1
|
Zhang Y, Wang L, Dong C, Zhuang Y, Hao G, Wang F. Licochalcone D exhibits cytotoxicity in breast cancer cells and enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis through upregulation of death receptor 5. J Biochem Mol Toxicol 2024; 38:e23757. [PMID: 38937960 DOI: 10.1002/jbt.23757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Anticancer strategies using natural products or derivatives are promising alternatives for cancer treatment. Here, we showed that licochalcone D (LCD), a natural flavonoid extracted from Glycyrrhiza uralensis Fisch, suppressed the growth of breast cancer cells, and was less toxic to MCF-10A normal breast cells. LCD-induced DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Furthermore, LCD potentiated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. Mechanistically, LCD was revealed to reduce survival protein expression and to upregulate death receptor 5 (DR5) expressions. Silencing DR5 blocked the ability of LCD to sensitize cells to TRAIL-mediated apoptosis. LCD increased CCAAT/enhancer-binding protein homologous protein (CHOP) expression in breast cancer cells. Knockdown of CHOP attenuated DR5 upregulation and apoptosis triggered by cotreatment with LCD and TRAIL. Furthermore, LCD suppressed the phosphorylation of extracellular signal-regulated kinase and promoted the phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 abolished the upregulation of DR5 and CHOP, and also attenuated LCD plus TRAIL-induced cleavage of poly(ADP-ribose) polymerase. Overall, our results show that LCD exerts cytotoxic effects on breast cancer cells and arguments TRAIL-mediated apoptosis by inhibiting survival protein expression and upregulating DR5 in a JNK/p38 MAPK-CHOP-dependent manner.
Collapse
Affiliation(s)
- Yunyun Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linlin Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chuxuan Dong
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yahui Zhuang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Fengze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
- Center Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
2
|
Bin Wang, Yuan C, Qie Y, Dang S. Long non-coding RNAs and pancreatic cancer: A multifaceted view. Biomed Pharmacother 2023; 167:115601. [PMID: 37774671 DOI: 10.1016/j.biopha.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with a 5-year survival rate of only 10%. Families with PC are at greater risk, as are type 2 diabetes, pancreatitis, and other factors. Insufficient early detection methods make this cancer have a poor prognosis. Additionally, the molecular mechanisms underlying PC development remain unclear. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to PC pathology,which may control gene expression by recruiting histone modification complexes to chromatin and interacting with proteins and RNAs. In recent studies, abnormal regulation of lncRNAs has been implicated in PC proliferation, metastasis, invasion, angiogenesis, apoptosis, and chemotherapy resistance suggesting potential clinical implications. The paper reviews the progress of lncRNA research in PC about diabetes mellitus, pancreatitis, cancer metastasis, tumor microenvironment regulation, and chemoresistance. Furthermore, lncRNAs may serve as potential therapeutic targets and biomarkers for PC diagnosis and prognosis. This will help improve PC patients' survival rate from a lncRNA perspective.
Collapse
Affiliation(s)
- Bin Wang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Chang Yuan
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yinyin Qie
- General Surgery Department, Yixing People's Hospital, Wuxi, Jiangsu 214200, China
| | - Shengchun Dang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China; Siyang Hospital, Suqian, Jiangsu 223700, China.
| |
Collapse
|
3
|
Xiao X, Xu J, Sheng X, Wang C, Dong J, Shi X. Tobacco nicotine promotes TRAIL resistance in lung cancer through SNHG5. Exp Ther Med 2023; 25:131. [PMID: 36845946 PMCID: PMC9947578 DOI: 10.3892/etm.2023.11830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/27/2022] [Indexed: 02/12/2023] Open
Abstract
Tobacco nicotine use is carcinogenic and a well-known risk factor for lung cancer. However, whether tobacco nicotine can induce drug resistance in lung cancer is not clear. The objective of the present study was to identify the TNF-related apoptosis-inducing ligand (TRAIL) resistance of long noncoding RNAs (lncRNAs) that are differentially expressed in smokers and nonsmokers with lung cancer. The results suggested that the nicotine upregulated small nucleolar RNA host gene 5 (SNHG5) and markedly decreased the levels of cleaved caspase-3. The present study found that cytoplasm lncRNA SNHG5 overexpression was associated with TRAIL resistance in lung cancer and that SNHG5 can interact with X-linked inhibitor of apoptosis protein to promote TRAIL resistance. Therefore, nicotine promoted TRAIL resistance in lung cancer through SNHG5/X-linked inhibitor of apoptosis protein.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Juan Xu
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Xiaoan Sheng
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Chao Wang
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Juanjuan Dong
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China
| | - Xianfeng Shi
- Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, Chaohu, Anhui 231500, P.R. China,Correspondence to: Professor Xianfeng Shi, Department of Oncology, Chaohu Hospital Affiliated to Anhui Medical University, 64 Chaohu North Road, Juchao, Chaohu, Anhui 231500, P.R. China
| |
Collapse
|
4
|
Ma Z, Hua J, Liu J, Zhang B, Wang W, Yu X, Xu J. Mesenchymal Stromal Cell-Based Targeted Therapy Pancreatic Cancer: Progress and Challenges. Int J Mol Sci 2023; 24:ijms24043559. [PMID: 36834969 PMCID: PMC9966548 DOI: 10.3390/ijms24043559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy with high mortality rates and poor prognoses. Despite rapid progress in the diagnosis and treatment of pancreatic cancer, the efficacy of current therapeutic strategies remains limited. Hence, better alternative therapeutic options for treating pancreatic cancer need to be urgently explored. Mesenchymal stromal cells (MSCs) have recently received much attention as a potential therapy for pancreatic cancer owing to their tumor-homing properties. However, the specific antitumor effect of MSCs is still controversial. To this end, we aimed to focus on the potential anti-cancer treatment prospects of the MSC-based approach and summarize current challenges in the clinical application of MSCs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| |
Collapse
|
5
|
Shanmugam MK, Sethi G. Molecular mechanisms of cell death. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:65-92. [DOI: 10.1016/b978-0-12-814208-0.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
6
|
Reese M, Dhayat SA. Small extracellular vesicle non-coding RNAs in pancreatic cancer: molecular mechanisms and clinical implications. J Hematol Oncol 2021; 14:141. [PMID: 34496946 PMCID: PMC8424929 DOI: 10.1186/s13045-021-01149-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer has the worst prognosis among common tumors which is attributed to its aggressive phenotype, diagnosis at advanced, inoperable stages, and resistance to systemic therapy. Non-coding RNAs (ncRNAs) such as microRNAs, long non-coding RNAs, and circular RNAs have been established as important regulators of gene expression and their deregulation has been implicated in multiple diseases and foremost cancer. In the tumor microenvironment, non-coding RNAs can be distributed among cancer cells, stromal cells, and immune cells via small extracellular vesicles (sEVs), thereby facilitating intercellular communication and influencing major cancer hallmarks such as angiogenesis, evasion of the immune system, and metastatic dissemination. Furthermore, sEV-ncRNAs have shown promising potential as liquid biopsies with diagnostic and prognostic significance. In this review, we summarize the role of sEVs as carriers of ncRNAs and underlying molecular mechanisms in pancreatic cancer. Moreover, we review the potential of sEV-ncRNAs as biomarkers and highlight the suitability of sEVs as delivery vehicles for ncRNA-based cancer therapy.
Collapse
Affiliation(s)
- Moritz Reese
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Muenster, Germany
| | - Sameer A Dhayat
- Department of General, Visceral and Transplant Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Muenster, Germany.
| |
Collapse
|
7
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
8
|
Kimani S, Chakraborty S, Irene I, de la Mare J, Edkins A, du Toit A, Loos B, Blanckenberg A, Van Niekerk A, Costa-Lotufo LV, ArulJothi KN, Mapolie S, Prince S. The palladacycle, BTC2, exhibits anti-breast cancer and breast cancer stem cell activity. Biochem Pharmacol 2021; 190:114598. [PMID: 33979647 DOI: 10.1016/j.bcp.2021.114598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/15/2022]
Abstract
In women globally, breast cancer is responsible for most cancer-related deaths and thus, new effective therapeutic strategies are required to treat this malignancy. Platinum-based compounds like cisplatin are widely used to treat breast cancer, however, they come with limitations such as poor solubility, adverse effects, and drug resistance. To overcome these limitations, complexes containing other platinum group metals such as palladium have been studied and some have already entered clinical trials. Here we investigated the anti-cancer activity of a palladium complex, BTC2, in MCF-7 oestrogen receptor positive (ER+) and MDA-MB-231 triple negative (TN) human breast cancer cells as well as in a human breast cancer xenograft chick embryo model. BTC2 exhibited an average IC50 value of 0.54 μM, a desirable selectivity index of >2, inhibited the migration of ER+ and TN breast cancer cells, and displayed anti-cancer stem cell activity. We demonstrate that BTC2 induced DNA double strand breaks (increased levels of γ-H2AX) and activated the p-ATM/p-CHK2 and p-p38/MAPK pathways resulting in S- and G2/M-phase cell cycle arrests. Importantly, BTC2 sensitised breast cancer cells by triggering the intrinsic (cleaved caspase 9) and extrinsic (cleaved caspase 8) apoptotic as well as necroptotic (p-RIP3 and p-MLKL) cell death pathways and inhibiting autophagy and its pro-survival role. Furthermore, in the xenograft in vivo model, BTC2 displayed limited toxicity and arrested the tumour growth of breast cancer cells over a 9-day period in a manner comparable to that of the positive control drug, paclitaxel. BTC2 thus displayed promising anti-breast cancer activity.
