1
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Teli P, Soni S, Teli S, Agarwal S. Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes. Top Curr Chem (Cham) 2024; 382:8. [PMID: 38403746 DOI: 10.1007/s41061-024-00454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
From a synthetic perspective, bis(indolyl)methanes have undergone extensive investigation over the past two to three decades owing to their remarkable pharmacological activities, encompassing anticancer, antimicrobial, antioxidant, and antiinflammatory properties. These highly desirable attributes have spurred significant interest within the scientific community, leading to the development of various synthetic strategies that are not only more efficient but also ecofriendly. This synthesis-based literature review delves into the advancements made in the past 5 years, focusing on the synthesis of symmetrical as well as unsymmetrical bis(indolyl)methanes. The review encompasses a wide array of methods, ranging from well-established techniques to more unconventional and innovative approaches. Furthermore, it highlights the exploration of various substrates, encompassing readily available chemicals such as indole, aldehydes/ketones, indolyl methanols, etc. as well as the use of some specific compounds as starting materials to achieve the synthesis of this invaluable molecule. By encapsulating the latest developments in this field, this review provides insights into the expanding horizons of bis(indolyl)methane synthesis.
Collapse
Affiliation(s)
- Pankaj Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shivani Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Sunita Teli
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, Rajasthan, India.
| |
Collapse
|
3
|
Harakeh S, Akefe IO, Saber SH, alamri T, Al-Raddadi R, Al-Jaouni S, Tashkandi H, Qari M, Moulay M, Aldahlawi A, Abd Elmageed ZY, Mousa S. Nanoformulated 3'-diindolylmethane modulates apoptosis, migration, and angiogenesis in breast cancer cells. Heliyon 2024; 10:e23553. [PMID: 38187226 PMCID: PMC10770460 DOI: 10.1016/j.heliyon.2023.e23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Background It is well-established that specific herbal plants contain natural active ingredients that have demonstrated anti-cancer potential. Therefore, they are considered highly beneficial as a potential adjuvant, alternative or complementary agent in anti-cancer therapy. However, the low chemical stability and limited bioavailability of 3, 3'-Diindolylmethane (DIM), a plant-derived compound used in clinical settings, limit its therapeutic applications. To overcome this challenge, researchers have focused on developing innovative approaches to improve DIM's biological activity, such as utilizing nanoformulations. Here, we investigated the potential benefits of coating DIM nanoparticles (DIM-NPs) with PEG/chitosan in the treatment of breast cancer. Our results demonstrate the molecular mechanism underlying the activity of DIM-NPs, highlighting their potential as an effective therapeutic strategy for breast cancer treatment. Methods DIM-PLGA-PEG/chitosan NPs were synthesised and characterised using dynamic light scattering (DLS) and evaluated the impact of these NPs on two breast cancer cell models. Results DIM-NPs had an average diameter of 102.3 nm and a PDI of 0.182. When treated with DIM-NPs for 48 h, both MCF7 and MDA-MB-231 cells displayed cytotoxicity at a concentration of 6.25 g/mL compared to untreated cells. Furthermore, in MDA-MB-231 cells, treatment with 2.5 μg/mL of DIM-NPs resulted in a significant decrease in cell migration, propagation, and angiogenesis which was further enhanced at 10 μg/mL. In chicken embryos, treatment with 5 μg/mL of DIM-NPs on day 2 led to a significant reduction in angiogenesis. Furthermore, this treatment induced cell death through a regulatory pathway involving the upregulation of Bax and p53, as well as the downregulation of Bcl-2. These results were supported by in-silico analysis of DIM's binding affinity to key proteins involved in this pathway, namely Bax, Bcl-2, and p53. Conclusion Our findings show that DIM-NPs induces apoptosis, inhibit migration, and reduce angiogenesis in breast cancer. However, further research using a preclinical cancer model may be necessary to determine the pharmacokinetics of DIM-NPs and ensure their safety and efficacy in vivo.
Collapse
Affiliation(s)
- Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isaac Oluwatobi Akefe
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Turki alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajaa Al-Raddadi
- Department of Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Soad Al-Jaouni
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanaa Tashkandi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Qari
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Hematology/ Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zakariya Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, 71203, USA
| | - Shaker Mousa
- Vascular Vision Pharmaceuticals Co., Rensselaer, NY, 12144, USA
| |
Collapse
|
4
|
Gonçalves RCR, Peñalver P, Costa SPG, Morales JC, Raposo MMM. Polyaromatic Bis(indolyl)methane Derivatives with Antiproliferative and Antiparasitic Activity. Molecules 2023; 28:7728. [PMID: 38067459 PMCID: PMC10707942 DOI: 10.3390/molecules28237728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized with different (hetero)aromatic moieties. We synthesized substituted BIM derivatives with triphenylamine, N,N-dimethyl-1-naphthylamine and 8-hydroxylquinolyl groups, studied their photophysical properties and evaluated their in vitro antiproliferative and antiparasitic activities. The triphenylamine BIM derivative 2a displayed an IC50 of 3.21, 3.30 and 3.93 μM against Trypanosoma brucei, Leishmania major and HT-29 cancer cell line, respectively. The selectivity index demonstrated that compound 2a was up to eight-fold more active against the parasites and HT-29 than against the healthy cell line MRC-5. Fluorescence microscopy studies with MRC-5 cells and T. brucei parasites incubated with derivative 2a indicate that the compound seems to accumulate in the cell's mitochondria and in the parasite's nucleus. In conclusion, the BIM scaffold functionalized with the triphenylamine moiety proved to be the most promising antiparasitic and anticancer agent of this series.
Collapse
Affiliation(s)
- Raquel C. R. Gonçalves
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (R.C.R.G.); (S.P.G.C.)
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (P.P.); (J.C.M.)
| | - Susana P. G. Costa
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (R.C.R.G.); (S.P.G.C.)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (P.P.); (J.C.M.)
| | - Maria Manuela M. Raposo
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (R.C.R.G.); (S.P.G.C.)
| |
Collapse
|
5
|
Nagia M, Morgan I, Gamel MA, Farag MA. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids. Crit Rev Food Sci Nutr 2023; 64:8133-8154. [PMID: 37051943 DOI: 10.1080/10408398.2023.2197065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.
Collapse
Affiliation(s)
- Mohamed Nagia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mirette A Gamel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Jit BP, Pattnaik S, Arya R, Dash R, Sahoo SS, Pradhan B, Bhuyan PP, Behera PK, Jena M, Sharma A, Agrawala PK, Behera RK. Phytochemicals: A potential next generation agent for radioprotection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154188. [PMID: 36029645 DOI: 10.1016/j.phymed.2022.154188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation hazards are accountable for extensive damage in the biological system and acts as a public health burden. Owing to the rapid increasing in radiation technology, both Ionizing radiation (IR) from natural and man made source poses detrimental outcome to public health. IR releases free radicals which induces oxidative stress and deleterious biological damage by modulating radiation induced signalling intermediates. The efficacy of existing therapeutic approach and treatment strategy are limited owing to their toxicity and associated side effects. Indian system of traditional medicine is enriched with prospective phytochemicals with potential radioprotection ability. PURPOSE The present review elucidated and summarized the potential role of plant derived novel chemical compound with prospective radioprotective potential. METHOD So far as the traditional system of Indian medicine is concerned, plant kingdom is enriched with potential bioactive molecules with diverse pharmacological activities. We reviewed several compounds mostly secondary metabolites from plant origin using various search engines. RESULTS Both compounds from land plants and marine source exhibited antioxidant antiinflammatory, free radical scavenging ability. These compounds have tremendous potential in fine-tuning of several signalling intermediates, which are actively participated in the progression and development of a pathological condition associated with radiation stress. CONCLUSION Development and explore of an operational radioprotective agent from originated from plant source that can be used as a novel molecular tool to eliminate the widespread damage caused by space exploration, ionizing radiation, nuclear war and radiotherapy has been significantly appreciated. Through extensive literature search we highlighted several compounds from both land plant and marine origin can be implemented for a better therapeutic potential against radiation induced injury. Furthermore, extensive clinical trials must be carried out in near future for better therapeutic modality and clinical efficacy.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India
| | - Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Rakesh Arya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India; School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India
| | - Rutumbara Dash
- Departement of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003, India
| | - Pradyota Kumar Behera
- Department of Chemistry, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Paban Kumar Agrawala
- Institute of Nuclear Medicine and Allied Science, Defence Research and Development Organization, New Delhi 110054, India
| | | |
Collapse
|
7
|
Diindolylmethane Inhibits Cadmium-Induced Autophagic Cell Death via Regulation of Oxidative Stress in HEL299 Human Lung Fibroblasts. Molecules 2022; 27:molecules27165215. [PMID: 36014455 PMCID: PMC9414701 DOI: 10.3390/molecules27165215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd), a harmful heavy metal, can lead to various pulmonary diseases, including chronic obstructive pulmonary disease (COPD), by inducing cytotoxicity and disturbing redox homeostasis. The aim of the present study was to investigate Cd-mediated cytotoxicity using human lung fibroblasts and the therapeutic potential of 3,3′-diindolylmethane (DIM). Cadmium significantly reduced the cell viability of human embryonic lung (HEL299) cells accompanied by enhanced oxidative stress as evidenced by the increased expression of autophagy-related proteins such as LC3B and p62. However, treatment with DIM significantly suppressed autophagic cell death in Cd-induced HEL299 fibroblasts. In addition, DIM induced antioxidant enzyme activity and decreased intracellular reactive oxygen species (ROS) levels in Cd-damaged HEL299 cells. This study suggests that DIM effectively suppressed Cd-induced lung fibroblast cell death through the upregulation of antioxidant systems and represents a potential agent for the prevention of various diseases related to Cd exposure.
