1
|
Azhar NA, Paramanantham Y, B W M Nor WMFS, B M Said NA. MicroRNA-146b-5p/FDFT1 mediates cisplatin sensitivity in bladder cancer by redirecting cholesterol biosynthesis to the non-sterol branch. Int J Biochem Cell Biol 2024; 176:106652. [PMID: 39270927 DOI: 10.1016/j.biocel.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapy against muscle-invasive bladder cancer is increasingly challenged by the prevalence of chemoresistance. The cholesterol biosynthesis pathway has garnered attention in studies of chemoresistance, but conflicting clinical and molecular findings necessitate a clearer understanding of its underlying mechanisms. Recently, we identified farnesyl-diphosphate farnesyltransferase 1 (FDFT1)-the first specific gene in this pathway-as a tumor suppressor and chemoresistance modulator. Raman spectroscopy revealed higher levels of FDFT1-related metabolites in chemotherapy-sensitive bladder cancer tissue compared to resistant tissue; however, this observation lacks mechanistic insight. FDFT1 expression was reduced in our cisplatin-resistant bladder cancer cells (T24R) compared to parental cisplatin-sensitive cells (T24). Using functional knockdown and ectopic overexpression in T24/T24R cells, we mechanistically demonstrate the pathway through which FDFT1 mediates cisplatin sensitivity in bladder cancer cells. Bioinformatics analysis and rescue experiments showed that microRNA-146b-5p directly targets and downregulates FDFT1, reducing the cisplatin sensitivity of T24 cells, which can be restored by forced FDFT1 expression. Further investigation into the downstream cholesterol pathway revealed that FDFT1 suppression redirects its substrate toward the non-sterol branch of the pathway, as evidenced by the upregulation of non-sterol branch-associated genes and a reduced total cholesterol level in the sterol branch. Since the non-sterol pathway leads to the prenylation of isoprenoids and activation of Ras and Rho family proteins involved in cancer progression and chemoresistance, our findings suggest that redirection of the cholesterol biosynthesis pathway is a key mechanism underlying FDFT1-mediated cisplatin resistance in bladder cancer. The miR-146b-5p/FDFT1 axis represents a promising target for overcoming chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Nurul Amniyyah Azhar
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Babadag S, Altundag-Erdogan Ö, Akkaya-Ulum YZ, Çelebi-Saltik B. Evaluation of Tumorigenic Properties of MDA-MB-231 Cancer Stem Cells Cocultured with Telocytes and Telocyte-Derived Mitochondria Following miR-146a Inhibition. DNA Cell Biol 2024; 43:341-352. [PMID: 38634821 DOI: 10.1089/dna.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Telocytes have some cytoplasmic extensions called telopodes, which are thought to play a role in mitochondrial transfer in intercellular communication. Besides, it is hypothesized that telocytes establish cell membrane-mediated connections with breast cancer cells in coculture and may contribute to the survival of neoplastic cell clusters together with other stromal cells. The aim of this study is to investigate the contribution of telocytes and telocyte-derived mitochondria, which have also been identified in breast tumors, to the tumor development of breast cancer stem cells (CSCs) via miR-146a-5p. The isolation/characterization of telocytes from bone marrow mononuclear cells and the isolation of mitochondria from these cells were performed, respectively. In the next step, CSCs were isolated from the MDA-MB-231 cell line and were characterized. Then, miR-146a-5p expressions of CSCs were inhibited by anti-miR-146a-5p. The epithelial-mesenchymal transition (EMT) was determined by evaluating changes in vimentin protein levels and was evaluated by analyzing BRCA1, P53, SOX2, E-cadherin, and N-cadherin gene expression changes. Our results showed that miR-146a promoted stemness and oncogenic properties in CSCs. EMT (N-cadherin, vimentin, E-cadherin) and tumorigenic markers (BRCA1, P53, SOX2) of CSCs decreased after miR-146a inhibition. Bone marrow-derived telocytes and mitochondria derived from telocytes favored the reduction of CSC aggressiveness following this inhibition.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Özlem Altundag-Erdogan
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Tao T, Chen L, Lin X, Fan Z, Zhu C, Mao L. Deregulated miR-146a-3p alleviates disease progression in atherosclerosis through inactivating NF-κB: An experimental study. Medicine (Baltimore) 2024; 103:e38061. [PMID: 38758895 PMCID: PMC11098229 DOI: 10.1097/md.0000000000038061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS), as a complex chronic inflammatory disease, is 1 of the main causes of cardiovascular and cerebrovascular diseases. This study aimed to confirm the direct interaction between miR-146a-3p and NF-κB, and explore the role of miR-146a-3p/NF-κB in the regulation of inflammation in AS. METHODS Bioinformatic prediction and dual-luciferase reporter assay were used to confirm the interaction between miR-146a-3p and NF-κB. Lipopolysaccharides stimulation was performed to establish AS inflammatory cell model, and the levels of pro-inflammatory cytokines were estimated using an enzyme-linked immunosorbent assay. miR-146a-3p and NF-κB expression were evaluated using reverse transcription quantitative PCR, and their clinical value was examined using a receiver operating characteristic curve. RESULTS Inflammatory cell model showed increased IL-1β, IL-6, and TNF-α. NF-κB was a target gene of miR-146a-3p, and mediated the inhibitory effects of miR-146a-3p on inflammatory responses in the cell model. In patients with AS, miR-146a-3p/NF-κB was associated with patients' clinical data and inflammatory cytokine levels, and aberrant miR-146a-3p and NF-κB showed diagnostic accuracy to distinguish AS patients from healthy populations. CONCLUSION miR-146a-3p might inhibit inflammation by targeting NF-κB in AS progression, and miR-146a-3p/ NF-κB might provide novel biomarkers and therapeutic targets for the prevention of AS and related vascular events.