Collapse
Affiliation(s)
- Serah Kimani
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Suparna Chakraborty
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Ikponmwosa Irene
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Jo de la Mare
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - Adrienne Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - André du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Angelique Blanckenberg
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Annick Van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa; Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Selwyn Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.
| |
Collapse
|
9
|
Bergmann C, Hallenberger L, Chenguiti Fakhouri S, Merlevede B, Brandt A, Dees C, Zhu H, Zehender A, Zhou X, Schwab A, Chen CW, Györfi AH, Matei AE, Chakraborty D, Trinh-Minh T, Rauber S, Coras R, Bozec A, Kreuter A, Ziemer M, Schett G, Distler JHW. X-linked inhibitor of apoptosis protein (XIAP) inhibition in systemic sclerosis (SSc). Ann Rheum Dis 2021; 80:1048-1056. [PMID: 33903093 DOI: 10.1136/annrheumdis-2020-219822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE X-linked inhibitor of apoptosis protein (XIAP) is a multifunctional protein with important functions in apoptosis, cellular differentiation and cytoskeletal organisation and is emerging as potential target for the treatment of various cancers. The aim of the current study was to investigate the role of XIAP in the pathogenesis of systemic sclerosis (SSc). METHODS The expression of XIAP in human skin samples of patients with SSc and chronic graft versus host disease (cGvHD) and healthy individuals was analysed by quantitative PCR, immunofluorescence (IF) and western blot. XIAP was inactivated by siRNA-mediated knockdown and pharmacological inhibition. The effects of XIAP inactivation were analysed in cultured fibroblasts and in the fibrosis models bleomycin-induced and topoisomerase-I-(topoI)-induced fibrosis and in Wnt10b-transgenic mice. RESULTS The expression of XIAP, but not of other inhibitor of apoptosis protein family members, was increased in fibroblasts in SSc and sclerodermatous cGvHD. Transforming growth factor beta (TGF-β) induced the expression of XIAP in a SMAD3-dependent manner. Inactivation of XIAP reduced WNT-induced fibroblast activation and collagen release. Inhibition of XIAP also ameliorated fibrosis induced by bleomycin, topoI and overexpression of Wnt10b in well-tolerated doses. The profibrotic effects of XIAP were mediated via WNT/β-catenin signalling. Inactivation of XIAP reduces binding of β-catenin to TCF to in a TLE-dependent manner to block WNT/β-catenin-dependent transcription. CONCLUSIONS Our data characterise XIAP as a novel link between two core pathways of fibrosis. XIAP is overexpressed in SSc and cGvHD in a TGF-β/SMAD3-dependent manner and in turn amplifies the profibrotic effects of WNT/β-catenin signalling on fibroblasts via transducin-like enhancer of split 3. Targeted inactivation of XIAP inhibits the aberrant activation of fibroblasts in murine models of SSc.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Ludwig Hallenberger
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Sara Chenguiti Fakhouri
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Benita Merlevede
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Amelie Brandt
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany.,Department of Rheumatology and Immunology, Xiangya Hospital Central South University, Changsha, China
| | - Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Annemarie Schwab
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Andrea Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Alexandru Emil Matei
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Debomita Chakraborty
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Aline Bozec
- Institute for Clinical Immunology University of Erlangen-Nuremberg, Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Alexander Kreuter
- Department of Dermatology and Allergology, HELIOS Sankt Elisabeth Klinik Oberhausen, Oberhausen, Nordrhein-Westfalen, Germany
| | - Mirjana Ziemer
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Leipzig, Leipzig, Sachsen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
10
|
Song Y, Sun X, Duan F, He C, Wu J, Huang X, Xing K, Sun S, Wang R, Xie F, Mao Y, Wang J, Li S. SYPL1 Inhibits Apoptosis in Pancreatic Ductal Adenocarcinoma via Suppression of ROS-Induced ERK Activation. Front Oncol 2020; 10:1482. [PMID: 33042794 PMCID: PMC7522464 DOI: 10.3389/fonc.2020.01482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Synaptophysin-like 1 (SYPL1) is a neuroendocrine-related protein. The role of SYPL1 in pancreatic ductal adenocarcinoma (PDAC) and the underlying molecular mechanism remain unclarified. Here, after analyzing five datasets (GSE15471, GSE16515, GSE28735, TCGA, and PACA-AU) and 78 PDAC patients from Sun Yat-sen University Cancer Center, we demonstrated that SYPL1 was upregulated in PDAC and that a high level of SYPL1 indicated poor prognosis. Bioinformatics analysis implied that SYPL1 was related to cell proliferation and cell death. To validate these findings, gain-of-function and loss-of-function experiments were carried out, and we found that SYPL1 promoted cell proliferation in vitro and in vivo and that it protected cells from apoptosis. Mechanistic studies revealed that sustained extracellular-regulated protein kinase (ERK) activation was responsible for the cell death resulting from knockdown of SYPL1. In addition, bioinformatics analysis showed that the expression of SYPL1 positively correlated with antioxidant activity. Reactive oxygen species (ROS) were upregulated in cells with SYPL1 knockdown and vice versa. Upregulated ROS led to ERK activation and cell death. These results suggest that SYPL1 plays a vital role in PDAC and promotes cancer cell survival by suppressing ROS-induced ERK activation.
Collapse
Affiliation(s)
- Yunda Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuesong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangting Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaobin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiali Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kaili Xing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuxin Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruiqi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fengxiao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yize Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
11
|
Shekhar TM, Burvenich IJG, Harris MA, Rigopoulos A, Zanker D, Spurling A, Parker BS, Walkley CR, Scott AM, Hawkins CJ. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer 2019; 19:924. [PMID: 31521127 PMCID: PMC6744692 DOI: 10.1186/s12885-019-6103-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Current therapies fail to cure over a third of osteosarcoma patients and around three quarters of those with metastatic disease. "Smac mimetics" (also known as "IAP antagonists") are a new class of anti-cancer agents. Previous work revealed that cells from murine osteosarcomas were efficiently sensitized by physiologically achievable concentrations of some Smac mimetics (including GDC-0152 and LCL161) to killing by the inflammatory cytokine TNFα in vitro, but survived exposure to Smac mimetics as sole agents. METHODS Nude mice were subcutaneously or intramuscularly implanted with luciferase-expressing murine 1029H or human KRIB osteosarcoma cells. The impacts of treatment with GDC-0152, LCL161 and/or doxorubicin were assessed by caliper measurements, bioluminescence, 18FDG-PET and MRI imaging, and by weighing resected tumors at the experimental endpoint. Metastatic burden was examined by quantitative PCR, through amplification of a region of the luciferase gene from lung DNA. ATP levels in treated and untreated osteosarcoma cells were compared to assess in vitro sensitivity. Immunophenotyping of cells within treated and untreated tumors was performed by flow cytometry, and TNFα levels in blood and tumors were measured using cytokine bead arrays. RESULTS Treatment with GDC-0152 or LCL161 suppressed the growth of subcutaneously or intramuscularly implanted osteosarcomas. In both models, co-treatment with doxorubicin and Smac mimetics impeded average osteosarcoma growth to a greater extent than either drug alone, although these differences were not statistically significant. Co-treatments were also more toxic. Co-treatment with LCL161 and doxorubicin was particularly effective in the KRIB intramuscular model, impeding primary tumor growth and delaying or preventing metastasis. Although the Smac mimetics were effective in vivo, in vitro they only efficiently killed osteosarcoma cells when TNFα was supplied. Implanted tumors contained high levels of TNFα, produced by infiltrating immune cells. Spontaneous osteosarcomas that arose in genetically-engineered immunocompetent mice also contained abundant TNFα. CONCLUSIONS These data imply that Smac mimetics can cooperate with TNFα secreted by tumor-associated immune cells to kill osteosarcoma cells in vivo. Smac mimetics may therefore benefit osteosarcoma patients whose tumors contain Smac mimetic-responsive cancer cells and TNFα-producing infiltrating cells.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Ingrid J. G. Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Michael A. Harris
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Damien Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Belinda S. Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| | - Carl R. Walkley
- St. Vincent’s Institute, Fitzroy, Victoria 3065 Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, Victoria 3065 Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000 Australia
| | - Andrew M. Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Departments of Medical Oncology and Molecular Imaging & Therapy, Austin Health, Heidelberg, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086 Australia
| |
Collapse
|
12
|
XIAP as a Target of New Small Organic Natural Molecules Inducing Human Cancer Cell Death. Cancers (Basel) 2019; 11:cancers11091336. [PMID: 31505859 PMCID: PMC6770071 DOI: 10.3390/cancers11091336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is an emerging crucial therapeutic target in cancer. We report on the discovery and characterisation of small organic molecules from Piper genus plants exhibiting XIAP antagonism, namely erioquinol, a quinol substituted in the 4-position with an alkenyl group and the alkenylphenols eriopodols A–C. Another isolated compound was originally identified as gibbilimbol B. Erioquinol was the most potent inhibitor of human cancer cell viability when compared with gibbilimbol B and eriopodol A was listed as intermediate. Gibbilimbol B and eriopodol A induced apoptosis through mitochondrial permeabilisation and caspase activation while erioquinol acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species. In silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-baculoviral IAP repeat domain. This demonstrates a novel aspect of XIAP as a key determinant of tumour control, at the molecular crossroad of caspase-dependent/independent cell death pathway and indicates molecular aspects to develop tumour-effective XIAP antagonists.