Collapse
|
8
|
Lee M, Youn E, Kang K, Shim YH. 3,3'-Diindolylmethane Supplementation Maintains Oocyte Quality by Reducing Oxidative Stress and CEP-1/p53-Mediated Regulation of Germ Cells in a Reproductively Aged Caenorhabditis elegans Model. Antioxidants (Basel) 2022; 11:950. [PMID: 35624814 PMCID: PMC9137721 DOI: 10.3390/antiox11050950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
In recent decades, maternal age at first birth has increased, as has the risk of infertility due to rapidly declining oocyte quality with age. Therefore, an understanding of female reproductive aging and the development of potential modulators to control oocyte quality are required. In this study, we investigated the effects of 3,3'-diindolylmethane (DIM), a natural metabolite of indole-3-cabinol found in cruciferous vegetables, on fertility in a Caenorhabditis elegans model. C. elegans fed DIM showed decreased mitochondrial dysfunction, oxidative stress, and chromosomal aberrations in aged oocytes, and thus reduced embryonic lethality, suggesting that DIM, a dietary natural antioxidant, improves oocyte quality. Furthermore, DIM supplementation maintained germ cell apoptosis (GCA) and germ cell proliferation (GCP) in a CEP-1/p53-dependent manner in a reproductively aged C. elegans germ line. DIM-induced GCA was mediated by the CEP-1-EGL-1 pathway without HUS-1 activation, suggesting that DIM-induced GCA is different from DNA damage-induced GCA in the C. elegans germ line. Taken together, we propose that DIM supplementation delays the onset of reproductive aging by maintaining the levels of GCP and GCA and oocyte quality in a reproductively aged C. elegans.
Collapse
Affiliation(s)
- Mijin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.L.); (E.Y.)
| | - Esther Youn
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.L.); (E.Y.)
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.L.); (E.Y.)
| |
Collapse
|
9
|
The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans. Microbiol Spectr 2022; 10:e0205621. [PMID: 35107361 PMCID: PMC8809333 DOI: 10.1128/spectrum.02056-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive anaerobic bacterium Cutibacterium acnes is a major inhabitant of human skin and has been implicated in acne vulgaris formation and in the formation of multispecies biofilms with other skin-inhabiting organisms like Staphylococcus aureus and Candida albicans. Indoles are widespread in nature (even in human skin) and function as important signaling molecules in diverse prokaryotes and eukaryotes. In the present study, we investigated the antibacterial and antibiofilm activities of 20 indoles against C. acnes. Of the indoles tested, indole-3-carbinol at 0.1 mM significantly inhibited biofilm formation by C. acnes without affecting planktonic cell growth, and the anticancer drug 3,3'-diindolylmethane (DIM) at 0.1 mM (32 μg/mL) also significantly inhibited planktonic cell growth and biofilm formation by C. acnes, whereas the other indoles and indole itself were less effective. Also, DIM at 0.1 mM successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that DIM inhibited the expressions of several biofilm-related genes in C. acnes, and at 0.05 mM, DIM inhibited hyphal formation and cell aggregation by C. albicans. These results suggest that DIM and other indoles inhibit biofilm formation by C. acnes and have potential use for treating C. acnes associated diseases. IMPORTANCE Since indoles are widespread in nature (even in human skin), we hypothesized that indole and its derivatives might control biofilm formation of acne-causing bacteria (Cutibacterium acnes and Staphylococcus aureus) and fungal Candida albicans. The present study reports for the first time the antibiofilm and antimicrobial activities of several indoles on C. acnes. Of the indoles tested, two anticancer agents, indole-3-carbinol and 3,3'-diindolylmethane found in cruciferous vegetables, significantly inhibited biofilm formation by C. acnes. Furthermore, the most active 3,3'-diindolylmethane successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that 3,3'-diindolylmethane inhibited the expressions of several biofilm-related genes including lipase, hyaluronate lyase, and virulence-related genes in C. acnes, and 3,3'-diindolylmethane inhibited hyphal formation and cell aggregation by C. albicans. Our findings show that 3,3'-diindolylmethane offers a potential means of controlling acne vulgaris and multispecies biofilm-associated infections due to its antibiofilm and antibiotic properties.
Collapse
|
10
|
Yerushalmi R, Bargil S, Ber Y, Ozlavo R, Sivan T, Rapson Y, Pomerantz A, Tsoref D, Sharon E, Caspi O, Grubsrein A, Margel D. 3,3-Diindolylmethane (DIM): a nutritional intervention and its impact on breast density in healthy BRCA carriers. A prospective clinical trial. Carcinogenesis 2021; 41:1395-1401. [PMID: 32458980 PMCID: PMC7566319 DOI: 10.1093/carcin/bgaa050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022] Open
Abstract
Women who carry the BRCA mutation are at high lifetime risk of breast cancer, but there is no consensus regarding an effective and safe chemoprevention strategy. A large body of evidence suggests that 3,3-diindolylmethane (DIM), a dimer of indole-3-carbinol found in cruciferous vegetables, can potentially prevent carcinogenesis and tumor development. The primary aim of this prospective single-arm study was to investigate the effect of DIM supplementation on breast density, a recognized predictive factor of breast cancer risk. Participants were 23 healthy female BRCA carriers (median age 47 years; 78% postmenopausal) who were treated with oral DIM 100 mg × 1/day for 1 year. The amount of fibroglandular tissue (FGT) and background parenchymal enhancement (BPE) on magnetic resonance imaging (MRI) performed before and after the intervention was scored by two independent expert radiologists using the Breast Imaging and Reporting Data System. The results showed a decrease in the average score for FGT amount from 2.8 ± 0.8 at the onset to 2.65 ± 0.84 after 1 year (P = 0.031), with no significant change in BPE (P = 0.429). A group of DIM-untreated age- and menopausal-status-matched women from the BRCA clinic did not show a significant change in FGT amount (P = 0.33) or BPE (P = 0.814) in a parallel year. Mean estradiol level decreased from 159 to 102 pmol/l (P = 0.01), and mean testosterone level decreased from 0.42 to 0.31 pmol/l (P = 0.007). Side effects were grade 1. In conclusion, 1 year’s supplementation with DIM 100 mg × 1/day in BRCA carriers was associated with a significant decline in FGT amount on MRI. Larger randomized studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Rinat Yerushalmi
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Bargil
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel
| | - Yaara Ber
- Division of Urology, Petach Tikva, Israel
| | | | | | - Yael Rapson
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Imaging Department, Petach Tikva, Israel
| | - Adi Pomerantz
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel
| | - Daliah Tsoref
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel
| | - Eran Sharon
- Division of Surgery, Hospital for Women, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel
| | - Opher Caspi
- Davidoff Cancer Center, Rabin Medical Center-Beilinson Campus, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ahuvah Grubsrein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Imaging Department, Petach Tikva, Israel
| | - David Margel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Urology, Petach Tikva, Israel
| |
Collapse
|
11
|
Chu X, Zheng W, Chen Q, Wang C, Fan S, Shao C. HBXIP contributes to radioresistance through NF-κB-mediated expression of XIAP in breast cancer. RADIATION MEDICINE AND PROTECTION 2021. [DOI: 10.1016/j.radmp.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Amer MA, Wasfi R, Attia AS, Ramadan MA. Indole Derivatives Obtained from Egyptian Enterobacter sp. Soil Isolates Exhibit Antivirulence Activities against Uropathogenic Proteus mirabilis. Antibiotics (Basel) 2021; 10:363. [PMID: 33805493 PMCID: PMC8065651 DOI: 10.3390/antibiotics10040363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/05/2022] Open
Abstract
Proteus mirabilis is a frequent cause of catheter associated urinary tract infections (CAUTIs). Several virulence factors contribute to its pathogenesis, but swarming motility, biofilm formation, and urease activity are considered the hallmarks. The increased prevalence in antibiotic resistance among uropathogens is alarming and requires searching for new treatment alternatives. With this in mind, our study aims to investigate antivirulence activity of indole derivatives against multidrug resistant P. mirabilis isolates. Ethyl acetate (EtOAc) extracts from Enterobacter sp. (rhizobacterium), isolated from Egyptian soil samples were tested for their ability to antagonize the virulence capacity and biofilm activity of P. mirabilis uropathogens. Extracts of two Enterobacter sp. isolates (coded Zch127 and Cbg70) showed the highest antivirulence activities against P. mirabilis. The two promising rhizobacteria Zch127 and Cbg70 were isolated from soil surrounding: Cucurbita pepo (Zucchini) and Brassica oleracea var. capitata L. (Cabbage), respectively. Sub-minimum inhibitory concentrations (Sub-MICs) of the two extracts showed potent antibiofilm activity with significant biofilm reduction of ten P. mirabilis clinical isolates (p-value < 0.05) in a dose-dependent manner. Interestingly, the Zch127 extract showed anti-urease, anti-swarming and anti-swimming activity against the tested strains. Indole derivatives identified represented key components of indole pyruvate, indole acetamide pathways; involved in the synthesis of indole acetic acid. Additional compounds for indole acetonitrile pathway were detected in the Zch127 extract which showed higher antivirulence activity. Accordingly, the findings of the current study model the feasibility of using these extracts as promising antivirulence agent against the P. mirabilis uropathogens and as potential therapy for treatment of urinary tract infections (UTIs).
