
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Landon S Wilson
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stephanie N Brosius
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA.,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA.,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine (SMW, AP, JFL, SLC), MUSC Medical Scientist Training Program (SMW), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC, 29425-9080, USA. .,Departments of Pathology (NMB, SNB, SLC), Pharmacology and Toxicology (SB, LSW), UAB Medical Scientist Training Program (NMB, SNB), Birmingham, USA. .,The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Hawley E, Gehlhausen J, Karchugina S, Chow HY, Araiza-Olivera D, Radu M, Smith A, Burks C, Jiang L, Li X, Bessler W, Masters A, Edwards D, Burgin C, Jones D, Yates C, Clapp DW, Chernoff J, Park SJ. PAK1 inhibition reduces tumor size and extends the lifespan of mice in a genetically engineered mouse model of Neurofibromatosis Type 2 (NF2). Hum Mol Genet 2021; 30:1607-1617. [PMID: 34075397 DOI: 10.1093/hmg/ddab106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis Type II (NF2) is an autosomal dominant cancer predisposition syndrome in which germline haploinsufficiency at the NF2 gene confers a greatly increased propensity for tumor development arising from tissues of neural crest derived origin. NF2 encodes the tumor suppressor, Merlin, and its biochemical function is incompletely understood. One well established function of Merlin is as a negative regulator of group A serine/threonine p21 activated kinases (PAKs). In these studies we explore the role of PAK1 and its closely related paralog, PAK2, both pharmacologically and genetically, in Merlin deficient Schwann cells and in a genetically engineered mouse model (GEMM) that develops spontaneous vestibular and spinal schwannomas. We demonstrate that PAK1 and PAK2 are both hyper activated in Merlin deficient murine schwannomas. In preclinical trials, a pan Group A PAK inhibitor, FRAX-1036, transiently reduced PAK1 and PAK2 phosphorylation in vitro, but had insignificant efficacy in vivo. NVS-PAK1-1, a PAK1 selective inhibitor, had a greater but still minimal effect on our GEMM phenotype. However, genetic ablation of Pak1 but not Pak2 reduced tumor formation in our NF2 GEMM. Moreover, germline genetic deletion of Pak1 was well tolerated while conditional deletion of Pak2 in Schwann cells resulted in significant morbidity and mortality. These data support the further development of PAK1-specific small molecule inhibitors and the therapeutic targeting of PAK1 in vestibular schwannomas and argue against PAK1 and PAK2 existing as functionally redundant protein isoforms in Schwann cells.
Collapse
Affiliation(s)
- Eric Hawley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey Gehlhausen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sofiia Karchugina
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Hoi-Yee Chow
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Maria Radu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Abbi Smith
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ciersten Burks
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Li Jiang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaohong Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Waylan Bessler
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea Masters
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, Indiana
| | - Donna Edwards
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Callie Burgin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Jones
- Clinical Pharmacology Analytical Core, Indiana University School of Medicine, Indianapolis, Indiana
| | - Charles Yates
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, Indiana
| | - D Wade Clapp
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Su-Jung Park
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Dougherty MC, Shibata SB, Hansen MR. The biological underpinnings of radiation therapy for vestibular schwannomas: Review of the literature. Laryngoscope Investig Otolaryngol 2021; 6:458-468. [PMID: 34195368 PMCID: PMC8223465 DOI: 10.1002/lio2.553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Radiation therapy is a mainstay in the treatment of numerous neoplasms. Numerous publications have reported good clinical outcomes for primary radiation therapy for Vestibular Schwannomas (VS). However, there are relatively few pathologic specimens of VSs available to evaluate post-radiation, which has led to a relative dearth in research on the cellular mechanisms underlying the effects of radiation therapy on VSs. METHODS Here we review the latest literature on the complex biological effects of radiation therapy on these benign tumors-including resistance to oxidative stress, mechanisms of DNA damage repair, alterations in normal growth factor pathways, changes in surrounding vasculature, and alterations in immune responses following radiation. RESULTS Although VSs are highly radioresistant, radiotherapy is often successful in arresting their growth. CONCLUSION By better understanding the mechanisms underlying these effects, we could potentially harness such mechanisms in the future to potentiate the clinical effects of radiotherapy on VSs. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Mark C. Dougherty
- Department of NeurosurgeryUniversity of Iowa Hospitals & ClinicsIowa CityIowaUSA
| | - Seiji B. Shibata
- Department of Otolaryngology, Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Marlan R. Hansen
- Department of Otolaryngology—Head & Neck SurgeryUniversity of Iowa Hospitals & ClinicsIowa CityIowaUSA
| |
Collapse
|
10
|
Beauchamp RL, Erdin S, Witt L, Jordan JT, Plotkin SR, Gusella JF, Ramesh V. mTOR kinase inhibition disrupts neuregulin 1-ERBB3 autocrine signaling and sensitizes NF2-deficient meningioma cellular models to IGF1R inhibition. J Biol Chem 2021; 296:100157. [PMID: 33273014 PMCID: PMC7949095 DOI: 10.1074/jbc.ra120.014960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meningiomas (MNs), arising from the arachnoid/meningeal layer, are nonresponsive to chemotherapies, with ∼50% showing loss of the Neurofibromatosis 2 (NF2) tumor suppressor gene. Previously, we established NF2 loss activates mechanistic target of rapamycin complex 1 (mTORC1) and mechanistic target of rapamycin complex 2 (mTORC2) signaling, leading to clinical trials for NF2 and MN. Recently our omics studies identified activated ephrin (EPH) receptor and Src family kinases upon NF2 loss. Here, we report increased expression of several ligands in NF2-null human arachnoidal cells (ACs) and the MN cell line Ben-Men-1, particularly neuregulin-1/heregulin (NRG1), and confirm increased NRG1 secretion and activation of V-ERB-B avian erythroblastic leukemia viral oncogene homolog 3 (ERBB3) receptor kinase. Conditioned-medium from NF2-null ACs or exogenous NRG1 stimulated ERBB3, EPHA2, and mTORC1/2 signaling, suggesting pathway crosstalk. NF2-null cells treated with an ERBB3-neutralizing antibody partially downregulated mTOR pathway activation but showed no effect on viability. mTORC1/2 inhibitor treatment decreased NRG1 expression and downregulated ERBB3 while re-activating pAkt T308, suggesting a mechanism independent of NRG1-ERBB3 but likely involving activation of another upstream receptor kinase. Transcriptomics after mTORC1/2 inhibition confirmed decreased ERBB3/ERBB4 while revealing increased expression of insulin-like growth factor receptor 1 (IGF1R). Drug treatment co-targeting mTORC1/2 and IGF1R/insulin receptor attenuated pAkt T308 and showed synergistic effects on viability. Our findings indicate potential autocrine signaling where NF2 loss leads to secretion/activation of NRG1-ERBB3 signaling. mTORC1/2 inhibition downregulates NRG1-ERBB3, while upregulating pAkt T308 through an adaptive response involving IGF1R/insulin receptor and co-targeting these pathways may prove effective for treatment of NF2-deficient MN.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/pharmacology
- Autocrine Communication/genetics
- Benzamides/pharmacology
- Benzoxazoles/pharmacology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Humans
- Lapatinib/pharmacology
- Meningeal Neoplasms/genetics
- Meningeal Neoplasms/metabolism
- Meningeal Neoplasms/pathology
- Meningioma/genetics
- Meningioma/metabolism
- Meningioma/pathology
- Morpholines/pharmacology
- Neuregulin-1/antagonists & inhibitors
- Neuregulin-1/genetics
- Neuregulin-1/metabolism
- Neurofibromin 2/deficiency
- Neurofibromin 2/genetics
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Receptor, ErbB-3/metabolism
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Transcriptome
- Triazines/pharmacology
Collapse
Affiliation(s)
- Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Serkan Erdin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Luke Witt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Justin T Jordan
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Chen Z, Li S, Mo J, Hawley E, Wang Y, He Y, Brosseau JP, Shipman T, Clapp DW, Carroll TJ, Le LQ. Schwannoma development is mediated by Hippo pathway dysregulation and modified by RAS/MAPK signaling. JCI Insight 2020; 5:141514. [PMID: 32960816 PMCID: PMC7605536 DOI: 10.1172/jci.insight.141514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
Schwannomas are tumors of the Schwann cells that cause chronic pain, numbness, and potentially life-threatening impairment of vital organs. Despite the identification of causative genes, including NF2 (Merlin), INI1/SMARCB1, and LZTR1, the exact molecular mechanism of schwannoma development is still poorly understood. Several studies have identified Merlin as a key regulator of the Hippo, MAPK, and PI3K signaling pathways; however, definitive evidence demonstrating the importance of these pathways in schwannoma pathogenesis is absent. Here, we provide direct genetic evidence that dysregulation of the Hippo pathway in the Schwann cell lineage causes development of multiple schwannomas in mice. We found that canonical Hippo signaling through the effectors YAP/TAZ is required for schwannomagenesis and that MAPK signaling modifies schwannoma formation. Furthermore, cotargeting YAP/TAZ transcriptional activity and MAPK signaling demonstrated a synergistic therapeutic effect on schwannomas. Our new model provides a tractable platform to dissect the molecular mechanisms underpinning schwannoma formation and the role of combinatorial targeted therapy in schwannoma treatment. Canonical Hippo signaling through the effectors YAP/TAZ is required for the development of peripheral nervous system tumors of Schwann cells, and MAPK signaling modifies schwannoma formation.
