1
|
Simon-Molas H, Montironi C, Kabanova A, Eldering E. Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Semin Hematol 2024; 61:155-162. [PMID: 38493076 DOI: 10.1053/j.seminhematol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Anna Kabanova
- Tumour Immunology Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Seedhom MO, Dersh D, Holly J, Pavon-Eternod M, Wei J, Angel M, Shores L, David A, Santos J, Hickman H, Yewdell JW. Paradoxical imbalance between activated lymphocyte protein synthesis capacity and rapid division rate. eLife 2024; 12:RP89015. [PMID: 38512721 PMCID: PMC10957176 DOI: 10.7554/elife.89015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Rapid lymphocyte cell division places enormous demands on the protein synthesis machinery. Flow cytometric measurement of puromycylated ribosome-associated nascent chains after treating cells or mice with translation initiation inhibitors reveals that ribosomes in resting lymphocytes in vitro and in vivo elongate at typical rates for mammalian cells. Intriguingly, elongation rates can be increased up to 30% by activation in vivo or fever temperature in vitro. Resting and activated lymphocytes possess abundant monosome populations, most of which actively translate in vivo, while in vitro, nearly all can be stalled prior to activation. Quantitating lymphocyte protein mass and ribosome count reveals a paradoxically high ratio of cellular protein to ribosomes insufficient to support their rapid in vivo division, suggesting that the activated lymphocyte proteome in vivo may be generated in an unusual manner. Our findings demonstrate the importance of a global understanding of protein synthesis in lymphocytes and other rapidly dividing immune cells.
Collapse
Affiliation(s)
- Mina O Seedhom
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Devin Dersh
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Jaroslav Holly
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | | | - Jiajie Wei
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Matthew Angel
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Lucas Shores
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Alexandre David
- CNRS UMR-5203; INSERM U661; UM1; UM2, Institut de Génomique FonctionnelleMontpellierFrance
| | - Jefferson Santos
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Heather Hickman
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| | - Jonathan W Yewdell
- National Institute of Allergy and Infectious DiseasesBethesdaUnited States
| |
Collapse
|
3
|
Haselager MV, van Driel BF, Perelaer E, de Rooij D, Lashgari D, Loos R, Kater AP, Moerland PD, Eldering E. In Vitro 3D Spheroid Culture System Displays Sustained T Cell-dependent CLL Proliferation and Survival. Hemasphere 2023; 7:e938. [PMID: 37637994 PMCID: PMC10448932 DOI: 10.1097/hs9.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental cells and signals. The lymph node (LN) is the critical site of in vivo CLL proliferation and development of resistance to both chemotherapy and targeted agents. We present a new model that incorporates key aspects of the CLL LN, which enables investigation of CLL cells in the context of a protective niche. We describe a three-dimensional (3D) in vitro culture system using ultra-low attachment plates to create spheroids of CLL cells derived from peripheral blood. Starting from CLL:T cell ratios as observed in LN samples, CLL activation was induced by either direct stimulation and/or indirectly via T cells. Compared with two-dimensional cultures, 3D cultures promoted CLL proliferation in a T cell-dependent manner, and enabled expansion for up to 7 weeks, including the formation of follicle-like structures after several weeks of culture. This model enables high-throughput drug screening, of which we describe response to Btk inhibition, venetoclax resistance, and T cell-mediated cytotoxicity as examples. In summary, we present the first LN-mimicking in vitro 3D culture for primary CLL, which enables readouts such as real-time drug screens, kinetic growth assays, and spatial localization. This is the first in vitro CLL system that allows testing of response and resistance to venetoclax and Bruton's tyrosine kinase inhibitors in the context of the tumor microenvironment, thereby opening up new possibilities for clinically useful applications.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Bianca F. van Driel
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Eduard Perelaer
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Dennis de Rooij
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Danial Lashgari
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Remco Loos
- Center for Innovation and Translational Research Europe, Bristol Myers Squibb, Sevilla, Spain
| | - Arnon P. Kater
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
| | - Perry D. Moerland
- Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Oppezzo P, Navarrete M, Chiorazzi N. AID in Chronic Lymphocytic Leukemia: Induction and Action During Disease Progression. Front Oncol 2021; 11:634383. [PMID: 34041018 PMCID: PMC8141630 DOI: 10.3389/fonc.2021.634383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The enzyme activation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes, critical actions for an effective adaptive immune response. However, in addition to the benefits generated by its physiological roles, AID is an etiological factor for the development of human and murine leukemias and lymphomas. This review highlights the pathological role of AID and the consequences of its actions on the development, progression, and therapeutic refractoriness of chronic lymphocytic leukemia (CLL) as a model disease for mature lymphoid malignancies. First, we summarize pertinent aspects of the expression and function of AID in normal B lymphocytes. Then, we assess putative causes for AID expression in leukemic cells emphasizing the role of an activated microenvironment. Thirdly, we discuss the role of AID in lymphomagenesis, in light of recent data obtained by NGS analyses on the genomic landscape of leukemia and lymphomas, concentrating on the frequency of AID signatures in these cancers and correlating previously described tumor-gene drivers with the presence of AID off-target mutations. Finally, we discuss how these changes could affect tumor suppressor and proto-oncogene targets and how they could be associated with disease progression. Collectively, we hope that these sections will help to better understand the complex paradox between the physiological role of AID in adaptive immunity and its potential causative activity in B-cell malignancies.
Collapse
Affiliation(s)
- Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
5
|
Abstract
Patients with chronic lymphocytic leukemia can be divided into three categories: those who are minimally affected by the problem, often never requiring therapy; those that initially follow an indolent course but subsequently progress and require therapy; and those that from the point of diagnosis exhibit an aggressive disease necessitating treatment. Likewise, such patients pass through three phases: development of the disease, diagnosis, and need for therapy. Finally, the leukemic clones of all patients appear to require continuous input from the exterior, most often through membrane receptors, to allow them to survive and grow. This review is presented according to the temporal course that the disease follows, focusing on those external influences from the tissue microenvironment (TME) that support the time lines as well as those internal influences that are inherited or develop as genetic and epigenetic changes occurring over the time line. Regarding the former, special emphasis is placed on the input provided via the B-cell receptor for antigen and the C-X-C-motif chemokine receptor-4 and the therapeutic agents that block these inputs. Regarding the latter, prominence is laid upon inherited susceptibility genes and the genetic and epigenetic abnormalities that lead to the developmental and progression of the disease.
Collapse
MESH Headings
- Disease Progression
- Humans
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mutation
- PAX5 Transcription Factor/metabolism
- Receptors, Antigen, B-Cell
- Signal Transduction
- Tumor Microenvironment
Collapse
Affiliation(s)
- Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Shih-Shih Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York 11030, USA
| | - Kanti R Rai
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549, USA
| |
Collapse
|
6
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
7
|
Costa Del Amo P, Debebe B, Razavi-Mohseni M, Nakaoka S, Worth A, Wallace D, Beverley P, Macallan D, Asquith B. The Rules of Human T Cell Fate in vivo. Front Immunol 2020; 11:573. [PMID: 32322253 PMCID: PMC7156550 DOI: 10.3389/fimmu.2020.00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 12/05/2022] Open
Abstract
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset.
