1
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
2
|
Kumar S, Tailor D, Dheeraj A, Li W, Stefan K, Lee JM, Nelson D, Keefe BF, Schedin P, Kummar S, Coussens LM, Malhotra SV. Uncovering therapeutic targets for macrophage-mediated T cell suppression and PD-L1 therapy sensitization. Cell Rep Med 2024; 5:101698. [PMID: 39181134 PMCID: PMC11524979 DOI: 10.1016/j.xcrm.2024.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Tumor-associated macrophages (TAMs) and other myelomonocytic cells are implicated in regulating responsiveness to immunotherapies, including immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis. We have developed an ex vivo high-throughput approach to discover modulators of macrophage-mediated T cell suppression, which can improve clinical outcomes of ICIs. We screened 1,430 Food and Drug Administration (FDA)-approved small-molecule drugs using a co-culture assay employing bone-marrow-derived macrophages (BMDMs) and splenic-derived T cells. This identified 57 compounds that disrupted macrophage-mediated T cell suppression. Seven compounds exerted prominent synergistic T cell expansion activity when combined with αPD-L1. These include four COX1/2 inhibitors and two myeloid cell signaling inhibitors. We demonstrate that the use of cyclooxygenase (COX)1/2 inhibitors in combination with αPD-L1 decreases tumor growth kinetics and enhances overall survival in triple-negative breast cancer (TNBC) tumor models in a CD8+ T cell-dependent manner. Altogether, we present a rationalized approach for identifying compounds that synergize with ICI to potentially enhance therapeutic outcomes for patients with solid tumors.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Dhanir Tailor
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Arpit Dheeraj
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Wenqi Li
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten Stefan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jee Min Lee
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Bailey F Keefe
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Pepper Schedin
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shivaani Kummar
- Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Sanjay V Malhotra
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA; Center for Experimental Therapeutics, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604333. [PMID: 39091735 PMCID: PMC11291034 DOI: 10.1101/2024.07.19.604333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Breast cancer bone metastasis is the leading cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Here, we investigate how bone mineral content affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to matrix mineral content depends on host immunocompetence and the murine tumor model used. Collectively, our findings suggest that bone mineral density affects tumor growth by altering microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A. Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| |
Collapse
|
4
|
Yang P, Zhai Y, Liu Q, Cao G, Ma Y, Cao J, Zhu L, Liu Y. The ameliorative effect on chemotherapy-induced injury and tumor immunosuppressive microenvironment of the polysaccharide from the rhizome of Menispermum dauricum DC. Int J Biol Macromol 2024; 268:131828. [PMID: 38663694 DOI: 10.1016/j.ijbiomac.2024.131828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Combined medication has attracted increasing attention as an important treatment option for tumors due to the serious adverse effects of chemotherapy. In this study, as a new therapy strategy, a combination treatment of MDP (a polysaccharide from the rhizome of Menispermum dauricum DC.) with cyclophosphamide (CTX) was investigated. The results showed that combination treatment with MDP and CTX exerted a significantly synergistic anti-tumor effect in Lewis tumor-bearing mice, improved CTX-induced emaciation and hair loss, as well as increased the number of leukocytes, erythrocytes, hemoglobin, and platelets in the peripheral blood. In addition, compared with CTX alone, the thymus index and spleen index of the MDP + CTX group were increased, the number of CD3 + T cells, CD8 + T cells, white blood cells and B cells in spleen also increased significantly. MDP could also ameliorate the increase in liver and kidney index caused by CTX. In the Lewis lung cancer model, MDP showed a certain degree of anti-tumor effects, which may be related to its promotion of tumor-associated macrophages (TAMs) to M1 phenotype polarisation, enhancement of the number of T cells in tumor tissues and promotion of Th cells in tumor tissues to Th1 phenotype polarisation, thus alleviating the immunosuppressive microenvironment in tumor tissues. This study laid the foundation for the development of MDP as a polysaccharide drug for the treatment or adjuvant therapy of tumors and has important significance for the further clinical application of polysaccharides.
Collapse
Affiliation(s)
- Pei Yang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Zhai
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Qian Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Company, Ltd., Jinan 250355, China
| | - Yan Ma
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiangying Cao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd., Sishui 273200, China
| | - Yuhong Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Živalj M, Van Ginderachter JA, Stijlemans B. Lipocalin-2: A Nurturer of Tumor Progression and a Novel Candidate for Targeted Cancer Therapy. Cancers (Basel) 2023; 15:5159. [PMID: 37958332 PMCID: PMC10648573 DOI: 10.3390/cancers15215159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies. Lipocalin-2 (Lcn-2), a secreted siderophore-binding glycoprotein that regulates iron homeostasis, is highly upregulated in various cancer types. Due to its pleiotropic role in the crosstalk between cancer cells and stromal cells, favoring tumor progression, it could be considered as a novel biomarker for prognostic and therapeutic purposes. However, the exact signaling route by which Lcn-2 promotes tumorigenesis remains unknown, and Lcn-2-targeting moieties are largely uninvestigated. This review will (i) provide an overview on the role of Lcn-2 in orchestrating the TME at the level of iron homeostasis, macrophage polarization, extracellular matrix remodeling, and cell migration and survival, and (ii) discuss the potential of Lcn-2 as a promising novel drug target that should be pursued in future translational research.
Collapse
Affiliation(s)
- Maida Živalj
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Jo A. Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Dubey S, Ghosh S, Goswami D, Ghatak D, De R. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol 2023; 208:115369. [PMID: 36481347 DOI: 10.1016/j.bcp.2022.115369] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are specialized immune cells, which have the capacity to phagocytize and destroy the target cells, including tumor cells. Some macrophages, however on their way to devour the cancer cells undergo a change due to a complex set of signaling pathways. They are induced to change into a polarized state known as M2. The M2 macrophages help in metastasis, tumor suppression, and angiogenesis. The macrophage which gets associated with this TME, are referred to as tumor-associated macrophages (TAMs). TAMS undergo a metabolic reprogramming toward oxidative metabolism for bioenergetic purposes (OXPHOS), fatty acid oxidation (FAO), decreased glycolysis, decreased metabolism via the PPP, and upregulation of arginase 1 (ARG1) which triggers immunosuppressive pro-tumor signaling in the tumor microenvironment (TME) in which mitochondria plays an instrumental role. Reports have suggested that a complex series of interactions and exchange of materials, such as cytokines, metabolic intermediates and sometimes even transfer of mitochondria take place between TAMS and other TME components most importantly cancer cells that reprogram their metabolism to encourage cell growth, division, epithelial to mesenchymal transition, that ultimately play an important role in tumor progression. This review will try to focus on the crosstalk between the TAMs with several other components of TME, what instrumental role mitochondria play in that and also try to explore some of the therapeutic options available in cancer patients.
Collapse
Affiliation(s)
- Srijan Dubey
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debosmita Goswami
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India.
| |
Collapse
|
7
|
He Y, Huang J, Li Q, Xia W, Zhang C, Liu Z, Xiao J, Yi Z, Deng H, Xiao Z, Hu J, Li H, Zu X, Quan C, Chen J. Gut Microbiota and Tumor Immune Escape: A New Perspective for Improving Tumor Immunotherapy. Cancers (Basel) 2022; 14:5317. [PMID: 36358736 PMCID: PMC9656981 DOI: 10.3390/cancers14215317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota is a large symbiotic community of anaerobic and facultative aerobic bacteria inhabiting the human intestinal tract, and its activities significantly affect human health. Increasing evidence has suggested that the gut microbiome plays an important role in tumor-related immune regulation. In the tumor microenvironment (TME), the gut microbiome and its metabolites affect the differentiation and function of immune cells regulating the immune evasion of tumors. The gut microbiome can indirectly influence individual responses to various classical tumor immunotherapies, including immune checkpoint inhibitor therapy and adoptive immunotherapy. Microbial regulation through antibiotics, prebiotics, and fecal microbiota transplantation (FMT) optimize the composition of the gut microbiome, improving the efficacy of immunotherapy and bringing a new perspective and hope for tumor treatment.