Collapse
Affiliation(s)
- Mai A. Amer
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt; (M.A.A.); (R.W.)
| | - Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt; (M.A.A.); (R.W.)
| | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University, Giza 11341, Egypt
| | - Mohamed A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| |
Collapse
|
13
|
Laiakis EC, McCart EA, Deziel A, Rittase WB, Bouten RM, Jha J, Wilkins WL, Day RM, Fornace AJ. Effect of 3,3'-Diindolylmethane on Pulmonary Injury Following Thoracic Irradiation in CBA Mice. HEALTH PHYSICS 2020; 119:746-757. [PMID: 32384373 PMCID: PMC8579862 DOI: 10.1097/hp.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The molecule 3,3'-diindolylmethane (DIM) is small, a major bioactive metabolite of indole-3 carbinol (13C), and a phytochemical compound from cruciferous vegetables released upon exposure to the gut acid environment. DIM is a proposed anti-cancer agent and was previously demonstrated to prevent radiation damage in the bone marrow and the gastrointestinal tract. Here we investigated the effect of DIM on radiation-induced injury to the lung in a murine model through untargeted metabolomics and gene expression studies of select genes. CBA mice were exposed to thoracic irradiation (17.5 Gy). Mice were treated with vehicle or DIM (250 mg kg, subcutaneous injection) on days -1 pre-irradiation through +14 post-irradiation. DIM induced a significant improvement in survival by day 150 post-irradiation. Fibrosis-related gene expression and metabolomics were examined using lung tissue from days 15, 45, 60, 90, and 120 post-irradiation. Our qRT-PCR experiments showed that DIM treatment reduced radiation-induced late expression of collagen Iα and the cell cycle checkpoint proteins p21/waf1 (CDKN1A) and p16ink (CDKN2A). Metabolomic studies of lung tissue demonstrated a significant dampening of radiation-induced changes following DIM treatment. Metabolites associated with pro-inflammatory responses and increased oxidative stress, such as fatty acids, were suppressed by DIM treatment compared to irradiated samples. Together these data suggest that DIM reduces radiation-induced sequelae in the lung.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, Washington, DC 20057, USA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Annabella Deziel
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane M. Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jyoti Jha
- Current address: Rise Therapeutics, Rockville, MD 20850, USA
| | - W. Louis Wilkins
- Division of Comparative Pathology, the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Albert J. Fornace
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
14
|
Esteve JM, Esteve-Esteve M. [Molecular pathways of autophagy regulation by BRCA1: Implications in cancer]. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2020; 53:246-253. [PMID: 33012495 DOI: 10.1016/j.patol.2019.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/20/2023]
Abstract
The BRCA1 protein contributes to maintain genomic integrity, through transcriptional regulation of proteins that control the cell cycle and DNA repair or by direct interaction with these proteins. The genetic instability caused by mutations that result in a deficit of BRCA1 activity, confers an increased risk of mainly breast and ovarian cancers. In recent years, it has been shown that autophagy has a dual role in tumor development, and chemical agents such as lucanthone, chloroquine, Z-ligustilide, spautin-1, tunicamycin, T-12, and olaparib, regulate tumor survival/death autophagy-dependent. Here we also review the different molecular pathways by which BRCA1 regulates (mostly negatively) autophagy, mainly in breast and ovarian cancers, and where the cellular redox state (ROS, GSH) and proteins mTOR, p53-Mdm2, STAT3, and Parkin, have been shown to play an essential role.
Collapse
Affiliation(s)
- Juan M Esteve
- Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Castellón de la Plana, España.
| | - Miguel Esteve-Esteve
- Servicio de Medicina Preventiva, Hospital Universitario Dr. Peset, Valencia, España
| |
Collapse
|
15
|
The neuroprotective action of 3,3'-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis 2020; 24:435-452. [PMID: 30778709 PMCID: PMC6522467 DOI: 10.1007/s10495-019-01522-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are no studies examining the effects of 3,3′-diindolylmethane (DIM) in neuronal cells subjected to ischemia. Little is also known about the roles of apoptosis and autophagy as well as AhR and ERα signaling and HDACs in DIM action. We demonstrated for the first time the strong neuroprotective capacity of DIM in mouse primary hippocampal cell cultures exposed to ischemia at early and later stages of neuronal development. The protective effects of DIM were mediated via inhibition of ischemia-induced apoptosis and autophagy that was accompanied by a decrease in AhR/CYP1A1 signaling and an increase in HDAC activity. DIM decreased the levels of pro-apoptotic factors, i.e., Fas, Caspase-3, and p38 mitogen-activated protein kinase (MAPK). DIM also reduced the protein levels of autophagy-related Beclin-1 (BECN1) and microtubule-associated proteins 1A/1B light chain (LC3), partially reversed the ischemia-induced decrease in Nucleoporin 62 (NUP62) and inhibited autophagosome formation. In addition, DIM completely reversed the ischemia-induced decrease in histone deacetylase (HDAC) activity in hippocampal neurons. Although DIM inhibited AhR/CYP1A1 signaling, it did not influence the protein expression levels of ERα and ERα-regulated CYP19A1 which are known to be controlled by AhR. This study demonstrated for the first time, that the neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy and depends on AhR/CYP1A1 signaling and HDAC activity, thus creating the possibility of developing new therapeutic strategies that target neuronal degeneration at specific molecular levels.