Collapse
|
13
|
Francois RA, Zhang A, Husain K, Wang C, Hutchinson S, Kongnyuy M, Batra SK, Coppola D, Sebti SM, Malafa MP. Vitamin E δ-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIP s. Cancer Cell Int 2019; 19:189. [PMID: 31367187 PMCID: PMC6647259 DOI: 10.1186/s12935-019-0876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects. METHODS We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells. RESULTS When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and β-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, β-, γ-, and δ-tocopherol. CONCLUSIONS c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention.
Collapse
Affiliation(s)
- Rony A. Francois
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Anying Zhang
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Department of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kazim Husain
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Chen Wang
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sean Hutchinson
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Michael Kongnyuy
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NB USA
| | - Domenico Coppola
- Department of Anatomical Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Said M. Sebti
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Mokenge P. Malafa
- Gastrointestinal Oncology Program, Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
14
|
Mahalingam D, Carew JS, Espitia CM, Cool RH, Giles FJ, de Jong S, Nawrocki ST. Heightened JNK Activation and Reduced XIAP Levels Promote TRAIL and Sunitinib-Mediated Apoptosis in Colon Cancer Models. Cancers (Basel) 2019; 11:E895. [PMID: 31248045 PMCID: PMC6678293 DOI: 10.3390/cancers11070895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis that may be a promising agent in cancer therapy due to its selectivity toward tumor cells. However, many cancer cells are resistant to TRAIL due to defects in apoptosis signaling or activation of survival pathways. We hypothesized that a disruption of pro-survival signaling cascades with the multi-tyrosine kinase inhibitor sunitinib and would be an effective strategy to enhance TRAIL-mediated apoptosis. Here we demonstrate that sunitinib significantly augments the anticancer activity of TRAIL in models of colon cancer. The therapeutic benefit of the TRAIL/sunitinib combination was associated with increased apoptosis marked by enhanced caspase-3 cleavage and DNA fragmentation. Overexpression of the anti-apoptotic factor B-cell lymphoma 2 (BCL-2) in HCT116 cells reduced TRAIL/sunitinib-mediated apoptosis, further supporting that sunitinib enhances the anticancer activity of TRAIL via augmented apoptosis. Analysis of pro-survival factors identified that the combination of TRAIL and sunitinib significantly downregulated the anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP) through a c-Jun N-terminal kinase (JNK)-mediated mechanism. Short hairpin RNA (shRNA)-mediated knockdown of JNK confirmed its key role in the regulation of sensitivity to this combination as cells with suppressed JNK expression exhibited significantly reduced TRAIL/sunitinib-mediated apoptosis. Importantly, the therapeutic benefit of the TRAIL/sunitinib combination was validated in the HCT116-Luc and HCT15 colon cancer xenograft models, which both demonstrated significant anti-tumor activity in response to combination treatment. Collectively, our data demonstrate that sunitinib enhances TRAIL-mediated apoptosis by heightened JNK activation, diminished XIAP levels, and augmented apoptosis.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Jennifer S Carew
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Claudia M Espitia
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Francis J Giles
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Steven de Jong
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Steffan T Nawrocki
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| |
Collapse
|
15
|
Sea Cucumber ( Stichopus japonicas) F2 Enhanced TRAIL-Induced Apoptosis via XIAP Ubiquitination and ER Stress in Colorectal Cancer Cells. Nutrients 2019; 11:nu11051061. [PMID: 31083595 PMCID: PMC6567290 DOI: 10.3390/nu11051061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/16/2023] Open
Abstract
Natural products have shown great promise in sensitizing cells to TNF-related apoptosis-inducing ligand (TRAIL) therapy. Sea cucumber (SC) extracts possess antitumor activity, and hence their potential to sensitize colorectal cancer (CRC) cells to TRAIL therapy was evaluated. This study used Western blotting to evaluate the combination effects of SC and TRAIL in CRC, and determined the molecular mechanism underlying these effects. SC fractions and TRAIL alone did not affect apoptosis; however, combined treatment dramatically induced the apoptosis of CRC cells, but not of normal colon cells. Combined treatment induced the expression of apoptotic proteins (poly (ADP-ribose) polymerase (PARP), caspase 3, and 8), and this effect was markedly inhibited by the ubiquitination of X-linked inhibitor of apoptosis protein (XIAP). SC did not affect the mRNA levels, but it increased proteasomal degradation and ubiquitination of the XIAP protein. Furthermore, SC induced reactive oxygen species (ROS) production, thereby activating c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER) stress-related apoptotic pathways in CRC. Altogether, our results demonstrate that the SC F2 fraction may sensitize CRC cells to TRAIL-induced apoptosis through XIAP ubiquitination and ER stress.
Collapse
|
16
|
Eberle J. Countering TRAIL Resistance in Melanoma. Cancers (Basel) 2019; 11:cancers11050656. [PMID: 31083589 PMCID: PMC6562618 DOI: 10.3390/cancers11050656] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Melanoma of the skin has become a prime example for demonstrating the success of targeted cancer therapy. Nevertheless, high mortality has remained, mainly related to tumor heterogeneity and inducible therapy resistance. But the development of new therapeutic strategies and combinations has raised hope of finally defeating this deadly disease. TNF-related apoptosis-inducing ligand (TRAIL) represents a promising antitumor strategy. The principal sensitivity of melanoma cells for TRAIL was demonstrated in previous studies; however, inducible resistance appeared as a major problem. To address this issue, combination strategies were tested, and survival pathway inhibitors were shown to sensitize melanoma cells for TRAIL-induced apoptosis. Finally, cell cycle inhibition was identified as a common principle of TRAIL sensitization in melanoma cells. Mitochondrial apoptosis pathways, pro- and antiapoptotic Bcl-2 proteins as well as the rheostat consisted of Smac (Second mitochondria-derived activator of caspase) and XIAP (X-linked inhibitor of apoptosis protein) appeared to be of particular importance. Furthermore, the role of reactive oxygen species (ROS) was recognized in this setting. Inducible TRAIL resistance in melanoma can be explained by (i) high levels of antiapoptotic Bcl-2 proteins, (ii) high levels of XIAP, and (iii) suppressed Bax activity. These hurdles have to be overcome to enable the use of TRAIL in melanoma therapy. Several strategies appear as particularly promising, including new TRAIL receptor agonists, Smac and BH3 mimetics, as well as selective kinase inhibitors.
Collapse
Affiliation(s)
- Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin (University Medical Center Charité), 10117 Berlin, Germany.
| |
Collapse
|
17
|
Smac mimetic suppresses tunicamycin-induced apoptosis via resolution of ER stress. Cell Death Dis 2019; 10:155. [PMID: 30770792 PMCID: PMC6377606 DOI: 10.1038/s41419-019-1381-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/02/2018] [Accepted: 12/19/2018] [Indexed: 01/02/2023]
Abstract
Since Inhibitor of Apoptosis (IAP) proteins have been implicated in cellular adaptation to endoplasmic reticulum (ER) stress, we investigated the regulation of ER stress-induced apoptosis by small-molecule second mitochondria-derived activator of caspase (Smac) mimetics that antagonize IAP proteins. Here, we discover that Smac mimetic suppresses tunicamycin (TM)-induced apoptosis via resolution of the unfolded protein response (UPR) and ER stress. Smac mimetics such as BV6 selectively inhibit apoptosis triggered by pharmacological or genetic inhibition of protein N-glycosylation using TM or knockdown of DPAGT1, the enzyme that catalyzes the first step of protein N-glycosylation. In contrast, BV6 does not rescue cell death induced by other typical ER stressors (i.e., thapsigargin (TG), dithiothreitol, brefeldin A, bortezomib, or 2-deoxyglucose). The protection from TM-triggered apoptosis is found for structurally different Smac mimetics and for genetic knockdown of cellular IAP (cIAP) proteins in several cancer types, underlining the broader relevance. Interestingly, lectin microarray profiling reveals that BV6 counteracts TM-imposed inhibition of protein glycosylation. BV6 consistently abolishes TM-stimulated accumulation of ER stress markers such as glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) and reduces protein kinase RNA-like ER kinase (PERK) phosphorylation and X box-binding protein 1 (XBP1) splicing upon TM treatment. BV6-stimulated activation of nuclear factor-κB (NF-κB) contributes to the resolution of ER stress, since NF-κB inhibition by overexpression of dominant-negative IκBα superrepressor counteracts the suppression of TM-stimulated transcriptional activation of CHOP and GRP78 by BV6. Thus, our study is the first to show that Smac mimetic protects from TM-triggered apoptosis by resolving the UPR and ER stress. This provides new insights into the regulation of cellular stress responses by Smac mimetics.