Collapse
Affiliation(s)
- Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiaorong Li
- Department of Ultrasound, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Weiping Xia
- Department of Intensive Care Medicine, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chunyu Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiatong Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhenglin Yi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hao Deng
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zicheng Xiao
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Beaumont JEJ, Beelen NA, Wieten L, Rouschop KMA. The Immunomodulatory Role of Hypoxic Tumor-Derived Extracellular Vesicles. Cancers (Basel) 2022; 14:4001. [PMID: 36010994 PMCID: PMC9406714 DOI: 10.3390/cancers14164001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Tumor-associated immune cells frequently display tumor-supportive phenotypes. These phenotypes, induced by the tumor microenvironment (TME), are described for both the adaptive and the innate arms of the immune system. Furthermore, they occur at all stages of immune cell development, up to effector function. One major factor that contributes to the immunosuppressive nature of the TME is hypoxia. In addition to directly inhibiting immune cell function, hypoxia affects intercellular crosstalk between tumor cells and immune cells. Extracellular vesicles (EVs) play an important role in this intercellular crosstalk, and changes in both the number and content of hypoxic cancer-cell-derived EVs are linked to the transfer of hypoxia tolerance. Here, we review the current knowledge about the role of these hypoxic cancer-cell-derived EVs in immunosuppression. In addition, we provide an overview of hypoxia-induced factors (i.e., miRNA and proteins) in tumor-derived EVs, and their role in immunomodulation.
Collapse
Affiliation(s)
- Joel E. J. Beaumont
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Nicky A. Beelen
- Department of Internal Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
9
|
Wang X, Xu Y, Sun Q, Zhou X, Ma W, Wu J, Zhuang J, Sun C. New insights from the single-cell level: Tumor associated macrophages heterogeneity and personalized therapy. Biomed Pharmacother 2022; 153:113343. [PMID: 35785706 DOI: 10.1016/j.biopha.2022.113343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor microenvironment, and their invasion in tumors is closely related to poor prognosis. Although TAMs are recognized as therapeutic targets, their heterogeneity makes studying tumor mechanism and developing drugs targeting TAMs difficult. The study of TAMs heterogeneity can be used to analyze the mechanism of tumor progression and drug resistance, and may provide possible treatment strategies for cancer patients. Single-cell RNA sequencing (scRNA-seq) can reveal the RNA expression profile for each TAM to distinguish heterogeneity, thereby providing a more efficient detection method and more accurate information for TAM-related studies. In this review, by summarizing the research progress in macrophage heterogeneity and other aspects of scRNA-seq over the past five years, we introduced the development of scRNA-seq technology and its application status in solid tumors, analyzed the advantages and selections of scRNA-seq in TAMs, and summarized the detailed specific research fields. To explore the mechanism of tumor progression and drug intervention from single cell level will provide new perspective for personalized treatment strategies targeting macrophages.
Collapse
Affiliation(s)
- Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yiwei Xu
- Institute of Integrated Medicine, School of Medicine, Qingdao University, Qingdao, China
| | - Qi Sun
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - JiBiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China; College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.
| |
Collapse
|
10
|
Alteration in Inflammasome Cytokine Profile and Functional Plasticity of Macrophage Phenotype in Arsenic(0) Nanoparticle Treated Murine Fibrosarcoma. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-021-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. The Impact of Obesity, Adipose Tissue, and Tumor Microenvironment on Macrophage Polarization and Metastasis. BIOLOGY 2022; 11:339. [PMID: 35205204 PMCID: PMC8869089 DOI: 10.3390/biology11020339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
12
|
Antoñana-Vildosola A, Zanetti SR, Palazon A. Enabling CAR-T cells for solid tumors: Rage against the suppressive tumor microenvironment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:123-147. [PMID: 35798503 DOI: 10.1016/bs.ircmb.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Adoptive T cell therapies based on chimeric antigen receptors (CAR-T) are emerging as genuine therapeutic options for the treatment of hematological malignancies. The observed clinical success has not yet been extended into solid tumor indications as a result of multiple factors including immunosuppressive features of the tumor microenvironment (TME). In this context, an emerging strategy is to design CAR-T cells for the elimination of defined cellular components of the TME, with the objective of re-shaping the tumor immune contexture to control tumor growth. Relevant cell components that are currently under investigation as targets of CAR-T therapies include the tumor vasculature, cancer-associated fibroblasts (CAFs), and immunosuppressive tumor associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs). In this review, we recapitulate the rapidly expanding field of CAR-T cell therapies that directly target cellular components within the TME with the ultimate objective of promoting immune function, either alone or in combination with other cancer therapies.
Collapse
Affiliation(s)
- Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bizkaia, Spain.
| |
Collapse
|
13
|
Kotze LA, Leukes VN, Fang Z, Lutz MB, Fitzgerald BL, Belisle J, Loxton AG, Walzl G, du Plessis N. Evaluation of autophagy mediators in myeloid-derived suppressor cells during human tuberculosis. Cell Immunol 2021; 369:104426. [PMID: 34469846 DOI: 10.1016/j.cellimm.2021.104426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are induced during active TB disease to restore immune homeostasis but instead exacerbate disease outcome due to chronic inflammation. Autophagy, in conventional phagocytes, ensures successful clearance of M.tb. However, autophagy has been demonstrated to induce prolonged MDSC survival. Here we investigate the relationship between autophagy mediators and MDSC in the context of active TB disease and during anti-TB therapy. We demonstrate a significant increase in MDSC frequencies in untreated active TB cases with these MDSC expressing TLR4 and significantly more mTOR and IL-6 than healthy controls, with mTOR levels decreasing during anti-TB therapy. Finally, we show that HMGB1 serum concentrations decrease in parallel with mTOR. These findings suggest a complex interplay between MDSC and autophagic mediators, potentially dependent on cellular localisation and M.tb infection state.
Collapse
Affiliation(s)
- Leigh A Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vinzeigh N Leukes
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zhuo Fang
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Bryna L Fitzgerald
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - John Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - Andre G Loxton
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
14
|
Farha M, Jairath NK, Lawrence TS, El Naqa I. Characterization of the Tumor Immune Microenvironment Identifies M0 Macrophage-Enriched Cluster as a Poor Prognostic Factor in Hepatocellular Carcinoma. JCO Clin Cancer Inform 2021; 4:1002-1013. [PMID: 33136432 DOI: 10.1200/cci.20.00077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is characterized by a poor prognosis and a high recurrence rate. The tumor immune microenvironment in HCC has been characterized as shifted toward immunosuppression. We conducted a genomic data-driven classification of immune microenvironment HCC subtypes. In addition, we demonstrated their prognostic value and suggested a potential therapeutic targeting strategy. METHODS RNA sequencing data from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma was used (n = 366). Abundance of immune cells was imputed using CIBERSORT and visualized using unsupervised hierarchic clustering. Overall survival (OS) was analyzed using Kaplan-Meier estimates and Cox regression. Differential expression and gene set enrichment analyses were conducted on immune clusters with poor OS and high programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) coexpression. A scoring metric combining differentially expressed genes and immune cell content was created, and its prognostic value and immune checkpoint blockade response prediction was evaluated. RESULTS Two clusters were characterized by macrophage enrichment, with distinct M0Hi and M2Hi subtypes. M2Hi (P = .038) and M0Hi (P = .018) were independently prognostic for OS on multivariable analysis. Kaplan-Meier estimates demonstrated that patients in M0Hi and M2Hi treated with sorafenib had decreased OS (P = .041), and angiogenesis hallmark genes were enriched in the M0Hi group. CXCL6 and POSTN were overexpressed in both the M0Hi and the PD-1Hi/PD-L1Hi groups. A score consisting of CXCL6 and POSTN expression and absolute M0 macrophage content was discriminatory for OS (intermediate: hazard ratio [HR], 1.59; P ≤ .001; unfavorable: HR, 2.08; P = .04). CONCLUSION Distinct immune cell clusters with macrophage predominance characterize an aggressive HCC phenotype, defined molecularly by angiogenic gene enrichment and clinically by poor prognosis and sorafenib response. This novel immunogenomic signature may aid in stratification of unresectable patients to receive checkpoint inhibitor and antiangiogenic therapy combinations.