Collapse
Affiliation(s)
- Taotao Tao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Linkao Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xia Lin
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zijian Fan
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chengfei Zhu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Jadhav AB, Ingole SD, Bharucha SV, Yoshitha KL, Gaikwad RV, Pharande RR, Kharde SD. Milk miRNA expression in buffaloes as a potential biomarker for mastitis. BMC Vet Res 2024; 20:150. [PMID: 38643124 PMCID: PMC11031985 DOI: 10.1186/s12917-024-04002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Buffaloes have the highest potential for production due to a promising gene pool that is being enhanced and upgraded. Mastitis is a significant health impediment that greatly diminishes milk yield and quality, affecting rural farmers' livelihoods. The traditional gold standard used for diagnosing mastitis or subclinical mastitis is CMT, but it has the drawback of false positive or negative results. Subclinical mastitis, if not treated promptly, can lead to mammary tumors. To address the gap in early diagnosis of subclinical mastitis in CMT-negative milk of buffaloes, we performed a retrospective analysis and evaluated the milk miRNA expression profiles as potential biomarkers. RESULTS Thirty buffalo milk samples based on clinical signs and CMT were divided into normal, subclinical, and clinical mastitis. SCC evaluation showed significant differences between the groups. The data analysis demonstrated that the elevation of miR-146a and miR-383 differed substantially between normal, subclinical, and clinical mastitis milk of buffaloes with 100% sensitivity and specificity. The relationship of SCC with miR-146a and miR-383 in normal/healthy and subclinical mastitis was positively correlated. CONCLUSION The overexpression of miR-146a and miR-383 is associated with inflammation. It can be a valuable prognostic and most sensitive biomarker for early mastitis detection in buffaloes with SCC below 2 lakhs and CMT-ve, enhancing the accuracy of subclinical mastitis diagnosis.
Collapse
Affiliation(s)
- Abhishek B Jadhav
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Shailesh D Ingole
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India.
| | - Simin V Bharucha
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Korsapati L Yoshitha
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Rajiv V Gaikwad
- Teaching Veterinary Clinical Complex, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbia, India
| | - Rajesh R Pharande
- Department of Veterinary Microbiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| | - Shambhudeo D Kharde
- Department of Veterinary Physiology, Mumbai Veterinary College, Maharashtra Animal and Fishery Sciences University, Mumbai, India
| |
Collapse
|
5
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
6
|
Khan I, Steeg PS. A perspective on the metastasis suppressor field. Cancer Metastasis Rev 2023; 42:1061-1063. [PMID: 37581870 DOI: 10.1007/s10555-023-10131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Metastasis is the leading cause of cancer patient mortality. Metastasis suppressors are genes that, upon reexpression in metastatic tumor cells to levels observed in their nonmetastatic counterparts, significantly reduce metastasis without affecting the growth of the primary tumor. Analysis of > 30 metastasis suppressors revealed complex mechanisms of action that include multiple signaling pathways, transcriptional patterns, posttranscriptional regulatory mechanisms, and potential contributions of genomic stability. Clinical testing of strategies to re-establish a validated metastasis suppressor pathway in tumors is best directed to the adjuvant setting, with the goal of inhibiting the outgrowth of occult micrometastases.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, NCI, NIH, Bethesda, MD, 20892, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37, Room 1126, NCI, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
8
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
9
|
Paccosi E, Balzerano A, Proietti-De-Santis L. Interfering with the Ubiquitin-Mediated Regulation of Akt as a Strategy for Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032809. [PMID: 36769122 PMCID: PMC9917864 DOI: 10.3390/ijms24032809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The serine/threonine kinase Akt modulates the functions of numerous substrates, many of them being involved in cell proliferation and growth, metabolism, angiogenesis, resistance to hypoxia and migration. Akt is frequently deregulated in many types of human cancers, its overexpression or abnormal activation being associated with the increased proliferation and survival of cancer cells. A promising avenue for turning off the functionality of Akt is to either interfere with the K63-linked ubiquitination that is necessary for Akt membrane recruitment and activation or increase the K48-linked polyubiquitination that aims to target Akt to the proteasome for its degradation. Recent evidence indicates that targeting the ubiquitin proteasome system is effective for certain cancer treatments. In this review, the functions and roles of Akt in human cancer will be discussed, with a main focus on molecules and compounds that target various elements of the ubiquitination processes that regulate the activation and inactivation of Akt. Moreover, their possible and attractive implications for cancer therapy will be discussed.
Collapse
|
10
|
Golabi M, Fathi F, Samadi M, Hesamian MS, Eskandari N. Identification of Potential Biomarkers in the Peripheral Blood Mononuclear Cells of Relapsing-Remitting Multiple Sclerosis Patients. Inflammation 2022; 45:1815-1828. [PMID: 35347537 DOI: 10.1007/s10753-022-01662-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is described as an immune disorder with inflammation and neurodegeneration. Relapsing-remitting MS (RRMS) is one of the most common types of MS. The diagnostic manner for this disorder typically includes the usage of magnetic resonance imaging (MRI); however, this is not always a very precise diagnostic method. Identification of molecular biomarkers in RRMS body fluids samples compared to healthy subjects can be useful to indicate the normal and pathogenic biological processes or pharmacological responses to drug interaction. In this regard, this study evaluated different miRNAs in isolated peripheral blood mononuclear cells (PBMCs) of RRMS compared to controls and their correlations with altered T regulatory type 1 (Tr1) cells, osteopontin (OPN), and interleukin 10 (IL-10) levels. The frequency of Tr1 cells was measured using flow cytometry. Also, the expressions of different miRNAs were evaluated via quantitative real-time polymerase chain reaction (RT-qPCR) and plasma levels of IL-10 and OPN were tested by enzyme-linked immunosorbent assay (ELISA). The obtained results showed the Tr1 cells' frequency, Let7c-5p, and miR-299-5p levels decreased in RRMS patients to about 59%, 0.69%, and 20% of HCs, respectively, (P < 0.05). The miR-106a-5p levels increased about 7.5-fold in RRMS patients in comparison to HCs (P < 0.05). Moreover, the results showed that there was an increased negative association between Tr1 frequency and plasma-OPN levels in RRMS patients in comparison to HCs and also, we found a moderate positive correlation between plasma-IL-10 and miR-299-5p expression of RRMS patients. Overall, it may be possible to use these biomarkers to improve the diagnostic process. These biomarkers may also be considered for clinical and therapeutic studies in the future.