Collapse
|
18
|
Targeting the BIR Domains of Inhibitor of Apoptosis (IAP) Proteins in Cancer Treatment. Comput Struct Biotechnol J 2019; 17:142-150. [PMID: 30766663 PMCID: PMC6360406 DOI: 10.1016/j.csbj.2019.01.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/07/2023] Open
Abstract
Inhibitor of apoptosis (IAP) proteins are characterized by the presence of the conserved baculoviral IAP repeat (BIR) domain that is involved in protein-protein interactions. IAPs were initially thought to be mainly responsible for caspase inhibition, acting as negative regulators of apoptosis, but later works have shown that IAPs also control a plethora of other different cellular pathways. As X-linked IAP (XIAP), and other IAP, levels are often deregulated in cancer cells and have been shown to correlate with patients' prognosis, several approaches have been pursued to inhibit their activity in order to restore apoptosis. Many small molecules have been designed to target the BIR domains, the vast majority being inspired by the N-terminal tetrapeptide of Second Mitochondria-derived Activator of Caspases/Direct IAp Binding with Low pI (Smac/Diablo), which is the natural XIAP antagonist. These compounds are therefore usually referred to as Smac mimetics (SMs). Despite the fact that SMs were intended to specifically target XIAP, it has been shown that they also interact with cellular IAP-1 (cIAP1) and cIAP2, promoting their proteasome-dependent degradation. SMs have been tested in combination with several cytotoxic compounds and are now considered promising immune modulators which can be exploited in cancer therapy, especially in combination with immune checkpoint inhibitors. In this review, we give an overview of the structural hot-spots of BIRs, focusing on their fold and on the peculiar structural patches which characterize the diverse BIRs. These structures are exploited/exploitable for the development of specific and active IAP inhibitors.
Collapse
|
19
|
An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:240. [PMID: 30285798 PMCID: PMC6169080 DOI: 10.1186/s13046-018-0899-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 01/05/2023]
Abstract
Background Pancreatic cancer is a deadly disease with a very low 5-year patient survival rate of 6–8%. The major challenges of eliminating pancreatic cancer are treatment resistance and stromal barriers to optimal drug access within the tumor. Therefore, effective molecular targeting drugs with high intra-tumor access and retention are urgently needed for managing this devastating disease in the clinic. Methods This study has used the following in vitro and in vivo techniques for the investigation of exceptional anticancer drug FL118’s efficacy in treatment of resistant pancreatic cancer: cell culture; immunoblotting analysis to test protein expression; DNA sub-G1 flow cytometry analyses to test cell death; MTT assay to test cell viability; pancreatic cancer stem cell assays (fluorescence microscopy tracing; matrigel assay; CD44-positive cell colony formation assay); human luciferase-labeled pancreatic tumor orthotopic animal model in vivo imaging; pancreatic cancer patient-derived xenograft (PDX) animal models; and toxicology studies with immune-competent BALB/cj mice and beagle dogs. Results Our studies found that FL118 alone preferentially killed cisplatin-resistant cancer cells, while a combination of FL118 with cisplatin synergistically killed resistant pancreatic cancer cells and reduced spheroid formation of treatment-resistant pancreatic cancer stem-like cells. Furthermore, using in vivo-imaging, we found that FL118 in combination with cisplatin strongly inhibited both drug-resistant pancreatic xenograft tumor growth and metastasis. In PDX model, we demonstrated that FL118 alone effectively eliminated PDX tumors, while FL118 in combination with gemcitabine eliminated PDX tumors that showed relative resistance (less sensitivity) to treatment with FL118. These FL118 efficacy results are consistent with our molecular-targeting data showing that FL118 inhibited the expression of multiple antiapoptotic proteins (survivin, Mcl-1, XIAP, cIAP2) and ERCC6, a critical regulator of DNA repair, in treatment-resistant pancreatic stem-like cancer cells. Furthermore, FL118 toxicity studies in BALB/cj mice and beagle dogs indicated that FL118 exhibits favorable hematopoietic and biochemical toxicities. Conclusion Together, our studies suggest that FL118 is a promising anticancer drug for further clinical development to effectively treat drug-resistant pancreatic cancer alone or in combination with other pancreatic cancer chemotherapeutic drugs.
Collapse
|
20
|
Yu C, Chen S, Guo Y, Sun C. Oncogenic TRIM31 confers gemcitabine resistance in pancreatic cancer via activating the NF-κB signaling pathway. Am J Cancer Res 2018; 8:3224-3236. [PMID: 29930725 PMCID: PMC6010981 DOI: 10.7150/thno.23259] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Drug resistance is well known as a major obstacle for cancer recurrence and treatment failure, leading to poor survival in pancreatic cancer, which is a highly aggressive tumor. Identifying effective strategies to overcome drug resistance would have a significant clinical impact for patients with pancreatic cancer. Methods: The protein and mRNA expression of TRIM31 in pancreatic cancer cell lines and patient tissues were determined using Real-time PCR and Western blot, respectively. 89 human pancreatic cancer tissue samples were analyzed by IHC to investigate the association between TRIM31 expression and the clinicopathological characteristics of pancreatic cancer patients. Functional assays, such as MTT, FACS, and Tunel assay used to determine the oncogenic role of TRIM31 in human pancreatic cancer progression. Furthermore, western blotting and luciferase assay were used to determine the mechanism of TRIM31 promotes chemoresistance in pancreatic cancer cells. Results: The expression of TRIM31was markedly upregulated in pancreatic cancer cell lines and tissues, and high TRIM31 expression was associated with an aggressive phenotype and poor prognosis with pancreatic cancer patients. TRIM31 overexpression confers gemcitabine resistance on pancreatic cancer cells; however, inhibition of TRIM31 sensitized pancreatic cancer cell lines to gemcitabine cytotoxicity both in vitro and in vivo. Additionally, TRIM31 upregulated the levels of nuclear p65 by promoting K63-linked polyubiquitination of tumor necrosis factor receptor-associated factor 2 (TRAF2) and sustained the activation of nuclear transcription factor kappa B (NF-κB) in pancreatic cancer cells. Conclusions: Our findings provided evidence that TRIM31 is a potential therapeutic target for patients with pancreatic cancer. Targeting TRIM31 signaling may be a promising strategy to enhance gemcitabine response during pancreatic cancer chemo-resistance.
Collapse
|
21
|
Du P, Luan X, Liao Y, Mu Y, Yuan Y, Xu J, Zhang J. MicroRNA-509-3p inhibits cell proliferation and invasion via downregulation of X-linked inhibitor of apoptosis in glioma. Oncol Lett 2018; 15:1307-1312. [PMID: 29399183 DOI: 10.3892/ol.2017.7390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/07/2017] [Indexed: 01/16/2023] Open
Abstract
Malignant glioma is an aggressive type of cancer. Increasing evidence has suggested that microRNAs (miRs) regulate gene expression post-transcriptionally to affect cancer development and progression. Aberrant expression of miR-509-3p has been reported in cancer studies. However, the expression and mechanism of its function in glioma remains unclear. The present study demonstrated that miR-509-3p was downregulated in glioma tissue samples relative to non-tumor tissues, and that low miR-509-3p expression was associated with a reduced overall survival time. Functional studies revealed that the overexpression of miR-509-3p inhibited cell proliferation, induced apoptosis and suppressed cell migration and invasion via negatively regulating the expression of X-linked inhibitor of apoptosis. The data therefore suggested that miR-509-3p serves an important role in the development and progression of glioma, implicating its possible application in clinical practice as a biomarker and a potential novel therapeutic target.
Collapse
Affiliation(s)
- Peng Du
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Xinping Luan
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiti Mu
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Yang Yuan
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Jingxuan Xu
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| | - Jingjing Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, Xinjiang Medical University, Ürümqi, Uygur Autonomous Region 830063, P.R. China
| |
Collapse
|
22
|
Fulda S. Therapeutic opportunities based on caspase modulation. Semin Cell Dev Biol 2017; 82:150-157. [PMID: 29247787 DOI: 10.1016/j.semcdb.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Caspases are a family of proteolytic enzymes that play a critical role in the regulation of programmed cell death via apoptosis. Activation of caspases is frequently impaired in human cancers, contributing to cancer formation, progression and therapy resistance. A better understanding of the molecular mechanisms regulating caspase activation in cancer cells is therefore highly important. Thus, targeted modulation of caspase activation and apoptosis represents a promising approach for the development of new therapeutic options to elucidate cancer cell death.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstrasse 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Bordin F, Piovan E, Masiero E, Ambesi-Impiombato A, Minuzzo S, Bertorelle R, Sacchetto V, Pilotto G, Basso G, Zanovello P, Amadori A, Tosello V. WT1 loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica 2017; 103:266-277. [PMID: 29170254 PMCID: PMC5792271 DOI: 10.3324/haematol.2017.170431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Loss-of-function mutations and deletions in Wilms tumor 1 (WT1) gene are present in approximately 10% of T-cell acute lymphoblastic leukemia. Clinically, WT1 mutations are enriched in relapsed series and are associated to inferior relapse-free survival in thymic T-cell acute lymphoblastic leukemia cases. Here we demonstrate that WT1 plays a critical role in the response to DNA damage in T-cell leukemia. WT1 loss conferred resistance to DNA damaging agents and attenuated the transcriptional activation of important apoptotic regulators downstream of TP53 in TP53-competent MOLT4 T-leukemia cells but not in TP53-mutant T-cell acute lymphoblastic leukemia cell lines. Notably, WT1 loss positively affected the expression of the X-linked inhibitor of apoptosis protein, XIAP, and genetic or chemical inhibition with embelin (a XIAP inhibitor) significantly restored sensitivity to γ-radiation in both T-cell acute lymphoblastic leukemia cell lines and patient-derived xenografts. These results reveal an important role for the WT1 tumor suppressor gene in the response to DNA damage, and support the view that anti-XIAP targeted therapies could have a role in the treatment of WT1-mutant T-cell leukemia.