Collapse
Affiliation(s)
- Mark Farha
- Department of Medical Education, University of Michigan Medical School, Ann Arbor, MI
| | - Neil K Jairath
- Department of Medical Education, University of Michigan Medical School, Ann Arbor, MI
| | | | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F, Biamonte F. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells 2021; 10:303. [PMID: 33540645 PMCID: PMC7913036 DOI: 10.3390/cells10020303] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
New insights into the field of iron metabolism within the tumor microenvironment have been uncovered in recent years. Iron promotes the production of reactive oxygen species, which may either trigger ferroptosis cell death or contribute to malignant transformation. Once transformed, cancer cells divert tumor-infiltrating immune cells to satisfy their iron demand, thus affecting the tumor immunosurveillance. In this review, we highlight how the bioavailability of this metal shapes complex metabolic pathways within the tumor microenvironment and how this affects both tumor-associated macrophages and tumor-infiltrating lymphocytes functions. Furthermore, we discuss the potentials as well as the current clinical controversies surrounding the use of iron metabolism as a target for new anticancer treatments in two opposed conditions: i) the "hot" tumors, which are usually enriched in immune cells infiltration and are extremely rich in iron availability within the microenvironment, and ii) the "cold" tumors, which are often very poor in immune cells, mainly due to immune exclusion.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
| | - Serafina Mancuso
- U.O. Biochimica Clinica, Azienda Ospedaliero Universitaria Mater Domini, 88100 Catanzaro, Italy;
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (A.S.); (A.M.B.); (I.A.); (F.C.)
- Center of Interdepartmental Services (CIS), “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Holmström MO, Mortensen REJ, Pavlidis AM, Martinenaite E, Weis-Banke SE, Aaboe-Jørgensen M, Bendtsen SK, Met Ö, Pedersen AW, Donia M, Svane IM, Andersen MH. Cytotoxic T cells isolated from healthy donors and cancer patients kill TGFβ-expressing cancer cells in a TGFβ-dependent manner. Cell Mol Immunol 2021; 18:415-426. [PMID: 33408343 PMCID: PMC8027197 DOI: 10.1038/s41423-020-00593-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-beta (TGFβ) is a highly potent immunosuppressive cytokine. Although TGFβ is a tumor suppressor in early/premalignant cancer lesions, the cytokine has several tumor-promoting effects in advanced cancer; abrogation of the antitumor immune response is one of the most important tumor-promoting effects. As several immunoregulatory mechanisms have recently been shown to be targets of specific T cells, we hypothesized that TGFβ is targeted by naturally occurring specific T cells and thus could be a potential target for immunomodulatory cancer vaccination. Hence, we tested healthy donor and cancer patient T cells for spontaneous T-cell responses specifically targeting 38 20-mer epitopes derived from TGFβ1. We identified numerous CD4+ and CD8+ T-cell responses against several epitopes in TGFβ. Additionally, several ex vivo responses were identified. By enriching specific T cells from different donors, we produced highly specific cultures specific to several TGFβ-derived epitopes. Cytotoxic CD8+ T-cell clones specific for both a 20-mer epitope and a 9-mer HLA-A2 restricted killed epitope peptide were pulsed in HLA-A2+ target cells and killed the HLA-A2+ cancer cell lines THP-1 and UKE-1. Additionally, stimulation of THP-1 cancer cells with cytokines that increased TGFβ expression increased the fraction of killed cells. In conclusion, we have shown that healthy donors and cancer patients harbor CD4+ and CD8+ T cells specific for TGFβ-derived epitopes and that cytotoxic T cells with specificity toward TGFβ-derived epitopes are able to recognize and kill cancer cell lines in a TGFβ-dependent manner.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | | | - Angelos Michail Pavlidis
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Stine Emilie Weis-Banke
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Mia Aaboe-Jørgensen
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Simone Kloch Bendtsen
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | | | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark.
- Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
17
|
Jairath NK, Farha MW, Jairath R, Harms PW, Tsoi LC, Tejasvi T. Prognostic value of intratumoral lymphocyte-to-monocyte ratio and M0 macrophage enrichment in tumor immune microenvironment of melanoma. Melanoma Manag 2020; 7:MMT51. [PMID: 33318782 PMCID: PMC7727784 DOI: 10.2217/mmt-2020-0019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin cutaneous melanoma is characterized by significant heterogeneity in its molecular, genomic and immunologic features. Whole transcriptome RNA sequencing data from The Cancer Genome Atlas of skin cutaneous melanoma (n = 328) was utilized. CIBERSORT was used to identify immune cell type composition, on which unsupervised hierarchical clustering was performed. Analysis of overall survival was performed using Kaplan-Meier estimates and multivariate Cox regression analyses. Membership in the lymphocyte:monocytelow, monocytehi gh and M0high cluster was an independently poor prognostic factor for survival (HR: 3.03; 95% CI: 1.12-8.20; p = 0.029) and correlated with decreased predicted response to immune checkpoint blockade. In conclusion, an M0-macrophage-enriched, lymphocyte-to-monocyte-ratio-low phenotype in the primary melanoma tumor site independently characterizes an aggressive phenotype that may differentially respond to treatment.
Collapse
Affiliation(s)
- Neil K Jairath
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark W Farha
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruple Jairath
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lam C Tsoi
- Department of Computational Medicine & Bioinformatics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020; 92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian Cancer (OC) is currently difficult to cure, mainly due to its late detection and the advanced state of the disease at the time of diagnosis. Therefore, conventional treatments such as debulking surgery and combination chemotherapy are rarely able to control progression of the tumour, and relapses are frequent. Alternative therapies are currently being evaluated, including immunotherapy and advanced T cell-based therapy. In the present review, we will focus on a description of those Chimeric Antigen Receptors (CARs) that have been validated in the laboratory or are being tested in the clinic. Numerous target antigens have been defined due to the identification of OC biomarkers, and many are being used as CAR targets. We provide an exhaustive list of these constructs and their current status. Despite being innovative and efficient, the OC-specific CARs face a barrier to their clinical efficacy: the tumour microenvironment (TME). Indeed, effector cells expressing CARs have been shown to be severely inhibited, rendering the CAR T cells useless once at the tumour site. Herein, we give a thorough description of the highly immunosuppressive OC TME and present recent studies and innovations that have enabled CAR T cells to counteract this negative environment and to destroy tumours.
Collapse
Affiliation(s)
- Emmanuelle Benard
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Nicholas P Casey
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Section for Cellular Therapy, Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Prognostic significance of CD163 expression and its correlation with cyclooxygenase-2 and vascular endothelial growth factor expression in cutaneous melanoma. Melanoma Res 2020; 29:501-509. [PMID: 30575644 DOI: 10.1097/cmr.0000000000000549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In several cancers, tumor progression is associated with the infiltration of tumor-associated macrophages (TAMs). The aim was to evaluate the prognostic significance of expression of CD163 and CD68 (TAMs' markers) and their correlation with vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) expression in cutaneous melanoma. Diagnostic tissues from 102 patients of cutaneous melanoma were evaluated by immunohistochemistry for their CD68, CD163, VEGF, and COX-2 expression. Correlations between the proteins were then investigated. Clinicopathological features, overall survival (OS), and progression-free survival were analyzed in terms of the expression of these proteins. CD163, but not CD68, expression correlated with VEGF and COX-2 expression. High expression for CD163 was associated with a deeper Breslow thickness and an advanced stage of the disease. High expression of CD163 was associated with lower OS. No significant differences were noted in CD68 expression between the clinicopathological variables and the OS. COX-2 expression was associated with a deeper Breslow thickness and a higher frequency of lymph node involvement. Multivariate analysis revealed that CD163 expression and COX-2 expression were independent prognostic markers of lower survival outcomes. Our data confirmed that CD163 expression provides independent prognostic information in cutaneous melanoma. The correlation of CD163 with VEGF and COX-2 expression suggests various tumor-promoting actions of CD163-positive TAMs.
