1
|
Lin HH, Chang CW, Liao YT, Yeh SD, Lin HP, Ho HM, Cheung CHY, Juan HF, Chen YR, Su YW, Chen LM, Tan TH, Lin WJ. DUSP22 inhibits lung tumorigenesis by suppression of EGFR/c-Met signaling. Cell Death Discov 2024; 10:285. [PMID: 38877005 PMCID: PMC11178881 DOI: 10.1038/s41420-024-02038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
DUSP22, an atypical dual-specificity phosphatase enzyme, plays a significant role in regulating multiple kinase signaling pathways by dephosphorylation. Our study demonstrated that decreased DUSP22 expression is associated with shorter disease-free survival, advanced TNM (tumor, lymph nodes, and metastasis), cancer stage, and higher tumor grade in lung adenocarcinoma (LUAD) patients. Exogenous DUSP22 expression reduces the colony-forming capacity of lung cancer cells and inhibits xenograft tumor growth primarily by targeting EGFR and suppressing its activity through dephosphorylation. Knockdown of DUSP22 using shRNA enhances EGFR dependency in HCC827 lung cancer cells and increases sensitivity to gefitinib, an EGFR inhibitor. Consistently, genetic deletion of DUSP22 enhances EGFRdel (exon 19 deletion)-driven lung tumorigenesis and elevates EGFR activity. Pharmacological inhibition of DUSP22 activates EGFR, ERK1/2, and upregulates downstream PD-L1 expression. Additionally, lentiviral deletion of DUSP22 by shRNA enhances lung cancer cell migration through EGFR/c-Met and PD-L1-dependent pathways. Gefitinib, an EGFR inhibitor, mechanistically suppresses migration induced by DUSP22 deletion and inhibits c-Met activity. Furthermore, cabozantinib, a c-Met inhibitor, reduces migration and attenuates EGFR activation caused by DUSP22 deletion. Collectively, our findings support the hypothesis that loss of DUSP22 function in lung cancer cells confers a survival advantage by augmenting EGFR signaling, leading to increased activation of downstream c-Met, ERK1/2, and PD-L1 axis, ultimately contributing to the progression of advanced lung cancer.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Cheng-Wei Chang
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yu-Ting Liao
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Shauh-Der Yeh
- Department of Urology, Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Hsiu-Ping Lin
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Hui-Min Ho
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | | | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Rong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Li-Mei Chen
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Miaoli County, 35053, Taiwan.
| |
Collapse
|
2
|
Nuñez Y, Vera S, Baeza V, Gonzalez-Pecchi V. NSD3 in Cancer: Unraveling Methyltransferase-Dependent and Isoform-Specific Functions. Int J Mol Sci 2024; 25:944. [PMID: 38256018 PMCID: PMC10815784 DOI: 10.3390/ijms25020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.
Collapse
Affiliation(s)
- Yanara Nuñez
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
- Biochemistry, Faculty of Pharmacy, Universidad de Concepción, Concepción 4070383, Chile
| | - Sebastian Vera
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Victor Baeza
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| | - Valentina Gonzalez-Pecchi
- Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (Y.N.); (S.V.); (V.B.)
| |
Collapse
|
3
|
Zhao F, Zhao C, Xu T, Lan Y, Lin H, Wu X, Li X. Single-cell and bulk RNA sequencing analysis of B cell marker genes in TNBC TME landscape and immunotherapy. Front Immunol 2023; 14:1245514. [PMID: 38111587 PMCID: PMC10725955 DOI: 10.3389/fimmu.2023.1245514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Objective This study amied to investigate the prognostic characteristics of triple negative breast cancer (TNBC) patients by analyzing B cell marker genes based on single-cell and bulk RNA sequencing. Methods Utilizing single-cell sequencing data from TNBC patients, we examined tumor-associated B cell marker genes. Transcriptomic data from The Cancer Genome Atlas (TCGA) database were used as the foundation for predictive modeling. Independent validation set was conducted using the GSE58812 dataset. Immune cell infiltration into the tumor was assessed through various, including XCELL, TIMER, QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and ssGSEA. The TIDE score was utilized to predict immunotherapy outcomes. Additional investigations were conducted on the immune checkpoint blockade gene, tumor mutational load, and the GSEA enrichment analysis. Results Our analysis encompassed 22,106 cells and 20,556 genes in cancerous tissue samples from four TNBC patients, resulting in the identification of 116 B cell marker genes. A B cell marker gene score (BCMG score) involving nine B cell marker genes (ZBP1, SEL1L3, CCND2, TNFRSF13C, HSPA6, PLPP5, CXCR4, GZMB, and CCDC50) was developed using TCGA transcriptomic data, revealing statistically significant differences in survival analysis (P<0.05). Functional analysis demonstrated that marker genes were predominantly associated with immune-related pathways. Notably, substantial differences between the higher and lower- BCMG score groups were observed in terms of immune cell infiltration, immune cell activity, tumor mutational burden, TIDE score, and the expression of immune checkpoint blockade genes. Conclusion This study has established a robust model based on B-cell marker genes in TNBC, which holds significant potential for predicting prognosis and response to immunotherapy in TNBC patients.
Collapse
Affiliation(s)
- Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tangpeng Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofei Wu
- Department of Neurology, Central War Zone General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Tzeng YDT, Hsiao JH, Chu PY, Tseng LM, Hou MF, Tsang YL, Shao AN, Sheu JJC, Li CJ. The role of LSM1 in breast cancer: Shaping metabolism and tumor-associated macrophage infiltration. Pharmacol Res 2023; 198:107008. [PMID: 37995895 DOI: 10.1016/j.phrs.2023.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
LSM1 is part of the cytoplasmic protein complex Lsm1-7-Pat1 and is likely involved in pre-mRNA degradation by aiding U4/U6 snRNP formation. More research is needed to uncover LSM1's potential in breast cancer (BRCA) clinical pathology, the tumor immune microenvironment, and precision oncology. We discovered LSM1 as a diagnostic marker for advanced BRCA with poor survival, using a multi-omics approach. We studied LSM1 expression across BRCA regions and its link to immune cells through various methods, including spatial transcriptomics and single-cell RNA-sequencing. We also examined how silencing LSM1 affects mitochondrial function and energy metabolism in the tumor environment. These findings were confirmed using 54 BRCA patient biopsies and tissue microarrays. Immunofluorescence and bioinformatics assessed LSM1's connection to clinicopathological features and prognosis. This study uncovers gene patterns linked to breast cancer, with LSM1 linked to macrophage energy processes. Silencing LSM1 in breast cancer cells disrupts mitochondria and energy metabolism. Spatial analysis aligns with previous results, showing LSM1's connection to macrophages. Biopsies confirm LSM1 elevation in advanced breast cancer with increased macrophage presence. To summarize, LSM1 changes may drive BRCA progression, making it a potential diagnostic and prognostic marker. It also influences energy metabolism and the tumor's immune environment during metastasis, showing promise for precision medicine and drug screening in BRCA.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung 802, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan
| | - Yi-Ling Tsang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ai-Ning Shao
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
5
|
Wang Z, Qi H, Zhang Y, Sun H, Dong J, Wang H. PLPP2: Potential therapeutic target of breast cancer in PLPP family. Immunobiology 2022; 227:152298. [DOI: 10.1016/j.imbio.2022.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
6
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
7
|
Chu J, Tao L, Yao T, Chen Z, Lu X, Gao L, Fang L, Chen J, He G, Shen S, Zhang D. Circular RNA circRUNX1 promotes papillary thyroid cancer progression and metastasis by sponging MiR-296-3p and regulating DDHD2 expression. Cell Death Dis 2021; 12:112. [PMID: 33479208 PMCID: PMC7819993 DOI: 10.1038/s41419-020-03350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Papillary thyroid cancer (PTC) has a continuously increasing incidence and imposes a heavy medical burden to individuals and society due to its high proportion of lymph node metastasis and recurrence in recent years. Circular RNAs, a class of noncoding RNAs, participate in the progression of many cancers, but the role of circRNAs in PTC is still rarely reported. In this study, circRNA deep sequencing was performed to identify differentially expressed circRNAs in PTC. CircRUNX1 was selected for its high expression in PTC, and circRUNX1 silencing was directly associated with the week potential for migration, invasion and proliferation of PTC in vivo and in vitro. Fluorescence in situ hybridization (FISH) was further used to confirm the cytoplasmic localization of circRUNX1, indicating the possible function of circRUNX1 as a ceRNAs in PTC progression through miRNA binding. MiR-296-3p was then confirmed to be regulated by circRUNX1 and to target DDHD domain containing 2 (DDHD2) by luciferase reporter assays. The strong antitumor effect of miR-296-3p and the tumor-promoting effect of DDHD2 were further investigated in PTC, indicating that circRUNX1 modulates PTC progression through the miR-296-3p/DDHD2 pathway. Overall, circRUNX1 plays an oncogenic role in PTC and provides a potentially effective therapeutic strategy for PTC progression.