Collapse
|
16
|
Bahuguna A, Singh A, Kumar P, Dhasmana D, Krishnan V, Garg N. Bisindolemethane derivatives as highly potent anticancer agents: Synthesis, medicinal activity evaluation, cell-based compound discovery, and computational target predictions. Comput Biol Med 2020; 116:103574. [DOI: 10.1016/j.compbiomed.2019.103574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
|
17
|
Lee J. 3,3′-Diindolylmethane Inhibits TNF-α- and TGF-β-Induced Epithelial–Mesenchymal Transition in Breast Cancer Cells. Nutr Cancer 2019; 71:992-1006. [DOI: 10.1080/01635581.2019.1577979] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Korea
| |
Collapse
|
18
|
Ultrasensitivity dynamics of diverse aryl hydrocarbon receptor modulators in a hepatoma cell line. Arch Toxicol 2018; 93:635-647. [PMID: 30569404 DOI: 10.1007/s00204-018-2380-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a nuclear receptor that facilitates a wide transcriptional response and causes a variety of adaptive and maladaptive physiological functions. Such functions are entirely dependent on the type of ligand activating it, and therefore, the nuances in the activation of this receptor at the single-cell level have become a research interest for different pharmacological and toxicological applications. Here, we investigate the activation of the AhR by diverse classes of compounds in a Hepa1c1c7-based murine hepatoma cell line. The exogenous compounds analyzed produced different levels of ultrasensitivity in AhR activation as measured by XRE-coupled EGFP production and analyzed by both flow cytometric and computational simulation techniques. Interestingly, simulation experiments reported herein were able to reproduce and quantitate the natural single-cell stochasticity inherent to mammalian cell lines as well as the ligand-specific differences in ultrasensitivity. Classical AhR modulators 2,3,7,8-tetrachlorodibenzodioxin (10- 1-105 pM), PCB-126 (10- 1-107 pM), and benzo[a]pyrene (10- 1-107 pM) produced the greatest levels of single-cell ultrasensitivity and most maximal responses, while consumption-based ligands indole-3-carbinol (103-109 pM), 3,3'-diindolylmethane (103-108 pM), and cannabidiol (103-108 pM) caused low-level AhR activation in more purely graded single-cell fashions. All compounds were tested and analyzed over a 24 h period for consistency. The comparative quantitative results for each compound are presented within. This study aids in defining the disparity between different types of AhR modulators that produce distinctly different physiological outcomes. In addition, the simulation tool developed for this study can be used in future studies to predict the quantitative effects of diverse types of AhR ligands in the context of pharmacological therapies or toxicological concerns.
Collapse
|
19
|
Zeinvand-Lorestani M, Kalantari H, Khodayar MJ, Teimoori A, Saki N, Ahangarpour A, Rahim F, Alboghobeish S. Autophagy upregulation as a possible mechanism of arsenic induced diabetes. Sci Rep 2018; 8:11960. [PMID: 30097599 PMCID: PMC6086829 DOI: 10.1038/s41598-018-30439-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023] Open
Abstract
The key features of type 2 diabetes mellitus (T2DM) caused by high fat diet (HFD) in combination with arsenic (As) exposure (pronounced glucose intolerance despite a significant decrease in insulin resistance) are different from those expected for T2DM. Autophagy has been considered as a possible link between insulin resistance and obesity. Therefore in this study, we utilized autophagy gene expression profiling via real-time RT-PCR array analysis in livers of NMRI mice exposed to an environmentally relevant and minimally cytotoxic concentration of arsenite (50 ppm) in drinking water while being fed with a HFD for 20 weeks. Out of 84 genes associated with autophagy under study, 21 genes were related to autophagy machinery components of which 13 genes were downregulated when HDF diet was applied. In this study, for the first time, it was shown that the exposure to arsenic in the livers of mice chronically fed with HFD along with increased oxidative stress resulted in the restoration of autophagy [upregulation of genes involved in the early phase of phagophore formation, phagophore expansion and autophagosome-lysosome linkage stages]. Considering the role of arsenic in the induction of autophagy; it can be argued that reduced insulin resistance in HFD - As induced diabetes may be mediated by autophagy upregulation.
Collapse
Affiliation(s)
| | - Heibatullah Kalantari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Teimoori
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
21
|
Lu L, Dong J, Li D, Zhang J, Fan S. 3,3'-diindolylmethane mitigates total body irradiation-induced hematopoietic injury in mice. Free Radic Biol Med 2016; 99:463-471. [PMID: 27609226 DOI: 10.1016/j.freeradbiomed.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/26/2016] [Accepted: 09/04/2016] [Indexed: 01/28/2023]
Abstract
We have reported that hematopoietic system injury induced by total body irradiation (TBI) leads to generation of intracellular reactive oxygen species (ROS) and DNA damage, which are ameliorated by antioxidant agents. In the present study, we reported that administration of DIM, a potent antioxidant agent, not only protected mice against TBI-induced lethality, also ameliorated TBI-induced hematopoietic injury. The latter effect was probably attributable to DIM's inhibition of TBI-induced increases in ROS production in hematopoietic stem cells (HSCs) and the phosphorylation of histone H2AX (γ-H2AX). In particular, DIM led to significant improvements in bone marrow (BM) HSC frequency, hematopoietic progenitor cell (HPC) clonogenic function, and multilineage engraftment after transplantation. A downregulation of NADPH oxidase 4 (NOX4) and an upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression were observed following DIM treatment. Notably, the anti-apoptotic potential of DIM was correlated with increased expression of the anti-apoptotic protein Bcl-2 and decreased expression of the pro-apoptotic protein Bax. These findings suggest that DIM attenuates TBI-induced hematopoietic injury through the inhibition of both oxidative stress in HSCs and hematopoietic cell apoptosis. Furthermore, we demonstrated that DIM protected BM hematopoietic cells against ionizing radiation and led to increased clonogenicity in vitro. Therefore, DIM has the potential to be used as an effective radioprotectant to ameliorate TBI-induced hematopoietic injury.
Collapse
Affiliation(s)
- Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
22
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Jacomin AC, Samavedam S, Promponas V, Nezis IP. iLIR database: A web resource for LIR motif-containing proteins in eukaryotes. Autophagy 2016; 12:1945-1953. [PMID: 27484196 PMCID: PMC5079668 DOI: 10.1080/15548627.2016.1207016] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Atg8-family proteins are the best-studied proteins of the core autophagic machinery. They are essential for the elongation and closure of the phagophore into a proper autophagosome. Moreover, Atg8-family proteins are associated with the phagophore from the initiation of the autophagic process to, or just prior to, the fusion between autophagosomes with lysosomes. In addition to their implication in autophagosome biogenesis, they are crucial for selective autophagy through their ability to interact with selective autophagy receptor proteins necessary for the specific targeting of substrates for autophagic degradation. In the past few years it has been revealed that Atg8-interacting proteins include not only receptors but also components of the core autophagic machinery, proteins associated with vesicles and their transport, and specific proteins that are selectively degraded by autophagy. Atg8-interacting proteins contain a short linear LC3-interacting region/LC3 recognition sequence/Atg8-interacting motif (LIR/LRS/AIM) motif which is responsible for their interaction with Atg8-family proteins. These proteins are referred to as LIR-containing proteins (LIRCPs). So far, many experimental efforts have been carried out to identify new LIRCPs, leading to the characterization of some of them in the past 10 years. Given the need for the identification of LIRCPs in various organisms, we developed the iLIR database ( https://ilir.warwick.ac.uk ) as a freely available web resource, listing all the putative canonical LIRCPs identified in silico in the proteomes of 8 model organisms using the iLIR server, combined with a Gene Ontology (GO) term analysis. Additionally, a curated text-mining analysis of the literature permitted us to identify novel putative LICRPs in mammals that have not previously been associated with autophagy.