Collapse
Affiliation(s)
- Pedro Costa Del Amo
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bisrat Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Shinji Nakaoka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Andrew Worth
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Diana Wallace
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Peter Beverley
- TB Research Centre, National Heart and Lung Research Institute, Imperial College London, London, United Kingdom
| | - Derek Macallan
- Institute for Infection and Immunity, St. George's Hospital, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Medina A, Jiménez C, Sarasquete ME, González M, Chillón MC, Balanzategui A, Prieto-Conde I, García-Álvarez M, Puig N, González-Calle V, Alcoceba M, Cuenca I, Barrio S, Escalante F, Gutiérrez NC, Gironella M, Hernández MT, Sureda A, Oriol A, Bladé J, Lahuerta JJ, San Miguel JF, Mateos MV, Martínez-López J, Calasanz MJ, García-Sanz R. Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer J 2020; 10:14. [PMID: 32029700 PMCID: PMC7004993 DOI: 10.1038/s41408-020-0283-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma is a heterogeneous disease whose pathogenesis has not been completely elucidated. Although B-cell receptors play a crucial role in myeloma pathogenesis, the impact of clonal immunoglobulin heavy-chain features in the outcome has not been extensively explored. Here we present the characterization of complete heavy-chain gene rearrangements in 413 myeloma patients treated in Spanish trials, including 113 patients characterized by next-generation sequencing. Compared to the normal B-cell repertoire, gene selection was biased in myeloma, with significant overrepresentation of IGHV3, IGHD2 and IGHD3, as well as IGHJ4 gene groups. Hypermutation was high in our patients (median: 8.8%). Interestingly, regarding patients who are not candidates for transplantation, a high hypermutation rate (≥7%) and the use of IGHD2 and IGHD3 groups were associated with improved prognostic features and longer survival rates in the univariate analyses. Multivariate analysis revealed prolonged progression-free survival rates for patients using IGHD2/IGHD3 groups (HR: 0.552, 95% CI: 0.361-0.845, p = 0.006), as well as prolonged overall survival rates for patients with hypermutation ≥7% (HR: 0.291, 95% CI: 0.137-0.618, p = 0.001). Our results provide new insights into the molecular characterization of multiple myeloma, highlighting the need to evaluate some of these clonal rearrangement characteristics as new potential prognostic markers.
Collapse
Affiliation(s)
- Alejandro Medina
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Cristina Jiménez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - M Eugenia Sarasquete
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain.
| | - Marcos González
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - M Carmen Chillón
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Ana Balanzategui
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Isabel Prieto-Conde
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - María García-Álvarez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Noemí Puig
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Verónica González-Calle
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | - Miguel Alcoceba
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | | | | | - Norma C Gutiérrez
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | | | - Anna Sureda
- Hospital Duran i Reynals, Institut Català d'Oncología (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Oriol
- Hospital Germans Trias i Pujol, Institut Català d'Oncología (ICO), Institut Josep Carreras, Badalona, Spain
| | - Joan Bladé
- Hospital Clínic i Provincial, Institut de Investicacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Jesús F San Miguel
- Clínica Universidad de Navarra (CUN), Centro de Investigación Médica Aplicada, IDISNA, CIBERONC, Pamplona, Spain
| | - María-Victoria Mateos
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | - María-José Calasanz
- Clínica Universidad de Navarra (CUN), Centro de Investigación Médica Aplicada, IDISNA, CIBERONC, Pamplona, Spain
| | - Ramón García-Sanz
- Hospital Universitario de Salamanca (HUSAL), IBSAL, IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| |
Collapse
|
9
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
10
|
Lu J, Böttcher M, Walther T, Mougiakakos D, Zenz T, Huber W. Energy metabolism is co-determined by genetic variants in chronic lymphocytic leukemia and influences drug sensitivity. Haematologica 2019; 104:1830-1840. [PMID: 30792207 PMCID: PMC6717593 DOI: 10.3324/haematol.2018.203067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic lymphocytic leukemia cells have an altered energy metabolism compared to normal B cells. While there is a growing understanding of the molecular heterogeneity of the disease, the extent of metabolic heterogeneity and its relation to molecular heterogeneity has not been systematically studied. Here, we assessed 11 bioenergetic features, primarily reflecting cell oxidative phosphorylation and glycolytic activity, in leukemic cells from 140 chronic lymphocytic leukemia patients using metabolic flux analysis. We examined these bioenergetic features for relationships with molecular profiles (including genetic aberrations, transcriptome and methylome profiles) of the tumors, their ex vivo responses to a panel of 63 compounds, and with clinical data. We observed that leukemic cells with mutated immunoglobulin variable heavy-chain show significantly lower glycolytic activity than cells with unmutated immunoglobulin variable heavy-chain. Accordingly, several key glycolytic genes (PFKP, PGAM1 and PGK1) were found to be down-regulated in samples harboring mutated immunoglobulin variable heavy-chain. In addition, 8q24 copy number gains, 8p12 deletions, 13q14 deletions and ATM mutations were identified as determinants of cellular respiration. The metabolic state of leukemic cells was associated with drug sensitivity; in particular, higher glycolytic activity was linked to increased resistance towards several drugs including rotenone, navitoclax, and orlistat. In addition, we found glycolytic capacity and glycolytic reserve to be predictors of overall survival (P<0.05) independently of established genetic predictors. Taken together, our study shows that heterogeneity in the energy metabolism of chronic lymphocytic leukemia cells is influenced by genetic variants and this could be therapeutically exploited in the selection of therapeutic strategies.
Collapse
Affiliation(s)
- Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tatjana Walther
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thorsten Zenz
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer Research Centre, Heidelberg, Germany .,Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
11
|
Popp HD, Flach J, Brendel S, Ruppenthal S, Kleiner H, Seifarth W, Schneider S, Schulze TJ, Weiss C, Wenz F, Hofmann WK, Fabarius A. Accumulation of DNA damage and alteration of the DNA damage response in monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. Leuk Lymphoma 2018; 60:795-804. [DOI: 10.1080/10428194.2018.1498494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Henning D. Popp
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Susanne Brendel
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Sabrina Ruppenthal
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Helga Kleiner
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Wolfgang Seifarth
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| | - Sven Schneider
- Institute for Clinical Chemistry, Heidelberg University, Mannheim, Germany
| | - Torsten J. Schulze
- Institute of Transfusion Medicine and Immunology, Heidelberg University, German Red-Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Heidelberg University, Mannheim, Germany
| | | | - Alice Fabarius
- Department of Hematology and Oncology, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Jain P, Nogueras González GM, Kanagal-Shamanna R, Rozovski U, Sarwari N, Tam C, Wierda WG, A. Thompson P, Jain N, Luthra R, Quesada A, Sanchez-Petitto G, Ferrajoli A, Burger J, Kantarjian H, Cortes J, O’Brien S, Keating MJ, Estrov Z. The absolute percent deviation of IGHV mutation rather than a 98% cut-off predicts survival of chronic lymphocytic leukaemia patients treated with fludarabine, cyclophosphamide and rituximab. Br J Haematol 2018; 180:33-40. [PMID: 29164608 PMCID: PMC5745295 DOI: 10.1111/bjh.15018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
The degree of somatic hypermutation, determined as percent deviation of immunoglobulin heavy chain gene variable region sequence from the germline (IGHV%), is an important prognostic factor in chronic lymphocytic leukaemia (CLL). Currently, a cut-off of 2% deviation or 98% sequence identity to germline in IGHV sequence is routinely used to dichotomize CLL patients into mutated and unmutated groups. Because dissimilar IGHV% cut-offs of 1-5% were identified in different studies, we wondered whether no cut-off should be applied and IGHV% treated as a continuous variable. We analysed the significance of IGHV% in 203 CLL patients enrolled on the original frontline fludarabine, cyclophosphamide and rituximab (FCR) trial with a median of 10 years follow-up. Using the Cox Proportional Hazard model, IGHV% was identified as a continuous variable that is significantly associated with progression-free (PFS) and overall survival (OS) (P < 0·001). Furthermore, we validated this finding in 323 patients treated with FCR off-protocol and in the total cohort (n = 535). Multivariate analysis revealed a continuous trend. Higher IGHV% levels were incrementally associated with favorable PFS and OS in both FCR-treated cohorts (P < 0·001, both cohorts). Taken together, our data suggest that IGHV% is a continuous variable in CLL patients treated with FCR.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers
- Cyclophosphamide/administration & dosage
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Staging
- Prognosis
- Proportional Hazards Models
- Rituximab/administration & dosage
- Treatment Outcome
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Young Adult
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uri Rozovski
- Davidoff Cancer Center, Beilinson Campus, Tel-Aviv University, Tel-Aviv, Israel
| | - Nawid Sarwari
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - William G. Wierda
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip A. Thompson
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitin Jain
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres Quesada
- Department of Hematopathology, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriela Sanchez-Petitto
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Burger
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge Cortes
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan O’Brien
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Chao Family Comprehensive Cancer Center, University of Irvine, Irvine, California, USA
| | - Michael J. Keating
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, and, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Delineating the distinct role of AKT in mediating cell survival and proliferation induced by CD154 and IL-4/IL-21 in chronic lymphocytic leukemia. Oncotarget 2017; 8:102948-102964. [PMID: 29262536 PMCID: PMC5732702 DOI: 10.18632/oncotarget.22292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 10/25/2017] [Indexed: 12/01/2022] Open
Abstract
The functional significance of AKT in chronic lymphocytic leukemia (CLL) remains unclear. Given the importance of non-malignant T cells in regulating clonal expansion in CLL, we investigated the role of AKT in T cell-mediated cytoprotection and proliferation using an established co-culture system in which primary CLL cells were incubated on a monolayer of transfected mouse fibroblasts expressing human CD40L (CD154). Stimulation of CLL cells via CD40 induced activation of AKT, which was closely associated with downregulation of its negative regulator PTEN, and protected CLL cells from killing by bendamustine. This cytoprotective effect of CD40 stimulation was prevented by a selective inhibitor of AKT. Stimulation of CLL cells with CD154 + IL-4 or IL-21 induced proliferation detected as reduced fluorescence of cells pre-stained with CFSE. AKT inhibition produced a significant, consistent reduction in proliferation induced by CD154 + IL-4 and a reduction in proliferation induced by CD154 + IL-21 in most but not all cases. In contrast, AKT inhibition had no effect on the proliferation of normal B cells induced by CD154 + IL-4 or IL-21. These findings indicate that AKT contributes in a significant way to T-cell mediated survival and proliferation signalling in CLL and support the clinical evaluation of AKT inhibitors in this disease.