Collapse
Affiliation(s)
- Marjan Golabi
- Department of Medical Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Samadi
- Recurrent Abortion Research Center, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Sadegh Hesamian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Asadi-Samani M, Mahmoudian-Sani MR. Association between extract of Euphorbia szovitsii and expression level of microRNAs in MDA-MB-231 cell line. Mol Biol Rep 2022; 49:3531-3537. [PMID: 35132492 DOI: 10.1007/s11033-022-07193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The miRNAs have been shown to be involved in breast cancer. The aim of the present research was to evaluate the impacts of extract from Euphorbia szovitsii Fisch & C.A. Mey on the expression level of microRNAs in triple-negative breast cancer (MDA-MB-231) cell line. METHODS AND RESULT The alterations in the expression level of miRNAs in MDA-MB-231 cell line exposed to the extract of E. szovitsii were determined exploiting qRT-PCR technique. The expression of MDA-MB-231 cell microRNAs including miR-15, miR-16, miR-21, miR-29, miR-34a, miR-146b, miR-151, miR-155, miR-181b, miR-221, miR-222, and Let-7 was evaluated at 24 and 48 h after treatment with the E. szovitsii extract. The treatment of MDA-MB-231 cells with E. szovitsii caused a significant elevation in the expression of miR-155, miR-146b (P < 0.05), miR-16, miR-21, miR-151 (P < 0.01), and miR-34a (P < 0.001) after 24 h, and also miR-155, Let-7 (P < 0.05), miR-15, miR-29, miR-151 (P < 0. 01), miR-146b and miR-34a (P<0.001) after 48 h. CONCLUSIONS The qRT-PCR findings at 24 and 48 h after treatment revealed that the MDA-MB-231 cell line in the presence of E. szovitsii extract showed an alteration in the expression profile of miRNAs implicated in the induction of cell proliferation, apoptosis and migration. These results may be helpful in determining the anticancer activity of E. szovitsii in MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Staiteieh SA, Akil L, Al Khansa R, Nasr R, Al Sagheer Z, Houshaymi B, Merhi RA. Study of microRNA expression profiling as biomarkers for colorectal cancer patients in Lebanon. Mol Clin Oncol 2022; 16:39. [PMID: 35003737 DOI: 10.3892/mco.2021.2473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022] Open
Abstract
The high incidence and mortality rates of colorectal cancer (CRC) reveal its hazardous effect globally. Thus, it is important to diagnose CRC at an early stage to decrease its burden and improve survival rates. Previous studies have investigated the role of short non-coding microRNAs (miRNAs or miRs) in numerous types of cancer, including CRC. Previous studies have been performed to investigate the role of miRNAs as biomarkers in diagnosis, prognosis and prediction of CRC development. The aim of the present retrospective study was to identify the expression levels of miR-31, miR-145, miR-146b and miR-186 to highlight their role in CRC diagnosis and progression at different stages of the disease (precancerous polyp, adenoma and adenocarcinoma) in a Lebanese population. The expression levels of miRNAs was revealed using TaqMan reverse transcription-quantitative PCR on formalin-fixed paraffin-embedded tissues from Lebanese patients at different stages; their diagnostic value was determined using a receiver operating characteristics curve. Compared with healthy controls, miR-31 was upregulated (P<0.0001) at all stages. By contrast, miR-145, miR-186, and miR-146b were significantly downregulated at all stages (P<0.0001, P=0.0009 and P=0.0241, respectively). Of the four miRNAs studied, miR-31 and miR-145 were identified as potentially useful diagnostic factors, with an area under the curve of 0.7771 and 0.8269 and diagnostic accuracy of 71.3 and 78.5%, respectively. These data suggested that miR-31 and miR-145, upon further clinical validation, may be used as potential diagnostic biomarkers for the early detection of CRC at the polyp stage.
Collapse
Affiliation(s)
- Soumaiah Abou Staiteieh
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Laila Akil
- Anatomy and Pathology Department, Bahman Hospital, Haret Hreik, Mount Lebanon 128-25, Lebanon
| | - Rawan Al Khansa
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Zainab Al Sagheer
- Applied Mathematics Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Bilal Houshaymi
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| | - Raghida Abou Merhi
- Genomics and Surveillance Biotherapy Laboratory, Biology Department, Faculty of Sciences, R. Hariri Campus, Lebanese University, Hadath 1003, Lebanon
| |
Collapse
|
13
|
Noorolyai S, Baghbani E, Shanehbandi D, Khaze Shahgoli V, Baghbanzadeh Kojabad A, Mansoori B, Hajiasgharzadeh K, Mokhtarzadeh A, Baradaran B. miR-146a-5p and miR-193a-5p Synergistically Inhibited the Proliferation of Human Colorectal Cancer Cells (HT-29 cell line) through ERK Signaling Pathway. Adv Pharm Bull 2021; 11:755-764. [PMID: 34888223 PMCID: PMC8642791 DOI: 10.34172/apb.2021.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: The expression of miR-146a-5p and miR-193a-5p in colorectal cancer (CRC) is associated with cancer development, metastasis, and reduced survival rate of the tumor-suffered subjects. This examination aimed to assess the impact of these microRNAs (miRNAs) in CRC and their mechanisms in the proliferation and migration of cancer cells. Methods: miR-146a-5p and -193a-5p were transfected into the HT-29 cell line and assessed their impact on metastasis-related genes. The synergistic effects of these miRNAs on migration were evaluated by wound healing approach. To assess the influence of these miRNAs on the proliferation of and apoptosis of cells, the MTT test, annexin V staining test, and DAPI staining test were done. Then, the protein expression of extracellular-signal-regulated kinase (ERK) and phosphorylated ERK (p-ERK) were investigated. Results: miR-146a-5p and-193a-5p could inhibit the CRC cells proliferation, and could synergistically induce apoptosis in CRC cells, and also repressed cell migration, and could reduce p-ERK expression. Conclusion: miR-146a-5p and-193a-5p have an important role in cell viability and proliferation via ERK signaling pathway. Thus, the simultaneous use of these miRNAs may be suggested as a probable therapeutic strategy in this cancer therapy.