Collapse
Affiliation(s)
| | - Siva Samavedam
- a School of Life Sciences, University of Warwick , Coventry , UK
| | - Vasilis Promponas
- b Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus , Nicosia , Cyprus
| | - Ioannis P Nezis
- a School of Life Sciences, University of Warwick , Coventry , UK
| |
Collapse
|
24
|
Kim SM. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer. Int J Mol Sci 2016; 17:ijms17071155. [PMID: 27447608 PMCID: PMC4964527 DOI: 10.3390/ijms17071155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022] Open
Abstract
Studies in humans have shown that 3,3′-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Soo Mi Kim
- Department of Physiology, Chonbuk National University Medical School, Jeonju 561-180, Korea.
| |
Collapse
|
25
|
Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3'-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev 2016; 74:432-43. [PMID: 27261275 DOI: 10.1093/nutrit/nuw010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diet is a modifiable factor associated with the risk of several cancers, with convincing evidence showing a link between diet and breast cancer. The role of bioactive compounds of food origin, including those found in cruciferous vegetables, is an active area of research in cancer chemoprevention. This review focuses on 3,3'-diindolylmethane (DIM), the major bioactive indole in crucifers. Research of the cancer-preventive activity of DIM has yielded basic mechanistic, animal, and human trial data. Further, this body of evidence is largely supported by observational studies. Bioactive DIM has demonstrated chemopreventive activity in all stages of breast cancer carcinogenesis. This review describes current evidence related to the metabolism and mechanisms of DIM involved in the prevention of breast cancer. Importantly, this review also focuses on current evidence from human observational and intervention trials that have contributed to a greater understanding of exposure estimates that will inform recommendations for DIM intake.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA.
| | - Emily Ho
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Meghan B Strom
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
26
|
Fujioka N, Fritz V, Upadhyaya P, Kassie F, Hecht SS. Research on cruciferous vegetables, indole-3-carbinol, and cancer prevention: A tribute to Lee W. Wattenberg. Mol Nutr Food Res 2016; 60:1228-38. [DOI: 10.1002/mnfr.201500889] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Naomi Fujioka
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| | - Vincent Fritz
- Southern Research and Outreach Center; University of Minnesota; Minneapolis MN USA
| | - Pramod Upadhyaya
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| | - Fekadu Kassie
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| | - Stephen S. Hecht
- Masonic Cancer Center; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
27
|
Nikitina D, Llacuachaqui M, Sepkovic D, Bradlow HL, Narod SA, Kotsopoulos J. The effect of oral 3,3'-diindolylmethane supplementation on the 2:16α-OHE ratio in BRCA1 mutation carriers. Fam Cancer 2016; 14:281-6. [PMID: 25613194 DOI: 10.1007/s10689-015-9783-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hormonal exposures are known to influence breast cancer risk among women with a BRCA1 mutation. Thus, dietary factors that increase the 2-hydroxyestrone (OHE):16α-OHE ratio, a biomarker inversely related to breast cancer development, may also influence cancer risk. We conducted a dietary intervention study to evaluate the ability of 300 mg/day of 3,3'-diindolylmethane (DIM) to increase the urinary 2:16α-OHE ratio in 20 women with a BRCA1 mutation. BRCA1 mutation carriers (n = 15) were assigned to receive 300 mg/day of Rx Balance BioREsponse DIM for 4-6 weeks (intervention group) and five BRCA1 mutation carriers did not take DIM (control group). The urinary 2:16α-OHE ratio was assessed at baseline and after 4-6 weeks by immunoassay. There was no significant effect of DIM on the 2:16α-OHE ratio (2.4 at baseline vs. 3.0 after the intervention, P = 0.35). A short dietary intervention with DIM did not significantly increase the 2:16α-OHE ratio in female BRCA1 mutation carriers. Larger studies investigating the effect of dietary or lifestyle interventions on circulating hormone levels in these high-risk women are warranted.
Collapse
Affiliation(s)
- Dina Nikitina
- Women's College Research Institute, 790 Bay St, Toronto, ON, M5G 1N8, Canada,
| | | | | | | | | | | |
Collapse
|
28
|
Oommen D, Yiannakis D, Jha AN. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin. Mutat Res 2016; 784-785:8-15. [PMID: 26731315 DOI: 10.1016/j.mrfmmm.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) via direct protein-protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.
Collapse
Affiliation(s)
- Deepu Oommen
- School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - Dennis Yiannakis
- Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Plymouth PL4 8AA, UK.
| |
Collapse
|
29
|
Jamsheena V, Shilpa G, Saranya J, Harry NA, Lankalapalli RS, Priya S. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells. Chem Biol Interact 2016; 247:11-21. [PMID: 26807764 DOI: 10.1016/j.cbi.2016.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/06/2016] [Accepted: 01/21/2016] [Indexed: 11/16/2022]
Abstract
Bis(indolyl)methane appended biaryls were designed, synthesized and evaluated in human cervical cancer cell lines (HeLa) for their anticancer activities and compared against normal rat cardiac myoblasts (H9C2) cells. Compounds 1-12 were synthesized, with variations in one of the phenyl unit, in a single step by condensation of biaryl-2-carbaldehydes with indole in the presence of para-toluenesulfonic acid. Compound 1 exhibited a GI50 value of 11.00 ± 0.707 μM and the derivatives, compounds 4 and 11 showed a GI50 value of 8.33 ± 0.416 μM and 9.13 ± 0.177 μM respectively in HeLa cells and was found to be non-toxic to H9C2 cells up to 20 μM. Furthermore, compounds 1, 4 and 11 induced caspase dependent cellular apoptosis in a concentration-dependent manner, reduced mitochondrial membrane potential, inhibited the cell migration and downregulated the production of MMP-2 and MMP-9 in HeLa cells.
Collapse
Affiliation(s)
- Vellekkatt Jamsheena
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India; Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ganesan Shilpa
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India; Agroprocessing and Natural Products Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Jayaram Saranya
- Agroprocessing and Natural Products Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Nissy Ann Harry
- Agroprocessing and Natural Products Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ravi Shankar Lankalapalli
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India; Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| | - Sulochana Priya
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India; Agroprocessing and Natural Products Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
30
|
Anticancer efficacy of unique pyridine-based tetraindoles. Eur J Med Chem 2015; 104:165-76. [DOI: 10.1016/j.ejmech.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023]
|
31
|
Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett 2014; 232:580-9. [PMID: 25542144 DOI: 10.1016/j.toxlet.2014.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022]
Abstract
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3'-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States.
| | - Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, United States
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, AL, United States
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, United States
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, AL, United States
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res 2014; 16:415. [PMID: 25091696 PMCID: PMC4187326 DOI: 10.1186/s13058-014-0415-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 07/21/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Remodeling of cellular metabolism appears to be a consequence and possibly a cause of oncogenic transformation in human cancers. Specific aspects of altered tumor metabolism may be amenable to therapeutic intervention and could be coordinated with other targeted therapies. In breast cancer, the genetic landscape has been defined most comprehensively in efforts such as The Cancer Genome Atlas (TCGA). However, little is known about how alterations of tumor metabolism correlate with this landscape. Methods In total 25 cancers (23 fully analyzed by TCGA) and 5 normal breast specimens were analyzed by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry, quantitating 399 identifiable metabolites. Results We found strong differences correlated with hormone receptor status with 18% of the metabolites elevated in estrogen receptor negative (ER-) cancers compared to estrogen receptor positive (ER+) including many glycolytic and glycogenolytic intermediates consistent with increased Warburg effects. Glutathione (GSH) pathway components were also elevated in ER- tumors consistent with an increased requirement for handling higher levels of oxidative stress. Additionally, ER- tumors had high levels of the oncometabolite 2-hydroxyglutarate (2-HG) and the immunomodulatory tryptophan metabolite kynurenine. Kynurenine levels were correlated with the expression of tryptophan-degrading enzyme (IDO1). However, high levels of 2-HG were not associated with somatic mutations or expression levels of IDH1 or IDH2. BRCA1 mRNA levels were positively associated with coenzyme A, acetyl coenzyme A, and GSH and negatively associated with multiple lipid species, supporting the regulation of ACC1 and NRF2 by BRCA1. Different driver mutations were associated with distinct patterns of specific metabolites, such as lower levels of several lipid-glycerophosphocholines in tumors with mutated TP53. A strong metabolomic signature associated with proliferation rate was also observed; the metabolites in this signature overlap broadly with metabolites that define ER status as receptor status and proliferation rate were correlated. Conclusions The addition of metabolomic profiles to the public domain TCGA dataset provides an important new tool for discovery and hypothesis testing of the genetic regulation of tumor metabolism. Particular sets of metabolites may reveal insights into the metabolic dysregulation that underlie the heterogeneity of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0415-9) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
BRCA1 mRNA levels following a 4-6-week intervention with oral 3,3'-diindolylmethane. Br J Cancer 2014; 111:1269-74. [PMID: 25025957 PMCID: PMC4183839 DOI: 10.1038/bjc.2014.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Haploinsufficiency may contribute to the development of breast cancer among women with a BRCA1 mutation. Thus, interventions that enhance BRCA1 expression may represent avenues for prevention. Studies have shown that 3,3′-diindolylmethane (DIM) can upregulate BRCA1 expression in breast cancer cells. This has yet to be demonstrated in vivo. Methods: We conducted a study to evaluate the ability of oral DIM to upregulate BRCA1 mRNA expression in white blood cells. A total of 18 women were enroled in the study, including 13 BRCA1 mutation carriers who received 300 mg per day of Rx Balance BioResponse DIM for 4–6 weeks (intervention group) and 5 BRCA1 mutation carriers who did not take DIM (control group). BRCA1 mRNA expression was assessed at baseline and at 4–6 weeks by real-time, quantitative PCR and the relative change in BRCA1 mRNA expression (that is, 2−ΔΔCT) was calculated. Results: The relative change in BRCA1 mRNA expression among women in the intervention group achieved borderline significance (P paired t-test=0.05). In the intervention group, BRCA1 mRNA expression increased in 10 of the participants, decreased in 2 and remained unchanged in 1 of the participants following DIM intervention (P sign test=0.02). On average, women in the intervention group experienced a 34% increase in BRCA1 mRNA expression (range −24 to 194%). There was no significant difference in the relative change in BRCA1 mRNA expression among women in the control group (P paired t-test=0.45). Conclusions: Under the tested conditions, oral DIM was associated with an increase in BRCA1 mRNA expression in women with a BRCA1 mutation. The possibility of mitigating the effect of an inherited deleterious BRCA1 mutation by increasing the physiologic expression of the gene and normalising protein levels represents a clinically important paradigm shift in the prevention strategies available to these high-risk women. Future studies with a larger sample size and higher doses of DIM are warranted.