Collapse
|
14
|
Murphy EJ, Neuberg DS, Rassenti LZ, Hayes G, Redd R, Emson C, Li K, Brown JR, Wierda WG, Turner S, Greaves AW, Zent CS, Byrd JC, McConnel C, Barrientos J, Kay N, Hellerstein MK, Chiorazzi N, Kipps TJ, Rai KR. Leukemia-cell proliferation and disease progression in patients with early stage chronic lymphocytic leukemia. Leukemia 2017; 31:1348-1354. [PMID: 28115735 PMCID: PMC5462857 DOI: 10.1038/leu.2017.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 01/23/2023]
Abstract
The clinical course of patients with recently diagnosed early stage chronic lymphocytic leukemia (CLL) is highly variable. We examined the relationship between CLL-cell birth rate and treatment-free survival (TFS) in 97 patients with recently diagnosed, Rai stage 0-II CLL in a blinded, prospective study, using in vivo 2H2O labeling. Birth rates ranged from 0.07 to 1.31% new cells per day. With median follow-up of 4.0 years, 33 subjects (34%) required treatment by NCI criteria. High-birth rate was observed in 44% of subjects and was significantly associated with shorter TFS, unmutated IGHV status and expression of ZAP70 and of CD38. In multivariable modeling considering age, gender, Rai stage, expression of ZAP70 or CD38, IGHV mutation status and FISH cytogenetics, only CLL-cell birth rate and IGHV mutation status met criteria for inclusion. Hazard ratios were 3.51 (P=0.002) for high-birth rate and 4.93 (P<0.001) for unmutated IGHV. The association between elevated birth rate and shorter TFS was observed in subjects with either mutated or unmutated IGHVs, and the use of both markers was a better predictor of TFS than either parameter alone. Thus, an increased CLL birth rate in early stage disease is a strong predictor of disease progression and earlier treatment.
Collapse
Affiliation(s)
- E J Murphy
- Department of Medicine, University of California, San Francisco, CA, USA
- KineMed Inc., Emeryville, CA, USA
| | - D S Neuberg
- Dana Farber Cancer Institute, Boston, MA, USA
- CLL Research Consortium, San Diego, CA, USA
| | - L Z Rassenti
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Moores Cancer Center, University of California, San Diego, CA, USA
| | - G Hayes
- KineMed Inc., Emeryville, CA, USA
| | - R Redd
- Dana Farber Cancer Institute, Boston, MA, USA
| | - C Emson
- KineMed Inc., Emeryville, CA, USA
| | - K Li
- KineMed Inc., Emeryville, CA, USA
| | - J R Brown
- Dana Farber Cancer Institute, Boston, MA, USA
- CLL Research Consortium, San Diego, CA, USA
| | - W G Wierda
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, M. D. Anderson Cancer Center, Houston, TX, USA
| | - S Turner
- KineMed Inc., Emeryville, CA, USA
| | - A W Greaves
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Moores Cancer Center, University of California, San Diego, CA, USA
| | - C S Zent
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - J C Byrd
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Ohio State University, Columbus, OH, USA
| | | | - J Barrientos
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - N Kay
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - M K Hellerstein
- KineMed Inc., Emeryville, CA, USA
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA, USA
| | - N Chiorazzi
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, NY, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - T J Kipps
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Moores Cancer Center, University of California, San Diego, CA, USA
| | - K R Rai
- CLL Research Consortium, San Diego, CA, USA
- Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, NY, USA
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
15
|
Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia 2017; 31:1340-1347. [PMID: 28074063 PMCID: PMC5462849 DOI: 10.1038/leu.2017.11] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Chronic Lymphocytic Leukemia (CLL) is a progressive malignancy of mature B-cells that involves the peripheral blood (PB), lymph nodes (LNs) and bone marrow (BM). While the majority of CLL cells are in a resting state, small populations of proliferating cells exist; however, the anatomical site of active cell proliferation remains to be definitively determined. Based on findings that CLL cells in LNs have increased expression of B-cell activation genes, we tested the hypothesis that the fraction of “newly born” cells would be highest in the LNs. Using a deuterium oxide (2H) in vivo labeling method in which patients consumed deuterated (heavy) water (2H2O), we determined CLL cell kinetics in concurrently obtained samples from LN, PB, and BM. The LN was identified as the anatomical site harboring the largest fraction of newly born cells, compared to PB and BM. In fact, the calculated birth rate in the LN reached as high a 3.3% of the clone per day. Subdivision of the bulk CLL population by flow cytometry identified the subpopulation with the CXCR4dimCD5bright phenotype as containing the highest proportion of newly born cells within each compartment, including the LN, identifying this subclonal population as an important target for novel treatment approaches.
Collapse
|
16
|
Impact of Venetoclax Exposure on Clinical Efficacy and Safety in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. Clin Pharmacokinet 2016; 56:515-523. [DOI: 10.1007/s40262-016-0453-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Vucicevic K, Jakovljevic V, Colovic N, Tosic N, Kostic T, Glumac I, Pavlovic S, Karan-Djurasevic T, Colovic M. Association of Bax Expression and Bcl2/Bax Ratio with Clinical and Molecular Prognostic Markers in Chronic Lymphocytic Leukemia. J Med Biochem 2016; 35:150-157. [PMID: 28356875 PMCID: PMC5346792 DOI: 10.1515/jomb-2015-0017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
Background In chronic lymphocytic leukemia (CLL), in vivo apoptotic resistance of malignant B lymphocytes results, in part, from the intrinsic defects of their apoptotic machinery. These include genetic alterations and aberrant expression of many apoptosis regulators, among which the Bcl2 family members play a central role. Aim The aim of this study was to investigate the association of pro-apoptotic Bax gene expression and Bcl2/Bax ratio with the clinical features of CLL patients as well as with molecular prognostic markers, namely the mutational status of rearranged immunoglobulin heavy variable (IGHV) genes and lipoprotein lipase (LPL) gene expression. Methods We analyzed the expression of Bax mRNA and Bcl2/Bax mRNA ratio in the peripheral blood mononuclear cells of 58 unselected CLL patients and 10 healthy controls by the quantitative reverse-transcriptase polymerase chain reaction. Results We detected significant Bax gene overexpression in CLL samples compared to non-leukemic samples (p=0.003), as well as an elevated Bcl2/Bax ratio (p=<0.001). Regarding the association with prognostic markers, the Bcl2/Bax ratio showed a negative correlation to lymphocyte doubling time (r=-0.307; p=0.0451), while high-level Bax expression was associated with LPL-positive status (p=0.035). Both the expression of Bax and Bcl2/Bax ratio were higher in patients with unmutated vs. mutated IGHV rearrangements, but this difference did not reach statistical significance. Conclusions Our results suggest that dysregulated expression of Bcl2 and Bax, which leads to a high Bcl2/Bax ratio in leukemic cells, contributes to the pathogenesis and clinical course of CLL.