Collapse
Affiliation(s)
| | - Stephen Li
- Department of Dermatology and.,Medical Scientist Training Program, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Juan Mo
- Department of Dermatology and
| | - Eric Hawley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas J Carroll
- Department of Molecular Biology.,Simmons Comprehensive Cancer Center, and
| | - Lu Q Le
- Department of Dermatology and.,Simmons Comprehensive Cancer Center, and.,Comprehensive Neurofibromatosis Clinic, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Okumura K, Saito M, Yoshizawa Y, Ito Y, Isogai E, Araki K, Wakabayashi Y. Pak1 maintains epidermal stem cells by regulating Langerhans cells and is required for skin carcinogenesis. Oncogene 2020; 39:4756-4769. [PMID: 32427988 DOI: 10.1038/s41388-020-1323-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/03/2023]
Abstract
Pak1 (serine/threonine p21-activated kinases) was previously reported to have oncogenic activity in several cancers. However, its roles in the cancer microenvironment are poorly understood. We demonstrated that Pak1 expression in Langerhans cells (LCs) is essential for the maintenance of epidermal stem cells and skin tumor development. We found that PAK1 is localized in LCs by immunohistochemistry. Furthermore, the number of LCs significantly decreased in MSM/Ms Pak1 homozygous knockout mice (MSM/Ms-Pak1-/-). F1 hybrid (FVB/N×MSM/Ms) Pak1 heterozygous knockout mice (F1-Pak1+/-) had increased numbers of Th17 cells in the skin. Therefore, Pak1 knockdown cells were prepared using LC-derived XS52 cells (XS52-Pak1KD) and co-cultured with keratinocyte-derived C5N cells. As a result, XS52-Pak1KD cell supernatants promoted C5N cell proliferation. We then carried out DMBA/TPA skin carcinogenesis experiments using F1-Pak1+/- mice. Of note, F1-Pak1+/- mice exhibited stronger resistance to skin tumors than control mice. F1-Pak1+/- mice had fewer epidermal stem cells in the skin bulge. Our study suggested that Pak1 regulates the epidermal stem cell number by changing the properties of LCs and functions in skin carcinogenesis. We clarified a novel role of Pak1 in regulating LCs as a potential therapeutic target in skin immune disease and carcinogenesis.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Megumi Saito
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Yasuhiro Yoshizawa
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Yuki Ito
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Eriko Isogai
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, 2-2-1 Honjo Chuo-ku, Kumamoto, 860-0811, Japan
| | - Yuichi Wakabayashi
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan.
| |
Collapse
|
13
|
Persistent Oxidative Stress in Vestibular Schwannomas After Stereotactic Radiation Therapy. Otol Neurotol 2019; 39:1184-1190. [PMID: 30106845 DOI: 10.1097/mao.0000000000001935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Stereotactic radiation therapy is increasingly used to treat vestibular schwannomas (VSs) primarily and to treat tumor remnants following microsurgery. Little data are available regarding the effects of radiation on VS cells. Tyrosine nitrosylation is a marker of oxidative stress following radiation in malignant tumors. It is not known how long irradiated tissue remains under oxidative stress, and if such modifications occur in benign neoplasms such as VSs treated with significantly lower doses of radiation. We immunostained sections from previously radiated VSs with an antibody that recognizes nitrosylated tyrosine residues to assess for ongoing oxidative stress. STUDY DESIGN Immunohistochemical analysis. METHODS Four VSs, which recurred after excision, were treated with stereotactic radiation therapy. Ultimately each tumor required salvage reresection for regrowth. Histologic sections of each tumor before and after radiation were immunolabeled with a monoclonal antibody specific to nitrotyrosine and compared. Two VSs that underwent reresection of a growing tumor remnant without previous radiation therapy served as additional controls. RESULTS Irradiated tumors enlarged in volume by 3.16 to 8.62 mL following radiation. Preradiation sections demonstrated little to no nitrotyrosine immunostaining. Three of four of irradiated VSs demonstrated increased nitrotyrosine immunostaining in the postradiation sections compared with preradiation tumor sections. Nonirradiated VSs did not label with the antinitrotyrosine antibody. CONCLUSIONS VSs exhibit oxidative stress up to 7 years after radiotherapy, yet these VSs continued to enlarge. Thus, VSs that grow following radiation appear to possess mechanisms for cell survival and proliferation despite radiation-induced oxidative stress.
Collapse
|
14
|
Angus SP, Oblinger JL, Stuhlmiller TJ, DeSouza PA, Beauchamp RL, Witt L, Chen X, Jordan JT, Gilbert TSK, Stemmer-Rachamimov A, Gusella JF, Plotkin SR, Haggarty SJ, Chang LS, Johnson GL, Ramesh V. EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro Oncol 2019; 20:1185-1196. [PMID: 29982664 DOI: 10.1093/neuonc/noy046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Meningiomas are the most common primary brain tumor in adults, and somatic loss of the neurofibromatosis 2 (NF2) tumor suppressor gene is a frequent genetic event. There is no effective treatment for tumors that recur or continue to grow despite surgery and/or radiation. Therefore, targeted therapies that either delay tumor progression or cause tumor shrinkage are much needed. Our earlier work established mammalian target of rapamycin complex mTORC1/mTORC2 activation in NF2-deficient meningiomas. Methods High-throughput kinome analyses were performed in NF2-null human arachnoidal and meningioma cell lines to identify functional kinome changes upon NF2 loss. Immunoblotting confirmed the activation of kinases and demonstrated effectiveness of drugs to block the activation. Drugs, singly and in combination, were screened in cells for their growth inhibitory activity. Antitumor drug efficacy was tested in an orthotopic meningioma model. Results Erythropoietin-producing hepatocellular receptor tyrosine kinases (EPH RTKs), c-KIT, and Src family kinase (SFK) members, which are biological targets of dasatinib, were among the top candidates activated in NF2-null cells. Dasatinib significantly inhibited phospho-EPH receptor A2 (pEPHA2), pEPHB1, c-KIT, and Src/SFK in NF2-null cells, showing no cross-talk with mTORC1/2 signaling. Posttreatment kinome analyses showed minimal adaptive changes. While dasatinib treatment showed some activity, dual mTORC1/2 inhibitor and its combination with dasatinib elicited stronger growth inhibition in meningiomas. Conclusion Co-targeting mTORC1/2 and EPH RTK/SFK pathways could be a novel effective treatment strategy for NF2-deficient meningiomas.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Timothy J Stuhlmiller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Patrick A DeSouza
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Luke Witt
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Xin Chen
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Justin T Jordan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Thomas S K Gilbert
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott R Plotkin
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen J Haggarty
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
15
|
Thamban T, Sowpati DT, Pai V, Nithianandam V, Abe T, Shioi G, Mishra RK, Khosla S. The putative Neuronatin imprint control region is an enhancer that also regulates the Blcap gene. Epigenomics 2019; 11:251-266. [DOI: 10.2217/epi-2018-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To investigate the regulatory potential of the Nnat second intron within the Nnat/Blcap micro-imprinted domain. Materials & methods: Mice with deletion of Nnat second intron at the endogenous Nnat/Blcap micro-imprinted domain were used to examine the effect of Nnat second intron on the transcriptional regulation of the Nnat and Blcap genes. Results & conclusion: Deletion of Nnat second intron affected Nnat expression in cis leading to the loss of Nnat expression from the active paternal allele. Nnat second intron was found to have the characteristics of an imprint control region including allele-specific DNA methylation and histone modifications and it also regulated the epigenetic profile of Nnat promoter by acting as an enhancer. Nnat second intron was also found to be regulating the expression of the Blcap transcripts.