Collapse
|
34
|
Privat M, Radosevic-Robin N, Aubel C, Cayre A, Penault-Llorca F, Marceau G, Sapin V, Bignon YJ, Morvan D. BRCA1 induces major energetic metabolism reprogramming in breast cancer cells. PLoS One 2014; 9:e102438. [PMID: 25010005 PMCID: PMC4092140 DOI: 10.1371/journal.pone.0102438] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022] Open
Abstract
The hypermetabolic nature of cancer cells and their increased reliance on “aerobic glycolysis”, as originally described by Otto Warburg and colleagues, are considered metabolic hallmarks of cancer cells. BRCA1 is a major tumor suppressor in breast cancer and it was implicated in numerous pathways resulting in anticarcinogenic functions. The objective of our study was to address specific contributions of BRCA1 to the metabolic features of cancer cells, including the so-called “Warburg effect”. To get a comprehensive approach of the role of BRCA1 in tumor cell metabolism, we performed a global transcriptional and metabolite profiling in a BRCA1-mutated breast cancer cell line transfected or not by wild-type BRCA1. This study revealed that BRCA1 induced numerous modifications of metabolism, including strong inhibition of glycolysis while TCA cycle and oxidative phosphorylation tended to be activated. Regulation of AKT by BRCA1 in both our cell model and BRCA1-mutated breast tumors was suggested to participate in the effect of BRCA1 on glycolysis. We could also show that BRCA1 induced a decrease of ketone bodies and free fatty acids, maybe consumed to supply Acetyl-CoA for TCA cycle. Finally increased activity of antioxidation pathways was observed in BRCA1-transfected cells, that could be a consequence of ROS production by activated oxidative phosphorylation. Our study suggests a new function for BRCA1 in cell metabolic regulation, globally resulting in reversion of the Warburg effect. This could represent a new mechanism by which BRCA1 may exert tumor suppressor function.
Collapse
Affiliation(s)
- Maud Privat
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
| | - Nina Radosevic-Robin
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
| | - Corinne Aubel
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
| | - Anne Cayre
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
| | - Geoffroy Marceau
- Laboratoire de biochimie médicale, Centre de biologie, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Laboratoire de biochimie médicale, Centre de biologie, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
- * E-mail:
| | - Daniel Morvan
- Jean Perrin Comprehensive Cancer Center and ERTICA EA4677 Research Team, University of Auvergne, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, Clermont-Ferrand, France
| |
Collapse
|
35
|
Zhu XX, Yao XF, Jiang LP, Geng CY, Zhong LF, Yang G, Zheng BL, Sun XC. Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic β-cells. Food Chem Toxicol 2014; 70:144-50. [PMID: 24859355 DOI: 10.1016/j.fct.2014.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/10/2014] [Indexed: 12/14/2022]
Abstract
Inorganic arsenic is a worldwide environmental pollutant. Inorganic arsenic's positive relationship with the incidence of type 2 diabetes mellitus arouses concerns associated with its etiology in diabetes among the general human population. In this study, the inhibitor of autophagosome formation, 3-methyladenine, protected the cells against sodium arsenite cytotoxicity, and the autophagy stimulator rapamycin further decreased the cell viability of sodium arsenite-treated INS-1 cells. These finding suggested the hypothesis that autophagic cell death contributed to sodium arsenite-induced cytotoxicity in INS-1 cells. Sodium arsenite increased the autophagosome-positive puncta in INS-1 cells observed under a fluorescence microscope, and this effect was confirmed by the elevated LC3-II levels detected through Western blot. The LC3 turnover assay indicated that the accumulation of autophagosomes in the arsenite-treated INS-1 cells was due to increased formation rather than impaired degradation. The pretreatment of INS-1 cells with the ROS inhibitor NAC reduced autophagosome formation and reversed the sodium arsenite cytotoxicity, indicating that sodium arsenite-induced autophagic cell death was ROS-dependent. In summary, the precise molecular mechanisms through which arsenic is related to diabetes have not been completely elucidated, but the ROS-dependent autophagic cell death of pancreatic β-cells described in this study may help to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Xue-Xin Zhu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiao-Feng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Li-Ping Jiang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Cheng-Yan Geng
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Lai-Fu Zhong
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Bai-Lu Zheng
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xian-Ce Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China; Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
36
|
Attenuation of Carcinogenesis and the Mechanism Underlying by the Influence of Indole-3-carbinol and Its Metabolite 3,3'-Diindolylmethane: A Therapeutic Marvel. Adv Pharmacol Sci 2014; 2014:832161. [PMID: 24982671 PMCID: PMC4060499 DOI: 10.1155/2014/832161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/19/2014] [Indexed: 11/17/2022] Open
Abstract
Rising evidence provides credible support towards the potential role of bioactive products derived from cruciferous vegetables such as broccoli, cauliflower, kale, cabbage, brussels sprouts, turnips, kohlrabi, bok choy, and radishes. Many epidemiological studies point out that Brassica vegetable protects humans against cancer since they are rich sources of glucosinolates in addition to possessing a high content of flavonoids, vitamins, and mineral nutrients. Indole-3-carbinol (I3C) belongs to the class of compounds called indole glucosinolate, obtained from cruciferous vegetables, and is well-known for tits anticancer properties. In particular, I3C and its dimeric product, 3,3'-diindolylmethane (DIM), have been generally investigated for their value against a number of human cancers in vitro as well as in vivo. This paper reviews an in-depth study of the anticancer activity and the miscellaneous mechanisms underlying the anticarcinogenicity thereby broadening its therapeutic marvel.
Collapse
|
37
|
Zhang WW, Feng Z, Narod SA. Multiple therapeutic and preventive effects of 3,3'-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. J Biomed Res 2014; 28:339-48. [PMID: 25332705 PMCID: PMC4197384 DOI: 10.7555/jbr.28.20140008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/07/2014] [Accepted: 02/22/2014] [Indexed: 12/20/2022] Open
Abstract
Cruciferous vegetables belong to the plant family that has flowers with four equal-sized petals in the pattern of a crucifer cross. These vegetables are an abundant source of dietary phytochemicals, including glucosinolates and their hydrolysis products such as indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM). By 2013, the total number of natural glucosinolates that have been documented is estimated to be 132. Recently, cruciferous vegetable intake has garnered great interest for its multiple health benefits such as anticancer, antiviral infections, human sex hormone regulation, and its therapeutic and preventive effects on prostate cancer and high grade prostatic intraepithelial neoplasia (HGPIN). DIM is a hydrolysis product of glucosinolates and has been used in various trials. This review is to provide an insight into the latest developments of DIM in treating or preventing both prostate cancer and HGPIN.