Collapse
Affiliation(s)
- Ksenija Vucicevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Natasa Colovic
- Hematology Clinic, Clinical Center of Serbia, Belgrade, Serbia; Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tatjana Kostic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Irena Glumac
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milica Colovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Savvopoulos S, Misener R, Panoskaltsis N, Pistikopoulos EN, Mantalaris A. A Personalized Framework for Dynamic Modeling of Disease Trajectories in Chronic Lymphocytic Leukemia. IEEE Trans Biomed Eng 2016; 63:2396-2404. [PMID: 26929022 DOI: 10.1109/tbme.2016.2533658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common peripheral blood and bone marrow cancer in the developed world. This manuscript proposes mathematical model equations representing the disease dynamics of B-cell CLL. We interconnect delay differential cell cycle models in each of the tumor-involved disease centers using physiologically relevant cell migration. We further introduce five hypothetical case studies representing CLL heterogeneity commonly seen in clinical practice and demonstrate how the proposed CLL model framework may capture disease pathophysiology across patient types. We conclude by exploring the capacity of the proposed temporally- and spatially distributed model to capture the heterogeneity of CLL disease progression. By using global sensitivity analysis, the critical parameters influencing disease trajectory over space and time are: 1) the initial number of CLL cells in peripheral blood, the number of involved lymph nodes, the presence and degree of splenomegaly; 2) the migratory fraction of nonproliferating as well as proliferating CLL cells from bone marrow into blood and of proliferating CLL cells from blood into lymph nodes; and 3) the parameters inducing nonproliferative cells to proliferate. The proposed model offers a practical platform that may be explored in future personalized patient protocols once validated.
Collapse
|
19
|
Del Giudice I, Marinelli M, Wang J, Bonina S, Messina M, Chiaretti S, Ilari C, Cafforio L, Raponi S, Mauro FR, Di Maio V, De Propris MS, Nanni M, Ciardullo C, Rossi D, Gaidano G, Guarini A, Rabadan R, Foà R. Inter- and intra-patient clonal and subclonal heterogeneity of chronic lymphocytic leukaemia: evidences from circulating and lymph nodal compartments. Br J Haematol 2015; 172:371-383. [PMID: 26597680 DOI: 10.1111/bjh.13859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/22/2015] [Indexed: 02/02/2023]
Abstract
Whole exome sequencing and copy number aberration (CNA) analysis were performed on cells taken from peripheral blood (PB) and lymph nodes (LN) of patients with chronic lymphocytic leukaemia (CLL). Of 64 non-silent somatic mutations, 54 (84·4%) were clonal in both compartments, 3 (4·7%) were PB-specific and 7 (10·9%) were LN-specific. Most of the LN- or PB-specific mutations were subclonal in the other corresponding compartment (variant frequency 0·5-5·3%). Of 41 CNAs, 27 (65·8%) were shared by both compartments and 7 (17·1%) were LN- or PB-specific. Overall, 6 of 9 cases (66·7%) showed genomic differences between the compartments. At subsequent relapse, Case 10, with 6 LN-specific lesions, and Case 100, with 6 LN-specific and 8 PB-specific lesions, showed, in the PB, the clonal expansion of LN-derived lesions with an adverse impact: SF3B1 mutation, BIRC3 deletion, del8(p23·3-p11·1), del9(p24·3-p13·1) and gain 2(p25·3-p14). CLL shows an intra-patient clonal heterogeneity according to the disease compartment, with both LN and PB-specific mutations/CNAs. The LN microenvironment might contribute to the clonal selection of unfavourable lesions, as LN-derived mutations/CNAs can appear in the PB at relapse.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Marilisa Marinelli
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Jiguang Wang
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, US
| | - Silvia Bonina
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Monica Messina
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Caterina Ilari
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Luciana Cafforio
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Sara Raponi
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Francesca Romana Mauro
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Valeria Di Maio
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Maria Stefania De Propris
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Mauro Nanni
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Carmela Ciardullo
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Anna Guarini
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Raul Rabadan
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, US
| | - Robin Foà
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| |
Collapse
|
20
|
Ahmed R, Westera L, Drylewicz J, Elemans M, Zhang Y, Kelly E, Reljic R, Tesselaar K, de Boer RJ, Macallan DC, Borghans JAM, Asquith B. Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments. PLoS Comput Biol 2015; 11:e1004355. [PMID: 26437372 PMCID: PMC4593553 DOI: 10.1371/journal.pcbi.1004355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023] Open
Abstract
Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated 2H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique. Stable isotope labeling is used to quantify the rate at which living cells proliferate and die in humans. It has been central to a number of seminal studies, particularly in viral infections such as HIV-1, and leukemia. However, different labels (deuterated water or deuterated glucose) yield different estimates for the rate of cell proliferation and loss; this hampers our understanding and weakens our confidence in this important technique. We performed in vitro and in vivo experiments as well as a new analysis of existing data to directly compare the two labels. This reveals that a major source of the discrepancy lies in the difficulty of assessing deuterated glucose availability. We reconcile published studies and provide recommendations to avoid this problem in the future.