Collapse
Affiliation(s)
- Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Pharmaceutical Analysis Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Ahmed KT, Sun J, Chen W, Martinez I, Cheng S, Zhang W, Yong J, Zhang W. In silico model for miRNA-mediated regulatory network in cancer. Brief Bioinform 2021; 22:bbab264. [PMID: 34279571 PMCID: PMC8575005 DOI: 10.1093/bib/bbab264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Deregulation of gene expression is associated with the pathogenesis of numerous human diseases including cancer. Current data analyses on gene expression are mostly focused on differential gene/transcript expression in big data-driven studies. However, a poor connection to the proteome changes is a widespread problem in current data analyses. This is partly due to the complexity of gene regulatory pathways at the post-transcriptional level. In this study, we overcome these limitations and introduce a graph-based learning model, PTNet, which simulates the microRNAs (miRNAs) that regulate gene expression post-transcriptionally in silico. Our model does not require large-scale proteomics studies to measure the protein expression and can successfully predict the protein levels by considering the miRNA-mRNA interaction network, the mRNA expression, and the miRNA expression. Large-scale experiments on simulations and real cancer high-throughput datasets using PTNet validated that (i) the miRNA-mediated interaction network affects the abundance of corresponding proteins and (ii) the predicted protein expression has a higher correlation with the proteomics data (ground-truth) than the mRNA expression data. The classification performance also shows that the predicted protein expression has an improved prediction power on cancer outcomes compared to the prediction done by the mRNA expression data only or considering both mRNA and miRNA. Availability: PTNet toolbox is available at http://github.com/CompbioLabUCF/PTNet.
Collapse
Affiliation(s)
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - William Chen
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Irene Martinez
- Department of Molecular Biotechnology, Universität Heidelberg, Heidelberg, 69120, Germany
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wencai Zhang
- Division of Cancer Research, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
15
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallanat B, Fisher AA, Kitchin KT. Effects of Silver Nanoparticles and Silver Nitrate on mRNA and microRNA Expression in Human Hepatocellular Carcinoma Cells (HepG2). JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5414-5428. [PMID: 33980351 PMCID: PMC10563035 DOI: 10.1166/jnn.2021.19481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to understand toxicity of nano silver, human hepatocellular carcinoma (HepG2) cells were treated either with silver nitrate (AgNO₃) or with nano silver capped with glutathione (Ag-S) at various concentration. Differentially expressed genelists for mRNA and microRNA were obtained through Illumina RNA sequencing and DEseq data analyses. Both treatments showed non-linear dose response relationships for mRNA and microRNA. Gene expression analysis showed signaling pathways common to both nano Ag-S and AgNO₃, such as cell cycle regulation, DNA damage response and cancer related pathways. But, nano Ag-S caused signaling pathway changes that were not altered by AgNO₃ such as NRF2-mediated oxidative stress response inflammation, cell membrane signaling, and cell proliferation. Nano Ag-S also affected p53 signaling, survival, apoptosis, tissue repair, lipid synthesis, angiogenesis, liver fibrosis and tumor development. Several of the pathways affected by nano Ag-S are hypothesized as major contributors to nanotoxicity. MicroRNA target filter analysis revealed additional affected pathways that were not reflected in the mRNA expression response alone, including DNA damage signaling, genomic stability, ROS, cell cycle, ubiquitination, DNA methylation, cell proliferation and fibrosis for AgNO₃; and cell cycle regulation, P53 signaling, cell proliferation, survival, apoptosis, tissue repair and so on for nano Ag-S. These pathways may be mediated by microRNA repression of protein translation.Our study clearly showed that the addition of microRNA profiling increased the numbers of signaling pathways discovered that affected by the treatments on HepG2 cells and gave US a better picture of the effects of these reagents in the cells.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | | - Anna A Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Kirk T Kitchin
- US Environmental Protection Agency, Retired from EPA, Durham NC 27709, USA
| |
Collapse
|
16
|
Mahmoudian-Sani MR, Asadi-Samani M. Modulation of MicroRNAs by Euphorbia Microsciadia Boiss in MDA-MB-231 Cell Line: New Possibilities in Breast Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:174-184. [PMID: 32603285 DOI: 10.2174/1574892815666200630102944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND A large number of Euphorbia species have been evaluated for anticancer effects; however, their anticancer mechanisms have not been established up to now. OBJECTIVE The present study aimed to evaluate the effects of Euphorbia microsciadia (E. microsciadia) Boiss on the modulation of micro (mi) RNAs in MDA-MB-231 cell line. METHODS As the first step, the inhibitory concentration of hydroalcoholic extract of E. microsciadia on MDA-MB-231 cells was examined using the MTT assay, bypassing 24 and 48h from seeding. The real-time quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was also utilized to determine Let-7, miR-15, miR-16, miR-29, miR-151, miR-155, miR-21, miR-146b, miR-181b, miR-221, miR-222, miR-21, and miR-146b expressions in MDA-MB-231 cells, by passing 24 and 48h from treating with the extract of E. microsciadia. RESULTS The results reveal the cytotoxic effects of E. microsciadia on MDA-MB-231 cell line in a dose-dependent manner. The half maximal Inhibitory Concentrations (IC50) were also equal to 275 and 240μg/ml for E. microsciadia, by passing 24 and 48h from the treatment, respectively. Furthermore, it was confirmed that, E. microsciadia had augmented the expression levels of Let-7, miR-15, miR-16, miR-29, and miR-34a, which lead to an increase in apoptosis. CONCLUSION E. microsciadia could modulate some miRNAs involved in cell cycle arrest and apoptosis in MDA-MB-231 cell line. Accordingly, targeting miRNAs by E. microsciadia can open some newer avenues for breast cancer therapy.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