Collapse
|
20
|
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell Oncol (Dordr) 2020; 43:515-538. [PMID: 32418122 DOI: 10.1007/s13402-020-00513-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis. CONCLUSIONS Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| | - Sara Rajaie
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Malihe Hasanzadeh
- Department of Gynecologic Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
21
|
Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol 2020; 353:104119. [PMID: 32446032 DOI: 10.1016/j.cellimm.2020.104119] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/06/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Tumor associated macrophages (TAMs) are the most frequent immune cells within tumor microenvironment (TME). There is growing evidence that TAMs are involved in tumor progression via multiple mechanisms. TAMs create an immunosuppressive TME by producing growth factors, chemokines, and cytokines which modulate recruitment of immune cells and inhibit anti-tumor responses. They also serve as angiogenesis promoting cells by production of pro-angiogenic factors and matrix metalloproteinases (MMPs) and vascular constructing which guarantee supplying oxygen and nutrients to solid tumor cells. Furthermore, TAMs play important functions in tumor metastasis through contributing to invasion, extravasation, survival, intravasation, and colonization of tumor cells. In this review, we summarized macrophage classification, TAMs polarization, and mechanisms underlying TAM-promoting angiogenesis and metastasis.
Collapse
Affiliation(s)
- Luo-Qin Fu
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, Zhejiang Province, China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch), Hangzhou 311700, Zhejiang Province, China
| | - Jia-Yu Yao
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China; Department of Neurosurgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou 310014, Zhejiang Province, China.
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, China.
| |
Collapse
|
22
|
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43:1-18. [PMID: 31900901 DOI: 10.1007/s13402-019-00489-1] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women worldwide and the fifth cause of death among all cancer patients. Breast cancer development is driven by genetic and epigenetic alterations, with the tumor microenvironment (TME) playing an essential role in disease progression and evolution through mechanisms like inflammation promotion. TNF-α is one of the essential pro-inflammatory cytokines found in the TME of breast cancer patients, being secreted both by stromal cells, mainly by tumor-associated macrophages, and by the cancer cells themselves. In this review, we explore the biological and clinical impact of TNF-α in all stages of breast cancer development. First of all, we explore the correlation between TNF-α expression levels at the tumor site or in plasma/serum of breast cancer patients and their respective clinical status and outcome. Secondly, we emphasize the role of TNF-α signaling in both estrogen-positive and -negative breast cancer cells. Thirdly, we underline TNF-α involvement in epithelial-to-mesenchymal transition (EMT) and metastasis of breast cancer cells, and we point out the contribution of TNF-α to the development of acquired drug resistance. CONCLUSIONS Collectively, these data reveal a pro-tumorigenic role of TNF-α during breast cancer progression and metastasis. We systemize the knowledge regarding TNF-α-related therapies in breast cancer, and we explain how TNF-α may act as both a target and a drug in different breast cancer therapeutic approaches. By corroborating the known molecular effects of TNF-α signaling in breast cancer cells with the results from several preclinical and clinical trials, including TNF-α-related clinical observations, we conclude that the potential of TNF-α in breast cancer therapy promises to be of great interest.
Collapse
Affiliation(s)
- Daniel Cruceriu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. .,MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
23
|
Zong S, Li J, Ye Z, Zhang X, Yang L, Chen X, Ye M. Lachnum polysaccharide suppresses S180 sarcoma by boosting anti-tumor immune responses and skewing tumor-associated macrophages toward M1 phenotype. Int J Biol Macromol 2019; 144:1022-1033. [PMID: 31669462 DOI: 10.1016/j.ijbiomac.2019.09.179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
Therapeutic strategies that targeting tumor-associated macrophages (TAMs) reprogramming play a crucial role in ameliorating the immunosuppressive tumor microenvironment and boosting anti-tumor immune responses. In this study, we demonstrated that Lachnum polysaccharide (LEP) could work as an immunomodulator to reset TAMs from pro-tumor M2 to anti-tumor M1 phenotype. Mechanistically, LEP promoted Th1 polarization and the secretion of IFN-γ, which played a key role in M1 phenotype polarization. In parallel, LEP might directly activate M1 macrophages via TLR4 mediated NF-κB signaling pathway. Moreover, LEP also resulted in the accumulation of anti-tumor immune cells and decreased the infiltration of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs) and Treg cells, thereby potentiating anti-tumor immunity. In summary, these results revealed a novel mechanism of the anti-tumor effect of LEP and provided a potential new avenue targeting TAMs and cancer immunotherapy.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jinglei Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ziyang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xinmiao Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Liu Yang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xue Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Ming Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
24
|
Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, Qin Y, Kühl AA, Qin Z, Siegmund B, Glauben R. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med 2019; 11:e10698. [PMID: 31602788 PMCID: PMC6835560 DOI: 10.15252/emmm.201910698] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor‐associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long‐chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en‐route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo. In line, analysis of human tumors revealed that myeloid cells infiltrating colon cancer but not gastric cancer tissue indeed accumulate lipid droplets. Mechanistically, our data indicate that oleate‐induced polarization of myeloid cells depends on the mammalian target of the rapamycin pathway. Thus, our findings reveal an alternative therapeutic strategy by targeting the pro‐tumoral myeloid cells on a metabolic level.
Collapse
Affiliation(s)
- Hao Wu
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Yijie Han
- Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasmina Rodriguez Sillke
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hongzhang Deng
- Department of Polymer Science and Engineering, Key Laboratory of Systems, Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sophiya Siddiqui
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christoph Treese
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Franziska Schmidt
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Marie Friedrich
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jacqueline Keye
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Jiajia Wan
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yue Qin
- National Center for Nanoscience and Technology, Beijing, China
| | - Anja A Kühl
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,iPATH.Berlin - Core Unit of the Charité, Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Britta Siegmund
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| | - Rainer Glauben
- Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Das K, Eisel D, Vormehr M, Müller-Decker K, Hommertgen A, Jäger D, Zörnig I, Feuerer M, Kopp-Schneider A, Osen W, Eichmüller SB. A transplantable tumor model allowing investigation of NY-BR-1-specific T cell responses in HLA-DRB1*0401 transgenic mice. BMC Cancer 2019; 19:914. [PMID: 31519152 PMCID: PMC6743128 DOI: 10.1186/s12885-019-6102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NY-BR-1 has been described as a breast cancer associated differentiation antigen with intrinsic immunogenicity giving rise to endogenous T and B cell responses. The current study presents the first murine tumor model allowing functional investigation of NY-BR-1-specific immune responses in vivo. METHODS A NY-BR-1 expressing tumor model was established in DR4tg mice based on heterotopic transplantation of stable transfectant clones derived from the murine H2 compatible breast cancer cell line EO771. Composition and phenotype of tumor infiltrating immune cells were analyzed by qPCR and FACS. MHC I binding affinity of candidate CTL epitopes predicted in silico was determined by FACS using the mutant cell line RMA-S. Frequencies of NY-BR-1 specific CTLs among splenocytes of immunized mice were quantified by FACS with an epitope loaded Db-dextramer. Functional CTL activity was determined by IFNγ catch or IFNγ ELISpot assays and statistical analysis was done applying the Mann Whitney test. Tumor protection experiments were performed by immunization of DR4tg mice with replication deficient recombinant adenovirus followed by s.c. challenge with NY-BR-1 expressing breast cancer cells. RESULTS Our results show spontaneous accumulation of CD8+ T cells and F4/80+ myeloid cells preferentially in NY-BR-1 expressing tumors. Upon NY-BR-1-specific immunization experiments combined with in silico prediction and in vitro binding assays, the first NY-BR-1-specific H2-Db-restricted T cell epitope could be identified. Consequently, flow cytometric analysis with fluorochrome conjugated multimers showed enhanced frequencies of CD8+ T cells specific for the newly identified epitope in spleens of immunized mice. Moreover, immunization with Ad.NY-BR-1 resulted in partial protection against outgrowth of NY-BR-1 expressing tumors and promoted intratumoral accumulation of macrophages. CONCLUSION This study introduces the first H2-Db-resctricted CD8+ T cell epitope-specific for the human breast cancer associated tumor antigen NY-BR-1. Our novel, partially humanized tumor model enables investigation of the interplay between HLA-DR4-restricted T cell responses and CTLs within their joint attack of NY-BR-1 expressing tumors.