Collapse
Affiliation(s)
- Raya Ahmed
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Liset Westera
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Theoretical Biology & Bioinformatics, Utrecht University, The Netherlands
| | - Marjet Elemans
- Department of Medicine, Imperial College, London, United Kingdom
| | - Yan Zhang
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Elizabeth Kelly
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J. de Boer
- Theoretical Biology & Bioinformatics, Utrecht University, The Netherlands
| | - Derek C. Macallan
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - José A. M. Borghans
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Becca Asquith
- Department of Medicine, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Mongini PKA, Gupta R, Boyle E, Nieto J, Lee H, Stein J, Bandovic J, Stankovic T, Barrientos J, Kolitz JE, Allen SL, Rai K, Chu CC, Chiorazzi N. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:901-23. [PMID: 26136429 PMCID: PMC4505957 DOI: 10.4049/jimmunol.1403189] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/30/2015] [Indexed: 12/20/2022]
Abstract
Clinical progression of B cell chronic lymphocytic leukemia (B-CLL) reflects the clone's Ag receptor (BCR) and involves stroma-dependent B-CLL growth within lymphoid tissue. Uniformly elevated expression of TLR-9, occasional MYD88 mutations, and BCR specificity for DNA or Ags physically linked to DNA together suggest that TLR-9 signaling is important in driving B-CLL growth in patients. Nevertheless, reports of apoptosis after B-CLL exposure to CpG oligodeoxynucleotide (ODN) raised questions about a central role for TLR-9. Because normal memory B cells proliferate vigorously to ODN+IL-15, a cytokine found in stromal cells of bone marrow, lymph nodes, and spleen, we examined whether this was true for B-CLL cells. Through a CFSE-based assay for quantitatively monitoring in vitro clonal proliferation/survival, we show that IL-15 precludes TLR-9-induced apoptosis and permits significant B-CLL clonal expansion regardless of the clone's BCR mutation status. A robust response to ODN+IL-15 was positively linked to presence of chromosomal anomalies (trisomy-12 or ataxia telangiectasia mutated anomaly + del13q14) and negatively linked to a very high proportion of CD38(+) cells within the blood-derived B-CLL population. Furthermore, a clone's intrinsic potential for in vitro growth correlated directly with doubling time in blood, in the case of B-CLL with Ig H chain V region-unmutated BCR and <30% CD38(+) cells in blood. Finally, in vitro high-proliferator status was statistically linked to diminished patient survival. These findings, together with immunohistochemical evidence of apoptotic cells and IL-15-producing cells proximal to B-CLL pseudofollicles in patient spleens, suggest that collaborative ODN and IL-15 signaling may promote in vivo B-CLL growth.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- Aged
- Aged, 80 and over
- Apoptosis/immunology
- Ataxia Telangiectasia Mutated Proteins/genetics
- B-Lymphocytes/immunology
- Cell Proliferation/genetics
- Cells, Cultured
- Chromosome Aberrations
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Interleukin-15/immunology
- Interleukin-15/pharmacology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Membrane Glycoproteins/metabolism
- Middle Aged
- Myeloid Differentiation Factor 88/genetics
- Oligodeoxyribonucleotides/pharmacology
- Receptors, Antigen, B-Cell/immunology
- Signal Transduction/immunology
- Toll-Like Receptor 9/immunology
Collapse
Affiliation(s)
- Patricia K A Mongini
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549;
| | - Rashmi Gupta
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Erin Boyle
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jennifer Nieto
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Hyunjoo Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Joanna Stein
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Jela Bandovic
- Department of Pathology, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY 11030
| | - Tatjana Stankovic
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jacqueline Barrientos
- Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Steven L Allen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Kanti Rai
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| | - Charles C Chu
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030; Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY 11549; Department of Medicine, North Shore University Hospital-Long Island Jewish Medical Center, Manhasset, NY; and Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY
| |
Collapse
|
22
|
Eagle GL, Zhuang J, Jenkins RE, Till KJ, Jithesh PV, Lin K, Johnson GG, Oates M, Park K, Kitteringham NR, Pettitt AR. Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia. Mol Cell Proteomics 2015; 14:933-45. [PMID: 25645933 PMCID: PMC4390271 DOI: 10.1074/mcp.m114.044479] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 01/07/2023] Open
Abstract
The mutational status of the immunoglobulin heavy chain variable region defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and unmutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from nine UM-CLL and nine M-CLL samples were analyzed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Based on the expression of 3521 identified proteins, principal component analysis separated CLL samples into two groups corresponding to immunoglobulin heavy chain variable region mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells underexpressed proteins associated with cytoskeletal remodeling and overexpressed proteins associated with transcriptional and translational activity. Taken together, our findings indicate that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes, where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.
Collapse
Affiliation(s)
- Gina L Eagle
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | - Jianguo Zhuang
- From the ‡Department of Molecular and Clinical Cancer Medicine,
| | - Rosalind E Jenkins
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Kathleen J Till
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | | | - Ke Lin
- ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| | - Gillian G Johnson
- ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| | - Melanie Oates
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | - Kevin Park
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Neil R Kitteringham
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Andrew R Pettitt
- From the ‡Department of Molecular and Clinical Cancer Medicine, ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| |
Collapse
|
23
|
BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future. Oncogene 2014; 34:2426-36. [PMID: 24954503 DOI: 10.1038/onc.2014.181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
The treatment of chronic lymphocytic leukemia (CLL) with inhibitors targeting B cell receptor signaling and other survival mechanisms holds great promise. Especially the early clinical success of Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), has received widespread attention. In this review we will focus on the fundamental and clinical aspects of BTK inhibitors in CLL, with emphasis on Ibrutinib as the best studied of this class of drugs. Furthermore, we summarize recent laboratory as well as clinical findings relating to the first cases of Ibrutinib resistance. Finally, we address combination strategies with Ibrutinib, and attempt to extrapolate its current status to the near future in the clinic.
Collapse
|
24
|
Chen SS, Chiorazzi N. Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia. Semin Hematol 2014; 51:188-205. [PMID: 25048783 DOI: 10.1053/j.seminhematol.2014.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Shih-Shih Chen
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York.
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York; Departments of Medicine and Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York.
| |
Collapse
|
25
|
Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood 2013; 122:2205-12. [DOI: 10.1182/blood-2013-03-488411] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Key Points
Life span estimates can be sensitive to the duration of stable isotope label administration, explaining discrepancies in the literature. Multiexponential models are needed to obtain reliable leukocyte life span estimates.
Collapse
|
26
|
Plevova K, Francova HS, Burckova K, Brychtova Y, Doubek M, Pavlova S, Malcikova J, Mayer J, Tichy B, Pospisilova S. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica 2013; 99:329-38. [PMID: 24038023 DOI: 10.3324/haematol.2013.087593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia.
Collapse
|
27
|
Burgess M, Gill D, Singhania R, Cheung C, Chambers L, Renyolds BA, Smith L, Mollee P, Saunders N, McMillan NA. CD62L as a therapeutic target in chronic lymphocytic leukemia. Clin Cancer Res 2013; 19:5675-85. [PMID: 23948971 DOI: 10.1158/1078-0432.ccr-13-1037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite advances in the treatment of chronic lymphocytic leukemia (CLL), the disease remains incurable with standard therapies and relapse is inevitable. A growing body of evidence indicates that alterations in the adhesion properties of neoplastic cells play a pivotal role in the development and progression of CLL. EXPERIMENTAL DESIGN The expression of 71 cell surface molecules was examined on CLL peripheral blood mononuclear cells (PBMCs) over 3 weeks in culture. The most highly upregulated marker, CD62L, was examined further for expression on CD5(+)/CD19(+) CLL cells in vitro and in lymph node and bone marrow biopsies. The prosurvival role of CD62L was examined using a functional blocking antibody and therapeutic potential evaluated by comparison with current chemotherapy agents. RESULTS Blocking CD62L resulted in apoptosis of CLL cells but not PBMCs from healthy donors suggesting a novel role for CD62L in CLL cell survival. The beneficial effect of coculturing CLL cells with bone marrow stromal cells or endothelial cells does not protect CLL cells from anti-CD62L-related toxicity. Moreover, combining fludarabine or mafosfamide with the anti-CD62L in vitro produced an additive effect both with and without stromal cells. CONCLUSION This is the first reported data showing that blocking the activation and homing marker, CD62L, regulates CLL cell survival in vitro. These data also suggest that therapeutic antibodies against CD62L may provide additional clinical benefit to patients with CLL receiving current standard chemotherapy protocols.
Collapse
Affiliation(s)
- Melinda Burgess
- Authors' Affiliations: University of Queensland Diamantina Institute, Brisbane, Australia; Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia; Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida; and Griffith Health Institute and School of Medical Sciences, Griffith University, Southport, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol 2013; 34:3579-85. [PMID: 23807677 DOI: 10.1007/s13277-013-0937-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidences indicate that immune dysregulation plays a key role in both lymphomagenesis and patient outcome of chronic lymphocytic leukemia (CLL). Peripheral blood CD4+ CXCR5+ T cells, known as circulating follicular helper T cells (Tfh), can induce B cell activation and production of specific antibody responses. The aim of the study was to investigate changes of circulating Tfh in CLL. Tfh and it subtypes were tested by measuring CD4, CXCR5, CXCR3, and CCR6 in 72 CLL cases and 86 healthy controls using flow cytometry. Data showed that the percentage of Tfh in the peripheral CD4+ T cells was significantly increased in CLL (25.1%) than in controls (8.4%) (p < 0.001). Further analysis revealed that the upregulation of Tfh was contributed by Tfh-th2 subtype and Tfh-th17 subtype. Investigating staging of the cases demonstrated that the prevalence of Tfh was significantly elevated in cases with Binet stage C (37.3%) than those with stage A (20.1 %) or stage B (23.9 %). In addition, we analyzed Tfh in patients with immunoglobulin variable heavy chain (IGHV) gene mutational status. Results presented that Tfh-th17 subtype had clearly higher frequency in patients with IGHV mutation compared to the unmutated cases (p = 0.035). This study suggested the involvement of Tfh in the pathogenesis and progression of CLL, and provided a potential target for treating this disease.