17
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
18
|
Di W, Zhang W, Zhu B, Li X, Tang Q, Zhou Y. Colorectal cancer prompted adipose tissue browning and cancer cachexia through transferring exosomal miR-146b-5p. J Cell Physiol 2021; 236:5399-5410. [PMID: 33368224 DOI: 10.1002/jcp.30245] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022]
Abstract
Cancer cachexia is a complex syndrome that is associated with thermogenic gene regulation. Currently, although some studies have reported the link between exosomes and cancer cachexia in a few types of cancer, the underlying mechanisms remain poorly understood. In this study, we tried to identify whether exosomes derived from colorectal cancer could affect lipolysis in vitro and in vivo. Here, we collected the tissue samples from 48 patients with colorectal cancer (47.91% females and mean age 55 ± 8.20) and 48 healthy people at the First Affiliated Hospital of Nanjing Medical University to detect the miR-146-5p expression. Here, we found that cancer cells released exosomes induced white adipose tissues (WATs) browning and accelerated lipolysis. We also demonstrated that miR-146b-5p was enriched in cancer-related exosomes. Overexpression miR-146b-5p resulted in increased WAT browning, decreased oxygen consumption, and fat mass loss (14.57%). The further study identified that miR-146b-5p could directly repress the downstream gene homeodomain-containing gene C10 (HOXC10), thereby regulating lipolysis. Therefore, our results indicated that cancer cells derived from exosomal miR-146b-5p played an essential role in WAT browning. Inhibition of cancer-related exosomes might be necessary for improving the cachexia condition.
Collapse
Affiliation(s)
- Wenjuan Di
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Bei Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Qiyun Tang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yichan Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
19
|
Regulation of bone metastasis and metastasis suppressors by non-coding RNAs in breast cancer. Biochimie 2021; 187:14-24. [PMID: 34019953 DOI: 10.1016/j.biochi.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is a critical health care issue that substantially affects women worldwide. Though surgery and chemotherapy can effectively control tumor growth, metastasis remains a primary concern. Metastatic BC cells predominantly colonize in bone, owing to their rigid osseous nutrient-rich nature. There are recently increasing studies investigating the context-dependent roles of non-coding RNAs (ncRNAs) in metastasis regulation. ncRNAs, including microRNAs, long non-coding RNAs, circular RNAs, and small interference RNAs, control the BC metastasis via altered mechanisms. Additionally, these ncRNAs have been reported in regulating a unique class of genes known as Metastatic suppressors. Metastasis suppressors like BRMS1, NM23, LIFR, and KAI1, etc., have been extensively studied for their role in inducing apoptosis, inhibiting metastasis, and maintaining homeostasis. In this review, we have emphasized the direct regulation of ncRNAs for effectively controlling the distant spread of BC. Furthermore, we have highlighted the ncRNA-mediated modulation of the metastatic suppressors, thereby delineating their indirect influence over metastasis.
Collapse
|
20
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Long Noncoding RNA HCG11 Acts as a Tumor Suppressor in Gastric Cancer by Regulating miR-942-5p/BRMS1 Axis. JOURNAL OF ONCOLOGY 2021; 2021:9961189. [PMID: 34054958 PMCID: PMC8131154 DOI: 10.1155/2021/9961189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
The functions of long noncoding RNAs (lncRNAs) have been widely investigated in human cancers, including gastric cancer (GC). The purpose of this study was to elucidate the role of lncRNA HCG11 in GC. In this study, mRNA and protein expressions were detected by quantitative real-time polymerase chain reaction assays (RT-qPCR) and Western blot analysis. The proliferation ability of GC cells was examined by (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl Tetrazolium Bromide) MTT assays. The invasion and migration abilities of GC cells were evaluated by Transwell assays. The binding sites between miR-942-5p and HCG11/BRMS1 were confirmed by dual-luciferase reporter assays. Results showed that LncRNA HCG11 was downregulated in GC cells. Functionally, overexpression of HCG11 inhibited GC cell proliferation, migration, and invasion. In addition, lncRNA HCG11 was found to act as a molecular sponge of miR-942-5p. Furthermore, miR-942-5p promoted GC progression by suppressing lncRNA HCG11 expression. Besides that, BRMS1 was confirmed as a direct target of miR-942-5p. More importantly, breast cancer metastasis suppressor 1 (BRMS1) inhibited GC progression by upregulating lncRNA HCG11 and downregulating miR-942-5p. In conclusion, LncRNA HCG11 inhibited cell proliferation, migration, and invasion in GC by sponging miR-942-5p and upregulating BRMS1.