Collapse
Affiliation(s)
- Junjie Chu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Tao
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xiaoxiao Lu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Gao
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Liang Fang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Chen
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Gaofei He
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China.
| | - Deguang Zhang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
9
|
Age-related transcriptional modules and TF-miRNA-mRNA interactions in neonatal and infant human thymus. PLoS One 2020; 15:e0227547. [PMID: 32294112 PMCID: PMC7159188 DOI: 10.1371/journal.pone.0227547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
The human thymus suffers a transient neonatal involution, recovers and then starts a process of decline between the 1st and 2nd years of life. Age-related morphological changes in thymus were extensively investigated, but the genomic mechanisms underlying this process remain largely unknown. Through Weighted Gene Co-expression Network Analysis (WGCNA) and TF-miRNA-mRNA integrative analysis we studied the transcriptome of neonate and infant thymic tissues grouped by age: 0–30 days (A); 31days-6 months (B); 7–12 months (C); 13–18 months (D); 19-31months (E). Age-related transcriptional modules, hubs and high gene significance (HGS) genes were identified, as well as TF-miRNA-hub/HGS co-expression correlations. Three transcriptional modules were correlated with A and/or E groups. Hubs were mostly related to cellular/metabolic processes; few were differentially expressed (DE) or related to T-cell development. Inversely, HGS genes in groups A and E were mostly DE. In A (neonate) one third of the hyper-expressed HGS genes were related to T-cell development, against one-twentieth in E, what may correlate with the early neonatal depletion and recovery of thymic T-cell populations. This genomic mechanism is tightly regulated by TF-miRNA-hub/HGS interactions that differentially govern cellular and molecular processes involved in the functioning of the neonate thymus and in the beginning of thymic decline.
Collapse
|
10
|
Xiong J, Pecchi VG, Qui M, Ivanov AA, Mo X, Niu Q, Chen X, Fu H, Du Y. Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction. Assay Drug Dev Technol 2019; 16:96-106. [PMID: 29634317 PMCID: PMC5865254 DOI: 10.1089/adt.2017.835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC. Thus, small molecule inhibitors of the NSD3S/MYC interaction will be valuable tools for understanding the function of NSD3 in tumorigenesis for potential cancer therapeutic discovery. Here we report the development of a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) format to monitor the interaction of NSD3S with MYC. In our TR-FRET assay, anti-Flag-terbium and anti-glutathione S-transferase (GST)-d2, a paired fluorophores, were used to indirectly label Flag-tagged NSD3 and GST-MYC in HEK293T cell lysates. This TR-FRET assay is robust in a 1,536-well uHTS format, with signal-to-background >8 and a Z' factor >0.7. A pilot screening with the Spectrum library of 2,000 compounds identified several positive hits. One positive compound was confirmed to disrupt the NSD3/MYC interaction in an orthogonal protein-protein interaction assay. Thus, our optimized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the NSD3/MYC interaction.
Collapse
Affiliation(s)
- Jinglin Xiong
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Valentina Gonzalez Pecchi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Min Qui
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Andrey A. Ivanov
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Xiulei Mo
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Qiankun Niu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Yuhong Du
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Rutkovsky AC, Yeh ES, Guest ST, Findlay VJ, Muise-Helmericks RC, Armeson K, Ethier SP. Eukaryotic initiation factor 4E-binding protein as an oncogene in breast cancer. BMC Cancer 2019; 19:491. [PMID: 31122207 PMCID: PMC6533768 DOI: 10.1186/s12885-019-5667-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eukaryotic Initiation Factor 4E-Binding Protein (EIF4EBP1, 4EBP1) is overexpressed in many human cancers including breast cancer, yet the role of 4EBP1 in breast cancer remains understudied. Despite the known role of 4EBP1 as a negative regulator of cap-dependent protein translation, 4EBP1 is predicted to be an essential driving oncogene in many cancer cell lines in vitro, and can act as a driver of cancer cell proliferation. EIF4EBP1 is located within the 8p11-p12 genomic locus, which is frequently amplified in breast cancer and is known to predict poor prognosis and resistance to endocrine therapy. METHODS Here we evaluated the effect of 4EBP1 targeting using shRNA knock-down of expression of 4EBP1, as well as response to the mTORC targeted drug everolimus in cell lines representing different breast cancer subtypes, including breast cancer cells with the 8p11-p12 amplicon, to better define a context and mechanism for oncogenic 4EBP1. RESULTS Using a genome-scale shRNA screen on the SUM panel of breast cancer cell lines, we found 4EBP1 to be a strong hit in the 8p11 amplified SUM-44 cells, which have amplification and overexpression of 4EBP1. We then found that knock-down of 4EBP1 resulted in dramatic reductions in cell proliferation in 8p11 amplified breast cancer cells as well as in other luminal breast cancer cell lines, but had little or no effect on the proliferation of immortalized but non-tumorigenic human mammary epithelial cells. Kaplan-Meier analysis of EIF4EBP1 expression in breast cancer patients demonstrated that overexpression of this gene was associated with reduced relapse free patient survival across all breast tumor subtypes. CONCLUSIONS These results are consistent with an oncogenic role of 4EBP1 in luminal breast cancer and suggests a role for this protein in cell proliferation distinct from its more well-known role as a regulator of cap-dependent translation.
Collapse
Affiliation(s)
- Alexandria C. Rutkovsky
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Elizabeth S. Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, BSB 358, MSC 509, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Stephen T. Guest
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S. State Street, Ann Arbor, MI 48109 USA
| | - Victoria J. Findlay
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
| | - Robin C. Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, MSC 508, Charleston, SC 29425 USA
| | - Kent Armeson
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street Suite 303 MSC 835, Charleston, USA
| | - Stephen P. Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425 USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425 USA
| |
Collapse
|
12
|
Mining the Plasma Cell Transcriptome for Novel Cell Surface Proteins. Int J Mol Sci 2018; 19:ijms19082161. [PMID: 30042348 PMCID: PMC6121261 DOI: 10.3390/ijms19082161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Antibody Secreting Cells (ASCs) are a fundamental component of humoral immunity, however, deregulated or excessive antibody production contributes to the pathology of autoimmune diseases, while transformation of ASCs results in the malignancy Multiple Myeloma (MM). Despite substantial recent improvements in treating these conditions, there is as yet no widely used ASC-specific therapeutic approach, highlighting a critical need to identify novel methods of targeting normal and malignant ASCs. Surface molecules specifically expressed by the target cell population represent ideal candidates for a monoclonal antibody-based therapy. By interrogating the ASC gene signature that we previously defined we identified three surface proteins, Plpp5, Clptm1l and Itm2c, which represent potential targets for novel MM treatments. Plpp5, Clptm1l and Itm2c are highly and selectively expressed by mouse and human ASCs as well as MM cells. To investigate the function of these proteins within the humoral immune system we have generated three novel mouse strains, each carrying a loss-of-function mutation in either Plpp5, Clptm1l or Itm2c. Through analysis of these novel strains, we have shown that Plpp5, Clptm1l and Itm2c are dispensable for the development, maturation and differentiation of B-lymphocytes, and for the production of antibodies by ASCs. As adult mice lacking either protein showed no apparent disease phenotypes, it is likely that targeting these molecules on ASCs will have minimal on-target adverse effects.
Collapse
|
13
|
Felicio PS, Bidinotto LT, Melendez ME, Grasel RS, Campacci N, Galvão HCR, Scapulatempo-Neto C, Dufloth RM, Evangelista AF, Palmero EI. Genetic alterations detected by comparative genomic hybridization in BRCAX breast and ovarian cancers of Brazilian population. Oncotarget 2018; 9:27525-27534. [PMID: 29938003 PMCID: PMC6007956 DOI: 10.18632/oncotarget.25537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background About 5–10% of breast/ovarian cancers are hereditary. However, for a large proportion of cases (around 50%), the genetic cause remains unknown. These cases are grouped in a separated BRCAX category. The aim of this study was to identify genomic alterations in BRCA1/BRCA2 wild-type tumor samples from women with family history strongly suggestive of hereditary breast/ovarian cancer. Results A cohort of 31 Brazilian women was included in the study. Using the GISTIC algorithm, we identified 20 regions with genomic gains and 31 with losses. The most frequent altered regions were 1q21.2, 6p22.1 and 8p23.3 in breast tumors and Xq26 and Xp22.32-22.31 among the ovarian cancer cases. An interesting association identified was the loss of 22q13.31-13.32 and the presence of ovarian cancer cases. Among the genes present in the frequently altered regions, we found FGFR1, NSMCE2, CTTN, CRLF2, ERBB2, STARD3, MIR3201 and several genes of RAET and ULBP family. Conclusions In conclusion, our results suggest that alterations on chromosomes 1, 6, 8 and X are common on BRCAX tumors and that the loss on 22q can be associated with the presence of ovarian cancer. Methods DNA copy number alterations were analyzed by 60K array comparative genomic hybridization in breast and ovarian FFPE tumors.