Collapse
|
29
|
De Boer RJ, Perelson AS. Quantifying T lymphocyte turnover. J Theor Biol 2013; 327:45-87. [PMID: 23313150 PMCID: PMC3640348 DOI: 10.1016/j.jtbi.2012.12.025] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/13/2012] [Accepted: 12/30/2012] [Indexed: 01/13/2023]
Abstract
Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2'-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4(+) and CD8(+) T cell pools in mice and men.
Collapse
Affiliation(s)
- Rob J De Boer
- Theoretical Biology & Bioinformatics, Utrecht University, The Netherlands; Santa Fe Institute, Santa Fe, NM 87501, USA.
| | | |
Collapse
|
30
|
Autoantigen can promote progression to a more aggressive TCL1 leukemia by selecting variants with enhanced B-cell receptor signaling. Proc Natl Acad Sci U S A 2013; 110:E1500-7. [PMID: 23550156 DOI: 10.1073/pnas.1300616110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
(Auto)antigen engagement by the B-cell receptor (BCR) and possibly the sites where this occurs influence the outcome of chronic lymphocytic leukemia (CLL). To test if selection for autoreactivity leads to increased aggressiveness and if this selection plays out equally in primary and secondary tissues, we used T-cell leukemia (TCL)1 cells reactive with the autoantigen phosphatidylcholine (PtC). After repeated transfers of splenic lymphocytes from a single mouse with oligoclonal PtC-reactive cells, outgrowth of cells expressing a single IGHV-D-J rearrangement and superior PtC-binding and disease virulence occurred. In secondary tissues, increased PtC-binding correlated with enhanced BCR signaling and cell proliferation, whereas reduced signaling and division of cells from the same clone was documented in cells residing in the bone marrow, blood, and peritoneum, even though cells from the last site had highest surface membrane IgM density. Gene-expression analyses revealed reciprocal changes of genes involved in BCR-, CD40-, and PI3K-signaling between splenic and peritoneal cells. Our results suggest autoantigen-stimulated BCR signaling in secondary tissues promotes selection, expansion, and disease progression by activating pro-oncogenic signaling pathways, and that--outside secondary lymphoid tissues--clonal evolution is retarded by diminished BCR-signaling. This transferrable, antigenic-specific murine B-cell clone (TCL1-192) provides a platform to study the types and sites of antigen-BCR interactions and genetic alterations that result and may have relevance to patients.
Collapse
|
31
|
Expression of Bcl2L12 in chronic lymphocytic leukemia patients: association with clinical and molecular prognostic markers. Med Oncol 2013; 30:405. [DOI: 10.1007/s12032-012-0405-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
|
32
|
Westera L, Zhang Y, Tesselaar K, Borghans JAM, Macallan DC. Quantitating lymphocyte homeostasis in vivo in humans using stable isotope tracers. Methods Mol Biol 2013; 979:107-131. [PMID: 23397392 DOI: 10.1007/978-1-62703-290-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Humans have a remarkable ability to maintain relatively constant lymphocyte numbers across many decades, from puberty to old-age, despite a multitude of infectious and other challenges and a dramatic decline in thymic output. This phenomenon, lymphocyte homeostasis, is achieved by matching the production, death, and phenotype transition rates across a network of varied lymphocyte subpopulations. Understanding this process in humans depends on the ability to measure in vivo rates of lymphocyte production and loss. Such investigations have been greatly facilitated by the advent of stable isotope labeling approaches, which use the rate of incorporation of a tracer into cellular DNA as a marker of cell division. Two labeling approaches are commonly employed, one using deuterium-labeled glucose and the other using deuterium-labeled water, also known as heavy water ((2)H(2)O). Here we describe the application of these two labeling techniques for measurement of human in vivo lymphocyte kinetics through the four phases of investigation: labeling, -sampling, analysis, and interpretation.
Collapse
Affiliation(s)
- Liset Westera
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Dysfunctional Vγ9Vδ2 T cells are negative prognosticators and markers of dysregulated mevalonate pathway activity in chronic lymphocytic leukemia cells. Blood 2012; 120:3271-9. [DOI: 10.1182/blood-2012-03-417519] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
The role of Vγ9Vδ2 T cells in chronic lymphocytic leukemia (CLL) is unexplored, although these cells have a natural inclination to react against B-cell malignancies. Proliferation induced by zoledronic acid was used as a surrogate of γδ TCR-dependent stimulation to functionally interrogate Vγ9Vδ2 T cells in 106 untreated CLL patients. This assay permitted the identification of responder and low-responder (LR) patients. The LR status was associated with greater baseline counts of Vγ9Vδ2 T cells and to the expansion of the effector memory and terminally differentiated effector memory subsets. The tumor immunoglobulin heavy chain variable region was more frequently unmutated in CLL cells of LR patients, and the mevalonate pathway, which generates Vγ9Vδ2 TCR ligands, was more active in unmutated CLL cells. In addition, greater numbers of circulating regulatory T cells were detected in LR patients. In multivariate analysis, the LR condition was an independent predictor of shorter time-to-first treatment. Accordingly, the time-to-first treatment was significantly shorter in patients with greater baseline numbers of total Vγ9Vδ2 T cells and effector memory and terminally differentiated effector memory subpopulations. These results unveil a clinically relevant in vivo relationship between the mevalonate pathway activity of CLL cells and dys-functional Vγ9Vδ2 T cells.
Collapse
|
34
|
Burgess M, Cheung C, Chambers L, Ravindranath K, Minhas G, Knop L, Mollee P, McMillan NAJ, Gill D. CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma 2012; 53:1988-98. [PMID: 22397722 DOI: 10.3109/10428194.2012.672735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is predominantly a disease of accumulation rather than rapid proliferation. To date, no cell lines exist, as CLL cells undergo rapid apoptosis when cultured in vitro, suggesting that a favorable in vivo microenvironment is required. To identify survival signals we cultured primary CLL peripheral blood mononuclear cells (PBMCs) at high density, which has previously been shown to dramatically improve survival. Using antibody arrays we measured the level of 42 cytokines in culture supernatants and showed that inerleukin-6 (IL-6), IL-8, CXCL2 and CCL2 were highly up-regulated in culture. This is the first report to describe a role for CCL2 and CXCL2 in CLL cell survival. Importantly, CXCL2, IL-6 and IL-8 were significantly up-regulated in primary patient plasma. The addition of either CXCL2 or CCL2 enhanced CLL cell survival, while antibodies blocking these chemokines reduced survival. Co-culture of CLL cells and PBMC accessory cells separated by transwells provided a similar degree of survival protection compared to normal culture, whereas CLL cells cultured alone died rapidly. Interestingly, CCL2 and CXCL2 appeared to be produced by CLL cells but only when co-cultured with accessory cells. Thus, we speculate that accessory cells release soluble factors that promote the production of these pro-survival chemokines from CLL cells and physical interactions are not required. Our data support the concept that the CLL microenvironment is critical, and suggests that soluble factors are more important than physical interactions.