Collapse
Affiliation(s)
- Fulvio Bordin
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy.,U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Elena Masiero
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Alberto Ambesi-Impiombato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,PsychoGenics Inc., Tarrytown, New York, NY, USA
| | - Sonia Minuzzo
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy
| | - Roberta Bertorelle
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Valeria Sacchetto
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Giorgia Pilotto
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova, Italy
| | - Paola Zanovello
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy.,U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Alberto Amadori
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy.,U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Valeria Tosello
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| |
Collapse
|
24
|
Zhang X, Zhang X, Hu S, Zheng M, Zhang J, Zhao J, Zhang X, Yan B, Jia L, Zhao J, Wu K, Yang A, Zhang R. Identification of miRNA-7 by genome-wide analysis as a critical sensitizer for TRAIL-induced apoptosis in glioblastoma cells. Nucleic Acids Res 2017; 45:5930-5944. [PMID: 28459998 PMCID: PMC5449600 DOI: 10.1093/nar/gkx317] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is still one of the most lethal forms of brain tumor despite of the improvements in treatments. TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. To define the novel pathways that regulate susceptibility to TRAIL in GBM cells, we performed a genome-wide expression profiling of microRNAs in GBM cell lines with the distinct sensitivity to TRAIL-induced apoptosis. We found that the expression pattern of miR-7 is closely correlated with sensitivity of GBM cells to TRAIL. Furthermore, our gain and loss of function experiments showed that miR-7 is a potential sensitizer for TRAIL-induced apoptosis in GBM cells. In the mechanistic study, we identified XIAP is a direct downstream gene of miR-7. Additionally, this regulatory axis could also exert in other types of tumor cells like hepatocellular carcinoma cells. More importantly, in the xenograft model, enforced expression of miR-7 in TRAIL-overexpressed mesenchymal stem cells increased apoptosis and suppressed tumor growth in an exosome dependent manner. In conclusion, we identify that miR-7 is a critical sensitizer for TRAIL-induced apoptosis, thus making it as a promising therapeutic candidate for TRAIL resistance in GBM cells.
Collapse
Affiliation(s)
- Xiao Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Minhua Zheng
- The State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jie Zhang
- Department of Radiological Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianhui Zhao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaofang Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Yan
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lintao Jia
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Zhao
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Kaichun Wu
- The State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
25
|
Cai J, Wang D, Bai ZG, Yin J, Zhang J, Zhang ZT. The long noncoding RNA XIAP-AS1 promotes XIAP transcription by XIAP-AS1 interacting with Sp1 in gastric cancer cells. PLoS One 2017; 12:e0182433. [PMID: 28792527 PMCID: PMC5549724 DOI: 10.1371/journal.pone.0182433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play roles in the tumorigenesis, proliferation and metastasis of tumor cells. Previous studies indicate that the transcription factor Sp1 is responsible for transcription of the XIAP gene, but it is unknown whether lncRNAs are involved in XIAP transcription. Herein, we identified a novel lncRNA, denoted as XIAP-AS1, transcribed from the first intron of the complementary strand of the XIAP gene. Using RNA FISH, cell fractionation and qRT-PCR, XIAP-AS1 was determined to be located primarily in the nucleus. After various XIAP-AS1 deletion mutants were expressed, RIP assays showed that only the full-length XIAP-AS1 RNA interacted with Sp1 and thereby participated in XIAP transcription. ChIP assays showed that XIAP-AS1 knockdown decreased the binding of Sp1 to the promoter region of XIAP. XIAP-AS1 knockdown promoted tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in gastric tumor cells, as cleaved caspase-3 and caspase-9 was detected. Moreover, in an in vivo mouse xenograft model, tumor cell proliferation was inhibited by XIAP-AS1 knockdown in response to TRAIL administration. In conclusion, our results indicate that XIAP-AS1 is involved in XIAP transcription by interacting with Sp1. Additionally, XIAP-AS1 is a potential target for TRAIL-induced apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
- Jun Cai
- Department of General Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Dong Wang
- Department of General Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhi-Gang Bai
- Department of General Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Fulda S. Smac Mimetics to Therapeutically Target IAP Proteins in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:157-169. [PMID: 28215531 DOI: 10.1016/bs.ircmb.2016.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inhibitor of Apoptosis (IAP) proteins are overexpressed in a variety of human cancers. Therefore, they are considered as promising targets for the design of therapeutic strategies. Smac mimetics mimic the endogenous mitochondrial protein Smac that antagonizes IAP proteins upon its release into the cytosol. Multiple preclinical studies have documented the ability of Smac mimetics to either directly induce cell death of cancer cells or to prime them to agents that trigger cell death. At present, several Smac mimetics are being evaluated in early clinical trials. The current review provides an overview on the potential of Smac mimetics as cancer therapeutics to target IAP proteins for cancer therapy.
Collapse
Affiliation(s)
- S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
27
|
JNJ-26481585 primes rhabdomyosarcoma cells for chemotherapeutics by engaging the mitochondrial pathway of apoptosis. Oncotarget 2016; 6:37836-51. [PMID: 26473375 PMCID: PMC4741969 DOI: 10.18632/oncotarget.6097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/26/2015] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a common soft-tissue sarcoma in childhood with a poor prognosis, highlighting the need for new treatment strategies. Here we identify a synergistic interaction of the second-generation histone deacetylase inhibitor (HDACI) JNJ-26481585 and common chemotherapeutic drugs (i.e. Doxorubicin, Etoposide, Vincristine, Cyclophosphamide and Actinomycin D) to trigger apoptosis in RMS cells. Importantly, JNJ-26481585/Doxorubicin cotreatment also significantly suppresses long-term clonogenic survival of RMS cells and tumor growth in vivo in a preclinical RMS model. Mechanistically, JNJ-26481585/Doxorubicin cotreatment causes upregulation of the BH3-only proteins Bim and Noxa as well as downregulation of the antiapoptotic proteins Mcl-1 and Bcl-xL. These changes in the ratio of pro- and antiapoptotic Bcl-2 proteins contribute to JNJ-26481585/Doxorubicin-mediated apoptosis, since knockdown of Bim or Noxa significantly inhibits cell death. Also, JNJ-26481585 and Doxorubicin cooperate to stimulate activation of Bax and Bak, which is required for JNJ-26481585/Doxorubicin-induced apoptosis, since silencing of Bax or Bak protects against apoptosis. Consistently, overexpression of Bcl-2 significantly reduces JNJ-26481585/Doxorubicin-mediated apoptosis. JNJ-26481585/Doxorubicin cotreatment leads to caspase activation and caspase-dependent apoptosis, since the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) rescues cells from apoptosis. In conclusion, the second-generation HDACI JNJ-26481585 cooperates with chemotherapeutics to engage mitochondrial apoptosis in RMS cells, demonstrating that JNJ-26481585 represents a promising strategy for chemosensitization of RMS.
Collapse
|
28
|
Hannes S, Abhari BA, Fulda S. Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. Cancer Lett 2016; 380:31-8. [DOI: 10.1016/j.canlet.2016.05.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
29
|
Abstract
Inhibitor of Apoptosis (IAP) proteins block programmed cell death and are expressed at high levels in various human cancers, thus making them attractive targets for cancer drug development. Second mitochondrial activator of caspases (Smac) mimetics are small-molecule inhibitors that mimic Smac, an endogenous antagonist of IAP proteins. Preclinical studies have shown that Smac mimetics can directly trigger cancer cell death or, even more importantly, sensitize tumor cells for various cytotoxic therapies, including conventional chemotherapy, radiotherapy, or novel agents. Currently, several Smac mimetics are under evaluation in early clinical trials as monotherapy or in rational combinations (i.e., GDC-0917/CUDC-427, LCL161, AT-406/Debio1143, HGS1029, and TL32711/birinapant). This review discusses the promise as well as some challenges at the translational interface of exploiting Smac mimetics as cancer therapeutics.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ. IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 2016; 7:33866-86. [PMID: 27129149 PMCID: PMC5085125 DOI: 10.18632/oncotarget.8980] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Outcomes for patients diagnosed with the bone cancer osteosarcoma have not improved significantly in the last four decades. Only around 60% of patients and about a quarter of those with metastatic disease survive for more than five years. Although DNA-damaging chemotherapy drugs can be effective, they can provoke serious or fatal adverse effects including cardiotoxicity and therapy-related cancers. Better and safer treatments are therefore needed. We investigated the anti-osteosarcoma activity of IAP antagonists (also known as Smac mimetics) using cells from primary and metastatic osteosarcomas that arose spontaneously in mice engineered to lack p53 and Rb expression in osteoblast-derived cells. The IAP antagonists SM-164, GDC-0152 and LCL161, which efficiently target XIAP and cIAPs, sensitized cells from most osteosarcomas to killing by low levels of TNFα but not TRAIL. RIPK1 expression levels and activity correlated with sensitivity. RIPK3 levels varied considerably between tumors and RIPK3 was not required for IAP antagonism to sensitize osteosarcoma cells to TNFα. IAP antagonists, including SM-164, lacked mutagenic activity. These data suggest that drugs targeting XIAP and cIAP1/2 may be effective for osteosarcoma patients whose tumors express abundant RIPK1 and contain high levels of TNFα, and would be unlikely to provoke therapy-induced cancers in osteosarcoma survivors.