Collapse
Affiliation(s)
- Thushara Thamban
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate studies, Manipal University, Manipal, India
| | - Divya Tej Sowpati
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Vaishnavo Pai
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| | - Vanitha Nithianandam
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Takaya Abe
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Go Shioi
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Sanjeev Khosla
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| |
Collapse
|
16
|
Xu R, Qin N, Xu X, Sun X, Chen X, Zhao J. Inhibitory effect of SLIT2 on granulosa cell proliferation mediated by the CDC42-PAKs-ERK1/2 MAPK pathway in the prehierarchical follicles of the chicken ovary. Sci Rep 2018; 8:9168. [PMID: 29907785 PMCID: PMC6003946 DOI: 10.1038/s41598-018-27601-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023] Open
Abstract
The SLIT2 ligand and ROBO receptors of the SLIT/ROBO pathway are expressed in hen ovarian follicles and have been shown to play critical roles in ovary development, cell proliferation and apoptosis in mammals. However, the exact roles of SLIT2 and the molecular mechanisms of chicken follicle development remain poorly understood. Here, we discovered that high levels of SLIT2 suppress FSHR, GDF9, STAR and CYP11A1 mRNA and protein expression in granulosa cells (GCs) and cell proliferation (p < 0.01). However, these inhibitory effects can be abolished by the siRNA-mediated knockdown of the ROBO1 and ROBO2 receptors. Furthermore, the activity of CDC42, which is a key Rho GTPase in the SLIT/ROBO pathway, is regulated by the ligand SLIT2 because the intrinsic GTPase activation activity of CDC42 is activated or repressed by regulating SRGAP1 expression (p < 0.01). The effects of the SLIT2 overexpression on GC proliferation and phosphorylation of the B-RAF, RAF1 and ERK1/2 kinases were completely abrogated by knocking down endogenous PAK1 and partially abrogated by the knockdown of PAK2 and PAK3 in the GCs. Collectively, our findings indicate that SLIT2 suppresses GC proliferation, differentiation and follicle selection mainly by a mechanism involving ROBO1 and ROBO2 and that this suppression is mediated by the CDC42-PAKs-ERK1/2 MAPK signaling cascade in the prehierarchical follicles of the chicken ovary.
Collapse
Affiliation(s)
- Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China. .,Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Changchun, 130118, People's Republic of China.
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China.,Key Laboratory of Animal Production and Product Quality Safety of the Ministry of Education, Changchun, 130118, People's Republic of China
| | - Xiaoxing Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| |
Collapse
|
17
|
Troutman S, Moleirinho S, Kota S, Nettles K, Fallahi M, Johnson GL, Kissil JL. Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1. Oncotarget 2018; 7:54515-54525. [PMID: 27363027 PMCID: PMC5342359 DOI: 10.18632/oncotarget.10248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a dominantly inherited autosomal disease characterized by schwannomas of the 8th cranial nerve. The NF2 tumor suppressor gene encodes for Merlin, a protein implicated as a suppressor of multiple cellular signaling pathways. To identify potential drug targets in NF2-associated malignancies we assessed the consequences of inhibiting the tyrosine kinase receptor MET. We identified crizotinib, a MET and ALK inhibitor, as a potent inhibitor of NF2-null Schwann cell proliferation in vitro and tumor growth in vivo. To identify the target/s of crizotnib we employed activity-based protein profiling (ABPP), leading to identification of FAK1 (PTK2) as the relevant target of crizotinib inhibition in NF2-null schwannoma cells. Subsequent studies confirm that inhibition of FAK1 is sufficient to suppress tumorigenesis in animal models of NF2 and that crizotinib-resistant forms of FAK1 can rescue the effects of treatment. These studies identify a FDA approved drug as a potential treatment for NF2 and delineate the mechanism of action in NF2-null Schwann cells.
Collapse
Affiliation(s)
- Scott Troutman
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Susana Moleirinho
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Smitha Kota
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Kendall Nettles
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Mohammad Fallahi
- Department of Informatics Core, The Scripps Institute, Jupiter, FL, 33458, USA
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joseph L Kissil
- Department of Cancer Biology, The Scripps Institute, Jupiter, FL, 33458, USA
| |
Collapse
|
18
|
Inhibiting p21-Activated Kinase Induces Cell Death in Vestibular Schwannoma and Meningioma via Mitotic Catastrophe. Otol Neurotol 2017; 38:139-146. [PMID: 27755359 DOI: 10.1097/mao.0000000000001247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS p21-activated kinase (PAK) regulates signaling pathways that promote cell survival and proliferation; therefore, pharmacological inhibition of PAK will induce cell death in vestibular schwannomas (VS) and meningiomas. BACKGROUND All VS and many meningiomas result from loss of the neurofibromatosis type 2 (NF2) gene product merlin, with ensuing PAK hyperactivation and increased cell proliferation/survival. METHODS The novel small molecule PAK inhibitors PI-8 and PI-15-tested in schwannoma and meningioma cells-perturb molecular signaling and induce cell death. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay analyzed PAK inhibitors' effect on cell viability, cell cycle, and cell death, respectively. Western blots evaluated activation and expression of cell proliferation, apoptotic, and mitotic catastrophe markers. Light microscopy evaluated cell morphology, and immunocytochemistry analyzed cellular localization of phospho-Merlin and autophagy-related protein. RESULTS Treatment with PI-8 and PI-15 decreased cell viability at 0.65 to 3.7 μM 50% inhibitory concentration (IC50) in schwannoma and meningioma cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling and immunocytochemistry studies show that PI-8 and PI-15 induce mitotic catastrophe but not apoptosis in HEI193 cells while in BenMen1 cells, PI-8 induces autophagy and mitotic catastrophe. PI-15 induces apoptosis in BenMen1 cells. PAK inhibitor treated cells show phospho-Merlin localized to over-duplicated centrosomes of dividing cells, multiple enlarged nuclei, and misaligned/missegregated chromosomes-markers for mitotic catastrophe. Increased autophagy-related protein levels in the nucleus confirmed this cell death type. PI-8 and PI-15 inhibits PAK in both cell lines. However, only PI-15 inhibits v-akt murine thymoma viral oncogene homolog in BenMen1 cells. CONCLUSION PAK inhibitors induce cell death in schwannoma and meningioma cells, at least in part, by mitotic catastrophe.
Collapse
|
19
|
Beauchamp RL, James MF, DeSouza PA, Wagh V, Zhao WN, Jordan JT, Stemmer-Rachamimov A, Plotkin SR, Gusella JF, Haggarty SJ, Ramesh V. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas. Oncotarget 2016. [PMID: 26219339 PMCID: PMC4627286 DOI: 10.18632/oncotarget.4858] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Meningiomas are the most common primary intracranial adult tumor. All Neurofibromatosis 2 (NF2)-associated meningiomas and ~60% of sporadic meningiomas show loss of NF2 tumor suppressor protein. There are no effective medical therapies for progressive and recurrent meningiomas. Our previous work demonstrated aberrant activation of mTORC1 signaling that led to ongoing clinical trials with rapamycin analogs for NF2 and sporadic meningioma patients. Here we performed a high-throughput kinome screen to identify kinases responsible for mTORC1 pathway activation in NF2-deficient meningioma cells. Among the emerging top candidates were the mTORC2-specific target serum/glucocorticoid-regulated kinase 1 (SGK1) and p21-activated kinase 1 (PAK1). In NF2-deficient meningioma cells, inhibition of SGK1 rescues mTORC1 activation, and SGK1 activation is sensitive to dual mTORC1/2 inhibitor AZD2014, but not to rapamycin. PAK1 inhibition also leads to attenuated mTORC1 but not mTORC2 signaling, suggesting that mTORC2/SGK1 and Rac1/PAK1 pathways are independently responsible for mTORC1 activation in NF2-deficient meningiomas. Using CRISPR-Cas9 genome editing, we generated isogenic human arachnoidal cell lines (ACs), the origin cell type for meningiomas, expressing or lacking NF2. NF2-null CRISPR ACs recapitulate the signaling of NF2-deficient meningioma cells. Interestingly, we observe increased SGK1 transcription and protein expression in NF2-CRISPR ACs and in primary NF2-negative meningioma lines. Moreover, we demonstrate that the dual mTORC1/mTORC2 inhibitor, AZD2014 is superior to rapamycin and PAK inhibitor FRAX597 in blocking proliferation of meningioma cells. Importantly, AZD2014 is currently in use in several clinical trials of cancer. Therefore, we believe that AZD2014 may provide therapeutic advantage over rapalogs for recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Roberta L Beauchamp
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Marianne F James
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick A DeSouza
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Vilas Wagh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Wen-Ning Zhao
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Justin T Jordan
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Haggarty
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA.,Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Vijaya Ramesh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
20
|
Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget 2015; 6:1981-94. [PMID: 25596744 PMCID: PMC4385830 DOI: 10.18632/oncotarget.2810] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder characterized by the development of multiple tumors in the central nervous system, most notably schwannomas and meningiomas. Mutational inactivation of NF2 is found in 40-60% of sporadic meningiomas, but the molecular mechanisms underlying malignant changes of meningioma cells remain unclear. Because group I p21-activated kinases (Paks) bind to and are inhibited by the NF2-encoded protein Merlin, we assessed the signaling and anti-tumor effects of three group-I specific Pak inhibitors - Frax597, 716 and 1036 - in NF2-/- meningiomas in vitro and in an orthotopic mouse model. We found that these Pak inhibitors suppressed the proliferation and motility of both benign (Ben-Men1) and malignant (KT21-MG1) meningiomas cells. In addition, we found a strong reduction in phosphorylation of Mek and S6, and decreased cyclin D1 expression in both cell lines after treatment with Pak inhibitors. Using intracranial xenografts of luciferase-expressing KT21-MG1 cells, we found that treated mice showed significant tumor suppression for all three Pak inhibitors. Similar effects were observed in Ben-Men1 cells. Tumors dissected from treated animals exhibited an increase in apoptosis without notable change in proliferation. Collectively, these results suggest that Pak inhibitors might be useful agents in treating NF2-deficient meningiomas.