Collapse
Affiliation(s)
- William Weiben Zhang
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Steven A Narod
- Department of Public Health Sciences, Women's College Hospital, Women's College Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
38
|
Tang MKS, Kwong A, Tam KF, Cheung ANY, Ngan HYS, Xia W, Wong AST. BRCA1 deficiency induces protective autophagy to mitigate stress and provides a mechanism for BRCA1 haploinsufficiency in tumorigenesis. Cancer Lett 2013; 346:139-47. [PMID: 24378767 DOI: 10.1016/j.canlet.2013.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/10/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Stress adaptation has profound impacts on malignant progression and response to treatment. BRCA1 is an important modulator of cellular stress, but our understanding of its mechanisms of action remains incomplete. Here we identify autophagy as an essential mechanism protecting BRCA1 deficient cancer cells from metabolic stress and allow their survival, which may underlie its significant cancer-promoting properties. We showed that targeted inhibition of endogenous BRCA1 using small interfering RNA caused significant autophagy in response to serum starvation and endoplasmic reticulum stress, whereas overexpression of BRCA1 did not, confirming that the effect was BRCA1 specific. We demonstrated that Beclin 1 was activated in BRCA1 deficient cells, suggesting involvement of a canonical pathway. Importantly, BRCA1 deficient cells were highly dependent on autophagy for survival, and rapidly underwent cell death upon disruption of autophagy. Notably, this dependence on protective autophagy extended to their tissue of origin, as ovarian surface epithelial cells from women testing positive for BRCA1 mutations, in contrast to those with no mutations, robustly induced autophagy to mitigate the stress and promote their survival. These findings highlight a novel role for BRCA1 in protective autophagy, which may make its essential contribution to tumorigenesis and prognosis.
Collapse
Affiliation(s)
- Maggie K S Tang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ava Kwong
- Department of Surgery, University of Hong Kong, Pokfulam Road, Hong Kong; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong
| | - Kar-Fai Tam
- Department of Obstetrics and Gynecology, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Annie N Y Cheung
- Department of Pathology, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Weiliang Xia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Clinical Stem Cell Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
39
|
Paltsev M, Kiselev V, Muyzhnek E, Drukh V, Kuznetsov I, Pchelintseva O. Comparative preclinical pharmacokinetics study of 3,3'-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon? EPMA J 2013; 4:25. [PMID: 24325835 PMCID: PMC4029298 DOI: 10.1186/1878-5085-4-25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022]
Abstract
Background 3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model. Materials and methods The pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM. Results and conclusion The highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept.
Collapse
Affiliation(s)
| | | | | | - Vadim Drukh
- Peoples' Friendship University of Russia, Miklukho-Maklaya St,, 6, Moscow 117198, Russia.
| | | | | |
Collapse
|
40
|
DIM (3,3'-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc Natl Acad Sci U S A 2013; 110:18650-5. [PMID: 24127581 DOI: 10.1073/pnas.1308206110] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DIM (3,3'-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling.
Collapse
|
41
|
Regulation of carbohydrate metabolism by indole-3-carbinol and its metabolite 3,3′-diindolylmethane in high-fat diet-induced C57BL/6J mice. Mol Cell Biochem 2013; 385:7-15. [DOI: 10.1007/s11010-013-1808-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
|
42
|
Stephan J, Franke J, Ehrenhofer‐Murray AE. Chemical genetic screen in fission yeast reveals roles for vacuolar acidification, mitochondrial fission, and cellular GMP levels in lifespan extension. Aging Cell 2013; 12:574-83. [PMID: 23521895 DOI: 10.1111/acel.12077] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 11/27/2022] Open
Abstract
The discovery that genetic mutations in several cellular pathways can increase lifespan has lent support to the notion that pharmacological inhibition of aging pathways can be used to extend lifespan and to slow the onset of age-related diseases. However, so far, only few compounds with such activities have been described. Here, we have conducted a chemical genetic screen for compounds that cause the extension of chronological lifespan of Schizosaccharomyces pombe. We have characterized eight natural products with such activities, which has allowed us to uncover so far unknown anti-aging pathways in S. pombe. The ionophores monensin and nigericin extended lifespan by affecting vacuolar acidification, and this effect depended on the presence of the vacuolar ATPase (V-ATPase) subunits Vma1 and Vma3. Furthermore, prostaglandin J₂ displayed anti-aging properties due to the inhibition of mitochondrial fission, and its effect on longevity required the mitochondrial fission protein Dnm1 as well as the G-protein-coupled glucose receptor Git3. Also, two compounds that inhibit guanosine monophosphate (GMP) synthesis, mycophenolic acid (MPA) and acivicin, caused lifespan extension, indicating that an imbalance in guanine nucleotide levels impinges upon longevity. We furthermore have identified diindolylmethane (DIM), tschimganine, and the compound mixture mangosteen as inhibiting aging. Taken together, these results reveal unanticipated anti-aging activities for several phytochemicals and open up opportunities for the development of novel anti-aging therapies.
Collapse
Affiliation(s)
- Jessica Stephan
- Zentrum für Medizinische Biotechnologie Universität Duisburg‐Essen Essen Germany
| | - Jacqueline Franke
- Life Science Engineering Hochschule für Technik und Wirtschaft Berlin Germany
| | | |
Collapse
|
43
|
Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Antioxidant function of isoflavone and 3,3'-diindolylmethane: are they important for cancer prevention and therapy? Antioxid Redox Signal 2013; 19:139-50. [PMID: 23391445 PMCID: PMC3689155 DOI: 10.1089/ars.2013.5233] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SIGNIFICANCE Oxidative stress has been mechanistically linked with aging and chronic diseases, including cancer. In fact, oxidative stress status, chronic disease-related inflammation, and cancer occurred in the aging population are tightly correlated. It is well known that the activation of nuclear factor kappa B (NF-κB) plays important roles in oxidative stress, inflammation, and carcinogenesis. Therefore, targeting NF-κB is an important preventive or therapeutic strategy against oxidative stress, inflammation, and cancer. RECENT ADVANCES A variety of natural compounds has been found to reduce oxidative stress through their antioxidant activity. Among them, isoflavone, indole-3-carbinol (I3C), and its in vivo dimeric compound 3,3'-diindolylmethane (DIM) have shown their promising effects on the inhibition of NF-κB with corresponding reduction of oxidative stress. CRITICAL ISSUES It has been found that isoflavone, I3C, and DIM could inhibit cancer development and progression by regulating multiple cellular signaling pathways that are related to oxidative stress and significantly deregulated in cancer. FUTURE DIRECTIONS The antioxidative and anticancer effects of these natural agents make them strong candidates for chemoprevention and/or therapy against human malignancies. However, more clinical trials are needed to evaluate the effects of isoflavone and DIM for the prevention of cancer development and also for the treatment of cancer either alone or in combination with conventional cancer therapeutics.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
44
|
Wu TY, Khor TO, Su ZY, Saw CLL, Shu L, Cheung KL, Huang Y, Yu S, Kong ANT. Epigenetic modifications of Nrf2 by 3,3'-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS JOURNAL 2013; 15:864-74. [PMID: 23658110 DOI: 10.1208/s12248-013-9493-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/17/2013] [Indexed: 01/09/2023]
Abstract
3,3'-diindolylmethane (DIM) is currently being investigated in many clinical trials including prostate, breast, and cervical cancers and has been shown to possess anticancer effects in several in vivo and in vitro models. Previously, DIM has been reported to possess cancer chemopreventive effects in prostate carcinogenesis in TRAMP mice; however, the in vivo mechanism is unclear. The present study aims to investigate the in vitro and in vivo epigenetics modulation of DIM in TRAMP-C1 cells and in TRAMP mouse model. In vitro study utilizing TRAMP-C1 cells showed that DIM suppressed DNMT expression and reversed CpG methylation status of Nrf2 resulting in enhanced expression of Nrf2 and Nrf2-target gene NQO1. In vivo study, TRAMP mice fed with DIM-supplemented diet showed much lower incidence of tumorigenesis and metastasis than the untreated control group similar to what was reported previously. DIM increased apoptosis, decreased cell proliferation and enhanced Nrf2 and Nrf2-target gene NQO1 expression in prostate tissues. Importantly, immunohistochemical analysis showed that DIM reduced the global CpG 5-methylcytosine methylation. Focusing on one of the early cancer chemopreventive target gene Nrf2, bisulfite genomic sequencing showed that DIM decreased the methylation status of the first five CpGs of the Nrf2 promoter region, corroborating with the results of in vitro TRAMP-C1 cells. In summary, our current study shows that DIM is a potent cancer chemopreventive agent for prostate cancer and epigenetic modifications of the CpG including Nrf2 could be a potential mechanism by which DIM exerts its chemopreventive effects.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Center for Cancer Prevention Research, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Qian X, Song JM, Melkamu T, Upadhyaya P, Kassie F. Chemoprevention of lung tumorigenesis by intranasally administered diindolylmethane in A/J mice. Carcinogenesis 2012; 34:841-9. [PMID: 23239747 DOI: 10.1093/carcin/bgs390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The main reasons for the failure of most chemopreventive agents during clinical trials are poor in vivo bioavailability and dose-limiting side effects. One potential approach to surmount these problems in lung cancer chemoprevention trials could be direct delivery of agents into the pulmonary tissue. In this study, we assessed the efficacy of intranasally delivered bio-response diindolylmethane (BRD) against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in mice. Mice treated with NNK (two doses of 50mg/kg at an interval of a week, intraperitoneal) developed 16.3±2.9 lung tumors per mouse. Post-carcinogen administration of BRD, via intranasal instillation, for 24 weeks, twice a week, at a dose of 2mg per mouse (0.6mg pure diindolylmethane per mouse) reduced the lung tumor multiplicity to 4.6±2.2 tumors per mouse (72% reduction). Likewise, large tumors (>1mm) were almost completely abolished and multiplicities of tumors with a size of 0.5-1mm were reduced by 74%. Tumor volume was also reduced by 82%. Further studies using an in vitro model of lung tumorigenesis showed that BRD exhibited pronounced antiproliferative and apoptotic effects in premalignant and malignant bronchial cells but only minimal effects in parental immortalized cells through, at least in part, suppression of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. These results showed the potent lung tumor inhibitory activities of low doses of BRD given via intranasal instillation and, therefore, intranasal delivery of BRD holds a great promise for lung cancer chemoprevention in subjects at high risk to develop lung cancer.