Collapse
Affiliation(s)
- Tanmay M. Shekhar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ankita Gupte
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Brianna Tascone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Carl R. Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
31
|
Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, Wei Y, Wang G, Chang KJ. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol 2016; 49:153-63. [PMID: 27210546 PMCID: PMC4902065 DOI: 10.3892/ijo.2016.3525] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
The discovery of the TRAIL protein and its death receptors DR4/5 changed the horizon of cancer research because TRAIL specifically kills cancer cells. However, the validity of TRAIL-based cancer therapies has yet to be established, as most cancer cells are TRAIL-resistant. In this report, we demonstrate that TRAIL-resistance of many cancer cell lines can be overcome after siRNA- or rocaglamide-mediated downregulation of c-FLIP expression and simultaneous inhibition of IAPs activity using AT406, a pan-antagonist of IAPs. Combined triple actions of the TRAIL, the IAPs inhibitor, AT406, and the c-FLIP expression inhibitor, rocaglamide (ART), markedly improve TRAIL-induced apoptotic effects in most solid cancer cell lines through the activation of an extrinsic apoptosis pathway. Furthermore, this ART combination does not harm normal cells. Among the 18 TRAIL-resistant cancer cell lines used, 15 cell lines become sensitive or highly sensitive to ART, and two out of three glioma cell lines exhibit high resistance to ART treatment due to very low levels of procaspase-8. This study provides a rationale for the development of TRAIL-induced apoptosis-based cancer therapies.
Collapse
Affiliation(s)
- Ying Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xiang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qinghong Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yaping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Guanlin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Kwen-Jen Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
32
|
TRAIL Promotes Tumor Growth in a Syngeneic Murine Orthotopic Pancreatic Cancer Model and Affects the Host Immune Response. Pancreas 2016; 45:401-8. [PMID: 26390425 DOI: 10.1097/mpa.0000000000000469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is currently being evaluated as a possible biological agent for cancer treatment. However, many tumor cells are resistant to TRAIL-induced apoptosis. In these cases, TRAIL may activate different pathways promoting tumor growth as well as showing different interactions with the immunological tumor microenvironment. In this study, the impact of TRAIL on tumor growth and survival in a syngeneic model of TRAIL-resistant pancreatic cancer cells was investigated. METHODS Murine 6606PDA pancreatic cancer cells were injected into the pancreatic heads of TRAIL mice and their littermates. To examine a direct effect of TRAIL on tumor cells, cultures of 6606PDA were TRAIL stimulated. RESULTS The TRAIL mice displayed significantly decreased tumor volumes and an enhanced overall survival in pancreatic cancer. The decreased tumor growth in TRAIL mice was accompanied by a decrease of regulatory CD4 cells within tumors. Concordantly, TRAIL treatment of wild-type mice enhanced tumor growth and increased the fraction of regulatory CD4 cells. Yet, a direct effect of TRAIL on 6606PDA cells was not detected. CONCLUSIONS Thus, TRAIL can promote tumor growth in TRAIL-resistant tumor cells. This may restrict possible future clinical applications of TRAIL in pancreatic cancer.
Collapse
|
33
|
Lunov O, Zablotskii V, Churpita O, Jäger A, Polívka L, Syková E, Dejneka A, Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 2015; 82:71-83. [PMID: 26761777 DOI: 10.1016/j.biomaterials.2015.12.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023]
Abstract
Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully explored. Here, we report on the molecular mechanisms of non-thermal plasma-induced bacteria inactivation in both Gram-positive and Gram-negative strains. We demonstrate that depending on the exposure time plasma induces either direct physical destruction of bacteria or triggers programmed cell death (PCD) that exhibits characteristic features of apoptosis. The interplay between physical disruption and PCD is on the one hand driven by physical plasma parameters, and on the other hand by biological and physical properties of bacteria. The explored possibilities of the tuneable bacteria deactivation provide a basis for the development of advanced plasma-based therapies. To a great extent, our study opens new possibilities for controlled non-thermal plasma interactions with living systems.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Physics AS CR, Prague, Czech Republic.
| | | | | | - Ales Jäger
- Institute of Physics AS CR, Prague, Czech Republic
| | - Leoš Polívka
- Institute of Physics AS CR, Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | | | - Šárka Kubinová
- Institute of Physics AS CR, Prague, Czech Republic; Institute of Experimental Medicine AS CR, Prague, Czech Republic
| |
Collapse
|
34
|
Heinicke U, Kupka J, Fichter I, Fulda S. Critical role of mitochondria-mediated apoptosis for JNJ-26481585-induced antitumor activity in rhabdomyosarcoma. Oncogene 2015; 35:3729-41. [PMID: 26616861 DOI: 10.1038/onc.2015.440] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023]
Abstract
JNJ-26481585 is a second-generation histone deacetylase inhibitor with broad-range efficacy and improved pharmacodynamic properties. In the present study, we investigated the therapeutic potential of JNJ-26481585 and its molecular mechanisms of action in rhabdomyosarcoma (RMS). Here, we report that JNJ- 26481585's anticancer activity critically depends on an intact mitochondrial pathway of apoptosis. JNJ-26481585 induces apoptosis and also inhibits long-term clonogenic survival of several RMS cell lines at nanomolar concentrations that cause histone acetylation. Importantly, JNJ-26481585 significantly suppresses tumor growth in vivo in two preclinical RMS models, that is, the chorioallantoic membrane model and a xenograft mouse model. Mechanistically, we identify activation of the mitochondrial pathway of apoptosis as a key event that is critically required for JNJ-26481585-mediated cell death. JNJ-26481585 upregulates expression levels of several BH3-only proteins including Bim, Puma and Noxa, which all contribute to JNJ-26481585-mediated apoptosis, as knockdown of Bim, Puma or Noxa significantly inhibits cell death. This shift toward proapoptotic Bcl-2 proteins promotes activation of Bax and Bak as a critical event, as genetic silencing of Bax or Bak protects against JNJ-26481585-induced apoptosis. Intriguingly, rescue experiments reveal that JNJ-26481585 triggers Bax/Bak activation independently of caspase activation and activates caspase-9 as the initiator caspase in the cascade, as Bcl-2 overexpression, but not the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) blocks JNJ-26481585-induced Bax/Bak activation and caspase-9 cleavage. In conclusion, JNJ-26481585 exerts potent antitumor activity against RMS in vitro and in vivo by engaging mitochondrial apoptosis before caspase activation and represents a promising therapeutic for further investigation in RMS.
Collapse
Affiliation(s)
- U Heinicke
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - J Kupka
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - I Fichter
- Experimental Pharmacology and Oncology GmbH, Berlin-Buch, Germany
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Yu R, Albarenque SM, Cool RH, Quax WJ, Mohr A, Zwacka RM. DR4 specific TRAIL variants are more efficacious than wild-type TRAIL in pancreatic cancer. Cancer Biol Ther 2015; 15:1658-66. [PMID: 25482930 DOI: 10.4161/15384047.2014.972183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Current treatment modalities for pancreatic carcinoma afford only modest survival benefits. TRAIL, as a potent and specific inducer of apoptosis in cancer cells, would be a promising new treatment option. However, since not all pancreatic cancer cells respond to TRAIL, further improvements and optimizations are still needed. One strategy to improve the effectiveness of TRAIL-based therapies is to specifically target one of the 2 cell death inducing TRAIL-receptors, TRAIL-R1 or TRAIL-R2 to overcome resistance. To this end, we designed constructs expressing soluble TRAIL (sTRAIL) variants that were rendered specific for either TRAIL-R1 or TRAIL-R2 by amino acid changes in the TRAIL ectodomain. When we expressed these constructs, including wild-type sTRAIL (sTRAIL(wt)), TRAIL-R1 (sTRAIL(DR4)) and TRAIL-R2 (sTRAIL(DR5)) specific variants, in 293 producer cells we found all to be readily expressed and secreted into the supernatant. These supernatants were subsequently transferred onto target cancer cells and apoptosis measured. We found that the TRAIL-R1 specific variant had higher apoptosis-inducing activity in human pancreatic carcinoma Colo357 cells as well as PancTu1 cells that were additionally sensitized by targeting of XIAP. Finally, we tested TRAIL-R1 specific recombinant TRAIL protein (rTRAIL(DR4)) on Colo357 xenografts in nude mice and found them to be more efficacious than rTRAIL(wt). Our results demonstrate the benefits of synthetic biological approaches and show that TRAIL-R1 specific variants can potentially enhance the therapeutic efficacy of TRAIL-based therapies in pancreatic cancer, suggesting that they can possibly become part of individualized and tumor specific combination treatments in the future.