Collapse
|
21
|
Garcia-Rendueles MER, Ricarte-Filho JC, Untch BR, Landa I, Knauf JA, Voza F, Smith VE, Ganly I, Taylor BS, Persaud Y, Oler G, Fang Y, Jhanwar SC, Viale A, Heguy A, Huberman KH, Giancotti F, Ghossein R, Fagin JA. NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discov 2015; 5:1178-93. [PMID: 26359368 PMCID: PMC4642441 DOI: 10.1158/2159-8290.cd-15-0330] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation is insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacologic disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. SIGNIFICANCE Intensification of mutant RAS signaling through copy-number imbalances is commonly associated with transformation. We show that NF2/merlin inactivation augments mutant RAS signaling by promoting YAP/TEAD-driven transcription of oncogenic and wild-type RAS, resulting in greater MAPK output and increased sensitivity to MEK inhibitors.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 22
- DNA Copy Number Variations
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Deletion
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Order
- Gene Targeting
- Genes, ras
- Humans
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Models, Biological
- Neoplasm Staging
- Neurofibromin 2/genetics
- Nuclear Proteins/metabolism
- Nucleotide Motifs
- Position-Specific Scoring Matrices
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
| | - Julio C Ricarte-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Iňigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francesca Voza
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicki E Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yogindra Persaud
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gisele Oler
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuqiang Fang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adriana Heguy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kety H Huberman
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filippo Giancotti
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
22
|
A splicing variant of Merlin promotes metastasis in hepatocellular carcinoma. Nat Commun 2015; 6:8457. [PMID: 26443326 PMCID: PMC4633634 DOI: 10.1038/ncomms9457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
Merlin, which is encoded by the tumour suppressor gene Nf2, plays a crucial role in tumorigenesis and metastasis. However, little is known about the functional importance of Merlin splicing forms. In this study, we show that Merlin is present at low levels in human hepatocellular carcinoma (HCC), particularly in metastatic tumours, where it is associated with a poor prognosis. Surprisingly, a splicing variant of Merlin that lacks exons 2, 3 and 4 (Δ2–4Merlin) is amplified in HCC and portal vein tumour thrombus (PVTT) specimens and in the CSQT2 cell line derived from PVTT. Our studies show that Δ2–4Merlin interferes with the capacity of wild-type Merlin to bind β-catenin and ERM, and it is expressed in the cytoplasm rather than at the cell surface. Furthermore, Δ2–4Merlin overexpression increases the expression levels of β-catenin and stemness-related genes, induces the epithelium–mesenchymal-transition phenotype promoting cell migration in vitro and the formation of lung metastasis in vivo. Our results indicate that the Δ2–4Merlin variant disrupts the normal function of Merlin and promotes tumour metastasis. Merlin plays a crucial role as a tumour suppressor in liver tumorigenesis. Here, the authors show that a splicing variant of Merlin that lacks exons 2,3 and 4 (Δ2–4Merlin) is highly expressed in hepatocarcinoma and promotes tumour metastasis by interfering with the binding of wild-type Merlin to ß-catenin.
Collapse
|
23
|
Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 2015; 35:2178-85. [PMID: 26257058 PMCID: PMC5125076 DOI: 10.1038/onc.2015.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
p21-activated kinases (PAKs) are Cdc42/Rac–activated serine-threonine protein kinases that regulate of several key cancer-relevant signaling pathways, such as the Mek/Erk, PI3K/Akt, and Wnt/b-catenin signaling pathways. Pak1 is frequently overexpressed and/or hyperactivated in different human cancers, including human breast, ovary, prostate, and brain cancer, due to amplification of the PAK1 gene in an 11q13 amplicon. Genetic or pharmacological inactivation of Pak1 has been shown to reduce proliferation of different cancer cells in vitro and reduce tumor progression in vivo. In this work, we examined the roles of Pak1 in cellular and animal models of PAK1-amplified ovarian cancer. We found that inhibition of Pak1 leads to decreased proliferation and migration in PAK1 amplified/overexpressed ovarian cancer cells, and has no effect in cell that lack such amplification/overexpression. Further, we observed that loss of Pak1 function causes 11q13 amplified ovarian cancer cells to arrest in the G2/M phase of the cell cycle. This arrest correlates with activation of p53 and p21Cip and decreased expression of cyclin B1. These findings suggest that small molecule inhibitors of Pak1 may play a therapeutic role in the ~25% of ovarian cancers characterized by PAK1 gene amplification.
Collapse
|
24
|
Kim Y, Lee SE, Park J, Kim M, Lee B, Hwang D, Chang S. ADP-ribosylation factor 6 (ARF6) bidirectionally regulates dendritic spine formation depending on neuronal maturation and activity. J Biol Chem 2015; 290:7323-35. [PMID: 25605715 DOI: 10.1074/jbc.m114.634527] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies have reported conflicting results regarding the role of ARF6 in dendritic spine development, but no clear answer for the controversy has been suggested. We found that ADP-ribosylation factor 6 (ARF6) either positively or negatively regulates dendritic spine formation depending on neuronal maturation and activity. ARF6 activation increased the spine formation in developing neurons, whereas it decreased spine density in mature neurons. Genome-wide microarray analysis revealed that ARF6 activation in each stage leads to opposite patterns of expression of a subset of genes that are involved in neuronal morphology. ARF6-mediated Rac1 activation via the phospholipase D pathway is the coincident factor in both stages, but the antagonistic RhoA pathway becomes involved in the mature stage. Furthermore, blocking neuronal activity in developing neurons using tetrodotoxin or enhancing the activity in mature neurons using picrotoxin or chemical long term potentiation reversed the effect of ARF6 on each stage. Thus, activity-dependent dynamic changes in ARF6-mediated spine structures may play a role in structural plasticity of mature neurons.
Collapse
Affiliation(s)
- Yoonju Kim
- From the Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Medical Research Center, Biomembrane Plasticity Research Center, and
| | - Sang-Eun Lee
- From the Department of Physiology and Biomedical Sciences, Biomembrane Plasticity Research Center, and
| | - Joohyun Park
- From the Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Medical Research Center, Biomembrane Plasticity Research Center, and
| | - Minhyung Kim
- School of Interdisciplinary Bioscience and Bioengineering and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea, and
| | - Boyoon Lee
- Interdisciplinary Program in Neuroscience, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea, and Center for Systems Biology of Plant Senescence and Life History, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | - Sunghoe Chang
- From the Department of Physiology and Biomedical Sciences, Neuroscience Research Institute, Medical Research Center, Biomembrane Plasticity Research Center, and Interdisciplinary Program in Neuroscience, Seoul National University College of Medicine, Seoul 110-799, South Korea,
| |
Collapse
|
25
|
Abstract
Transformation of a normal cell to a cancer cell is caused by mutations in genes that regulate proliferation, apoptosis, and invasion. Small GTPases such as Ras, Rho, Rac and Cdc42 orchestrate many of the signals that are required for malignant transformation. The p21-activated kinases (PAKs) are effectors of Rac and Cdc42. PAKs are a family of serine/threonine protein kinases comprised of six isoforms (PAK1–6), and they play important roles in cytoskeletal dynamics, cell survival and proliferation. They act as key signal transducers in several cancer signaling pathways, including Ras, Raf, NFκB, Akt, Bad and p53. Although PAKs are not mutated in cancers, they are overexpressed, hyperactivated or amplified in several human tumors and their role in cell transformation make them attractive therapeutic targets. This review discusses the evidence that PAK is important for cell transformation and some key signaling pathways it regulates. This review primarily discusses Group I PAKs (PAK1, PAK2 and PAK3) as Group II PAKs (PAK4, PAK5 and PAK6) are discussed elsewhere in this issue (by Minden).
Collapse
Affiliation(s)
- Diana Zi Ye
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
26
|
Coleman N, Kissil J. Recent advances in the development of p21-activated kinase inhibitors. CELLULAR LOGISTICS 2014; 2:132-135. [PMID: 23162744 PMCID: PMC3490963 DOI: 10.4161/cl.21667] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The p21-activated kinases (PAKs) are downstream effectors of the small G-proteins of the Rac and cdc42 family and have been implicated as essential for cell proliferation and survival. Recent studies have also demonstrated the promise of PAKs as therapeutic targets in various types of cancers. The PAKs are divided into two major groups (group I and II) based on sequence similarities. Although the different roles the PAK groups might play are not well understood, recent efforts have focused on the identification of kinase inhibitors that can discriminate between the two groups. In this review these efforts and newly identified inhibitors will be described and future directions discussed.