Collapse
Affiliation(s)
- Paula Silva Felicio
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Lucas Tadeu Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | | | | | - Edenir Inêz Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, SP, Brazil
| |
Collapse
|
14
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
15
|
Zhang X, Zhang L, Lin B, Chai X, Li R, Liao Y, Deng X, Liu Q, Yang W, Cai Y, Zhou W, Lin Z, Huang W, Zhong M, Lei F, Wu J, Yu S, Li X, Li S, Li Y, Zeng J, Long W, Ren D, Huang Y. Phospholipid Phosphatase 4 promotes proliferation and tumorigenesis, and activates Ca 2+-permeable Cationic Channel in lung carcinoma cells. Mol Cancer 2017; 16:147. [PMID: 28851360 PMCID: PMC5576330 DOI: 10.1186/s12943-017-0717-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Background Phospholipid phosphatase 4 (PPAPDC1A or PLPP4) has been demonstrated to be involved in the malignant process of many cancers. The purpose of this study was to investigate the clinical significance and biological roles of PLPP4 in lung carcinoma. Methods PLPP4 expression was examined in 8 paired lung carcinoma tissues by real-time PCR and in 265 lung carcinoma tissues by immunohistochemistry (IHC). Statistical analysis was performed to evaluate the clinical correlation between PLPP4 expression and clinicopathological features and survival in lung carcinoma patients. In vitro and in vivo assays were performed to assess the biological roles of PLPP4 in lung carcinoma. Fluorescence-activated cell sorting, Western blotting and luciferase assays were used to identify the underlying pathway through which PLPP4 silencing mediates biological roles in lung carcinoma. Results PLPP4 is differentially elevated in lung adenocarcinoma (ADC) and lung squamous cell carcinoma (SQC) tissues. Statistical analysis demonstrated that high expression of PLPP4 significantly and positively correlated with clinicopathological features, including pathological grade, T category and stage, and poor overall and progression-free survival in lung carcinoma patients. Silencing PLPP4 inhibits proliferation and cell cycle progression in vitro and tumorigenesis in vivo in lung carcinoma cells. Our results further reveal that PLPP4 silencing inhibits Ca2+-permeable cationic channel, suggesting that downregulation of PLPP4 inhibits proliferation and tumorigenesis in lung carcinoma cells via reducing the influx of intracellular Ca2+. Conclusion Our results indicate that PLPP4 may hold promise as a novel marker for the diagnosis of lung carcinoma and as a potential therapeutic target to facilitate the development of novel treatment for lung carcinoma. Electronic supplementary material The online version of this article (10.1186/s12943-017-0717-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Zhang
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China.,Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Lan Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xingxing Chai
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, 524023, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yuehua Liao
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xinghui Deng
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Qiongru Liu
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wenli Yang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yubo Cai
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wei Zhou
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wenhai Huang
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Meigong Zhong
- Department of Pharmacy, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, 529030, China
| | - Fangyong Lei
- Department of Oncology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jinhua Wu
- Department of Clinical Laboratory, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Shuaishuai Yu
- Department of Clinical Laboratory, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xiaoping Li
- Department of General Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Shangren Li
- Department of General Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yueyue Li
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Wansheng Long
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Dong Ren
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China. .,Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, Guangdong Province, 510080, China.
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China. .,Department of Respiration Medicine, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China.
| |
Collapse
|
16
|
Rona GB, Almeida DSG, Pinheiro AS, Eleutherio ECA. The PWWP domain of the human oncogene WHSC1L1/NSD3 induces a metabolic shift toward fermentation. Oncotarget 2017; 8:54068-54081. [PMID: 28903324 PMCID: PMC5589563 DOI: 10.18632/oncotarget.11253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 07/26/2016] [Indexed: 01/10/2023] Open
Abstract
WHSC1L1/NSD3, one of the most aggressive human oncogenes, has two isoforms derived from alternative splicing. Overexpression of long or short NSD3 is capable of transforming a healthy into a cancer cell. NSD3s, the short isoform, contains only a PWWP domain, a histone methyl-lysine reader involved in epigenetic regulation of gene expression. With the aim of understanding the NSD3s PWWP domain role in tumorigenesis, we used Saccharomyces cerevisiae as an experimental model. We identified the yeast protein Pdp3 that contains a PWWP domain that closely resembles NSD3s PWWP. Our results indicate that the yeast protein Pdp3 and human NSD3s seem to play similar roles in energy metabolism, leading to a metabolic shift toward fermentation. The swapping domain experiments suggested that the PWWP domain of NSD3s functionally substitutes that of yeast Pdp3, whose W21 is essential for its metabolic function.
Collapse
Affiliation(s)
- Germana B. Rona
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Diego S. G. Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Anderson S. Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Elis C. A. Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Yamagata H, Uchida S, Matsuo K, Harada K, Kobayashi A, Nakashima M, Nakano M, Otsuki K, Abe-Higuchi N, Higuchi F, Watanuki T, Matsubara T, Miyata S, Fukuda M, Mikuni M, Watanabe Y. Identification of commonly altered genes between in major depressive disorder and a mouse model of depression. Sci Rep 2017; 7:3044. [PMID: 28596527 PMCID: PMC5465183 DOI: 10.1038/s41598-017-03291-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state). Seven-hundred and ninety-seven genes (558 upregulated, 239 downregulated when compared to those of 30 healthy subjects) were identified as potential markers for MDD. These genes were then cross-matched to microarray data obtained from a mouse model of depression (676 genes, 148 upregulated, 528 downregulated). Of the six common genes identified between patients and mice, five genes (SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5) were confirmed to be downregulated in patients with MDD by quantitative real-time polymerase chain reaction. Of these genes, HIST1H2AL was significantly decreased in a second set of independent subjects (age ≥20, age of onset <50) (N = 18, subjects with MDD in a depressed state; N = 19, healthy control participants). Taken together, our findings suggest that HIST1H2AL may be a biological marker of MDD.
Collapse
Affiliation(s)
- Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Nagatoichinomiya Hospital, 17-35 Katachiyama-midoricho, Shimonoseki, Yamaguchi, 751-0885, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Katakura Hospital, 229-3 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Department of Psychiatry, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Naoko Abe-Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Health Service Center Organization for University Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, 753-8511, Japan
| | - Shigeo Miyata
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masato Fukuda
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Mikuni
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Hakodate Watanabe Hospital, 1-31-1 Yunokawa-cho, Hakodate, Hokkaido, 042-8678, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
18
|
Development of mammary hyperplasia, dysplasia, and invasive ductal carcinoma in transgenic mice expressing the 8p11 amplicon oncogene NSD3. Breast Cancer Res Treat 2017; 164:349-358. [PMID: 28484924 DOI: 10.1007/s10549-017-4258-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE NSD3 has been implicated as a candidate driver oncogene from the 8p11-p12 locus, and we have previously published evidence for its amplification and overexpression in human breast cancer. This aim of this study was to further characterize the transforming function of NSD3 in vivo. METHODS We generated a transgenic mouse model in which NSD3 gene expression was driven by the MMTV promoter and expressed in mammary epithelium of FVB mice. Mammary glands were fixed and whole mounts were stained with carmine to visualize gland structure. Mammary tumors were formalin-fixed, and paraffin embedded (FFPE) tumors were stained with hematoxylin and eosin. RESULTS Pups born to transgenic females were significantly underdeveloped compared to pups born to WT females due to a lactation defect in transgenic female mice. Whole mount analysis of the mammary glands of transgenic female mice revealed a profound defect in functional differentiation of mammary gland alveoli that resulted in the lactation defect. We followed parous and virgin NSD3 transgenic and control mice to 50 weeks of age and observed that several NSD3 parous females developed mammary tumors. Whole mount analysis of the mammary glands of tumor-bearing mice revealed numerous areas of mammary hyperplasia and ductal dysplasia. Histological analysis showed that mammary tumors were high-grade ductal carcinomas, and lesions present in other mammary glands exhibited features of alveolar hyperplasia, ductal dysplasia, and carcinoma in situ. CONCLUSIONS Our results are consistent with our previous studies and demonstrate that NSD3 is a transforming breast cancer oncogene.
Collapse
|
19
|
Identification of MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene 2016; 36:2910-2918. [PMID: 27893709 PMCID: PMC5436938 DOI: 10.1038/onc.2016.433] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/24/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) is a master driver of a vast majority of breast cancers. Breast cancer cells often develop resistance to endocrine therapy via restoration of the ERα activity through survival pathways. Thus identifying the epigenetic activator of ERα that can be targeted to block ERα gene expression is a critical topic of endocrine therapy. Here, integrative genomic analysis identified MYST3 as a potential oncogene target that is frequently amplified in breast cancer. MYST3 is involved in histone acetylation via its histone acetyltransferase domain (HAT) and, as a result, activates gene expression by altering chromatin structure. We found that MYST3 was amplified in 11% and/or overexpressed in 15% of breast tumors, and overexpression of MYST3 correlated with worse clinical outcome in estrogen receptor+ (ER+) breast cancers. Interestingly, MYST3 depletion drastically inhibited proliferation in MYST3-high, ER+ breast cancer cells, but not in benign breast epithelial cells or in MYST3-low breast cancer cells. Importantly, we discovered that knocking down MYST3 resulted in profound reduction of ERα expression, while ectopic expression of MYST3 had the reversed effect. Chromatin immunoprecipitation revealed that MYST3 binds to the proximal promoter region of ERα gene, and inactivating mutations in its HAT domain abolished its ability to regulate ERα, suggesting MYST3 functioning as a histone acetyltransferase that activates ERα promoter. Furthermore, MYST3 inhibition with inducible MYST3 shRNAs potently attenuated breast tumor growth in mice. Together, this study identifies the first histone acetyltransferase that activates ERα expression which may be potentially targeted to block ERα at transcriptional level.