Collapse
Affiliation(s)
- Krishna Das
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Virology, Innsbruck Medical University, Innsbruck, Austria.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany.,Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Mathias Vormehr
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany.,University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Karin Müller-Decker
- Core Facility Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriane Hommertgen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular & Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- CCU Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Feuerer
- Institute of Immunology, Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Regensburg, Germany
| | | | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
27
|
Kanikarla-Marie P, Kopetz S, Hawk ET, Millward SW, Sood AK, Gresele P, Overman M, Honn K, Menter DG. Bioactive lipid metabolism in platelet "first responder" and cancer biology. Cancer Metastasis Rev 2019; 37:439-454. [PMID: 30112590 DOI: 10.1007/s10555-018-9755-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelets can serve as "first responders" in cancer and metastasis. This is partly due to bioactive lipid metabolism that drives both platelet and cancer biology. The two primary eicosanoid metabolites that maintain platelet rapid response homeostasis are prostacyclin made by endothelial cells that inhibits platelet function, which is counterbalanced by thromboxane produced by platelets during activation, aggregation, and platelet recruitment. Both of these arachidonic acid metabolites are inherently unstable due to their chemical structure. Tumor cells by contrast predominantly make more chemically stable prostaglandin E2, which is the primary bioactive lipid associated with inflammation and oncogenesis. Pharmacological, clinical, and epidemiologic studies demonstrate that non-steroidal anti-inflammatory drugs (NSAIDs), which target cyclooxygenases, can help prevent cancer. Much of the molecular and biological impact of these drugs is generally accepted in the field. Cyclooxygenases catalyze the rate-limiting production of substrate used by all synthase molecules, including those that produce prostaglandins along with prostacyclin and thromboxane. Additional eicosanoid metabolites include lipoxygenases, leukotrienes, and resolvins that can also influence platelets, inflammation, and carcinogenesis. Our knowledge base and technology are now progressing toward identifying newer molecular and cellular interactions that are leading to revealing additional targets. This review endeavors to summarize new developments in the field.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Scott Kopetz
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Ernest T Hawk
- Office of the Vice President Cancer Prevention and Population Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Steven W Millward
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Michael Overman
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Kenneth Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 5101 Cass Ave. 430 Chemistry, Detroit, MI, 48202, USA.,Department of Pathology, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA.,Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, Detroit, MI, 48202, USA.,Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - David G Menter
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA.
| |
Collapse
|
28
|
Jung M, Mertens C, Tomat E, Brüne B. Iron as a Central Player and Promising Target in Cancer Progression. Int J Mol Sci 2019; 20:ijms20020273. [PMID: 30641920 PMCID: PMC6359419 DOI: 10.3390/ijms20020273] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Christina Mertens
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany.
| |
Collapse
|
29
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Shrivastava R, Asif M, Singh V, Dubey P, Ahmad Malik S, Lone MUD, Tewari BN, Baghel KS, Pal S, Nagar GK, Chattopadhyay N, Bhadauria S. M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis. Cytokine 2018; 118:130-143. [PMID: 29625858 DOI: 10.1016/j.cyto.2018.03.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
Oncostatin M (OSM), an inflammatory cytokine belonging to the interleukin-6 (IL-6) superfamily, plays a vital role in multitude of physiological and pathological processes. Its role in breast tumor progression and metastasis to distant organs is well documented. Recent reports implicate OSM in macrophage M2 polarization, a key pro-tumoral phenomenon. M2 polarization of macrophages is believed to promote tumor progression by potentiating metastasis and angiogenesis. In the current study, we delineated the mechanism underlying OSM induced macrophage M2 polarization. The findings revealed that OSM skews macrophages towards an M2 polarized phenotype via mTOR signaling complex 2 (mTORC2). mTORC2 relays signals through two effector kinases i.e. PKC-α and Akt. Our results indicated that mTORC2 mediated M2 polarization of macrophages is not dependent on PKC-α and is primarily affected via Akt, particularly Akt1. In vivo studies conducted on 4T1/BALB/c mouse orthotropic model of breast cancer further corroborated these observations wherein i.v. reintroduction of mTORC2 abrogated monocytes into orthotropic mouse model resulted in diminished acquisition of M2 specific attributes by tumor associated macrophages. Metastasis to distant organs like lung, liver and bone was reduced as evident by decrease in formation of focal metastatic lesions in mTORC2 abrogated monocytes mice. Our study pinpoints key role of mTORC2-Akt1 axis in OSM induced macrophage polarization and suggests for possible usage of Oncostatin-M blockade and/or selective mTORC2 inhibition as a potential anti-cancer strategy particularly with reference to metastasis of breast cancer to distant organs such as lung, liver and bone.
Collapse
Affiliation(s)
- Richa Shrivastava
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Mohammad Asif
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Varsha Singh
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Parul Dubey
- Department of Surgical Oncology, King George Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Showkat Ahmad Malik
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Mehraj-U-Din Lone
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Brij Nath Tewari
- Department of Surgical Oncology, King George Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Khemraj Singh Baghel
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Subhashis Pal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Geet Kumar Nagar
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Target in Health and Illness (ASTHI), Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India
| | - Smrati Bhadauria
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute (CSIR), Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| |
Collapse
|
31
|
Pieniazek M, Matkowski R, Donizy P. Macrophages in skin melanoma-the key element in melanomagenesis. Oncol Lett 2018; 15:5399-5404. [PMID: 29552183 PMCID: PMC5840697 DOI: 10.3892/ol.2018.8021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Cutaneous melanoma is an aggressive cancer and its onset and growth are associated, through direct and indirect interactions, with the cancer microenvironment. The microenvironment comprises a dynamic complex of numerous types of cells (due to histogenesis) that constantly interact with each other through multiple cytokines and signaling proteins. Macrophages are one of the most thoroughly studied pleiotropic cells of the immune system. One of their major cytophysiological functions is their involvement in phagocytosis. Previous studies examining the microenvironment of melanomas and tumor-associated macrophages have revealed that they are involved in all stages of melanomagenesis. In the case of cancer initiation, they form an inflammatory microenvironment and then suppress the anticancer activity of the immune system, stimulate angiogenesis, enhance migration and invasion of the cancer cells, and ultimately contribute to the metastatic process. The present review provides a detailed overview on the function of macrophages in the melanoma microenvironment.
Collapse
Affiliation(s)
- Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, Opole 45-061, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw 50-367, Poland
- Department of Surgical Oncology, Lower Silesian Oncology Centre, Wroclaw 53-413, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw 50-556, Poland
| |
Collapse
|
32
|
Bland CL, Byrne-Hoffman CN, Fernandez A, Rellick SL, Deng W, Klinke DJ. Exosomes derived from B16F0 melanoma cells alter the transcriptome of cytotoxic T cells that impacts mitochondrial respiration. FEBS J 2018; 285:1033-1050. [PMID: 29399967 DOI: 10.1111/febs.14396] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 01/26/2018] [Indexed: 01/14/2023]
Abstract
While recent clinical studies demonstrate the promise of cancer immunotherapy, a barrier for broadening the clinical benefit is identifying how tumors locally suppress cytotoxic immunity. As an emerging mode of intercellular communication, exosomes secreted by malignant cells can deliver a complex payload of coding and noncoding RNA to cells within the tumor microenvironment. Here, we quantified the RNA payload within tumor-derived exosomes and the resulting dynamic transcriptomic response to cytotoxic T cells upon exosome delivery to better understand how tumor-derived exosomes can alter immune cell function. Exosomes derived from B16F0 melanoma cells were enriched for a subset of coding and noncoding RNAs that did not reflect the abundance in the parental cell. Upon exosome delivery, RNAseq revealed the dynamic changes in the transcriptome of CTLL2 cytotoxic T cells. In analyzing transiently coexpressed gene clusters, pathway enrichment suggested that the B16F0 exosomal payload altered mitochondrial respiration, which was confirmed independently, and upregulated genes associated with the Notch signaling pathway. Interestingly, exosomal miRNA appeared to have no systematic effect on downregulating target mRNA levels. DATABASES Gene expression data are available in the GEO database under the accession SuperSeries number GSE102951.