Collapse
Affiliation(s)
- Natalia Coleman
- Department of Biological Sciences; University of the Sciences; Philadelphia, PA USA
| | | |
Collapse
|
27
|
Ahmad I, Yue WY, Fernando A, Clark JJ, Woodson EA, Hansen MR. p75NTR is highly expressed in vestibular schwannomas and promotes cell survival by activating nuclear transcription factor κB. Glia 2014; 62:1699-712. [PMID: 24976126 PMCID: PMC4150679 DOI: 10.1002/glia.22709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
Abstract
Vestibular schwannomas (VSs) arise from Schwann cells (SCs) and result from the loss of function of merlin, the protein product of the NF2 tumor suppressor gene. In contrast to non-neoplastic SCs, VS cells survive long-term in the absence of axons. We find that p75(NTR) is overexpressed in VSs compared with normal nerves, both at the transcript and protein level, similar to the response of non-neoplastic SCs following axotomy. Despite elevated p75(NTR) expression, VS cells are resistant to apoptosis due to treatment with proNGF, a high affinity ligand for p75(NTR) . Furthermore, treatment with proNGF protects VS cells from apoptosis due to c-Jun N-terminal kinase (JNK) inhibition indicating that p75(NTR) promotes VS cell survival. Treatment of VS cells with proNGF activated NF-κB while inhibition of JNK with SP600125 or siRNA-mediated knockdown reduced NF-κB activity. Significantly, proNGF also activated NF-κB in cultures treated with JNK inhibitors. Thus, JNK activity appears to be required for basal levels of NF-κB activity but not for proNGF-induced NF-κB activity. To confirm that the increase in NF-κB activity contributes to the prosurvival effect of proNGF, we infected VS cultures with Ad.IκB.SerS32/36A virus, which inhibits NF-κB activation. Compared with control virus, Ad.IκB.SerS32/36A significantly increased apoptosis including in VS cells treated with proNGF. Thus, in contrast to non-neoplastic SCs, p75(NTR) signaling provides a prosurvival response in VS cells by activating NF-κB independent of JNK. Such differences may contribute to the ability of VS cells to survive long-term in the absence of axons.
Collapse
Affiliation(s)
- Iram Ahmad
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242
| | - Wei Ying Yue
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242
- Department of Otolaryngology-HNS, Mayo Clinic, Rochester, MN
| | - Augusta Fernando
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242
- Department of Otolaryngology-HNS, Northwestern University, Chicago, IL
| | - J. Jason Clark
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242
| | - Erika A. Woodson
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242
- Department of Otolaryngology-HNS, Cleveland Clinic, Cleveland, OH
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
28
|
|
29
|
Petrilli A, Copik A, Posadas M, Chang LS, Welling DB, Giovannini M, Fernández-Valle C. LIM domain kinases as potential therapeutic targets for neurofibromatosis type 2. Oncogene 2014; 33:3571-82. [PMID: 23934191 PMCID: PMC4016185 DOI: 10.1038/onc.2013.320] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 2 (NF2) is caused by mutations in the NF2 gene that encodes a tumor-suppressor protein called merlin. NF2 is characterized by formation of multiple schwannomas, meningiomas and ependymomas. Merlin loss-of-function is associated with increased activity of Rac and p21-activated kinases (PAKs) and deregulation of cytoskeletal organization. LIM domain kinases (LIMK1 and 2) are substrate for Cdc42/Rac-PAK and modulate actin dynamics by phosphorylating cofilin at serine-3. This modification inactivates the actin severing and depolymerizing activity of cofilin. LIMKs also translocate into the nucleus and regulate cell cycle progression. Significantly, LIMKs are overexpressed in several tumor types, including skin, breast, lung, liver and prostate. Here we report that mouse Schwann cells (MSCs) in which merlin function is lost as a result of Nf2 exon2 deletion (Nf2(ΔEx2)) exhibited increased levels of LIMK1, LIMK2 and active phospho-Thr508/505-LIMK1/2, as well as phospho-Ser3-cofilin, compared with wild-type normal MSCs. Similarly, levels of LIMK1 and 2 total protein and active phosphorylated forms were elevated in human vestibular schwannomas compared with normal human Schwann cells (SCs). Reintroduction of wild-type NF2 into Nf2(ΔEx2) MSC reduced LIMK1 and LIMK2 levels. We show that pharmacological inhibition of LIMK with BMS-5 decreased the viability of Nf2(ΔEx2) MSCs in a dose-dependent manner, but did not affect viability of control MSCs. Similarly, LIMK knockdown decreased viability of Nf2(ΔEx2) MSCs. The decreased viability of Nf2(ΔEx2) MSCs was not due to caspase-dependent or -independent apoptosis, but rather due to inhibition of cell cycle progression as evidenced by accumulation of cells in G2/M phase. Inhibition of LIMKs arrests cells in early mitosis by decreasing aurora A activation. Our results suggest that LIMKs are potential drug targets for NF2 and tumors associated with merlin deficiency.
Collapse
Affiliation(s)
- Alejandra Petrilli
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Alicja Copik
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michelle Posadas
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - D. Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Marco Giovannini
- House Research Institute, Division of Clinical and Translational Research, Los Angeles, CA 90057, USA
| | - Cristina Fernández-Valle
- Department of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
30
|
P14ARF deficiency and its correlation with overexpression of p53/MDM2 in sporadic vestibular schwannomas. Eur Arch Otorhinolaryngol 2014; 272:2227-34. [PMID: 24964769 DOI: 10.1007/s00405-014-3135-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Recent studies have shed considerable light into schwannomas. To date, only merlin has been identified as a hallmark or pathogenesis of both sporadic and NF2-related schwannomas. Here, we show, by immunoblot and immunohistochemical analyses of 58 sporadic vestibular schwannomas, that upregulation of p53 was observed in 90 % of tumors examined. No p53 mutations were found in 12 % tumors analyzed. Expression of p14ARF was negative in 95 % of tumors, while overexpression of MDM2 was found in all specimens. Aberrant DNA hypermethylation of the p14ARF promoter was observed in three of seven tumors examined (43 %), associated with remarkably decreased mRNA levels. The very high degree of concordance in the aberrations of the p14ARF/MDM2/p53 pathway in this tumor may be considered to be a new player in the pathogenesis of sporadic vestibular schwannomas. Moreover, expression of p21 (waf1) was negative in all tumors, suggesting that the aberration of this pathway is associated with greater attenuation of p21-mediated signals that are critical for growth inhibition. These data are in agreement with the model in RT-4 rat schwannoma cells: i.e., overexpression of ARF was associated with accumulation of p21 expression both at protein and mRNA levels. ShRNA knock-down of p53 expression attenuated p21-mediated increase in cellular arrest in the G1-phase, suggesting that p14ARF regulates p21 protein levels through a p53-dependent pathway. Thus, this study reveals a high degree of concordance in the aberrations of the p14ARF/MDM2/p53 pathway with the development of sporadic vestibular schwannomas.
Collapse
|
31
|
Taglieri DM, Ushio-Fukai M, Monasky MM. P21-activated kinase in inflammatory and cardiovascular disease. Cell Signal 2014; 26:2060-9. [PMID: 24794532 DOI: 10.1016/j.cellsig.2014.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 02/09/2023]
Abstract
P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target.
Collapse
Affiliation(s)
- Domenico M Taglieri
- Department of Anesthesia and General Intensive Care Unit, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 (Milano), Italy.
| | - Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave. E403 MSB, M/C868, Chicago, IL 60612, USA.
| | - Michelle M Monasky
- Cardiovascular Research Center, Humanitas Research Hospital, Via Manzoni 113, Rozzano, 20089 (Milano), Italy.
| |
Collapse
|
32
|
Abstract
The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer.
Collapse
Affiliation(s)
- Chetan K Rane
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
33
|
Guo L, Moon C, Zheng Y, Ratner N. Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. Glia 2013; 61:1906-21. [PMID: 24014231 DOI: 10.1002/glia.22567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/02/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
The Rho family GTPase Cdc42 has been implicated in developmental Schwann cell (SC) proliferation, providing sufficient SCs for radial sorting of axons preceding SC differentiation in the peripheral nervous system. We generated Cdc42 conditional knockout (Cdc42-CKO) mice and confirmed aberrant axon sorting in Cdc42-CKO nerves. In adult Cdc42-CKO nerves, blood vessels were enlarged, and mature Remak bundles containing small axons were absent. Abnormal infoldings and outfoldings of myelin sheaths developed in Cdc42-CKO nerves, mimicking pathological features of Charcot-Marie-Tooth (CMT) disease. The NF2/merlin tumor suppressor has been implicated up- and down-stream of Cdc42. In Cdc42-CKO;NF2-del double mutant mice, radial sorting defects seen in Cdc42-CKO nerves were rescued, while changes in myelin sheaths in Cdc42-CKO nerves were not. Phosphorylation of Focal adhesion kinase (FAK) and P-GSK3β, as well as expression of β-catenin were decreased in Cdc42-CKO nerves, and these changes were rescued by NF2/merlin mutation in Cdc42-CKO;NF2-del double mutant mice. Thus, Cdc42 regulates SC radial sorting in vivo through NF2/merlin dependent signaling pathways, while Cdc42 modulation of myelin sheath folding is NF2/merlin independent.