Collapse
|
20
|
Irish JC, Mills JN, Turner-Ivey B, Wilson RC, Guest ST, Rutkovsky A, Dombkowski A, Kappler CS, Hardiman G, Ethier SP. Amplification of WHSC1L1 regulates expression and estrogen-independent activation of ERα in SUM-44 breast cancer cells and is associated with ERα over-expression in breast cancer. Mol Oncol 2016; 10:850-65. [PMID: 27005559 PMCID: PMC4920706 DOI: 10.1016/j.molonc.2016.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
The 8p11‐p12 amplicon occurs in approximately 15% of breast cancers in aggressive luminal B‐type tumors. Previously, we identified WHSC1L1 as a driving oncogene from this region. Here, we demonstrate that over‐expression of WHSC1L1 is linked to over‐expression of ERα in SUM‐44 breast cancer cells and in primary human breast cancers. Knock‐down of WHSC1L1, particularly WHSC1L1‐short, had a dramatic effect on ESR1 mRNA and ERα protein levels. SUM‐44 cells do not require exogenous estrogen for growth in vitro; however, they are dependent on ERα expression, as ESR1 knock‐down or exposure to the selective estrogen receptor degrader fulvestrant resulted in growth inhibition. ChIP‐Seq experiments utilizing ERα antibodies demonstrated extensive ERα binding to chromatin in SUM‐44 cells under estrogen‐free conditions. ERα bound to ERE and FOXA1 motifs under estrogen‐free conditions and regulated expression of estrogen‐responsive genes. Short‐term treatment with estradiol enhanced binding of ERα to chromatin and influenced expression of many of the same genes to which ERα was bound under estrogen‐free conditions. Finally, knock‐down of WHSC1L1 in SUM‐44 cells resulted in loss of ERα binding to chromatin under estrogen‐free conditions, which was restored upon exposure to estradiol. These results indicate the SUM‐44 cells are a good model of a subset of luminal B breast cancers that have the 8p11‐p12 amplicon, over‐express WHSC1L1, and over‐express ERα, but are independent of estrogen for binding to chromatin and regulation of gene expression. Breast cancers such as these, that are dependent on ERα activity but independent of estradiol, are a major cause of breast cancer mortality. SUM44 is a model cell line for ERα positive breast cancer with the 8p11 amplicon. WHSC1L1 is a driving oncogene from the 8p11 amplicon in SUM44 cells. SUM44 breast cancer cells have high ERα expression, regulated by WHSC1L1 knockdown. ERα is required for growth and survival of SUM44 cells but is estrogen‐independent. WHSC1L1 knock‐down re‐sensitizes ERα to estradiol for binding to essential genes.
Collapse
Affiliation(s)
- Jonathan C Irish
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA; Department of Cancer Biology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Jamie N Mills
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Alexandria Rutkovsky
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Alan Dombkowski
- Department of Cancer Biology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Christiana S Kappler
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| | - Gary Hardiman
- Department of Medicine and Public Health, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA.
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, 86 Jonathan Lucas St, Charleston, SC 29425, USA.
| |
Collapse
|
21
|
Regad T. Targeting RTK Signaling Pathways in Cancer. Cancers (Basel) 2015; 7:1758-84. [PMID: 26404379 PMCID: PMC4586793 DOI: 10.3390/cancers7030860] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022] Open
Abstract
The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions.
Collapse
Affiliation(s)
- Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK.
| |
Collapse
|
22
|
Decreased expression of dual specificity phosphatase 22 in colorectal cancer and its potential prognostic relevance for stage IV CRC patients. Tumour Biol 2015; 36:8531-5. [PMID: 26032091 DOI: 10.1007/s13277-015-3588-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
Dual specificity phosphatase 22 (DUSP22) is a novel dual specificity phosphatase that has been demonstrated to be a cancer suppressor gene associated with numerous biological and pathological processes. However, little is known of DUSP22 expression profiling in colorectal cancer and its prognostic value. Our study aims to investigate the role of DUSP22 expression in the prognosis of colorectal cancer. We detected the mRNA expression in 92 paired primary colorectal cancer tissues and the corresponding adjacent normal tissues by using QuantiGenePlex assay. The Friedman test was used to determine the statistical difference of gene expression. Kaplan-Meier survival analysis was performed. Mann-Whitney test and Kruskal-Wallis test were used to conduct data analyses to determine the prognostic value. Statistical significance was set at P < 0.05. In 74 of 92 cases, DUSP22 mRNA was reduced in primary colorectal cancer tissues, compared to the adjacent normal tissues. The mRNA levels of DUSP22 were significantly lower in colorectal cancer tissues than in adjacent normal tissues (0.0290 vs. 0.0658; P < 0.001). Low expression of DUSP22 correlated significantly with large tumor size (P = 0.013). No association was observed between DUSP22 mRNA expression and differentiation, histopathological type, tumor invasion, lymph node metastases, metastases, TNM stage, and Duke's phase (all P > 0.05). Kaplan-Meier analysis indicated that DUSP22 expression had no significant relationship with overall survival in all patients (P > 0.05). Interestingly, low expression level of DUSP22 in stage IV patients had a poor survival measures with a marginal P value (P = 0.07). Reduced DUSP22 expression was found in colorectal cancer specimens. Low expression level of DUSP22 in stage IV patients had a poor survival outcome. Further study is required for the investigation of the role of DUSP22 in colorectal cancer.
Collapse
|
23
|
Ng CKY, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, Cowell CF, Wilkerson PM, Wai P, Rodrigues DN, Arnould L, Geyer FC, Bromberg SE, Lacroix-Triki M, Penault-Llorca F, Giard S, Sastre-Garau X, Natrajan R, Norton L, Cottu PH, Weigelt B, Vincent-Salomon A, Reis-Filho JS. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome Biol 2015; 16:107. [PMID: 25994018 PMCID: PMC4440518 DOI: 10.1186/s13059-015-0657-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/20/2015] [Indexed: 01/08/2023] Open
Abstract
Background HER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases. Results We separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers. Conclusions Our results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Arnaud Gauthier
- Department of Tumor Biology, Institut Curie, 75248, Paris, France.
| | - Huei-Chi Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Catherine F Cowell
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Patty Wai
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Daniel N Rodrigues
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Laurent Arnould
- Department of Pathology and CRB Ferdinand Cabanne, Centre Georges Francois Leclerc, 21000, Dijon, France.
| | - Felipe C Geyer
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Silvio E Bromberg
- Departments of Anatomic Pathology and Oncology, Hospital Israelita Albert Einstein, São Paulo, 05652-900, Brazil.
| | - Magali Lacroix-Triki
- Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, 31059, Toulouse, France.
| | - Frederique Penault-Llorca
- Department of Pathology, Centre Jean Perrin, and University of Auvergne, 63000, Clermont Ferrand, France.
| | - Sylvia Giard
- Department of Pathology, Centre Oscar Lambret, 59000, Lille, France.
| | | | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Paul H Cottu
- Department of Medical Oncology, Institut Curie, 75248, Paris, France.
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Affiliate Member, Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
24
|
Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat 2015; 150:1-8. [PMID: 25677745 PMCID: PMC4344551 DOI: 10.1007/s10549-015-3301-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/04/2015] [Indexed: 01/28/2023]
Abstract
Fibroblast growth factor receptor (FGFR) signaling is involved in multiple biological processes, including cell proliferation, survival, differentiation, migration, and apoptosis during embryonic development and adult tissue homeostasis. Given its role in the activation of critical signaling pathways, aberrant FGFR signaling has been implicated in multiple cancer types. A comprehensive search of PubMed and congress abstracts was conducted to identify reports on FGFR pathway components in breast cancer. In breast cancers, FGFR1 and FGFR4 gene amplification and single nucleotide polymorphisms in FGFR2 and FGFR4 have been detected. Commonly, these FGFR aberrations and gene amplifications lead to increased FGFR signaling and have been linked with poor prognosis and resistance to breast cancer treatments. Here, we review the role of FGFR signaling and the impact of FGFR genetic amplifications/aberrations on breast tumors. In addition, we summarize the most recent preclinical and clinical data on FGFR-targeted therapies in breast cancer. Finally, we highlight the ongoing clinical trials of the FGFR-targeted agents dovitinib, AZD4547, lucitanib, BGJ398, and JNJ-42756493, which are selected for patients with FGFR pathway-amplified breast cancer. Aberrant FGFR pathway amplification may drive some breast cancers. Inhibition of FGFR signaling is being explored in the clinic, and data from these trials may refine our ability to select patients who would best respond to these treatments.
Collapse
|
25
|
Toffoli S, Bar I, Abdel-Sater F, Delrée P, Hilbert P, Cavallin F, Moreau F, Van Criekinge W, Lacroix-Triki M, Campone M, Martin AL, Roché H, Machiels JP, Carrasco J, Canon JL. Identification by array comparative genomic hybridization of a new amplicon on chromosome 17q highly recurrent in BRCA1 mutated triple negative breast cancer. Breast Cancer Res 2014; 16:466. [PMID: 25416589 PMCID: PMC4303204 DOI: 10.1186/s13058-014-0466-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Triple Negative Breast Cancers (TNBC) represent about 12% to 20% of all breast cancers (BC) and have a worse outcome compared to other BC subtypes. TNBC often show a deficiency in DNA double-strand break repair mechanisms. This is generally related to the inactivation of a repair enzymatic complex involving BRCA1 caused either by genetic mutations, epigenetic modifications or by post-transcriptional regulations. The identification of new molecular biomarkers that would allow the rapid identification of BC presenting a BRCA1 deficiency could be useful to select patients who could benefit from PARP inhibitors, alkylating agents or platinum-based chemotherapy. METHODS Genomic DNA from 131 formalin-fixed paraffin-embedded (FFPE) tumors (luminal A and B, HER2+ and triple negative BC) with known BRCA1 mutation status or unscreened for BRCA1 mutation were analysed by array Comparative Genomic Hybridization (array CGH). One highly significant and recurrent gain in the 17q25.3 genomic region was analysed by fluorescent in situ hybridization (FISH). Expression of the genes of the 17q25.3 amplicon was studied using customized Taqman low density arrays and single Taqman assays (Applied Biosystems). RESULTS We identified by array CGH and confirmed by FISH a gain in the 17q25.3 genomic region in 90% of the BRCA1 mutated tumors. This chromosomal gain was present in only 28.6% of the BRCA1 non-mutated TNBC, 26.7% of the unscreened TNBC, 13.6% of the luminal B, 19.0% of the HER2+ and 0% of the luminal A breast cancers. The 17q25.3 gain was also detected in 50% of the TNBC with BRCA1 promoter methylation. Interestingly, BRCA1 promoter methylation was never detected in BRCA1 mutated BC. Gene expression analyses of the 17q25.3 sub-region showed a significant over-expression of 17 genes in BRCA1 mutated TNBC (n = 15) as compared to the BRCA1 non mutated TNBC (n = 13). CONCLUSIONS In this study, we have identified by array CGH and confirmed by FISH a recurrent gain in 17q25.3 significantly associated to BRCA1 mutated TNBC. Up-regulated genes in the 17q25.3 amplicon might represent potential therapeutic targets and warrant further investigation.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Chromosomes, Human, Pair 17/genetics
- Comparative Genomic Hybridization
- Female
- Genes, BRCA1
- Humans
- In Situ Hybridization, Fluorescence
- Ki-67 Antigen/metabolism
- Middle Aged
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
Collapse
Affiliation(s)
- Sébastien Toffoli
- Laboratory of Translational Oncology, Institute of Pathology and Genetics/ Grand Hôpital de Charleroi, Avenue Georges Lemaître 25, Gosselies, 6041, Belgium.