Collapse
Affiliation(s)
- Cassidy L Bland
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia University, Morgantown, WV, USA
| | | | - Audry Fernandez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Stephanie L Rellick
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Wentao Deng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - David J Klinke
- Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia University, Morgantown, WV, USA.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
33
|
Liu X, Lv Z, Zou J, Liu X, Ma J, Sun C, Sa N, Xu W. Elevated AEG-1 expression in macrophages promotes hypopharyngeal cancer invasion through the STAT3-MMP-9 signaling pathway. Oncotarget 2018; 7:77244-77256. [PMID: 27793010 PMCID: PMC5363584 DOI: 10.18632/oncotarget.12886] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2016] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a critical role in tumor invasion and metastasis, which remain major causes of mortality in patients with hypopharyngeal cancer. Here we investigate the effect of an oncogene, AEG-1 expressed in macrophages on the invasion of hypopharyngeal cancer cells. AEG-1 is more highly expressed in macrophages of human hypopharyngeal cancer samples compared with adjacent non-tumor controls. Using matrigel invasion assay system, THP-1-derived macrophages with forced AEG-1 overexpression enhance FaDu cell invasion whereas macrophages with AEG-1 silence inhibit. Matrix metalloproteinase 9 (MMP-9), which is important in tumor invasion and metastasis through degrading extracellular matrix, is up-reulated by AEG-1 partly through NF-κB p65 in macrophages. Intriguingly, macrophage AEG-1 also induces MMP-9 up-regulated expression in FaDu cells. Furthermore, macrophage AEG-1 activates signal transducer and activator of transcription 3 (STAT3) in FaDu cells, which is responsible for macrophage AEG-1-induced an increase in MMP-9 expression and invasion of FaDu cells. This is the first to demonstrate that macrophage AEG-1 promotes tumor invasion through up-regulation of MMP-9 in both macrophages and cancer cells. Thus, the results provide evidences that macrophage AEG-1 contributes to promotion of tumor invasion, and represents as a potential target in hypopharyngeal cancer therapy.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jidong Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xianfang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| | - Juke Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Chengtao Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Na Sa
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China
| |
Collapse
|
34
|
Cordova ZM, Grönholm A, Kytölä V, Taverniti V, Hämäläinen S, Aittomäki S, Niininen W, Junttila I, Ylipää A, Nykter M, Pesu M. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget 2018; 7:54392-54404. [PMID: 27527873 PMCID: PMC5342350 DOI: 10.18632/oncotarget.11106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/22/2016] [Indexed: 01/30/2023] Open
Abstract
The proprotein convertase enzyme FURIN processes immature pro-proteins into functional end- products. FURIN is upregulated in activated immune cells and it regulates T-cell dependent peripheral tolerance and the Th1/Th2 balance. FURIN also promotes the infectivity of pathogens by activating bacterial toxins and by processing viral proteins. Here, we evaluated the role of FURIN in LysM+ myeloid cells in vivo. Mice with a conditional deletion of FURIN in their myeloid cells (LysMCre-fur(fl/fl)) were healthy and showed unchanged proportions of neutrophils and macrophages. Instead, LysMCre-fur(fl/fl) mice had elevated serum IL-1β levels and reduced numbers of splenocytes. An LPS injection resulted in accelerated mortality, elevated serum pro-inflammatory cytokines and upregulated numbers of pro-inflammatory macrophages. A genome-wide gene expression analysis revealed the overexpression of several pro-inflammatory genes in resting FURIN-deficient macrophages. Moreover, FURIN inhibited Nos2 and promoted the expression of Arg1, which implies that FURIN regulates the M1/M2-type macrophage balance. FURIN was required for the normal production of the bioactive TGF-β1 cytokine, but it inhibited the maturation of the inflammation-provoking TACE and Caspase-1 enzymes. In conclusion, FURIN has an anti-inflammatory function in LysM+ myeloid cells in vivo.
Collapse
Affiliation(s)
- Zuzet Martinez Cordova
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Anna Grönholm
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Ville Kytölä
- Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Milan, Italy
| | - Sanna Hämäläinen
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Saara Aittomäki
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Wilhelmiina Niininen
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Ilkka Junttila
- School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Antti Ylipää
- Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Matti Nykter
- Computational Biology, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Abstract
Cellular immunotherapy holds great promise for the treatment of human disease. Clinical evidence suggests that T cell immunotherapies have the potential to combat cancers that evade traditional immunotherapy. Despite promising results, adverse effects leading to fatalities have left scientists seeking tighter control over these therapies, which is reflected in the growing body of synthetic biology literature focused on developing tightly controlled, context-independent parts. In addition, researchers are adapting these tools for other uses, such as for the treatment of autoimmune disease, HIV infection, and fungal interactions. We review this body of work and devote special attention to approaches that may lend themselves to the development of an "ideal" therapy: one that is safe, efficient, and easy to manufacture. We conclude with a look toward the future of immunotherapy: how synthetic biology can shift the paradigm from the treatment of disease to a focus on wellness and human health as a whole.
Collapse
Affiliation(s)
- Matthew J Brenner
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Jang Hwan Cho
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Nicole M L Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| | - Wilson W Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA;
| |
Collapse
|
36
|
Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S, Du J. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 2018; 7:52294-52306. [PMID: 27418133 PMCID: PMC5239552 DOI: 10.18632/oncotarget.10561] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are a major component of leukocytic infiltrate in tumors, which facilitates tumor progression and promotes inflammation. TGF-β promotes the differentiation of non-activated macrophages into a TAM-like (M2-like) phenotype; however, the underlying mechanisms are not clear. In this study, we found that TGF-β induces a M2-like phenotype characterized by up-regulation of the anti-inflammatory cytokine IL-10, and down-regulation of the pro-inflammatory cytokines TNF-α and IL-12. In human THP-1 macrophages, overexpression of SNAIL caused M2-like differentiation by inhibiting pro-inflammatory cytokine release and promoting the expression of M2-specific markers. By contrast, SNAIL knockdown promoted M1 polarization through up-regulation of pro-inflammatory cytokines and abolished TGF-β-mediated M2-polarization of THP-1 macrophages. The SMAD2/3 and PI3K/AKT signaling pathways were crucial for TGF-β-induced SNAIL overexpression in THP-1 cells. These findings suggest that TGF-β skews macrophage polarization towards a M2-like phenotype via SNAIL up-regulation, and blockade of TGF-β/SNAIL signaling restores the production of pro-inflammatory cytokines. This study provides new understanding of the role of SNAIL in M2 polarization of macrophages, and suggests a potential therapeutic target for antitumor immunity.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.,Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xianfeng Wang
- Shijiazhuang City Center for Disease Control and Prevention, Shijiazhuang 050000, PR China
| | - Guanmin Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095, PR China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hao Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Rui Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xianzhang Bu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaohui Cai
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| |
Collapse
|
37
|
Abstract
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Collapse
|
38
|
Ohkuri T, Kosaka A, Ishibashi K, Kumai T, Hirata Y, Ohara K, Nagato T, Oikawa K, Aoki N, Harabuchi Y, Celis E, Kobayashi H. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol Immunother 2017; 66:705-716. [PMID: 28243692 PMCID: PMC11028681 DOI: 10.1007/s00262-017-1975-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 02/12/2017] [Indexed: 12/25/2022]
Abstract
Stimulator of IFN genes (STING) spontaneously contributes to anti-tumor immunity by inducing type I interferons (IFNs) following sensing of tumor-derived genomic DNAs in the tumor-bearing host. Although direct injection of STING ligands such as cyclic diguanylate monophosphate (c-di-GMP) and cyclic [G(2',5')pA(3',5')p] (cGAMP) into the tumor microenvironment exerts anti-tumor effects through strong induction of type I IFNs and activation of innate and adaptive immunity, the precise events caused by STING in the tumor microenvironment remain to be elucidated. We describe here our finding that a CD45+ CD11bmid Ly6C+ cell subset transiently accumulated in mouse tumor microenvironment of 4T1 breast cancer, squamous cell carcinomas, CT26 colon cancer, or B16F10 melanoma tissue after intratumoral injection of cGAMP. The accumulated cells displayed a macrophage (M ) phenotype since the cells were positive for F4/80 and MHC class II and negative for Ly6G. Intratumoral cGAMP treatment did not induce Mφ accumulation in STING-deficient mice. Depletion of CD8+ T cell using anti-CD8 mAb impaired the anti-tumor effects of cGAMP treatment. Depletion of the Mφ using clodronate liposomes impaired the anti-tumor effects of cGAMP treatment. Functional analysis indicated that the STING-triggered tumor-migrating Mφ exhibited phagocytic activity, production of tumor necrosis factor alpha TNFα), and high expression levels of T cell-recruiting chemokines, Cxcl10 and Cxcl11, IFN-induced molecules, MX dynamin-like GTPase 1 (Mx1) and 2'-5' oligoadenylate synthetase-like 1 (Oasl1), nitric oxide synthase 2 (Nos2), and interferon beta 1 (Ifnb1). These results indicate that the STING-triggered tumor-migrating Mφ participate in the anti-tumor effects of STING-activating compounds.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/prevention & control
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Female
- Immunotherapy
- Injections, Intralesional
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleotides, Cyclic/administration & dosage
- Nucleotides, Cyclic/pharmacology
- Phagocytosis
Collapse
Affiliation(s)
- Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University GRU Cancer Center, Augusta, GA, 30912, USA
| | - Yui Hirata
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University GRU Cancer Center, Augusta, GA, 30912, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510, Japan.