Collapse
Affiliation(s)
- Li Guo
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children's Hospital University of Cincinnati, Cincinnati, Ohio
| | | | | | | |
Collapse
|
34
|
Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, Duron S, Campbell D, Chernoff J, Field J, Marmorstein R, Kissil JL. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J Biol Chem 2013; 288:29105-14. [PMID: 23960073 DOI: 10.1074/jbc.m113.510933] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The p21-activated kinases (PAKs) are immediate downstream effectors of the Rac/Cdc42 small G-proteins and implicated in promoting tumorigenesis in various types of cancer including breast and lung carcinomas. Recent studies have established a requirement for the PAKs in the pathogenesis of Neurofibromatosis type 2 (NF2), a dominantly inherited cancer disorder caused by mutations at the NF2 gene locus. Merlin, the protein product of the NF2 gene, has been shown to negatively regulate signaling through the PAKs and the tumor suppressive functions of Merlin are mediated, at least in part, through inhibition of the PAKs. Knockdown of PAK1 and PAK2 expression, through RNAi-based approaches, impairs the proliferation of NF2-null schwannoma cells in culture and inhibits their ability to form tumors in vivo. These data implicate the PAKs as potential therapeutic targets. High-throughput screening of a library of small molecules combined with a structure-activity relationship approach resulted in the identification of FRAX597, a small-molecule pyridopyrimidinone, as a potent inhibitor of the group I PAKs. Crystallographic characterization of the FRAX597/PAK1 complex identifies a phenyl ring that traverses the gatekeeper residue and positions the thiazole in the back cavity of the ATP binding site, a site rarely targeted by kinase inhibitors. FRAX597 inhibits the proliferation of NF2-deficient schwannoma cells in culture and displayed potent anti-tumor activity in vivo, impairing schwannoma development in an orthotopic model of NF2. These studies identify a novel class of orally available ATP-competitive Group I PAK inhibitors with significant potential for the treatment of NF2 and other cancers.
Collapse
Affiliation(s)
- Silvia Licciulli
- From the Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ma Y, McCarty SK, Kapuriya NP, Brendel VJ, Wang C, Zhang X, Jarjoura D, Saji M, Chen CS, Ringel MD. Development of p21 activated kinase-targeted multikinase inhibitors that inhibit thyroid cancer cell migration. J Clin Endocrinol Metab 2013; 98:E1314-22. [PMID: 23709653 PMCID: PMC3733855 DOI: 10.1210/jc.2012-3937] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The p21 activated kinases (PAKs) are a family of serine/threonine kinases that are downstream effectors of small GTPase Cdc42 and Rac. PAKs regulate cell motility, proliferation, and cytoskeletal rearrangement. PAK isoform expression and activity have been shown to be enhanced in cancer and to function as an oncogene in vivo. PAKs also have been implicated in cancer progression. OBJECTIVE In thyroid cancer, we have previously determined that PAK overactivation is common in the invasive fronts of aggressive tumors and that it is functionally involved in thyroid cancer cell motility using molecular inhibitors. We report the development of two new PAK-inhibiting compounds that were modified from the structure OSU-03012, a previously identified multikinase inhibitor that competitively blocks ATP binding of both phosphoinositide-dependent kinase 1 (PDK1) and PAK1. RESULTS Seventeen compounds were created by combinatorial chemistry predicted to inhibit PAK activity with reduced anti-PDK1 effect. Two lead compounds were identified based on the ability to inhibit PAK1 activity in an ATP-competitive manner without discernible in vivo PDK1 inhibitory activity in thyroid cancer cell lines. Both compounds reduced thyroid cancer cell viability. Although they are not PAK-specific on a multikinase screening assay, the antimigration activity effect of the compounds in thyroid cancer cells was rescued by overexpression of a constitutively active PAK1, suggesting this activity is involved in this biological effect. CONCLUSIONS We have developed 2 new multikinase inhibitors with anti-PAK activity that may serve as scaffolds for further compound development targeting this progression-related thyroid cancer target.
Collapse
Affiliation(s)
- Yihui Ma
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Holderness Parker N, Donninger H, Birrer MJ, Leaner VD. p21-activated kinase 3 (PAK3) is an AP-1 regulated gene contributing to actin organisation and migration of transformed fibroblasts. PLoS One 2013; 8:e66892. [PMID: 23818969 PMCID: PMC3688571 DOI: 10.1371/journal.pone.0066892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/12/2013] [Indexed: 01/01/2023] Open
Abstract
Activating Protein 1 (AP-1) plays a vital role in cell proliferation, differentiation and apoptosis. While de-regulation of AP-1 has been linked to many cancers, little is known regarding its downstream transcriptional targets that associate with cellular transformation. Previous studies identified PAK3, a serine/threonine kinase, as a potential AP-1 target gene. PAK3 has been implicated in a variety of pathological disorders and over-expression of other PAK-family members has been linked to cancer. In this study, we investigate AP-1 regulation of PAK3 expression and the role of PAK3 in cJun/AP-1-associated cellular transformation. Our results showed elevated PAK3 expression at both the mRNA and protein level in cJun-over-expressing Rat1a fibroblasts, as well as in transformed human fibroblasts. Elevated PAK3 expression in cJun/AP-1 over-expressing cells associated with a significant increase in PAK3 promoter activation. This increased promoter activity was lost when a single putative Jun binding site, which can bind AP-1 directly both in vitro and in vivo, was mutated. Further, inhibition of PAK3 using siRNA showed a regression in the cell morphology, migratory potential and actin organisation associated with AP-1 transformed cells. Our study is a first to describe a role for AP-1 in regulating PAK3 expression and suggest that PAK3 is an AP-1 target required for actin organization and migration observed in transformed cells.
Collapse
Affiliation(s)
- Nina Holderness Parker
- Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa
| | - Howard Donninger
- Department of Medicine, James Graham Brown Cancer Center, Molecular Targets Program, University of Louisville, Louisville, Kentucky, United States of America
| | - Michael J. Birrer
- Harvard Medical School, Gynecologic Cancer Research Program, Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Virna D. Leaner
- Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
37
|
Gutmann DH, Blakeley JO, Korf BR, Packer RJ. Optimizing biologically targeted clinical trials for neurofibromatosis. Expert Opin Investig Drugs 2013; 22:443-62. [PMID: 23425047 PMCID: PMC4009992 DOI: 10.1517/13543784.2013.772979] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The neurofibromatoses (neurofibromatosis type 1, NF1 and neurofibromatosis type 2, NF2) comprise the most common inherited conditions in which affected children and adults develop tumors of the central and peripheral nervous system. In this review, the authors discuss how the establishment of the Neurofibromatosis Clinical Trials Consortium (NFCTC) has positively impacted on the design and execution of treatment studies for individuals with NF1 and NF2. AREAS COVERED Using an extensive PUBMED search in collaboration with select NFCTC members expert in distinct NF topics, the authors discuss the clinical features of NF1 and NF2, the molecular biology of the NF1 and NF2 genes, the development and application of clinically relevant Nf1 and Nf2 genetically engineered mouse models and the formation of the NFCTC to enable efficient clinical trial design and execution. EXPERT OPINION The NFCTC has resulted in a more seamless integration of mouse preclinical and human clinical trials efforts. Leveraging emerging enabling resources, current research is focused on identifying subtypes of tumors in NF1 and NF2 to deliver the most active compounds to the patients most likely to respond to the targeted therapy.