| | - Isabelle Bar
- Laboratory of Translational Oncology, Institute of Pathology and Genetics/ Grand Hôpital de Charleroi, Avenue Georges Lemaître 25, Gosselies, 6041, Belgium.
| | - Fadi Abdel-Sater
- Tumor Bank, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, Gosselies, 6041, Belgium.
| | - Paul Delrée
- Department of Pathology, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, Gosselies, 6041, Belgium.
| | - Pascale Hilbert
- Department of Molecular Biology, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, Gosselies, 6041, Belgium.
| | - Frédéric Cavallin
- Department of Molecular Biology, Institute of Pathology and Genetics, Avenue Georges Lemaître 25, Gosselies, 6041, Belgium.
| | - Fabrice Moreau
- MdxHealth Inc 15279 Alton Parkway, Suite 100, Irvine, CA, 92618, USA.
| | - Wim Van Criekinge
- MdxHealth Inc 15279 Alton Parkway, Suite 100, Irvine, CA, 92618, USA.
| | - Magali Lacroix-Triki
- Département de Biologie et de Pathologie, Institut Claudius Regaud, 20-24, Rue Pont St Pierre, Toulouse, 31052, France.
| | - Mario Campone
- Département d'Oncologie Médicale, Institut de Cancérologie de l'Ouest-René Gauducheau, Boulevard Jacques Monod, Saint-Herblain, Nantes, 44805, France.
| | - Anne-Laure Martin
- R&D UNICANCER, UNICANCER, Rue de Tolbiac 101, Paris, Cedex 13 75654, France.
| | - Henri Roché
- Département d'Oncologie Médicale, Institut Claudius Regaud, 20-24, Rue Pont St Pierre, Toulouse, 31300, France.
| | - Jean-Pascal Machiels
- Department of Oncology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, Brussels, 1200, Belgium.
| | - Javier Carrasco
- Service of Oncology-Hematology, Grand Hôpital de Charleroi, Grand'Rue, 3, Charleroi, 6000, Belgium.
| | - Jean-Luc Canon
- Service of Oncology-Hematology, Grand Hôpital de Charleroi, Grand'Rue, 3, Charleroi, 6000, Belgium.
| |
Collapse
|
26
|
L'Abbate A, Macchia G, D'Addabbo P, Lonoce A, Tolomeo D, Trombetta D, Kok K, Bartenhagen C, Whelan CW, Palumbo O, Severgnini M, Cifola I, Dugas M, Carella M, De Bellis G, Rocchi M, Carbone L, Storlazzi CT. Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. Nucleic Acids Res 2014; 42:9131-45. [PMID: 25034695 PMCID: PMC4132716 DOI: 10.1093/nar/gku590] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.
Collapse
Affiliation(s)
| | - Gemma Macchia
- Department of Biology, University of Bari, Bari, Italy
| | | | - Angelo Lonoce
- Department of Biology, University of Bari, Bari, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari, Bari, Italy
| | - Domenico Trombetta
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Klaas Kok
- Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | | | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Marco Severgnini
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Massimo Carella
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | | | - Lucia Carbone
- National Primate Research Center, Beaverton, Oregon, USA
| | | |
Collapse
|
27
|
Gruel N, Benhamo V, Bhalshankar J, Popova T, Fréneaux P, Arnould L, Mariani O, Stern MH, Raynal V, Sastre-Garau X, Rouzier R, Delattre O, Vincent-Salomon A. Polarity gene alterations in pure invasive micropapillary carcinomas of the breast. Breast Cancer Res 2014; 16:R46. [PMID: 24887297 PMCID: PMC4095699 DOI: 10.1186/bcr3653] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/01/2014] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Pure invasive micropapillary carcinoma (IMPC) is a special type of breast carcinoma characterised by clusters of cells presenting polarity abnormalities. The biological alterations underlying this pattern remain unknown. METHODS Pangenomic analysis (n=39), TP53 (n=43) and PIK3CA (n=41) sequencing in a series of IMPCs were performed. A subset of cases was also analysed with whole-exome sequencing (n=4) and RNA sequencing (n=6). Copy number variation profiles were compared with those of oestrogen receptors and grade-matched invasive ductal carcinomas (IDCs) of no special type. RESULTS Unsupervised analysis of genomic data distinguished two IMPC subsets: one (Sawtooth/8/16) exhibited a significant increase in 16p gains (71%), and the other (Firestorm/Amplifier) was characterised by a high frequency of 8q (35%), 17q (20% to 46%) and 20q (23% to 30%) amplifications and 17p loss (74%). TP53 mutations (10%) were more frequently identified in the amplifier subset, and PIK3CA mutations (4%) were detected in both subsets. Compared to IDC, IMPC exhibited specific loss of the 6q16-q22 region (45%), which is associated with downregulation of FOXO3 and SEC63 gene expression. SEC63 and FOXO3 missense mutations were identified in one case each (2%). Whole-exome sequencing combined with RNA sequencing of IMPC allowed us to identify somatic mutations in genes involved in polarity, DNAH9 and FMN2 (8% and 2%, respectively) or ciliogenesis, BBS12 and BBS9 (2% each) or genes coding for endoplasmic reticulum protein, HSP90B1 and SPTLC3 (2% each) and cytoskeleton, UBR4 and PTPN21 (2% each), regardless of the genomic subset. The intracellular biological function of the mutated genes identified by gene ontology analysis suggests a driving role in the clinicopathological characteristics of IMPC. CONCLUSION In our comprehensive molecular analysis of IMPC, we identified numerous genomic alterations without any recurrent fusion genes. Recurrent somatic mutations of genes participating in cellular polarity and shape suggest that they, together with other biological alterations (such as epigenetic modifications and stromal alterations), could contribute to the morphological pattern of IMPC. Though none of the individual abnormalities demonstrated specificity for IMPC, whether their combination in IMPC may have a cumulative effect that drives the abnormal polarity of IMPC needs to be examined further with in vitro experiments.
Collapse
MESH Headings
- Axonemal Dyneins/genetics
- Base Sequence
- Breast/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Calmodulin-Binding Proteins/genetics
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cell Polarity/genetics
- Chaperonins
- Class I Phosphatidylinositol 3-Kinases
- Cytoskeletal Proteins/genetics
- DNA Copy Number Variations
- Exome/genetics
- Female
- Forkhead Box Protein O3
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Formins
- Gene Amplification/genetics
- Group II Chaperonins/genetics
- Humans
- Membrane Glycoproteins/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Microfilament Proteins/biosynthesis
- Molecular Chaperones
- Mutation, Missense
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/genetics
- Nuclear Proteins/biosynthesis
- Phosphatidylinositol 3-Kinases/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- RNA-Binding Proteins
- Receptor, ErbB-2/biosynthesis
- Receptors, Estrogen/biosynthesis
- Retrospective Studies
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- Sequence Deletion/genetics
- Serine C-Palmitoyltransferase/genetics
- Tumor Suppressor Protein p53/genetics
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Nadège Gruel
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
- Department of Translational Research, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Vanessa Benhamo
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
- Department of Translational Research, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | | | - Tatiana Popova
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Paul Fréneaux
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Laurent Arnould
- Department of Pathology, Centre Georges François Leclerc, and CRB Ferdinand Cabanne, 1 rue Professeur Marion BP 77 980, 21079 Dijon Cédex, France
| | - Odette Mariani
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Marc-Henri Stern
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Virginie Raynal
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Xavier Sastre-Garau
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Olivier Delattre
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Anne Vincent-Salomon
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| |
Collapse
|
28
|
Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas. Oncogenesis 2014; 3:e95. [PMID: 24662924 PMCID: PMC4038389 DOI: 10.1038/oncsis.2014.8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 12/21/2022] Open
Abstract
Genetic and epigenetic (DNA methylation, histone modifications, microRNA expression) crosstalk promotes inactivation of tumor suppressor genes or activation of oncogenes by gene loss/hypermethylation or duplications/hypomethylation, respectively. The 8p11-p12 chromosomal region is a hotspot for genomic aberrations (chromosomal rearrangements, amplifications and deletions) in several cancer forms, including breast carcinoma where amplification has been associated with increased proliferation rates and reduced patient survival. Here, an integrative genomics screen (DNA copy number, transcriptional and DNA methylation profiling) performed in 229 primary invasive breast carcinomas identified substantial coamplification of the 8p11-p12 genomic region and the MYC oncogene (8q24.21), as well as aberrant methylation and transcriptional patterns for several genes spanning the 8q12.1-q24.22 genomic region (ENPP2, FABP5, IMPAD1, NDRG1, PLEKHF2, RRM2B, SQLE, TAF2, TATDN1, TRPS1, VPS13B). Taken together, our findings suggest that MYC activity and aberrant DNA methylation may also have a pivotal role in the aggressive tumor phenotype frequently observed in breast carcinomas harboring 8p11-p12 regional amplification.