Collapse
|
22
|
Yilmaz UC, Bagca BG, Karaca E, Durmaz A, Durmaz B, Aykut A, Kayalar H, Avci CB, Susluer SY, Pariltay E, Gunduz C, Cogulu O. Propolis Extract Regulate microRNA Expression in Glioblastoma and Brain Cancer Stem Cells. Anticancer Agents Med Chem 2021; 22:378-389. [PMID: 33949939 DOI: 10.2174/1871520621666210504082528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Grade IV gliomas are classified as glioblastoma (GBM), which is the most malignant brain cancer type. Various genetic and epigenetic mechanisms play a role in the initiation and progression of GBM. MicroRNAs (miRNAs) are small, non-coding RNA molecules that are the main epigenetic regulatory RNA class. They play variable roles in both physiological and pathological conditions, including GBM pathogenesis, by regulating expression levels of the target genes. Brain cancer stem cells (BCSCs) are subpopulations of brain cancer mass that are responsible for poor prognosis, including therapy resistance and relapse. Epigenetic regulation mediated by miRNAs is also a critical component of BCSC self-renewal and differentiation properties. Propolis is a resinous substance that is collected by honey bees from various plant sources. The flavonoids content of propolis varies, depending on the region collected andthe extraction method. Although the effects of propolis that have been collected from different sources on the miRNA expression levels in the glioblastoma cells have been shown, the effects on the BCSCs are not known yet. OBJECTIVE The aim of this study is to evaluate the effects of Aydın, a city in western Turkey, propolis, on miRNA expression levels of BCSCs and GBM cells. METHODS Aydin propolis was dissolved in 60% ethanol, and after evaporation, distilled water was added to prepare the propolis stock solution. The flavonoids content of the Aydin propolis was determined by MS Q-TOF analysis. Commercially obtained U87MG, GBM cell line, and BCSCs were used as in vitro brain cancer models. The cytotoxic and apoptotic effects of Aydın propolis were determined via WST-1 assay and Annexin V test, respectively. The miRNA expression profile was investigated via the real-time qRT-PCR method, and fold changes were calculated by using the 2-∆∆Ct method compared to untreated control cells. The miRNA-mRNA-pathway interactions, including significantly altered miRNAs, were determined using different bioinformatics tools and databases. RESULTS Quercetin 3-methyl ether was determined as the major component of the Aydin propolis. Aydin propolis did not show significant cytotoxic and apoptotic effects on both GBM and BCSCs up to 2mg/ml concentration. Aydin propolis treatment decreased the expression of nine and five miRNAs in the U87MG 2.13 to 5.65 folds and BCSCs 2.02 to 12.29 folds, respectively. Moreover, 10 miRNAs 2.22 to 10.56 folds were upregulated in propolis treated GBM cells compared to the control group, significantly (p<0.05). In the study, the potential roles of two new miRNAs, whose regulations in glioma were not previously defined, were identified. One of these miR-30d-5p, a novel potential oncomiR in GBM was 2.46 folds downregulated in Aydin propolis treated GBM cells. The other one is miR-335-5p which is a potential tumor suppressor miR in GBM, was 5.66 folds upregulated in Aydin propolis treated GBM cells. FOXO pathway and its upstream and downstream regulators and critically neuronal developmental regulators NOTCH and WNT pathways were determined as the most deregulated pathways in Aydin propolis treated cells. CONCLUSION The determination of the anti-cancer effect of Aydın propolis on the miRNA expression of GBM, especially on cancer stem cells, may contribute to the elucidation of brain cancer genetics by supporting further analyses.
Collapse
Affiliation(s)
- Ugur C Yilmaz
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Bakiye G Bagca
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Asude Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Burak Durmaz
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ayca Aykut
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Husniye Kayalar
- Ege University, Faculty of Pharmacy, Department of Pharmacognosy, Izmir, Turkey
| | - Cigir B Avci
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Sunde Y Susluer
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Erhan Pariltay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Cumhur Gunduz
- Ege University, Faculty of Medicine, Department of Medical Biology, Izmir, Turkey
| | - Ozgur Cogulu
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
23
|
Wang H, Zhang P. lncRNA‑CASC15 promotes osteosarcoma proliferation and metastasis by regulating epithelial‑mesenchymal transition via the Wnt/β‑catenin signaling pathway. Oncol Rep 2021; 45:76. [PMID: 33760218 PMCID: PMC8020213 DOI: 10.3892/or.2021.8027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare type of tumor and mostly occurs in children and adolescents. Approximately 10–25% of patients with OS have lung metastases, and lung damage caused by lung metastasis is the main cause of mortality. Therefore, studying the growth and metastasis of OS is key in reducing OS mortality and improving prognosis. The expression of long non-coding RNA (lncRNA) cancer susceptibility 15 (CASC15) in OS patients or OS cell lines were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of vimentin, E-cadherin, N-cadherin, and cyclin D were detected by RT-qPCR and western blotting. Mice were injected with OS cell lines via the tail vein to observe tumor formation in the lung. CCK-8 and EdU assays were utilized to evaluate cell proliferation. Both Ttranswell assay and cell scratch test detected cell migration. The results revealed that lncRNA-CASC15 was highly expressed in clinical samples and OS cells. In vitro verification experiments revealed that CASC15 promoted the growth of OS cells. Rescue experiments demonstrated that CASC15 affected the cell cycle by activating the Wnt/β-catenin pathway, thereby promoting cell proliferation. Furthermore, the transfection dose test indicated that lentiviruses expressing various doses of CASC15-overexpression (oe-CASC15) altered the proliferation and migration status of OS cells. CASC15 promoted OS cell metastasis both in vivo and in vitro. The overexpression of CASC15 revealed that the occurrence of metastasis was also related to the Wnt/β-catenin pathway. The western blotting results revealed that CASC15 could lead to β-catenin entering the nucleus via the Wnt pathway to promote the epithelial-mesenchymal transition (EMT) of OS cells. To sum up, CASC15 promoted the proliferation of OS cells in vitro and the growth of OS xenograft tumors in vivo. Moreover, CASC15 promoted the entry of β-catenin into the nucleus, thus activating the Wnt pathway and subsequently promoting the EMT of OS cells.