Collapse
Affiliation(s)
- David H Gutmann
- Washington University School of Medicine, Department of Neurology and Washington University Neurofibromatosis Center, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
38
|
Ong CC, Jubb AM, Jakubiak D, Zhou W, Rudolph J, Haverty PM, Kowanetz M, Yan Y, Tremayne J, Lisle R, Harris AL, Friedman LS, Belvin M, Middleton MR, Blackwood EM, Koeppen H, Hoeflich KP. P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. J Natl Cancer Inst 2013; 105:606-7. [PMID: 23535073 DOI: 10.1093/jnci/djt054] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although remarkable clinical response rates in melanoma have been observed using vemurafenib or dabrafenib in patients with tumors carrying oncogenic mutations in BRAF, a substantial unmet medical need remains for the subset of patients with wild-type BRAF tumors. METHODS To investigate the role of p21-activated kinases (PAKs) in melanoma, we determined PAK1 genomic copy number and protein expression for a panel of human melanoma tissues. PAK1 was inhibited in vitro and in vivo using RNA interference or PF-3758309 inhibitor treatment in a panel of melanoma cell lines with known BRAF and RAS (rat sarcoma) genotype to better understand its role in melanoma cell proliferation and migration. Tumorigenesis was assessed in vivo in female NCR nude mice and analyzed with cubic spline regression and area under the curve analyses. All statistical tests were two-sided. RESULTS Strong cytoplasmic PAK1 protein expression was prevalent in melanomas (27%) and negatively associated with activating mutation of the BRAF oncogene (P < .001). Focal copy number gain of PAK1 at 11q13 was also observed in 9% of melanomas (n = 87; copy number ≥ 2.5) and was mutually exclusive with BRAF mutation (P < .005). Selective PAK1 inhibition attenuated signaling through mitogen-activated protein kinase (MAPK) as well as cytoskeleton-regulating pathways to modulate the proliferation and migration of BRAF wild-type melanoma cells. Treatment of BRAF wild-type melanomas with PF-3758309 PAK inhibitor decreased tumor growth for SK-MEL23 and 537MEL xenografts (91% and 63% inhibition, respectively; P < .001) and MAPK pathway activation in vivo. CONCLUSIONS Taken together, our results provide evidence for a functional role of PAK1 in BRAF wild-type melanoma and therapeutic use of PAK inhibitors in this indication.
Collapse
Affiliation(s)
- Christy C Ong
- Department of Translational Oncology Genentech, MS 50, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
During peripheral nervous system development, Schwann cells (SCs) surrounding single large axons differentiate into myelinating SCs. Previous studies implicate RhoGTPases in SC myelination, but the mechanisms involved in RhoGTPase regulation of SC myelination are unknown. Here, we show that SC myelination is arrested in Rac1 conditional knock-out (Rac1-CKO) mice. Rac1 knock-out abrogated phosphorylation of the effector p21-activated kinase and decreased NF2/merlin phosphorylation. Mutation of NF2/merlin rescued the myelin deficit in Rac1-CKO mice in vivo and the shortened processes in cultured Rac1-CKO SCs in vitro. Mechanistically, cAMP levels and E-cadherin expression were decreased in the absence of Rac1, and both were restored by mutation of NF2/merlin. Reduced cAMP is a cause of the myelin deficiency in Rac1-CKO mice, because elevation of cAMP by rolipram in Rac1-CKO mice in vivo allowed myelin formation. Thus, NF2/merlin and cAMP function downstream of Rac1 signaling in SC myelination, and cAMP levels control Rac1-regulated SC myelination.
Collapse
|
40
|
Beltrami S, Kim R, Gordon J. Neurofibromatosis type 2 protein, NF2: an uncoventional cell cycle regulator. Anticancer Res 2013; 33:1-11. [PMID: 23267122 PMCID: PMC3725758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Neurofibromatosis type 2 protein (NF2) is an underappreciated tumor suppressor involved in a broad range of nervous system tumors. Inactivation of the NF2 gene leads to neurofibromatosis type-2, which is characterized by multiple benign nervous system tumors and mutations in the gene have been demonstrated in many other tumor types as well. All tumors, regardless of location or grade, lack a fundamental control over cell cycle progression. Historically, NF2 is an unconventional tumor suppressor protein in that it does not directly influence the cell cycle. NF2 links receptors at the plasma membrane to their cytoplasmic kinases to facilitate contact inhibition. However, NF2 can also interact with an array of cytoplasmic and nuclear proteins that affect cell cycle progression. Furthermore, through some of these pathways, NF2 may reverse the functional inhibition of conventional tumor suppressor pathways. Here we review mechanisms utilized by NF2 to regain control of the cell cycle.
Collapse
Affiliation(s)
- Sarah Beltrami
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA
- Biomedical Neuroscience Graduate Program, Temple University School of Medicine, Philadelphia, PA
| | - Richard Kim
- Department of Neurosurgery, Temple University School of Medicine, Philadelphia, PA
| | - Jennifer Gordon
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
41
|
Srivastava N, Robichaux MA, Chenaux G, Henkemeyer M, Cowan CW. EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak. Mol Cell Neurosci 2012; 52:106-16. [PMID: 23147113 DOI: 10.1016/j.mcn.2012.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/03/2012] [Accepted: 11/02/2012] [Indexed: 02/08/2023] Open
Abstract
EphB receptors and their ephrinB ligands transduce bidirectional signals that mediate contact-dependent axon guidance primarily by promoting growth cone repulsion. However, how EphB receptor-mediated forward signaling induces axonal repulsion remains poorly understood. Here, we identify Nck and Pak proteins as essential forward signaling components of EphB2-dependent growth cone collapse in cortical neurons. We show that kinase-active EphB2 binds to Pak and promotes growth cone repulsion via Pak kinase activity, Pak-Nck binding, RhoA signaling and endocytosis. However, Pak's function in this context appears to be independent of Rac/Cdc42-GTP, consistent with the absence of Rac-GTP production after ephrinB treatment of cortical neurons. Taken together, our findings suggest that ephrinB-activated EphB2 receptors recruit a novel Nck/Pak signaling complex to mediate repulsive cortical growth cone guidance, which may be relevant for EphB forward signaling-dependent axon guidance in vivo.
Collapse
Affiliation(s)
- Nishi Srivastava
- Department of Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States
| | | | | | | | | |
Collapse
|
42
|
Menges CW, Sementino E, Talarchek J, Xu J, Chernoff J, Peterson JR, Testa JR. Group I p21-activated kinases (PAKs) promote tumor cell proliferation and survival through the AKT1 and Raf-MAPK pathways. Mol Cancer Res 2012; 10:1178-88. [PMID: 22798428 DOI: 10.1158/1541-7786.mcr-12-0082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Group I p21-activated kinases (PAK) are important effectors of the small GTPases Rac and Cdc42, which regulate cell motility/migration, survival, proliferation, and gene transcription. Hyperactivation of these kinases have been reported in many tumor types, making PAKs attractive targets for therapeutic intervention. PAKs are activated by growth factor-mediated signaling and are negatively regulated by the tumor suppressor neurofibromatosis type 2 (NF2)/Merlin. Thus, tumors characterized by NF2 inactivation would be expected to show hyperactivated PAK signaling. On the basis of this rationale, we evaluated the status of PAK signaling in malignant mesothelioma, an aggressive neoplasm that is resistant to current therapies and shows frequent inactivation of NF2. We show that group I PAKs are activated in most mesotheliomas and mesothelioma cell lines and that genetic or pharmacologic inhibition of PAKs is sufficient to inhibit mesothelioma cell proliferation and survival. We also identify downstream effectors and signaling pathways that may contribute mechanistically to PAK-related tumorigenesis. Specifically, we show that inhibition of PAK results in attenuation of AKT and Raf-MAPK signaling and decreased tumor cell viability. Collectively, these data suggest that pharmacologic inhibition of group I PAKs may have therapeutic efficacy in tumors characterized by PAK activation.
Collapse
Affiliation(s)
- Craig W Menges
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Meissner WG. Methods for treating neurological conditions (WO2011159945). Expert Opin Ther Pat 2012; 22:847-52. [PMID: 22697132 DOI: 10.1517/13543776.2012.699524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This patent application claims that inhibition of p21-activated kinases (PAK) reverses, partially reverses or delays clinical signs in neurological conditions (main claim for Huntington's disease (HD), substance abuse and addiction, Parkinson's disease, depression, bipolar disorder, anxiety disorder, posttraumatic stress disorder and neurofibromatosis). Several compounds with a pyrido-[2,3-d]pyrimidine-7(8H)-one core and high affinity to the catalytic domain of PAK1-4 are described in the patent. These PAK inhibitors are hypothesized to exert beneficial effects on clinical symptoms via modulation of dendritic spine morphology and/or synaptic function. Preliminary preclinical data suggest that PAK inhibition may be an interesting approach for the treatment of HD, neurofibromatosis and fragile X syndrome, while data for other neurological conditions are missing. Current limitations call for a comprehensive characterization of the role of PAK dysfunction in neurological disorders before further testing the effect of PAK inhibitors in relevant preclinical models. If ever, it will probably take many years before the most promising compounds will head to the clinic for further assessment in patients with neurological disorders.