Collapse
Affiliation(s)
- Xuemin Qian
- Department of Veterinary Clinical Sciences Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
47
|
Saha T. LAMP2A overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 2012; 8:1643-56. [PMID: 22874552 PMCID: PMC3494593 DOI: 10.4161/auto.21654] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lysosome-associated membrane protein type 2A (LAMP2A) is a key protein in the chaperone-mediated autophagy (CMA) pathway. LAMP2A helps in lysosomal uptake of modified and oxidatively damaged proteins directly into the lumen of lysosomes for degradation and protein turnover. Elevated expression of LAMP2A was observed in breast tumor tissues of all patients under investigation, suggesting a survival mechanism via CMA and LAMP2A. Reduced expression of the CMA substrates, GAPDH and PKM, was observed in most of the breast tumor tissues when compared with the normal adjacent tissues. Reactive oxygen species (ROS) mediated oxidative stress damages regulatory cellular components such as DNA, proteins and/or lipids. Protein carbonyl content (PCC) is widely used as a measure of total protein oxidation in cells. Ectopic expression of LAMP2A reduces PCC and thereby promotes cell survival during oxidative stress. Furthermore, inhibition of LAMP2A stimulates accumulation of GAPDH, AKT1 phosphorylation, generation of ROS, and induction of cellular apoptosis in breast cancer cells. Doxorubicin, which is a chemotherapeutic drug, often becomes ineffective against tumor cells with time due to chemotherapeutic resistance. Breast cancer cells deficient of LAMP2A demonstrate increased sensitivity to the drug. Thus, inhibiting CMA activity in breast tumor cells can be exploited as a potential therapeutic application in the treatment of breast cancer.
Collapse
Affiliation(s)
- Tapas Saha
- Department of Oncology; Lombardi Comprehensive Cancer Center; Georgetown University Medical Center; Washington D.C. USA
| |
Collapse
|
48
|
Salem AF, Howell A, Sartini M, Sotgia F, Lisanti MP. Downregulation of stromal BRCA1 drives breast cancer tumor growth via upregulation of HIF-1α, autophagy and ketone body production. Cell Cycle 2012; 11:4167-73. [PMID: 23047605 DOI: 10.4161/cc.22316] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our recent studies have mechanistically demonstrated that cancer-associated fibroblasts (CAFs) produce energy-rich metabolites that functionally support the growth of cancer cells. Also, several authors have demonstrated that DNA instability in the tumor stroma greatly contributes to carcinogenesis. To further test this hypothesis, we stably knocked-down BRCA1 expression in human hTERT-immortalized fibroblasts (shBRCA1) using an shRNA lentiviral approach. As expected, shBRCA1 fibroblasts displayed an elevated growth rate. Using immunofluorescence and immunoblot analysis, shBRCA1 fibroblasts demonstrated an increase in markers of autophagy and mitophagy. Most notably, shBRCA1 fibroblasts also displayed an elevation of HIF-1α expression. In accordance with these findings, shBRCA1 fibroblasts showed a 5.5-fold increase in ketone body production; ketone bodies function as high-energy mitochondrial fuels. This is consistent with the onset of mitochondrial dysfunction in BRCA1-deficient fibroblasts. Conversely, after 48 h of co-culturing shBRCA1 fibroblasts with a human breast cancer cell line (MDA-MB-231 cell), mitochondrial activity was enhanced in these epithelial cancer cells. Interestingly, our preclinical studies using xenografts demonstrated that shBRCA1 fibroblasts induced an ~2.2-fold increase in tumor growth when co-injected with MDA-MB-231 cells into nude mice. We conclude that a BRCA1 deficiency in the tumor stroma metabolically promotes cancer progression, via ketone production.
Collapse
Affiliation(s)
- Ahmed F Salem
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
49
|
Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic Biol Med 2012; 53:1399-410. [PMID: 22820461 DOI: 10.1016/j.freeradbiomed.2012.07.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are important in regulating normal cellular processes, but deregulated ROS contribute to the development of various human diseases including cancers. Autophagy is one of the first lines of defense against oxidative stress damage. The autophagy pathway can be induced and upregulated in response to intracellular ROS or extracellular oxidative stress. This leads to selective lysosomal self-digestion of intracellular components to maintain cellular homeostasis. Hence, autophagy is the survival pathway, conferring stress adaptation and promoting viability under oxidative stress. However, increasing evidence has demonstrated that autophagy can also lead to cell death under oxidative stress conditions. In addition, altered autophagic signaling pathways that lead to decreased autophagy are frequently found in many human cancers. This review discusses the advances in understanding of the mechanisms of ROS-induced autophagy and how this process relates to tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, Winnipeg, MB R3E 0V9, Canada
| | | | | |
Collapse
|
50
|
Karve TM, Rosen EM. B-cell translocation gene 2 (BTG2) stimulates cellular antioxidant defenses through the antioxidant transcription factor NFE2L2 in human mammary epithelial cells. J Biol Chem 2012; 287:31503-14. [PMID: 22493435 DOI: 10.1074/jbc.m112.367433] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The B-cell translocation gene 2, BTG2, a member of the BTG/TOB (B-cell translocation gene/transducers of ErbB2) gene family, has been implicated in cell cycle regulation, normal development, and possibly tumor suppression. Previously, it was shown that BTG2 expression is lost or down-regulated in human breast cancers. We now report that BTG2 protects human mammary epithelial cells from oxidative stress due to hydrogen peroxide and other oxidants. BTG2 protection against oxidative stress is BRCA1-independent but requires the antioxidant transcription factor NFE2L2 and is associated with up-regulation of the expression of antioxidant enzymes, including catalase and superoxide dismutases 1 and 2. BTG2 stimulation of antioxidant gene expression is also NFE2L2-dependent. We further demonstrate that BTG2 is a binding partner for NFE2L2 and increases its transcriptional activity. In addition, BTG2 is detectable at the antioxidant response element (ARE) of several NFE2L2-responsive genes. Finally, we show that the ability of BTG2 to associate with NFE2L2, to protect cells against oxidative stress, and to stimulate antioxidant gene expression requires box B, a short highly conserved amino acid motif characteristic of BTG2/TOB family proteins, but does not require boxes A or C. These findings suggest a novel role for BTG2 as a co-activator for NFE2L2 in up-regulating cellular antioxidant defenses.
Collapse
Affiliation(s)
- Tejaswita M Karve
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | |
Collapse
|