Collapse
|
29
|
Lili LN, Matyunina LV, Walker LD, Daneker GW, McDonald JF. Evidence for the importance of personalized molecular profiling in pancreatic cancer. Pancreas 2014; 43:198-211. [PMID: 24518497 PMCID: PMC4206352 DOI: 10.1097/mpa.0000000000000020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES There is a growing body of evidence that targeted gene therapy holds great promise for the future treatment of cancer. A crucial step in this therapy is the accurate identification of appropriate candidate genes/pathways for targeted treatment. One approach is to identify variant genes/pathways that are significantly enriched in groups of afflicted individuals relative to control subjects. However, if there are multiple molecular pathways to the same cancer, the molecular determinants of the disease may be heterogeneous among individuals and possibly go undetected by group analyses. METHODS In an effort to explore this question in pancreatic cancer, we compared the most significantly differentially expressed genes/pathways between cancer and control patient samples as determined by group versus personalized analyses. RESULTS We found little to no overlap between genes/pathways identified by gene expression profiling using group analyses relative to those identified by personalized analyses. CONCLUSIONS Our results indicate that personalized and not group molecular profiling is the most appropriate approach for the identification of putative candidates for targeted gene therapy of pancreatic and perhaps other cancers with heterogeneous molecular etiology.
Collapse
Affiliation(s)
- Loukia N. Lili
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - Lilya V. Matyunina
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - L. DeEtte Walker
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - George W. Daneker
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| | - John F. McDonald
- From the *Integrated Cancer Research Center, School of Biology, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta; and †Cancer Treatment Centers of America SE Regional Facility, Newnan, GA
| |
Collapse
|
30
|
Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS One 2014; 9:e81843. [PMID: 24416132 PMCID: PMC3886975 DOI: 10.1371/journal.pone.0081843] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/17/2013] [Indexed: 01/19/2023] Open
Abstract
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.
Collapse
|
31
|
Nandy A, Gangopadhyay S, Mukhopadhyay A. Individualizing breast cancer treatment—The dawn of personalized medicine. Exp Cell Res 2014; 320:1-11. [DOI: 10.1016/j.yexcr.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 12/19/2022]
|
32
|
Abstract
The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Li Yen Mah
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, International Medical University, 126 Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Mahmood SF, Gruel N, Nicolle R, Chapeaublanc E, Delattre O, Radvanyi F, Bernard-Pierrot I. PPAPDC1B and WHSC1L1 are common drivers of the 8p11-12 amplicon, not only in breast tumors but also in pancreatic adenocarcinomas and lung tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1634-1644. [PMID: 24051013 DOI: 10.1016/j.ajpath.2013.07.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 06/28/2013] [Accepted: 07/09/2013] [Indexed: 01/13/2023]
Abstract
Amplification of the 8p11-12 chromosomal region is a common genetic event in many epithelial cancers. In breast cancer, several genes within this region have been shown to display oncogenic activity. Among these genes, the enzyme-encoding genes, PPAPDC1B and WHSC1L1, have been identified as potential therapeutic targets. We investigated whether PPAPDC1B and WHSC1L1 acted as general driver genes, thereby serving as therapeutic targets in other tumors with 8p11-12 amplification. By using publicly available genomic data from a panel of 883 cell lines derived from different cancers, we identified the cell lines presenting amplification of both WHSC1L1 and PPAPDC1B. In particular, we focused on cell lines derived from lung cancer and pancreatic adenocarcinoma and found a correlation between the amplification of PPAPDC1B and WHSC1L1 with their overexpression. Loss-of-function studies based on the use of siRNA and shRNA demonstrated that PPAPDC1B and WHSC1L1 played a major role in regulating the survival of pancreatic adenocarcinoma and small-cell lung cancer-derived cell lines, both in anchorage-dependent and anchorage-independent conditions, displaying amplification and overexpression of these genes. We also demonstrated that PPAPDC1B and WHSC1L1 regulated xenograft growth in these cell lines. Finally, quantitative RT-PCR experiments after PPAPDC1B and WHSC1L1 knockdown revealed exclusive PPAPDC1B and WHSC1L1 gene targets in small-cell lung cancer and pancreatic adenocarcinoma-derived cell lines compared with breast cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/genetics
- Chromosomes, Human, Pair 8/genetics
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Nuclear Proteins/genetics
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Phosphatidate Phosphatase/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/pathology
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Sardar F Mahmood
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Nadège Gruel
- Research Center, Institut Curie, Paris, France; Translational Research Department, Institut Curie, Paris, France; National Institute of Health and Medical Research (INSERM), U830, Institut Curie, Paris, France
| | - Rémy Nicolle
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Elodie Chapeaublanc
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Olivier Delattre
- Research Center, Institut Curie, Paris, France; National Institute of Health and Medical Research (INSERM), U830, Institut Curie, Paris, France
| | - François Radvanyi
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France
| | - Isabelle Bernard-Pierrot
- National Center for Scientific Research (CNRS), UMR 144, Institut Curie, Paris, France; Research Center, Institut Curie, Paris, France.
| |
Collapse
|
34
|
Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, Vincent-Salomon A, Raynal V, Pierron G, Perez F, Camonis J, Del Nery E, Delattre O, Radvanyi F, Bernard-Pierrot I. A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 2013; 35:670-82. [PMID: 24148822 DOI: 10.1093/carcin/bgt351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNA interference has boosted the field of functional genomics, by making it possible to carry out 'loss-of-function' screens in cultured cells. Here, we performed a small interfering RNA screening, in three breast cancer cell lines, for 101 candidate driver genes overexpressed in amplified breast tumors and belonging to eight amplicons on chromosomes 8q and 17q, investigating their role in cell survival/proliferation. This screening identified eight driver genes that were amplified, overexpressed and critical for breast tumor cell proliferation or survival. They included the well-described oncogenic driver genes for the 17q12 amplicon, ERBB2 and GRB7. Four of six other candidate driver genes-RAD21 and EIF3H, both on chromosome 8q23, CHRAC1 on chromosome 8q24.3 and TANC2 on chromosome 17q23-were confirmed to be driver genes regulating the proliferation/survival of clonogenic breast cancer cells presenting an amplification of the corresponding region. Indeed, knockdown of the expression of these genes decreased cell viability, through both cell cycle arrest and apoptosis induction, and inhibited the formation of colonies in anchorage-independent conditions, in soft agar. Strategies for inhibiting the expression of these genes or the function of the proteins they encode are therefore of potential value for the treatment of breast cancers presenting amplifications of the corresponding genomic region.
Collapse
|
35
|
Abstract
Breast cancer is the most frequent and the most deadly cancer in women in Western countries. Different classifications of disease (anatomoclinical, pathological, prognostic, genetic) are used for guiding the management of patients. Unfortunately, they fail to reflect the whole clinical heterogeneity of the disease. Consequently, molecularly distinct diseases are grouped in similar clinical classes, likely explaining the different clinical outcome between patients in a given class, and the fact that selection of the most appropriate diagnostic or therapeutic strategy for each patient is not done accurately. Today, treatment is efficient in only 70.0–75.0% of cases overall. Our repertoire of efficient drugs is limited but is being expanded with the discovery of new molecular targets for new drugs, based on the identification of candidate oncogenes and tumor suppressor genes (TSG) functionally relevant in disease. Development of new drugs makes therapeutical decisions even more demanding of reliable classifiers and prognostic/predictive tests. Breast cancer is a complex, heterogeneous disease at the molecular level. The combinatorial molecular origin and the heterogeneity of malignant cells, and the variability of the host background, create distinct subgroups of tumors endowed with different phenotypic features such as response to therapy and clinical outcome. Cellular and molecular analyses can identify new classes biologically and clinically relevant, as well as provide new clinically relevant markers and targets. The various stages of mammary tumorigenesis are not clearly defined and the genetic and epigenetic events critical to the development and aggressiveness of breast cancer are not precisely known. Because the phenotype of tumors is dependent on many genes, a large-scale and integrated molecular characterization of the genetic and epigenetic alterations and gene expression deregulation should allow the identification of new molecular classes clinically relevant, as well as among the altered genes and/or pathways, the identification of more accurate molecular diagnostic, prognostic/predictive factors, and for some of them, after functional validation, the identification of new therapeutic targets.