Collapse
|
44
|
Merlin-deficient human tumors show loss of contact inhibition and activation of Wnt/β-catenin signaling linked to the PDGFR/Src and Rac/PAK pathways. Neoplasia 2012; 13:1101-12. [PMID: 22247700 DOI: 10.1593/neo.111060] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/17/2011] [Accepted: 10/27/2011] [Indexed: 02/05/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is an inherited predisposition cancer syndrome characterized by the development of multiple benign tumors in the nervous system including schwannomas, meningiomas, and ependymomas. Using a disease model comprising primary human schwannoma cells, we previously demonstrated that adherens junctions (AJs) are impaired in schwannoma cells because of a ubiquitous, upregulated Rac activity. However, the mechanism by which loss of contact inhibition leads to proliferation remains obscure in merlin-deficient tumors. In this study, we show that proliferative Wnt/β-catenin signaling is elevated as active β-catenin (dephosphorylated at serine 37 and threoine 41) localizes to the nucleus and the Wnt targets genes c-myc and cyclin D1 are upregulated in confluent human schwannoma cells. We demonstrate that Rac effector p21-activated kinase 2 (PAK2) is essential for the activation of Wnt/β-catenin signaling because depletion of PAK2 suppressed active β-catenin, c-myc, and cyclin D1. Most importantly, the link between the loss of the AJ complex and the increased proliferation in human schwannoma cells is connected by Src and platelet-derived growth factor receptor-induced tyrosine 654 phosphorylation on β-catenin and associated with degradation of N-cadherin. We also demonstrate that active merlin maintains β-catenin and N-cadherin complex at the plasma membrane through direct regulation. Finally, we demonstrate that phosphorylation of tyrosine 654 is critical for the increased proliferation in human schwannoma cells because overexpression of a Y654F mutant β-catenin reduces hyperproliferation of schwannoma cells. We suggest a model that these pathways are coordinated and relevant for proliferation in merlin-deficient tumors.
Collapse
|
45
|
Molecular Pathogenesis of Vestibular Schwannomas: Insights for the Development of Novel Medical Therapies. Otolaryngol Pol 2012; 66:84-95. [DOI: 10.1016/s0030-6657(12)70754-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/13/2012] [Indexed: 11/21/2022]
|
46
|
Bandapalli OR, Macher-Goeppinger S, Schirmacher P, Brand K. Paracrine signalling in colorectal liver metastases involving tumor cell-derived PDGF-C and hepatic stellate cell-derived PAK-2. Clin Exp Metastasis 2012; 29:409-17. [PMID: 22362252 DOI: 10.1007/s10585-012-9459-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023]
Abstract
In a nude mouse model of colorectal liver metastases, we have identified a paracrine tumor cell/host cell signalling pathway that is apparently required for successful tumor growth. Whereas recombinant platelet derived growth factor-C (PDGF-C) and supernatants from PDGF-C secreting wild type LS174T colon carcinoma cells could rescue tumor promoting hepatic stellate cells (HSC) from growth inhibition by serum starvation, supernatants from LS174T colon carcinoma cells with reduced secretion of PDGF-C had much less effect on serum starved HSC. Autocrine growth inhibition of LS174T cells by PDGF-C knock-down was only marginal. In vivo, a prominent inhibition of liver metastasis was observed if PDGF-C was knocked-down in LS174T cells. By whole genome array analysis of host cells of the invasion front and subsequent immunohistochemical staining we identified p21 activated kinase-2 (PAK-2) as being strongly and specifically expressed by HSC. The above described effect of PDGF-C on HSC was found to be dependent on PAK-2 because in contrast to wild type HSC, silencing of PAK-2 in HSC only allowed for a partial PDGF-C-mediated rescue from serum starvation leading to only a slight increase of proliferation. These data indicate that PDGF-C promotes tumor growth via a growth promoting effect on HSC that is at least in part dependent on the presence of functional PAK-2.
Collapse
Affiliation(s)
- Obul R Bandapalli
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Celis-Aguilar E, Lassaletta L, Torres-Martín M, Rodrigues FY, Nistal M, Castresana JS, Gavilan J, Rey JA. The molecular biology of vestibular schwannomas and its association with hearing loss: a review. GENETICS RESEARCH INTERNATIONAL 2012; 2012:856157. [PMID: 22567403 PMCID: PMC3335540 DOI: 10.1155/2012/856157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/08/2011] [Accepted: 11/03/2011] [Indexed: 01/16/2023]
Abstract
Hearing loss is the most common symptom in patients with vestibular schwannoma (VS). In the past, compressive mechanisms caused by the tumoral mass and its growth have been regarded as the most likely causes of the hearing loss associated with VS. Interestingly, new evidence proposes molecular mechanisms as an explanation for such hearing loss. Among the molecular mechanisms proposed are methylation of TP73, negative expression of cyclin D1, expression of B7-H1, increased expression of the platelet-derived growth factor A, underexpression of PEX5L, RAD54B, and PSMAL, and overexpression of CEA. Many molecular mechanisms are involved in vestibular schwannoma development; we review some of these mechanisms with special emphasis on hearing loss associated with vestibular schwannoma.
Collapse
Affiliation(s)
- Erika Celis-Aguilar
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, 14269 Ciudad de México, DF, Mexico
| | - Luis Lassaletta
- Department of Otolaryngology, “La Paz” University Hospital, 28046 Madrid, Spain
| | - Miguel Torres-Martín
- Unidad de Investigación, Laboratorio Oncogenetica Molecular, “La Paz” University Hospital, 28046 Madrid, Spain
| | - F. Yuri Rodrigues
- Department of Pathology, “La Paz” University Hospital, 28046 Madrid, Spain
| | - Manuel Nistal
- Department of Pathology, “La Paz” University Hospital, 28046 Madrid, Spain
| | - Javier S. Castresana
- Brain Tumor Biology Unit, CIFA, University of Navarra School of Sciences, 31009 Pamplona, Spain
| | - Javier Gavilan
- Department of Otolaryngology, “La Paz” University Hospital, 28046 Madrid, Spain
| | - Juan A. Rey
- Department of Pathology, “La Paz” University Hospital, 28046 Madrid, Spain
| |
Collapse
|
48
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Abstract
miRNAs have been recently implicated as drivers in several carcinogenic processes, where they can act either as oncogenes or as tumor suppressors. Schwannomas arise from Schwann cells, the myelinating cells of the peripheral nervous system. These benign tumors typically result from loss of the neurofibromatosis type 2 (NF2) tumor suppressor gene. We have recently carried out high-throughput miRNA expression profiling of human vestibular schwannomas using an array representing 407 known miRNAs in order to explore the role of miRNAs in the tumorigenesis of schwannomas. We found that miR-7 functions as a "tumor suppressor" by targeting proteins in three major oncogenic pathways - EGFR, Pak1, and Ack1. Interestingly, in this study, we also observed that several previously described potential tumor suppressor miRNAs that are down-regulated in malignant tumors were up-regulated in schwannomas. Here we discuss the possibility that "tumor suppressor" miRNAs may play a role in the transition stage(s) of cancer from benign to malignant forms.
Collapse
|
50
|
Yue WY, Clark JJ, Fernando A, Domann F, Hansen MR. Contribution of persistent C-Jun N-terminal kinase activity to the survival of human vestibular schwannoma cells by suppression of accumulation of mitochondrial superoxides. Neuro Oncol 2011; 13:961-73. [PMID: 21697181 DOI: 10.1093/neuonc/nor068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vestibular schwannomas (VSs) result from inactivating mutations in the merlin tumor suppressor gene. The merlin protein suppresses a variety of progrowth kinase-signaling cascades, including extracellular regulated kinase/mitogen-activated protein kinase (ERK/MAPK), c-Jun N-terminal kinase (JNK), and phosphatidyl-inositol 3-kinase (PI3-K)/Akt. Recent studies indicate that ERKs and Akt are active in human VSs, and here we show that JNKs are also persistently active in human VS cells. With use of cultures of human VSs, we investigated the contribution of each of these signals to the proliferative and survival response of VS cells. Inhibition of ERK or Akt signaling reduced VS cell proliferation but did not increase apoptosis, whereas inhibition of JNK with SP600125, I-JIP, or siRNA knock-down reduced VS cell proliferation and survival by inducing apoptosis. By contrast, JNK activity promotes apoptosis in normal Schwann cells. Inhibition of JNK increased the fluorescence intensity of VS cells loaded with 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (H(2)DCFDA), a fluorescent probe for reactive oxygen species (ROS). Furthermore, ebselen, a ROS scavenger, rescued VS cells with suppressed JNK from apoptosis, suggesting that JNK activity protects VS cells from apoptosis by limiting accumulation of ROS. VS cultures treated with JNK inhibitors demonstrated significantly higher levels of MitoSOX Red fluorescence, implying that persistent JNK activity specifically suppresses superoxide production in the mitochondria. Overexpression of superoxide dismutase 2 (MnSOD; mitochondrial SOD) prevented apoptosis in VS cells with suppressed JNK signaling. Taken together, these results indicate that persistent JNK activity enhances VS cell survival, at least in part, by suppressing accumulation of mitochondrial superoxides.
Collapse
Affiliation(s)
- Wei Ying Yue
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|