Collapse
Affiliation(s)
- Melinda Burgess
- Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore VDG, Deng J, Anderson KC, Richardson P, Tai YT, Mitsiades CS, Matulonis UA, Drapkin R, Stone R, Deangelo DJ, McConkey DJ, Sallan SE, Silverman L, Hirsch MS, Carrasco DR, Letai A. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 2011; 334:1129-33. [PMID: 22033517 DOI: 10.1126/science.1206727] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytotoxic chemotherapy targets elements common to all nucleated human cells, such as DNA and microtubules, yet it selectively kills tumor cells. Here we show that clinical response to these drugs correlates with, and may be partially governed by, the pretreatment proximity of tumor cell mitochondria to the apoptotic threshold, a property called mitochondrial priming. We used BH3 profiling to measure priming in tumor cells from patients with multiple myeloma, acute myelogenous and lymphoblastic leukemia, and ovarian cancer. This assay measures mitochondrial response to peptides derived from proapoptotic BH3 domains of proteins critical for death signaling to mitochondria. Patients with highly primed cancers exhibited superior clinical response to chemotherapy. In contrast, chemoresistant cancers and normal tissues were poorly primed. Manipulation of mitochondrial priming might enhance the efficacy of cytotoxic agents.
Collapse
Affiliation(s)
- Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hayden RE, Pratt G, Roberts C, Drayson MT, Bunce CM. Treatment of chronic lymphocytic leukemia requires targeting of the protective lymph node environment with novel therapeutic approaches. Leuk Lymphoma 2011; 53:537-49. [PMID: 21812539 DOI: 10.3109/10428194.2011.610014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) remains associated with low complete response rates and high relapse rates. This is in part due to poor understanding of CLL biology and thus inadequate targeting of therapy. For years CLL has been proposed as bi-compartmental: the quiescent tumor in the periphery and the proliferating cells within specific microenvironments. Historically the bone marrow was considered the major tissue of the CLL microenvironment. However, many recent innovative studies have categorically shown that peripheral CLL cells are derived from the lymph nodes (LN). Proliferation here is largely driven by helper T cells via CD40-CD40L engagement. Critically, in vitro studies have shown that such engagement additionally protects LN CLLs from apoptosis. Agents inducing apoptosis in non-CD40 engaged CLL cells are frequently ineffective against those continually engaged with CD40L. This emphasizes that, in order to improve responses and prevent relapse, novel therapies must be assessed against CD40L engaged CLL cells to show effective targeting against the LN. This review discusses the evidence supporting the superior involvement of the LN in CLL, how CD40L engaged CLL studies should be conducted, and the novel therapies studied in vitro and in vivo that have been proposed to be effective in this setting.
Collapse
Affiliation(s)
- Rachel E Hayden
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | | | |
Collapse
|
37
|
Calissano C, Damle RN, Marsilio S, Yan XJ, Yancopoulos S, Hayes G, Emson C, Murphy EJ, Hellerstein MK, Sison C, Kaufman MS, Kolitz JE, Allen SL, Rai KR, Ivanovic I, Dozmorov IM, Roa S, Scharff MD, Li W, Chiorazzi N. Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol Med 2011; 17:1374-82. [PMID: 21968788 DOI: 10.2119/molmed.2011.00360] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023] Open
Abstract
The failure of chemotherapeutic regimens to eradicate cancers often results from the outgrowth of minor subclones with more dangerous genomic abnormalities or with self-renewing capacity. To explore such intratumor complexities in B-cell chronic lymphocytic leukemia (CLL), we measured B-cell kinetics in vivo by quantifying deuterium ((2)H)-labeled cells as an indicator of a cell that had divided. Separating CLL clones on the basis of reciprocal densities of chemokine (C-X-C motif) receptor 4 (CXCR4) and cluster designation 5 (CD5) revealed that the CXCR4(dim)CD5(bright) (proliferative) fraction contained more (2)H-labeled DNA and hence divided cells than the CXCR4(bright)CD5(dim) (resting) fraction. This enrichment was confirmed by the relative expression of two cell cycle-associated molecules in the same fractions, Ki-67 and minichromosome maintenance protein 6 (MCM6). Comparisons of global gene expression between the CXCR4(dim)CD5(bright) and CXCR4(bright)CD5(dim) fractions indicated higher levels of pro-proliferation and antiapoptotic genes and genes involved in oxidative injury in the proliferative fraction. An extended immunophenotype was also defined, providing a wider range of surface molecules characteristic of each fraction. These intraclonal analyses suggest a model of CLL cell biology in which the leukemic clone contains a spectrum of cells from the proliferative fraction, enriched in recently divided robust cells that are lymphoid tissue emigrants, to the resting fraction enriched in older, less vital cells that need to immigrate to lymphoid tissue or die. The model also suggests several targets preferentially expressed in the two populations amenable for therapeutic attack. Finally, the study lays the groundwork for future analyses that might provide a more robust understanding of the development and clonal evolution of this currently incurable disease.
Collapse
Affiliation(s)
- Carlo Calissano
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cavazzini F, Rizzotto L, Sofritti O, Daghia G, Cibien F, Martinelli S, Ciccone M, Saccenti E, Dabusti M, Elkareem AA, Bardi A, Tammiso E, Cuneo A, Rigolin GM. Clonal evolution including 14q32/IGHtranslocations in chronic lymphocytic leukemia: analysis of clinicobiologic correlations in 105 patients. Leuk Lymphoma 2011; 53:83-8. [DOI: 10.3109/10428194.2011.606384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 2011; 117:5463-72. [PMID: 21385850 DOI: 10.1182/blood-2010-12-324210] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable adult disease of unknown etiology. Understanding the biology of CLL cells, particularly cell maturation and growth in vivo, has been impeded by lack of a reproducible adoptive transfer model. We report a simple, reproducible system in which primary CLL cells proliferate in nonobese diabetes/severe combined immunodeficiency/γc(null) mice under the influence of activated CLL-derived T lymphocytes. By co-transferring autologous T lymphocytes, activated in vivo by alloantigens, the survival and growth of primary CFSE-labeled CLL cells in vivo is achieved and quantified. Using this approach, we have identified key roles for CD4(+) T cells in CLL expansion, a direct link between CD38 expression by leukemic B cells and their activation, and support for CLL cells preferentially proliferating in secondary lymphoid tissues. The model should simplify analyzing kinetics of CLL cells in vivo, deciphering involvement of nonleukemic elements and nongenetic factors promoting CLL cell growth, identifying and characterizing potential leukemic stem cells, and permitting preclinical studies of novel therapeutics. Because autologous activated T lymphocytes are 2-edged swords, generating unwanted graph-versus-host and possibly autologous antitumor reactions, the model may also facilitate analyses of T-cell populations involved in immune surveillance relevant to hematopoietic transplantation and tumor cytoxicity.
Collapse
|
40
|
Dichotomy in NF-kappaB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene 2010; 29:5071-82. [PMID: 20581863 DOI: 10.1038/onc.2010.248] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulating in peripheral blood (PB) differ from the leukemic fraction in lymph nodes (LNs) with respect to cell division and drug sensitivity. CD40 stimulation of PB CLL cells in vitro results in chemoresistance and provides a partial model for the LN microenvironment. The TLR9 ligand CpG induces proliferation in immunoglobulin variable heavy-chain-unmutated CLL, but apoptosis in immunoglobulin variable heavy-chain-mutated CLL. To juxtapose proliferative with antiapoptotic signals, we investigated the effects of CpG in the context of CD40 ligation in mutated versus unmutated CLL cells in this study. Prolonged CD40 ligation induced classical, followed by alternative nuclear factor-kappaB (NF-kappaB), activity in both subgroups, correlating with enhanced Bfl-1 and Bcl-X(L) levels, respectively. A dichotomy in NF-kappaB signaling occurred on combined CD40/TLR9 triggering. This induced declining p52 and Bcl-X(L) levels, and reversed chemoresistance only in mutated cells, whereas unmutated cells proliferated, maintained p52 and Bcl-X(L) and remained chemoresistant. The pivotal contribution of Bcl-X(L) to chemoresistance was shown by the BH3 mimetic ABT-737 and RNA interference. Finally, in ex vivo LN samples, p52, p65 and Bcl-X(L) levels were highly expressed, corroborating the in vitro findings. Thus, a distinction in NF-kappaB activation and drug susceptibility in mutated versus unmutated (LN-like) CLL cells was uncovered, which was causally linked to Bcl-X(L) levels.