| |
Collapse
|
39
|
Krušlin B, Tomas D, Džombeta T, Milković-Periša M, Ulamec M. Inflammation in Prostatic Hyperplasia and Carcinoma-Basic Scientific Approach. Front Oncol 2017; 7:77. [PMID: 28487844 PMCID: PMC5403898 DOI: 10.3389/fonc.2017.00077] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/07/2017] [Indexed: 01/14/2023] Open
Abstract
Chronic inflammation is associated with both benign conditions and cancer. Likewise, inflammatory cells are quite common in benign prostatic hyperplasia (BPH) and prostatic tissue harboring cancer. Triggers that activate inflammatory pathways in the prostate remain a subject of argument and are likely to be multifactorial, some of these being bacterial antigens, different chemical irritations, and metabolic disorders. Acute and chronic inflammation in prostate leads to accumulation of immunocompetent cells, mainly T lymphocytes and macrophages, but also neutrophils, eosinophils, and mast cells, depending on the type of offending agent. Inflammatory processes activate hyperproliferative programs resulting in nodules seen in BPH, but are also important in creating suitable microenvironment for cancer growth and progression. Inflammatory cells have mostly been shown to have a protumoral effect such as tumor-associated macrophages, but some cell types such as mast cells have antitumoral effects. This review outlines the recent findings and theories supporting the role of inflammatory responses as drivers of both benign and malignant epithelial processes in the prostate gland.
Collapse
Affiliation(s)
- Božo Krušlin
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, Clinical Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| | - Davor Tomas
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, Clinical Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| | - Tihana Džombeta
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, Clinical Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| | - Marija Milković-Periša
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, University Hospital for Tumors, Zagreb, Croatia
| | - Monika Ulamec
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Pathology, Clinical Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| |
Collapse
|
40
|
Arina A, Karrison T, Galka E, Schreiber K, Weichselbaum RR, Schreiber H. Transfer of Allogeneic CD4+ T Cells Rescues CD8+ T Cells in Anti-PD-L1-Resistant Tumors Leading to Tumor Eradication. Cancer Immunol Res 2017; 5:127-136. [PMID: 28077434 DOI: 10.1158/2326-6066.cir-16-0293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T-cell-mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the "exhaustion" markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD-1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. Cancer Immunol Res; 5(2); 127-36. ©2017 AACR.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Pathology, The University of Chicago, Chicago, Illinois.
| | - Theodore Karrison
- Department of Health Studies, The University of Chicago, Chicago, Illinois
| | - Eva Galka
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Zhang DM, Bao YL, Yu CL, Wang YM, Song ZB. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-κB signaling. Immunol Res 2016; 64:104-14. [PMID: 26476731 DOI: 10.1007/s12026-015-8724-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cripto-1 is an oncogenic protein belonging to the epidermal growth factor–Cripto-1/FRL-1/Cryptic family. It has important roles in tumor formation and metastasis, but its effects on the immune system are unclear. In the present study, we investigated the effects of Cripto-1 overexpression on macrophage activities and examined the underlying mechanisms. A cell line stably overexpressing Cripto-1 was developed. The culture supernatant from this cell line was collected and used to condition macrophages (RAW264.7, THP-1, and primary mouse macrophages) for various times. Exposure to this supernatant significantly increased the mRNA and protein expression levels of the anti-inflammatory cytokine interleukin (IL)-10 and of three pro-inflammatory cytokines (tumor necrosis factor-α, IL-6, and IL-1β), but did not affect the expression of transforming growth factor-β, another anti-inflammatory cytokine. Exposure to this supernatant also enhanced macrophage phagocytosis of chicken erythrocytes and yeast cells. Similar effects were observed in macrophages stimulated with purified Cripto-1 protein. Mechanistic experiments revealed that Cripto-1 activated nuclear factor (NF)-κB signaling by inducing IκB kinase phosphorylation and p65 nuclear translocation. Pretreatment with ammonium pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, inhibited Cripto-1-induced cytokine secretion and phagocytosis of macrophages. Taken together, our present findings suggest that Cripto-1 enhances macrophage phagocytic activity and upregulates the production of anti- and pro-inflammatory cytokines via the NF-κB signaling pathway.
Collapse
|
42
|
Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 2016; 6:36107. [PMID: 27786298 PMCID: PMC5082376 DOI: 10.1038/srep36107] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
The inflammatory microenvironment has been shown to play important roles in various stages of tumor development including initiation, growth, and metastasis. The inflammasome is a critical innate immune pathway for the production of active IL-1β, a potent inflammatory cytokine. Although inflammasomes are essential for host defense against pathogens and contribute to autoimmune diseases, their role in tumor progression remains controversial. Here, our results demonstrate that the inflammasome and IL-1β pathway promoted tumor growth and metastasis in animal and human breast cancer models. We found that tumor progression was associated with the activation of inflammasome and elevated levels of IL-1β at primary and metastatic sites. Mice deficient for inflammasome components exhibited significantly reduced tumor growth and lung metastasis. Furthermore, inflammasome activation promoted the infiltration of myeloid cells such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) into tumor microenvironments. Importantly, blocking IL-1R with IL-1R antagonist (IL-Ra) inhibited tumor growth and metastasis accompanied by decreased myeloid cell accumulation. Our results suggest that targeting the inflammasome/IL-1 pathway in tumor microenvironments may provide a novel approach for the treatment of cancer.
Collapse
Affiliation(s)
- Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| | - Shunjun Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America
| | - Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America
| | - Bei Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States of America.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina 29425-5040. United States of America
| |
Collapse
|
43
|
Okła K, Wertel I, Polak G, Surówka J, Wawruszak A, Kotarski J. Tumor-Associated Macrophages and Myeloid-Derived Suppressor Cells as Immunosuppressive Mechanism in Ovarian Cancer Patients: Progress and Challenges. Int Rev Immunol 2016; 35:372-385. [PMID: 27644763 DOI: 10.1080/08830185.2016.1206097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancers are complex masses of malignant cells and nonmalignant cells that create the tumor microenvironment (TME). Non-transformed cells of the TME such as tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) have been observed in the TME of ovarian cancer (OC) patients. Although these subsets may contribute to each step of carcinogenesis and are commonly associated with poor prognosis, still little is known about creation of the protumor microenvironment in OC. In this review, we focused on the nature and prognostic significance of TAMs and MDSCs in OC patients. Moreover, we discuss the main problems and challenges that must be overcome by researchers and clinicians to enrich our knowledge about the immunosuppressive microenvironment of cancers.