Collapse
Key Words
- AML, Acute myeloid leukemia
- ANOVA, Analysis of variance between groups
- Apoptosis
- BSA, Bovine Serum Albumin
- Bcl-xL, B-cell lymphoma-extra large
- CMV, Cytomegalie virus
- CuZnSOD, Copper-Zinc Superoxide Dismutase
- DMEM, Dulbecco's modified Eagle's medium
- DNA, Deoxyribonucleic acid
- DR4 specific TRAIL variant
- EGFP, Enhanced green fluorescent protein
- ELISA, Enzyme-linked immunosorbent assay
- FACS, Fluorescence-activated cell sorting
- FADD, Fas-associated protein with death domain
- FBS, Fetal bovine serum
- FIB, Fibrillin
- FLIP, FLICE-like inhibitory protein
- Furin CS, Furin cleavage site
- IFN-g, Interferon-gamma
- ILZ, Isoleucine zipper
- MSC, Mesenchymal stem cell
- NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells
- OPG, Osteoprogerin
- PBS, Phosphate buffered saline
- PCR, Polymerase chain reaction
- RANKL, Receptor activator of nuclear factor kappa-B ligand
- RNAi, RNA interference
- RPMI 1640 medium, Roswell Park Memorial Institute 1640 medium
- SDS, Sodium dodecyl sulphate
- SDS-PAGE, SDS-Polyacrylamide gel electrophoresis
- SEM, Standard error of the mean
- TNF, Tumor necrosis factor
- TRAIL
- TRAIL receptor
- TRAIL, TNF-related apoptosis-inducing ligand
- TRAIL-R1/DR4, TRAIL-receptor 1/Death – receptor 4
- TRAIL-R2/DR5, TRAIL-receptor 2/ Death – receptor 5
- TRAIL-R3/DcR1, TRAIL-receptor 3/Decoy-receptor 1
- TRAIL-R4/DcR2, TRAIL-receptor 4/Decoy-receptor 2
- XIAP
- XIAP, X-linked Inhibitor of apoptosis protein
- pancreatic cancer
- rTRAIL, recombinant TNF-related apoptosis-inducing ligand
- sTRAIL, soluble TNF-related apoptosis-inducing ligand
- sh-sequence, short-hairpin sequence
Collapse
Affiliation(s)
- Rui Yu
- a National University of Ireland; Galway; National Centre for Biomedical Engineering Science and Apoptosis Research Centre; Molecular Therapeutics Group ; Galway , Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Wan C, Gong C, Ji L, Liu X, Wang Y, Wang L, Shao M, Yang L, Fan S, Xiao Y, Wang X, Li M, Zhou G, Zhang Y. NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma. Mol Cell Biochem 2015; 410:25-35. [PMID: 26276310 DOI: 10.1007/s11010-015-2535-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023]
Abstract
NF45, also referred to as nuclear factor of activated T cells, has been reported to promote the progression of multiple cancer types. However, the expression and physiological significance of NF45 in pancreatic ductal adenocarcinoma (PDAC) remain largely elusive. In this study, we investigated the clinical relevance and potential role of NF45 expression in PDAC development. Western blot analysis revealed that NF45 was remarkably upregulated in PDAC tissues, compared with the adjacent non-tumorous ones. In addition, the expression of NF45 in 122 patients with PDAC was evaluated using immunohistochemistry. In this way, we found that NF45 was abundantly expressed in PDAC tissues, and the expression of NF45 was correlated with tumor size (p = 0.007), histological differentiation (p = 0.033), and TNM stage (p = 0.001). Importantly, patients with low levels of NF45 expression exhibited better postoperative prognosis as compared with those with high NF45 expression. Furthermore, using PDAC cell cultures, we found that interference of NF45 expression using siRNA oligos suppressed PDAC cell proliferation and retarded cell cycle progression. Moreover, depletion of NF45 impaired the levels of cellular cyclin E and proliferating cell nuclear antigen (PCNA). Conversely, overexpression of NF45 facilitated the cell growth and accelerated cell cycle progression. Our results establish NF45 as an important indicator of PDAC prognosis with potential utility as a therapeutic target in this lethal disease.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001, Jiangsu, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Gong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Li Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaorong Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yayun Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Liang Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mengting Shao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Linlin Yang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shaoqing Fan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yin Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaotong Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Manhua Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yixin Zhang
- Department of General Surgery, Nantong University Cancer Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
37
|
Wang YH, Scadden DT. Harnessing the apoptotic programs in cancer stem-like cells. EMBO Rep 2015; 16:1084-98. [PMID: 26253117 DOI: 10.15252/embr.201439675] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
38
|
Steinwascher S, Nugues AL, Schoeneberger H, Fulda S. Identification of a novel synergistic induction of cell death by Smac mimetic and HDAC inhibitors in acute myeloid leukemia cells. Cancer Lett 2015; 366:32-43. [PMID: 26028172 DOI: 10.1016/j.canlet.2015.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/17/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in acute myeloid leukemia (AML) and contribute to resistance to programmed cell death. Here, we report that inhibition of IAP proteins by the small-molecule Smac mimetic BV6 acts together with histone deacetylase (HDAC) inhibitors (HDACIs) such as MS275 or SAHA to trigger cell death in AML cell lines in a synergistic manner, as underscored by calculation of combination index (CI). Also, BV6 and HDACIs cooperate to trigger DNA fragmentation, a marker of apoptotic cell death, and to suppress long-term clonogenic survival of AML cells. In contrast, equimolar concentrations of BV6 and MS275 or SAHA do not synergize to elicit cell death in normal peripheral blood lymphocytes (PBLs), emphasizing some tumor cell selectivity of this combination treatment. Addition of the tumor necrosis factor (TNF)α-blocking antibody Enbrel significantly reduces BV6/MS275-induced cell death in the majority of AML cell lines, indicating that autocrine/paracrine TNFα signaling contributes to cell death. Remarkably, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue MV4-11, Molm13 and OCI-AML3 cells and even enhances BV6/MS275-mediated cell death, whereas zVAD.fmk reduces BV6/MS275-induced cell death in NB4 cells. Annexin-V/propidium iodide (PI) double staining reveals that BV6/MS275 cotreatment predominately increases the percentage of double-positive cells. Of note, the Receptor-Interacting Protein (RIP)1 inhibitor necrostatin-1 (Nec-1) or the Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor necrosulfonamide (NSA) significantly reduce BV6/MS275-induced cell death in the presence of zVAD.fmk, suggesting that BV6/MS275 cotreatment triggers necroptosis when caspases are inhibited. Thus, BV6 acts in concert with HDACIs to induce cell death in AML cells and can bypass apoptosis resistance, at least in several AML cell lines, by engaging necroptosis as an alternative route of regulated cell death. The identification of a novel synergism of BV6 and HDACIs has important implications for the development of new treatment strategies for AML.
Collapse
Affiliation(s)
- Sofie Steinwascher
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany
| | - Anne-Lucie Nugues
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany
| | - Hannah Schoeneberger
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, Frankfurt 60528, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
39
|
Kazim S, Malafa MP, Coppola D, Husain K, Zibadi S, Kashyap T, Crochiere M, Landesman Y, Rashal T, Sullivan DM, Mahipal A. Selective Nuclear Export Inhibitor KPT-330 Enhances the Antitumor Activity of Gemcitabine in Human Pancreatic Cancer. Mol Cancer Ther 2015; 14:1570-81. [PMID: 25934708 DOI: 10.1158/1535-7163.mct-15-0104] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/26/2015] [Indexed: 01/05/2023]
Abstract
Pancreatic cancer is an aggressive and deadly malignancy responsible for the death of over 37,000 Americans each year. Gemcitabine-based therapy is the standard treatment for pancreatic cancer but has limited efficacy due to chemoresistance. In this study, we evaluated the in vitro and in vivo effects of gemcitabine combined with the selective nuclear export (CRM1) inhibitor KPT-330 on pancreatic cancer growth. Human pancreatic cancer MiaPaCa-2 and metastatic pancreatic cancer L3.6pl cell lines were treated with different concentrations of KPT-330 and gemcitabine alone or in combination, and anchorage-dependent/independent growth was recorded. In addition, L3.6pl cells with luciferase were injected orthotopically into the pancreas of athymic nude mice, which were treated with (i) vehicle (PBS 1 mL/kg i.p., 2/week and povidone/pluronic F68 1 mL/kg p.o., 3/week), (ii) KPT-330 (20 mg/kg p.o., 3/week), (iii) gemcitabine (100 mg/kg i.p., 2/week), or (iv) KPT-330 (10 mg/kg) + gemcitabine (50 mg/kg) for 4 weeks. KPT-330 and gemcitabine alone dose-dependently inhibited anchorage-dependent growth in vitro and tumor volume in vivo compared with vehicle treatment. However, the combination inhibited growth synergistically. In combination, KPT-330 and gemcitabine acted synergistically to enhance pancreatic cancer cell death greater than each single-agent therapy. Mechanistically, KPT-330 and gemcitabine promoted apoptosis, induced p27, depleted survivin, and inhibited accumulation of DNA repair proteins. Together, our data suggest that KPT-330 potentiates the antitumor activity of gemcitabine in human pancreatic cancer through inhibition of tumor growth, depletion of the antiapoptotic proteins, and induction of apoptosis.