Collapse
|
41
|
Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol 2010; 23:33-45. [PMID: 20620969 PMCID: PMC2921990 DOI: 10.1016/j.beha.2010.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
B cell-type chronic lymphocytic leukaemia (CLL) has long been considered a disease of resting lymphocytes. However, cell surface and intracellular phenotypes suggest that most CLL cells are activated cells, although only a small subset progresses beyond the G1 stage of the cell cycle. In addition, traditional teaching says that CLL cells divide rarely, and therefore the build-up of leukaemic cells is due to an inherent defect in cell death. However, in vivo labelling of CLL cells indicates a much more active rate of cell birth than originally estimated, suggesting that CLL is a dynamic disease. Here we review the observations that have led to these altered views of the activation state and proliferative capacities of CLL cells and also provide our interpretation of these observations in light of their potential impact on patients.
Collapse
Affiliation(s)
- Rajendra N. Damle
- The Feinstein Institute for Medical Research, Manhasset, NY, and Department of Medicine, NYU School of Medicine, NY, NY, Tel: 516-562-1080, Fax: 516-562-1011
| | - Carlo Calissano
- The Feinstein Institute for Medical Research, Manhasset, NY, Tel: 011-39-02-26437104, Fax: 011-39-02-2643-4723
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Manhasset, NY, and Departments of Cell Biology and of Medicine, Albert Einstein College of Medicine, Bronx, NY, Tel: 516-562-1090, Fax: 516-562-1011
| |
Collapse
|
42
|
Hayes GM, Busch R, Voogt J, Siah IM, Gee TA, Hellerstein MK, Chiorazzi N, Rai KR, Murphy EJ. Isolation of malignant B cells from patients with chronic lymphocytic leukemia (CLL) for analysis of cell proliferation: validation of a simplified method suitable for multi-center clinical studies. Leuk Res 2009; 34:809-15. [PMID: 19854509 DOI: 10.1016/j.leukres.2009.09.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND Heavy water ((2)H(2)O) labelling of DNA enables the measurement of low-level cell proliferation in vivo, using gas chromatography/pyrolysis isotope ratio mass spectrometry (GC/P/IRMS), but the methodology has been too complex for widespread use. Here, we report a simplified method for measuring proliferation of malignant B cells in patients with chronic lymphocytic leukemia (CLL). DESIGN AND METHODS Patients were labelled with (2)H(2)O for 6 weeks; blood samples were obtained at 0, 3, and 6 weeks during (2)H(2)O labelling and 9, 12, and 16 weeks thereafter. Bone marrow was sampled at week 6. Phlebotomy was performed at multiple, non-research clinical sites. CLL cells were isolated in a central laboratory, using a novel RosetteSep-based method; DNA labelling was analyzed by GC/P/IRMS. RESULTS In 26 of 29 patients, CLL cell isolation resulted in > or =95% purity for malignant CD5+ B cells; in one patient, malignant cells expressed marginal levels of CD5, and in two others, further sorting of CD5hi malignant cells was required. Cell yields correlated with white blood cell counts and exceeded GC/P/IRMS requirements ( approximately 10(7) cells) >98% of the time; high-quality DNA labelling data were obtained. RosetteSep isolation achieved adequate CLL cell purity from bone marrow in only 64% of samples, but greatly reduced subsequent sort time for impure samples. CONCLUSION This method enables clinical studies of CLL cell proliferation outside of research settings, using a shorter (2)H(2)O intake protocol, a minimal sampling protocol, and centralised sample processing. The CLL cell isolation protocol may also prove useful in other applications. (clinicaltrials.gov identifier: NCT00481858).
Collapse
|
43
|
In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 2009; 114:4832-42. [PMID: 19789386 DOI: 10.1182/blood-2009-05-219634] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clonal evolution and outgrowth of cellular variants with additional chromosomal abnormalities are major causes of disease progression in chronic lymphocytic leukemia (CLL). Because new DNA lesions occur during S phase, proliferating cells are at the core of this problem. In this study, we used in vivo deuterium ((2)H) labeling of CLL cells to better understand the phenotype of proliferating cells in 13 leukemic clones. In each case, there was heterogeneity in cellular proliferation, with a higher fraction of newly produced CD38+ cells compared with CD38- counterparts. On average, there were 2-fold higher percentages of newly born cells in the CD38+ fraction than in CD38- cells; when analyzed on an individual patient basis, CD38+ (2)H-labeled cells ranged from 6.6% to 73%. Based on distinct kinetic patterns, interclonal heterogeneity was also observed. Specifically, 4 patients exhibited a delayed appearance of newly produced CD38+ cells in the blood, higher leukemic cell CXC chemokine receptor 4 (CXCR4) levels, and increased risk for lymphoid organ infiltration and poor outcome. Our data refine the proliferative compartment in CLL based on CD38 expression and suggest a relationship between in vivo kinetics, expression of a protein involved in CLL cell retention and trafficking to solid tissues, and clinical outcome.
Collapse
|
44
|
Chronic lymphocytic leukemia of Emu-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. Blood 2009; 114:4469-76. [PMID: 19755673 DOI: 10.1182/blood-2009-06-230169] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Results of heavy-water labeling studies have challenged the notion that chronic lymphocytic leukemia (CLL) represents an accumulation of noncycling B cells. We examined leukemia cell turnover in Emu-TCL1 transgenic (TCL1-Tg) mice, which develop a CLL-like disease at 8 to 12 months of age. We found that leukemia cells in these mice not only had higher proportions of proliferating cells but also apoptotic cells than did nonleukemic lymphocytes. We crossed TCL1-Tg with BAFF-Tg mice, which express high levels of CD257. TCL1 x BAFF-Tg mice developed CLL-like disease at a significantly younger age and had more rapid disease progression and shorter survival than TCL1-Tg mice. Leukemia cells of TCL1 x BAFF-Tg mice had similar proportions of proliferating cells, but fewer proportions of dying cells, than did the CLL cells of TCL1-Tg mice. Moreover, leukemia cells from either TCL1 x BAFF-Tg or TCL1-Tg mice produced more aggressive disease when transferred into BAFF-Tg mice than into wild-type (WT) mice. Neutralization of CD257 resulted in rapid reduction in circulating leukemia cells. These results indicate that the leukemia cells of TCL1-Tg mice undergo high levels of spontaneous apoptosis that is offset by relatively high rates of leukemia cell proliferation, which might allow for acquisition of mutations that contribute to disease evolution.
Collapse
|
45
|
Defoiche J, Bouzar AB, Macallan D, Willems L. Reduced expression of cell cycle-associated genes in B lymphocytes purified from the peripheral blood of early-stage B chronic lymphocytic leukaemia patients - response to di Iasio et al. Br J Haematol 2009. [DOI: 10.1111/j.1365-2141.2009.07653.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Asquith B, Borghans JAM, Ganusov VV, Macallan DC. Lymphocyte kinetics in health and disease. Trends Immunol 2009; 30:182-9. [PMID: 19286425 DOI: 10.1016/j.it.2009.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/11/2009] [Accepted: 01/12/2009] [Indexed: 12/22/2022]
Abstract
Quantitative understanding of immunology requires the development of experimental and mathematical techniques for estimation of rates of division and death of lymphocytes under different conditions. Here, we review the advantages and limitations of several labelling methods that are currently used to quantify turnover of lymphocytes in vivo. In addition to highlighting insights into lymphocyte kinetics which have recently been gained thanks to the development of novel techniques, we discuss important directions for future experimental and theoretical work in the field of lymphocyte turnover.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK
| | | | | | | |
Collapse
|