Collapse
Affiliation(s)
- Karolina Okła
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Iwona Wertel
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Grzegorz Polak
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Justyna Surówka
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| | - Anna Wawruszak
- b Department of Biochemistry and Molecular Biology , Medical University , Lublin , Poland
| | - Jan Kotarski
- a Department of Oncological Gynaecology and Gynaecology , Medical University , Lublin , Poland
| |
Collapse
|
44
|
Fernández A, Pupo A, Mena-Ulecia K, Gonzalez C. Pharmacological Modulation of Proton Channel Hv1 in Cancer Therapy: Future Perspectives. Mol Pharmacol 2016; 90:385-402. [PMID: 27260771 DOI: 10.1124/mol.116.103804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
The pharmacological modulation of the immunosuppressive tumor microenvironment has emerged as a relevant component for cancer therapy. Several approaches aiming to deplete innate and adaptive suppressive populations, to circumvent the impairment in antigen presentation, and to ultimately increase the frequency of activated tumor-specific T cells are currently being explored. In this review, we address the potentiality of targeting the voltage-gated proton channel, Hv1, as a novel strategy to modulate the tumor microenvironment. The function of Hv1 in immune cells such as macrophages, neutrophils, dendritic cells, and T cells has been associated with the maintenance of NADPH oxidase activity and the generation of reactive oxygen species, which are required for the host defense against pathogens. We discuss evidence suggesting that the Hv1 proton channel could also be important for the function of these cells within the tumor microenvironment. Furthermore, as summarized here, tumor cells express Hv1 as a primary mechanism to extrude the increased amount of protons generated metabolically, thus maintaining physiologic values for the intracellular pH. Therefore, because this channel might be relevant for both tumor cells and immune cells supporting tumor growth, the pharmacological inhibition of Hv1 could be an innovative approach for cancer therapy. With that focus, we analyzed the available compounds that inhibit Hv1, highlighted the need to develop better drugs suitable for patients, and commented on the future perspectives of targeting Hv1 in the context of cancer therapy.
Collapse
Affiliation(s)
- Audry Fernández
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Karel Mena-Ulecia
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| | - Carlos Gonzalez
- Interdisciplinary Center for Neurosciences of Valparaíso, Faculty of Sciences, University of Valparaíso, Chile
| |
Collapse
|
45
|
Singel KL, Segal BH. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev 2016; 273:329-43. [PMID: 27558344 PMCID: PMC5477672 DOI: 10.1111/imr.12459] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophils are the first responders to infection and injury and are critical for antimicrobial host defense. Through the generation of reactive oxidants, activation of granular constituents and neutrophil extracellular traps, neutrophils target microbes and prevent their dissemination. While these pathways are beneficial in the context of trauma and infection, their off-target effects in the context of tumor are variable. Tumor-derived factors have been shown to reprogram the marrow, skewing toward the expansion of myelopoiesis. This can result in stimulation of both neutrophilic leukocytosis and the release of immature granulocytic populations that accumulate in circulation and in the tumor microenvironment. While activated neutrophils have been shown to kill tumor cells, there is growing evidence for neutrophil activation driving tumor progression and metastasis through a number of pathways, including stimulation of thrombosis and angiogenesis, stromal remodeling, and impairment of T cell-dependent anti-tumor immunity. There is also growing appreciation of neutrophil heterogeneity in cancer, with distinct neutrophil populations promoting cancer control or progression. In addition to the effects of tumor on neutrophil responses, anti-neoplastic treatment, including surgery, chemotherapy, and growth factors, can influence neutrophil responses. Future directions for research are expected to result in more mechanistic knowledge of neutrophil biology in the tumor microenvironment that may be exploited as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kelly L. Singel
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brahm H. Segal
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
46
|
Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol Adv 2016; 34:803-812. [PMID: 27143654 PMCID: PMC4947437 DOI: 10.1016/j.biotechadv.2016.04.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
47
|
Koru-Sengul T, Santander AM, Miao F, Sanchez LG, Jorda M, Glück S, Ince TA, Nadji M, Chen Z, Penichet ML, Cleary MP, Torroella-Kouri M. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians. Breast Cancer Res Treat 2016; 158:113-126. [PMID: 27283835 DOI: 10.1007/s10549-016-3847-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Racial disparities in breast cancer incidence and outcome are a major health care challenge. Patients in the black race group more likely present with an early onset and more aggressive disease. The occurrence of high numbers of macrophages is associated with tumor progression and poor prognosis in solid malignancies. Macrophages are observed in adipose tissues surrounding dead adipocytes in "crown-like structures" (CLS). Here we investigated whether the numbers of CD163+ tumor-associated macrophages (TAMs) and/or CD163+ CLS are associated with patient survival and whether there are significant differences across blacks, non-black Latinas, and Caucasians. Our findings confirm that race is statistically significantly associated with the numbers of TAMs and CLS in breast cancer, and demonstrate that the highest numbers of CD163+ TAM/CLS are found in black breast cancer patients. Our results reveal that the density of CD206 (M2) macrophages is a significant predictor of progression-free survival univariately and is also significant after adjusting for race and for HER2, respectively. We examined whether the high numbers of TAMs detected in tumors from black women were associated with macrophage proliferation, using the Ki-67 nuclear proliferation marker. Our results reveal that TAMs actively divide when in contact with tumor cells. There is a higher ratio of proliferating macrophages in tumors from black patients. These findings suggest that interventions based on targeting TAMs may not only benefit breast cancer patients in general but also serve as an approach to remedy racial disparity resulting in better prognosis patients from minority racial groups.
Collapse
Affiliation(s)
- Tulay Koru-Sengul
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana M Santander
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA
| | - Feng Miao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lidia G Sanchez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA
| | - Merce Jorda
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan Glück
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Celgene Corporation, Summit, NJ, USA
| | - Tan A Ince
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mehrad Nadji
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA, USA.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.,UCLA AIDS Institute, UCLA, Los Angeles, CA, USA.,The Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Margot P Cleary
- Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Marta Torroella-Kouri
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA. .,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue Rosenstiel Medical School Building Suite 3123A, P.O. Box 016960 (R-138), Miami, FL, 33101, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
48
|
Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl) 2015; 94:509-22. [PMID: 26689709 DOI: 10.1007/s00109-015-1376-x] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
49
|
Effects of Nanosized Lithium Carbonate Particles on the Functional Activity of Macrophages During Development of Hepatocarcinoma 29. Bull Exp Biol Med 2015; 159:490-3. [PMID: 26388569 DOI: 10.1007/s10517-015-3000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 10/23/2022]
Abstract
The functional activity of macrophages in response to injection of nanosized lithium carbonate particles after initiation of hepatocarcinoma 29 in male CBA mice was evaluated by the production of NO, arginase activity, and absorption of zymosan granules. In intact animals, NO production by peritoneal macrophages increased by 4 times and arginase activity 3.1 times in response to a single injection of nanosized particles into the hip muscle. The level of NO production by macrophages remained high after 4 and 5 injections, while arginase activity returned to normal. The level of phagocytic peritoneal macrophages increased by 1.4 times after 5 injections of the particles. The level of NO production by macrophages gradually increased in animals with hepatocarcinoma developing in the hip muscle: by 1.6 times on day 3, 3.2 times on day 7, and by 2.6 times on day 13 in comparison with the corresponding parameters in intact animals. The increase of NO production by peritoneal macrophages after tumor process initiation was not paralleled by changes in arginase activity and absorption of zymosan granules. The results indicated that injection of nanosized lithium carbonate particles after inoculation of hepatocarcinoma 29 cells in the right hip muscle tissue was inessential for the function of peritoneal macrophages by the studied parameters.
Collapse
|
50
|
Schultze JL, Schmieder A, Goerdt S. Macrophage activation in human diseases. Semin Immunol 2015; 27:249-56. [PMID: 26303100 DOI: 10.1016/j.smim.2015.07.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022]
Abstract
It is becoming increasingly accepted that macrophages play a crucial role in many diseases associated with chronic inflammation, including atherosclerosis, obesity, diabetes, cancer, skin diseases, and even neurodegenerative diseases. It is therefore not surprising that macrophages in human diseases have gained significant interest during the last years. Molecular analysis combined with more sophisticated murine disease models and the application of genome-wide technologies has resulted in a much better understanding of the role of macrophages in human disease. We highlight important gain of knowledge during the last years for tumor-associated macrophages, and for macrophages in atherosclerosis, obesity and wound healing. Albeit these exciting findings certainly pave the way to novel diagnostics and therapeutics, several hurdles still need to be overcome. We propose a general outline for future research and development in disease-related macrophage biology based on integrating (1) genome-wide technologies, (2) direct human sampling, and (3) a dedicated use of in vivo model systems.
Collapse
Affiliation(s)
- Joachim L Schultze
- Genomics & Immunoregulation, LIMES-Institute, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany.
| | - Astrid Schmieder
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - S Goerdt
- Department of Dermatology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|