Collapse
|
36
|
Pereira-Castro I, Costa AMS, Oliveira MJ, Barbosa I, Rocha AS, Azevedo L, da Costa LT. Characterization of human NLZ1/ZNF703 identifies conserved domains essential for proper subcellular localization and transcriptional repression. J Cell Biochem 2013; 114:120-33. [PMID: 22886885 DOI: 10.1002/jcb.24309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/26/2012] [Indexed: 11/06/2022]
Abstract
NET family members have recently emerged as important players in the development of multiple structures, from the trachea of fly larvae to the vertebrate eye and human breast cancers. However, their mechanisms of action are still poorly understood, and we lack a detailed characterization of their functional domains, as well as gene expression patterns-particularly in adult mammals. Here, we present a characterization of human NLZ1/ZNF703 (NocA-like zinc finger 1/Zinc finger 703), one of the two human NET family member genes. We show that the gene is ubiquitously expressed in adult human and mouse tissues, that three mRNA species with the same coding sequence are generated by alternative polyadenylation, and that the encoded protein contains six evolutionarily conserved domains, three of which are specific to NET proteins. Finally, we present functional evidence that these domains are necessary for proper subcellular distribution of and transcription repression by the NLZ1 protein, but not for its interaction with Groucho family co-repressors.
Collapse
Affiliation(s)
- Isabel Pereira-Castro
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
37
|
Zardavas D, Baselga J, Piccart M. Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol 2013; 10:191-210. [PMID: 23459626 DOI: 10.1038/nrclinonc.2013.29] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extensive preclinical experimentation has conceptually changed the way we perceive breast cancer, with the wide spectrum of genomic alterations governing its malignant progression now being recognized. Functional genomics has helped us identify important genetic defects that can be pharmaceutically targeted in the setting of metastatic disease. Rationally chosen combination regimens are now under clinical investigation. Recent data underline the functional importance of the tumour-associated stroma, with several candidate molecular targets now emerging. Data elucidating a cellular hierarchy within the breast cancer cellular compartment support the existence of a therapy-resistant subpopulation of breast cancer stem cells. Identification of the developmental pathways that dictate their malignant phenotype and use of high-throughput screening techniques are leading to new therapeutic avenues. In this Review, we present the biological rationale for the clinical development of more than 15 different classes of targeted agents in breast cancer, along with evidence supporting rational combinations. However, metastatic breast cancer resembles a Darwinian evolutionary system, with 'driver' mutations and epigenetic changes determining clonal selection according to branching trajectories. This evolution is reflected in the molecular heterogeneity of the disease and poses severe impediments to the successful clinical development of emerging targeted agents.
Collapse
Affiliation(s)
- Dimitrios Zardavas
- Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 121, 1000 Brussels, Belgium
| | | | | |
Collapse
|
38
|
Jézéquel P, Frénel JS, Campion L, Guérin-Charbonnel C, Gouraud W, Ricolleau G, Campone M. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bas060. [PMID: 23325629 PMCID: PMC3548333 DOI: 10.1093/database/bas060] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a ‘prognostic module’. In this study, we develop a new module called ‘correlation module’, which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a ‘tested’ gene. A gene ontology (GO) mining function is also proposed to explore GO ‘biological process’, ‘molecular function’ and ‘cellular component’ terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a ‘tested’ gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies’ conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer. Database URL:http://bcgenex.centregauducheau.fr
Collapse
Affiliation(s)
- Pascal Jézéquel
- Unité Mixte de Génomique du Cancer, Hôpital Laënnec/Institut de Cancérologie de l'Ouest - site René Gauducheau, Bd J. Monod, 44805 Nantes - Saint Herblain Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wilkerson PM, Reis-Filho JS. the 11q13-q14 amplicon: Clinicopathological correlations and potential drivers. Genes Chromosomes Cancer 2012; 52:333-55. [DOI: 10.1002/gcc.22037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
|
40
|
Tarkkonen KM, Nilsson EM, Kähkönen TE, Dey JH, Heikkilä JE, Tuomela JM, Liu Q, Hynes NE, Härkönen PL. Differential roles of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in the regulation of S115 breast cancer cell growth. PLoS One 2012. [PMID: 23185502 PMCID: PMC3503871 DOI: 10.1371/journal.pone.0049970] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1–4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1–3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor/cytology
- Cell Line, Tumor/metabolism
- Cell Proliferation
- Female
- Fibroblast Growth Factor 8/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Pyrimidines/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Kati M Tarkkonen
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tenhagen M, van Diest PJ, Ivanova IA, van der Wall E, van der Groep P. Fibroblast growth factor receptors in breast cancer: expression, downstream effects, and possible drug targets. Endocr Relat Cancer 2012; 19:R115-29. [PMID: 22508544 DOI: 10.1530/erc-12-0060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cancer treatments are increasingly focusing on the molecular mechanisms underlying the oncogenic processes present in tumors of individual patients. Fibroblast growth factor receptors (FGFRs) are among the many molecules that are involved in oncogenesis and are currently under investigation for their potential as drug targets in breast cancer patients. These receptor tyrosine kinases play a role in several processes including proliferation, angiogenesis, and migration. Alterations in these basal processes can contribute to the development and progression of tumors. Among breast cancer patients, several subgroups have been shown to harbor genetic aberrations in FGFRs, including amplifications of FGFR1, FGFR2, and FGFR4 and mutations in FGFR2 and FGFR4. Here, we review in vitro and in vivo models that have partly elucidated the molecular implications of these different genetic aberrations, the resulting tumor characteristics, and the potential of FGFRs as therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- M Tenhagen
- Department of Pathology Division of Internal Medicine and Dermatology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Jain VK, Turner NC. Challenges and opportunities in the targeting of fibroblast growth factor receptors in breast cancer. Breast Cancer Res 2012; 14:208. [PMID: 22731805 PMCID: PMC3446326 DOI: 10.1186/bcr3139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Activation of the fibroblast growth factor receptor pathway is a common event in many cancer types. Here we review the role of fibroblast growth factor receptor signalling in breast cancer, from SNPs in FGFR2 that influence breast cancer risk and SNPs in FGFR4 that associate with breast cancer prognosis, and potential therapeutic targets such as receptor amplification and aberrant autocrine and paracrine ligand expression. We discuss the multiple therapeutic strategies in preclinical and clinical development and the current and future challenges to successfully targeting this pathway in cancer.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/therapy
- Female
- Gene Amplification
- Humans
- Molecular Targeted Therapy
- Polymorphism, Single Nucleotide
- Prognosis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Vikram K Jain
- GI Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - Nicholas C Turner
- Breast Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
43
|
Bilal E, Vassallo K, Toppmeyer D, Barnard N, Rye IH, Almendro V, Russnes H, Børresen-Dale AL, Levine AJ, Bhanot G, Ganesan S. Amplified loci on chromosomes 8 and 17 predict early relapse in ER-positive breast cancers. PLoS One 2012; 7:e38575. [PMID: 22719901 PMCID: PMC3374812 DOI: 10.1371/journal.pone.0038575] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/07/2012] [Indexed: 01/12/2023] Open
Abstract
Adjuvant hormonal therapy is administered to all early stage ER+ breast cancers, and has led to significantly improved survival. Unfortunately, a subset of ER+ breast cancers suffer early relapse despite hormonal therapy. To identify molecular markers associated with early relapse in ER+ breast cancer, an outlier analysis method was applied to a published gene expression dataset of 268 ER+ early-stage breast cancers treated with tamoxifen alone. Increased expression of sets of genes that clustered in chromosomal locations consistent with the presence of amplicons at 8q24.3, 8p11.2, 17q12 (HER2 locus) and 17q21.33-q25.1 were each found to be independent markers for early disease recurrence. Distant metastasis free survival (DMFS) after 10 years for cases with any amplicon (DMFS = 56.1%, 95% CI = 48.3–63.9%) was significantly lower (P = 0.0016) than cases without any of the amplicons (DMFS = 87%, 95% CI = 76.3% –97.7%). The association between presence of chromosomal amplifications in these regions and poor outcome in ER+ breast cancers was independent of histologic grade and was confirmed in independent clinical datasets. A separate validation using a FISH-based assay to detect the amplicons at 8q24.3, 8p11.2, and 17q21.33-q25.1 in a set of 36 early stage ER+/HER2- breast cancers treated with tamoxifen suggests that the presence of these amplicons are indeed predictive of early recurrence. We conclude that these amplicons may serve as prognostic markers of early relapse in ER+ breast cancer, and may identify novel therapeutic targets for poor prognosis ER+ breast cancers.