Collapse
Affiliation(s)
- Hongqi Wang
- Department of Orthopedics, First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Peng Zhang
- Department of Bone and Soft Tissue Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
24
|
Yeeravalli R, Das A. Molecular mediators of breast cancer metastasis. Hematol Oncol Stem Cell Ther 2021; 14:275-289. [PMID: 33744312 DOI: 10.1016/j.hemonc.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer has the highest incidence rate of malignancy in women worldwide. A major clinical challenge faced by patients with breast cancer treated by conventional therapies is frequent relapse. This relapse has been attributed to the cancer stem cell (CSC) population that resides within the tumor and possess stemness properties. Breast CSCs are generated when breast cancer cells undergo epithelial-mesenchymal transition resulting in aggressive, highly metastatic, and invasive phenotypes that exhibit resistance towards chemotherapeutics. Metastasis, a phenomenon that aids in the migration of breast CSCs, occurs through any of three different routes: hematogenous, lymphatic, and transcoelomic. Hematogenous dissemination of breast CSCs leads to metastasis towards distant unrelated organs like lungs, liver, bone, and brain causing secondary tumor generation. Activation of metastasis genes or silencing of metastasis suppressor genes often leads to the advancement of metastasis. This review focuses on various genes and molecular factors that have been implicated to regulate organ-specific breast cancer metastasis by defying the available therapeutic interventions.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
25
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
26
|
MiR-146a Regulates Migration and Invasion by Targeting NRP2 in Circulating-Tumor Cell Mimicking Suspension Cells. Genes (Basel) 2020; 12:genes12010045. [PMID: 33396906 PMCID: PMC7824086 DOI: 10.3390/genes12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer metastasis is the primary cause of cancer-related death and metastatic cancer has circulating-tumor cells (CTCs), which circulate in the bloodstream before invading other organs. Thus, understanding the precise role of CTCs may provide new insights into the metastasis process and reduce cancer mortality. However, the molecular characteristics of CTCs are not well understood due to a lack of number of CTCs. Therefore, suspension cells were generated from MDA-MB-468 cells to mimic CTCs, and we investigate the microRNA (miRNA)-dependent molecular networks and their role in suspension cells. Here, we present an integrated analysis of mRNA and miRNA sequencing data for suspension cell lines, through comparison with adherent cells. Among the differentially regulated miRNA–mRNAs axes, we focus on the miR-146a-Neuropilin2 (NRP2) axis, which is known to influence tumor aggressiveness. We show that miR-146a directly regulates NRP2 expression and inhibits Semaphorin3C (SEMA3C) signaling. Functional studies reveal that miR-146a represses SEMA3C-induced invasion and proliferation by targeting NRP2. Finally, high-NRP2 is shown to be associated with poor outcomes in breast cancer patients. This study identifies the key role of the miR-146a–NRP2 signaling axis that is critical for the regulation of migration and invasion in CTC-mimicking cells.
Collapse
|
27
|
Liu XM, Li XF, Li JC. MiR-146a functions as a potential tumor suppressor in retinoblastoma by negatively regulate neuro-oncological ventral antigen-1. Kaohsiung J Med Sci 2020; 37:286-293. [PMID: 33340248 DOI: 10.1002/kjm2.12337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many tumors and have been found to play crucial roles in cancer biology. Retinoblastoma is a rare tumor that develops rapidly from a malignant tumor of immature cells in the retina known as photoreceptor progenitors. Our study aimed to explore the role of miR-146a in the pathology of retinoblastoma. Potential target gene of miR-146a was predicted by Targetscan. Reverse transcription quantitative polymerase chain reaction (RT-PCR) showed that miR-146a was downregulated and ventral nerve tumor antigen 1 (Neuro - oncological ventral antigen 1, NOVA1) was upregulated in retinoblastoma. Luciferase assay confirmed that miR-146a directly target NOVA1. MiR-146a knockdown and overexpression experiments were performed and found that miR-146a could regulate the expression of NOVA1. The miR-146a knockdown and overexpression experiments were conducted to investigate the biological function of miR-146a. MiR-146a was found inhibited the viability, proliferation and invasion of retinoblastoma cell by MTT, EdU, and transwell assays. Flow cytometry was performed for the apoptosis analysis and miR-146a increased the apoptosis of retinoblastoma cell was found. Above phenomenon can be rescued by overexpression of NOVA1. In conclusion, these results suggest that miR-146a acts as a tumor suppressor and can act as a potential therapeutic target for retinoblastoma in the future.
Collapse
Affiliation(s)
- Xiu-Ming Liu
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai 'an City, Jiangsu, China
| | - Xiao-Feng Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai 'an City, Jiangsu, China
| | - Jian-Chang Li
- Department of Ophthalmology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai 'an City, Jiangsu, China
| |
Collapse
|
28
|
Chang HY, Lee CH, Li YS, Huang JT, Lan SH, Wang YF, Lai WW, Wang YC, Lin YJ, Liu HS, Cheng HC. MicroRNA-146a suppresses tumor malignancy via targeting vimentin in esophageal squamous cell carcinoma cells with lower fibronectin membrane assembly. J Biomed Sci 2020; 27:102. [PMID: 33248456 PMCID: PMC7697386 DOI: 10.1186/s12929-020-00693-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is widely prevalent in Taiwan, and high metastatic spread of ESCC leads to poor survival rate. Fibronectin (FN) assembly on the cell membrane may induce ESCC mobility. MicroRNAs (MiRNAs) are abundant in and participate in tumorigenesis in many cancers. However, the role of MiRNA in FN assembly-related ESCC mobility remains unexplored. Methods We divided ESCC CE81T cells into high-FN assembly (CE81FN+) and low-FN assembly (CE81FN−) groups by flow cytometry. MiRNA microarray analysis identified miR-146a expression as the most down-regulated miRNA in comparison of CE81FN+ and CE81FN− cells. Results Cell proliferation and migration were decreased when CE81FN+ cells overexpressed transgenic miR-146a compared to the parental cells, indicating an inverse correlation between low miR-146a expression and high proliferation as well as motility of FN assembly ESCC cells. Furthermore, vimentin is the target gene of miR-146a involved in ESCC tumorigenesis. MiR-146a suppressed cell proliferation, migration and invasion of CE81FN+ cells through the inhibition of vimentin expression, as confirmed by real-time PCR, Western blotting and Transwell™ assay. Analysis of one hundred and thirty-six paired ESCC patient specimens revealed that low miR-146a and high vimentin levels were frequently detected in tumor, and that the former was associated with late tumor stages (III and IV). Notably, either low miR-146a expression or high vimentin level was significantly associated with poor overall survival rate among ESCC patients. Conclusions This is the first report to link FN assembly in the cell membrane with miR-146a, vimentin and ESCC tumorigenesis both in vitro and in ESCC patients.