Collapse
Affiliation(s)
- Sabiha Kazim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sherma Zibadi
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | - Tami Rashal
- Karyopharm Therapeutics Inc, Newton, Massachusetts
| | - Daniel M Sullivan
- Department of Blood and Marrow Transplant, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amit Mahipal
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
40
|
Liese J, Abhari BA, Fulda S. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells. Cancer Lett 2015; 365:47-56. [PMID: 25917078 DOI: 10.1016/j.canlet.2015.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.
Collapse
Affiliation(s)
- Juliane Liese
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; General and Visceral Surgery, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
McKee CM, Ding Y, Zhou J, Li C, Huang L, Xin X, He J, Allen JE, El-Deiry WS, Cao Y, Muschel RJ, Xu D. Protease nexin 1 induces apoptosis of prostate tumor cells through inhibition of X-chromosome-linked inhibitor of apoptosis protein. Oncotarget 2015; 6:3784-96. [PMID: 25686839 PMCID: PMC4414153 DOI: 10.18632/oncotarget.2921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 01/08/2023] Open
Abstract
Protease nexin 1 (PN1) is an endogenous serine protease inhibitor (SERPIN), expressed at high levels in the prostate, and capable of inhibiting the proliferation of prostate cancer cells. We previously showed that PN1-uPA complexes inhibited Sonic Hedgehog (SHH) signalling through engagement of the LRP receptor. Here, we describe an alternative anti-proliferative mechanism through which PN1 expression leads to apoptosis. In prostate cancer cells, increased expression of PN1 led to substantial reduction of XIAP levels and apoptosis mediated through the uPAR, but not the LRP receptor. The alterations in XIAP were effected in two ways 1) via alteration in the NF-κB pathway, a pathway known to signal XIAP transcription and 2) by promoting XIAP instability. The AKT pathway is known to phosphorylate XIAP at serine 87 leading to protein stability and PN1 expression is shown to interfere with this process. As a result of both mechanisms, programmed cell death is substantially increased. Consistent with these observations, reduced PN1 protein correlated with elevated p65/XIAP expression and with higher Gleason scores in human prostate tissue arrays. Thus, PN1 expression appears to differentially down-regulate distinct oncogenic pathways depending upon the cell surface receptor engaged by its complexes and demonstrates a novel molecular mechanism by which the protein can promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Chad M. McKee
- Gray Institute of Radiation Oncology and Biology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| | - Yunchuan Ding
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jianfeng Zhou
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Chunrui Li
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Liang Huang
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xiangke Xin
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jing He
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Joshua E. Allen
- Penn State Hershey Cancer Institute, Penn State University, Hershey, PA, USA
| | - Wafik S. El-Deiry
- Penn State Hershey Cancer Institute, Penn State University, Hershey, PA, USA
| | - Yunhong Cao
- Gray Institute of Radiation Oncology and Biology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| | - Ruth J. Muschel
- Gray Institute of Radiation Oncology and Biology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| | - Danmei Xu
- Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
42
|
Abstract
As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
43
|
Bai L, Smith DC, Wang S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther 2014; 144:82-95. [PMID: 24841289 PMCID: PMC4247261 DOI: 10.1016/j.pharmthera.2014.05.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
Abstract
Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments.
Collapse
Affiliation(s)
- Longchuan Bai
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - David C Smith
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Shaomeng Wang
- Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Pieczykolan JS, Kubiński K, Masłyk M, Pawlak SD, Pieczykolan A, Rózga PK, Szymanik M, Gałązka M, Teska-Kamińska M, Żerek B, Bukato K, Poleszak K, Jaworski A, Strożek W, Świder R, Zieliński R. AD-O53.2--a novel recombinant fusion protein combining the activities of TRAIL/Apo2L and Smac/Diablo, overcomes resistance of human cancer cells to TRAIL/Apo2L. Invest New Drugs 2014; 32:1155-66. [PMID: 25182378 DOI: 10.1007/s10637-014-0153-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptors became promising molecules for selective targeting of tumor cells without affecting normal tissue. Unfortunately, cancer cells have developed a number of mechanisms that confer resistance to TRAIL\Apo2L-induced apoptosis, which substantiates the need for development of alternative therapeutic strategies. Here we present a recombinant variant of TRAIL\Apo2L peptide, named AD-O53.2, fused to the peptide-derived from Smac/Diablo protein-the natural inhibitor of the apoptotic X-linked IAP (XIAP) protein considered as a pro-apoptotic agent. The proposed mechanism of action for this construct involves specific targeting of the tumor by TRAIL\Apo2L followed by activation and internalization of pro-apoptotic peptide into the cancer cells. While in the cytoplasm , the Smac\Diablo peptide inhibits activity of X-linked IAP (XIAP) proteins and promotes caspase-mediated apoptosis. AD-O53.2 construct was expressed in E.coli and purified by Ion Exchange Chromatography (IEC). Derived protein was initially characterized by circular dichroism spectroscopy (CD), HPLC-SEC chromatography, surface plasmon resonance, protease activation and cell proliferation assays. Our Smac/Diablo-TRAIL fusion variant was tested against a panel of cancer cells (including lung, colorectal, pancreatic, liver, kidney and uterine) and showed a potent cytotoxic effect with the IC50 values in femtomolar range for the most sensitive cell lines, while it remained ineffective against non-transformed HUVEC cells as well as isolated normal human and rat hepatocytes. Importantly, the construct was well tolerated by animals and significantly reduced the rate of the tumor growth in colon and lung adenocarcinoma animal models.
Collapse
Affiliation(s)
- Jerzy S Pieczykolan
- Drug Discovery Department, Adamed Group, Pieńków 149, 05-152, Czosnów, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15:862-71. [PMID: 24700296 DOI: 10.1208/s12249-014-0113-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10-100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.
Collapse
|
46
|
Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects. J Investig Med 2014. [PMID: 22406516 DOI: 10.231/jim.0b013e31824a4d79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
47
|
Abstract
Inhibitor of apoptosis (IAP) proteins are overexpressed in multiple human malignancies, an event that is associated with poor prognosis and treatment resistance. Therefore, IAP proteins represent relevant targets for therapeutic intervention. Second mitochondrial activator of caspases (Smac) is a mitochondrial protein that is released into the cytosol upon the induction of programmed cell death and promotes apoptosis by neutralizing IAP proteins. On the basis of this property, a variety of small-molecule inhibitors have been developed that mimic the binding domain of the native Smac protein to IAP proteins. Evaluation of these Smac mimetics in preclinical studies revealed that they particularly synergize together with agents that trigger the death receptor pathway of apoptosis. Such combinations might therefore be of special interest for being included in the ongoing evaluation of Smac mimetics in early clinical trials.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| |
Collapse
|
48
|
Wittig R, Rosenholm JM, von Haartman E, Hemming J, Genze F, Bergman L, Simmet T, Lindén M, Sahlgren C. Active targeting of mesoporous silica drug carriers enhances γ-secretase inhibitor efficacy in an in vivo model for breast cancer. Nanomedicine (Lond) 2014; 9:971-87. [DOI: 10.2217/nnm.13.62] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: In this article, we use an alternative cancer model for the evaluation of nanotherapy, and assess the impact of surface functionalization and active targeting of mesoporous silica nanoparticles (MSNPs) on therapeutic efficacy in vivo. Materials & methods: We used the chorioallantoic membrane xenograft assay to investigate the biodistribution and therapeutic efficacy of folate versus polyethyleneimine-functionalized γ-secretase inhibitor-loaded MSNPs in breast and prostate tumor models. Results: γ-secretase inhibitor-loaded MSNPs inhibited tumor growth in breast and prostate cancer xenografts. Folate conjugation improved the therapeutic outcome in folic acid receptor-positive breast cancer, but not in prostate cancer lacking the receptor. Conclusion: The results demonstrate that therapeutic efficacy is linked to cellular uptake of MSNPs as opposed to tumor accumulation, and show that MSNP-based delivery of γ-secretase inhibitors is therapeutically effective in both breast and prostate cancer. In this article, we present a model system for a medium-to-high throughput, cost-effective, quantitative evaluation of nanoparticulate drug carriers. Original submitted 12 November 2012; Revised submitted 8 February 2013
Collapse
Affiliation(s)
- Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology at Ulm University, Helmholtzstrasse 12, D-89081 Ulm, Germany
| | - Jessica M Rosenholm
- Center for Functional Materials, Laboratory for Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, FI-20500 Turku, Finland
| | - Eva von Haartman
- Center for Functional Materials, Laboratory for Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, FI-20500 Turku, Finland
| | - Jarl Hemming
- Wood & Paper Chemistry, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Felicitas Genze
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | - Lotta Bergman
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | - Mika Lindén
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Cecilia Sahlgren
- Department of Biomedical Engineering, Technical University of Eindhoven, 2612 Eindhoven, The Netherlands
| |
Collapse
|
49
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
50
|
Differential activity of GSK-3 isoforms regulates NF-κB and TRAIL- or TNFα induced apoptosis in pancreatic cancer cells. Cell Death Dis 2014; 5:e1142. [PMID: 24675460 PMCID: PMC4067531 DOI: 10.1038/cddis.2014.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 01/06/2023]
Abstract
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.
Collapse
|