Collapse
Affiliation(s)
- Erhan Bilal
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kristen Vassallo
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States of America
| | - Deborah Toppmeyer
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Nicola Barnard
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States of America
| | - Inga H. Rye
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vanessa Almendro
- Dana Farber Cancer Institute, Harvard University, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Hege Russnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Dana Farber Cancer Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Anne-Lise Børresen-Dale
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arnold J. Levine
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Gyan Bhanot
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- Institute for Advanced Study, Princeton, New Jersey, United States of America
- * E-mail: (GB); (SG)
| | - Shridar Ganesan
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail: (GB); (SG)
| |
Collapse
|
44
|
Natrajan R, Mackay A, Wilkerson PM, Lambros MB, Wetterskog D, Arnedos M, Shiu KK, Geyer FC, Langerød A, Kreike B, Reyal F, Horlings HM, van de Vijver MJ, Palacios J, Weigelt B, Reis-Filho JS. Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Res 2012; 14:R53. [PMID: 22433433 PMCID: PMC3446387 DOI: 10.1186/bcr3154] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The 19q12 locus is amplified in a subgroup of oestrogen receptor (ER)-negative grade III breast cancers. This amplicon comprises nine genes, including cyclin E1 (CCNE1), which has been proposed as its 'driver'. The aim of this study was to identify the genes within the 19q12 amplicon whose expression is required for the survival of cancer cells harbouring their amplification. METHODS We investigated the presence of 19q12 amplification in a series of 313 frozen primary breast cancers and 56 breast cancer cell lines using microarray comparative genomic hybridisation (aCGH). The nine genes mapping to the smallest region of amplification on 19q12 were silenced using RNA interference in phenotypically matched breast cancer cell lines with (MDA-MB-157 and HCC1569) and without (Hs578T, MCF7, MDA-MB-231, ZR75.1, JIMT1 and BT474) amplification of this locus. Genes whose silencing was selectively lethal in amplified cells were taken forward for further validation. The effects of cyclin-dependent kinase 2 (CDK2) silencing and chemical inhibition were tested in cancer cells with and without CCNE1 amplification. RESULTS 19q12 amplification was identified in 7.8% of ER-negative grade III breast cancer. Of the nine genes mapping to this amplicon, UQCRFS1, POP4, PLEKHF1, C19ORF12, CCNE1 and C19ORF2 were significantly over-expressed when amplified in primary breast cancers and/or breast cancer cell lines. Silencing of POP4, PLEKHF1, CCNE1 and TSZH3 selectively reduced cell viability in cancer cells harbouring their amplification. Cancer cells with CCNE1 amplification were shown to be dependent on CDK2 expression and kinase activity for their survival. CONCLUSIONS The 19q12 amplicon may harbour more than a single 'driver', given that expression of POP4, PLEKHF1, CCNE1 and TSZH3 is required for the survival of cancer cells displaying their amplification. The observation that cancer cells harbouring CCNE1 gene amplification are sensitive to CDK2 inhibitors provides a rationale for the testing of these chemical inhibitors in a subgroup of patients with ER-negative grade III breast cancers.
Collapse
Affiliation(s)
- Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Alan Mackay
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Paul M Wilkerson
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Maryou B Lambros
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Daniel Wetterskog
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Monica Arnedos
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Kai-Keen Shiu
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Felipe C Geyer
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Anita Langerød
- Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausèen 70, Montebello, Oslo, 0310, Norway
| | - Bas Kreike
- Institute for Radiation Oncology Arnhem, Wagnerlaan 47, Arnhem 6815 AD, The Netherlands
| | - Fabien Reyal
- Department of Surgery, Institut Curie, 26 rue d'Ulm, Paris, 75005, France
| | - Hugo M Horlings
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Jose Palacios
- Servicio de Anatomia Patologica, HHUU Virgen del Rocío, Avda. Manuel Siurot, s/n, Seville, 41013, Spain
| | - Britta Weigelt
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Jorge S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
45
|
Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:850-60. [PMID: 22273505 DOI: 10.1016/j.bbamcr.2012.01.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
In this review, the evidence for a role of fibroblast growth factor receptor (FGFR) mediated signalling in carcinogenesis are considered and relevant underlying mechanisms highlighted. FGF signalling mediated by FGFR follows a classic receptor tyrosine kinase signalling pathway and its deregulation at various points of its cascade could result in malignancy. Here we review the accumulating reports that revealed the association of FGF/FGFRs to various types of cancer at a genetic level, along with in vitro and in vivo evidences available so far, which indicates the functional involvement of FGF signalling in tumour formation and progression. An increasing number of drugs against the FGF pathways is currently in clinical testing. We will discuss the strategies for future FGF research in cancer and translational approaches.
Collapse
Affiliation(s)
- Imran Ahmad
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
46
|
Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 2012; 14:R11. [PMID: 22247967 PMCID: PMC3496128 DOI: 10.1186/bcr3095] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 10/19/2011] [Accepted: 01/16/2012] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. METHODS Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. RESULTS Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. CONCLUSIONS This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents.
Collapse
|
47
|
Abstract
FGFs (fibroblast growth factors) and their receptors (FGFRs) play essential roles in tightly regulating cell proliferation, survival, migration and differentiation during development and adult life. Deregulation of FGFR signalling, on the other hand, has been associated with many developmental syndromes, and with human cancer. In cancer, FGFRs have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. FGFR alterations are detected in a variety of human cancers, such as breast, bladder, prostate, endometrial and lung cancers, as well as haematological malignancies. Accumulating evidence indicates that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-mesenchymal transition, invasion and tumour angiogenesis. Therapeutic strategies targeting FGFs and FGFRs in human cancer are therefore currently being explored. In the present review we will give an overview of FGF signalling, the main FGFR alterations found in human cancer to date, how they may contribute to specific cancer types and strategies for therapeutic intervention.
Collapse
|
48
|
Karlsson E, Waltersson MA, Bostner J, Pérez-Tenorio G, Olsson B, Hallbeck AL, Stål O. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosomes Cancer 2011; 50:775-87. [PMID: 21748818 DOI: 10.1002/gcc.20900] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/06/2011] [Indexed: 11/07/2022] Open
Abstract
The chromosomal region 11q13 is amplified in 15-20% of breast cancers; an event not only associated with estrogen receptor (ER) expression but also implicated in resistance to endocrine therapy. Coamplifications of the 11q13 and 8p12 regions are common, suggesting synergy between the amplicons. The aim was to identify candidate oncogenes in the 11q13 region based on recurrent amplification patterns and correlations to mRNA expression levels. Furthermore, the 11q13/8p12 coamplification and its prognostic value, was evaluated at the DNA and the mRNA levels. Affymetrix 250K NspI arrays were used for whole-genome screening of DNA copy number changes in 29 breast tumors. To identify amplicon cores at 11q13 and 8p12, genomic identification of significant targets in cancer (GISTIC) was applied. The mRNA expression levels of candidate oncogenes in the amplicons [RAD9A, RPS6KB2 (S6K2), CCND1, FGF19, FGF4, FGF3, PAK1, GAB2 (11q13); EIF4EBP1 (4EBP1), PPAPDC1B, and FGFR1 (8p12)] were evaluated using real-time PCR. Resulting data revealed three main amplification cores at 11q13. ER expression was associated with the central 11q13 amplification core, encompassing CCND1, whereas 8p12 amplification/gene expression correlated to S6K2 in a proximal 11q13 core. Amplification of 8p12 and high expression of 4EBP1 or FGFR1 was associated with a poor outcome in the group. In conclusion, single nucleotide polymorphism arrays have enabled mapping of the 11q13 amplicon in breast tumors with high resolution. A proximal 11q13 core including S6K2 was identified as involved in the coamplification/coexpression with 8p12, suggesting synergy between the mTOR targets S6K2 and 4EBP1 in breast cancer development and progression.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Biomarkers, Tumor/genetics
- Breast Neoplasms/diagnosis
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Cell Cycle Proteins
- Chromosome Mapping
- Chromosomes, Human, Pair 11/chemistry
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 8/chemistry
- Chromosomes, Human, Pair 8/genetics
- Female
- Gene Amplification
- Gene Expression
- Genome, Human
- Genome-Wide Association Study
- Genomics/methods
- Humans
- Oligonucleotide Array Sequence Analysis
- Phosphoproteins/genetics
- Polymorphism, Single Nucleotide
- Prognosis
- Real-Time Polymerase Chain Reaction
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Survival Analysis
- TOR Serine-Threonine Kinases/genetics
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Clinical and Experimental Medicine, Division of Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wilkerson PM, Dedes KJ, Wetterskog D, Mackay A, Lambros MB, Mansour M, Frankum J, Lord CJ, Natrajan R, Ashworth A, Reis-Filho JS. Functional characterization of EMSY
gene amplification in human cancers. J Pathol 2011; 225:29-42. [DOI: 10.1002/path.2944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022]
|
50
|
Morishita M, di Luccio E. Cancers and the NSD family of histone lysine methyltransferases. Biochim Biophys Acta Rev Cancer 2011; 1816:158-63. [PMID: 21664949 DOI: 10.1016/j.bbcan.2011.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
Abstract
Both genetic and epigenetic alterations are responsible for the stepwise initiation and progression of cancers. Only epigenetic aberrations can be reversible, allowing the malignant cell population to revert to a more benign phenotype. The epigenetic therapy of cancers is emerging as an effective and valuable approach to both the chemotherapy and the chemoprevention of cancer. The utilization of epigenetic targets that include histone methyltransferase (HMTase), Histone deacetylatase, and DNA methyltransferase, are emerging as key therapeutic targets. The nuclear receptor binding SET domain (NSD) protein is a family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L1, and plays a critical part in chromatin integrity as evidenced by a growing number of conditions linked to the alterations and/or amplification of NSD1, NSD2, and/or NSD3. NSD1, NSD2 and NSD3 are associated with multiple cancers. The amplification of either NSD1 or NSD2 triggers the cellular transformation and thus is key in the early carcinogenesis events. In most cases, reducing the levels of NSD proteins would suppress cancer growth. NSD1 and NSD2 were isolated as genes linked to developmental diseases, such as Sotos syndrome and Wolf-Hirschhorn syndrome, respectively, implying versatile aspects of the NSD proteins. The NSD pathways, however, are not well understood. It is noteworthy that the NSD family is phylogenetically distinct compared to other known lysine-HMTases, Here, we review the current knowledge on NSD1/NSD2/NSD3 in tumorigenesis and prospect their special value for developing novel anticancer drugs.
Collapse
Affiliation(s)
- Masayo Morishita
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | | |
Collapse
|