Collapse
Affiliation(s)
- Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chi-Hua Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Syuan Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Tong Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Fang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Wei Lai
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Ju Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,M. Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Hung-Chi Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
29
|
Liu Y, Zhang Q, Wu J, Zhang H, Li X, Zheng Z, Luo M, Li L, Xiang Y, Yang F, Wu L. Long Non-Coding RNA A2M-AS1 Promotes Breast Cancer Progression by Sponging microRNA-146b to Upregulate MUC19. Int J Gen Med 2020; 13:1305-1316. [PMID: 33273850 PMCID: PMC7708314 DOI: 10.2147/ijgm.s278564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) A2M-AS1 has been indicated to be augmented in breast cancer (BC), with its specific function undetermined. Therefore, this study is designed to investigate the mechanism of lncRNA A2M-AS1 in BC. Methods The expression of A2M-AS1, microRNA (miR)-146b, and MUC19 in BC tissues and cells was measured. Then, the interaction among A2M-AS1, miR-146b, and MUC19 was detected. After A2M-AS1, miR-146b, and MUC19 expression were altered in BC cells, cell proliferation, invasion, and apoptosis were detected, and the protein levels of Hippo-related proteins (YAP and p-YAP) were evaluated. Tumor growth assay was also performed to validate the effects of A2M-AS1 and miR-146b in vivo. Results A2M-AS1 and MUC19 were highly expressed in BC, while miR-146b was poorly expressed. A2M-AS1 acts as a molecular sponge for miR-146b, which targeted and negatively modulated MUC19. A2M-AS1 accelerated BC cell proliferation, invasion, and colony formation and suppressed apoptosis via the miR-146b/MUC19/Hippo axis, which was confirmed in vivo. Conclusion Taken above together, an oncogenic role for A2M-AS1 in BC was elicited by acting as a miR-146b sponge to promote MUC19 expression. The findings will present some cues for a further approach to BC.
Collapse
Affiliation(s)
- Yuncong Liu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Jing Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Hanqun Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Xin Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Zhaopeng Zheng
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Libo Li
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Yang Xiang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Feiyue Yang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| | - Li Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, People's Republic of China
| |
Collapse
|
30
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
31
|
Gupta I, Rizeq B, Vranic S, Moustafa AEA, Al Farsi H. Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:E6750. [PMID: 32942528 PMCID: PMC7554858 DOI: 10.3390/ijms21186750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most prevalent diseases among women worldwide and is highly associated with cancer-related mortality. Of the four major molecular subtypes, HER2-positive and triple-negative breast cancer (TNBC) comprise more than 30% of all breast cancers. While the HER2-positive subtype lacks estrogen and progesterone receptors and overexpresses HER2, the TNBC subtype lacks estrogen, progesterone and HER2 receptors. Although advances in molecular biology and genetics have substantially ameliorated breast cancer disease management, targeted therapies for the treatment of estrogen-receptor negative breast cancer patients are still restricted, particularly for TNBC. On the other hand, it has been demonstrated that microRNAs, miRNAs or small non-coding RNAs that regulate gene expression are involved in diverse biological processes, including carcinogenesis. Moreover, circulating miRNAs in serum/plasma are among the most promising diagnostic/therapeutic tools as they are stable and relatively easy to quantify. Various circulating miRNAs have been identified in several human cancers including specific breast cancer subtypes. This review aims to discuss the role of circulating miRNAs as potential diagnostic and prognostic biomarkers as well as therapeutic targets for estrogen-receptor negative breast cancers, HER2+ and triple negative.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Halema Al Farsi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| |
Collapse
|
32
|
Dehbidi S, Farokhizadeh Z, Karimi MH, Afshari A, Behmanesh M, Sanati MH, Geramizadeh B, Yaghobi R. Evaluation of microRNA Gene Polymorphisms in Liver Transplant Patients with Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 08/30/2023]
Abstract
Background: Genetic polymorphism in the miRNA sequence might alter miRNA expression and/or maturation, which is associated with the development and progression of hepatocellular carcinoma (HCC) in liver transplant patients. Objectives: Therefore, the prevalence of miRNA-146a G > C (rs2910164), miRNA-499A > G (rs3746444), miRNA-149C > T (rs2292832), and miRNA-196a-2 C > T (rs11614913) gene polymorphisms was evaluated in liver recipients with HCC with or without experiencing graft rejection. Methods: In a cross-sectional study, tissue samples were collected from 60 HCC patients who underwent liver transplant surgery at Namazi Hospital, Shiraz, Iran, in 2013 - 2015. A control group consisting of 120 individuals was randomly selected, as well. The genomic DNA was extracted from collected tissues and blood samples. The miRNA-146a (rs2910164), miRNA-499 (rs3746444), miRNA-149 (rs2292832), and miRNA-196a-2 (rs11614913) gene polymorphisms were evaluated in patients with HCC using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: The CC genotype and C allele of the miRNA-146a (rs2910164) polymorphism were significantly associated with the increased risk of transplant rejection in patients with HCC (P = 0.05 and P = 0.05, respectively). The CC genotype and C allele of the miRNA-146a (rs2910164) were also significantly more frequent in male liver transplant patients who experienced acute rejection than in non-rejected ones (P = 0.05 and P = 0.03, respectively). However, no significant association was found between the genotypes and alleles of miRNA-499 (rs3746444), miRNA-149 (rs2292832), and miRNA-196a-2 (rs11614913) polymorphisms and HCC outcomes in liver transplant recipients. Conclusions: The importance of the CC genotype and C allele of the miRNA-146a (rs2910164) polymorphism in increasing the risk of transplant rejection was confirmed, but it needs further studies in larger populations.
Collapse
|
33
|
Recent Trends of microRNA Significance in Pediatric Population Glioblastoma and Current Knowledge of Micro RNA Function in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21093046. [PMID: 32349263 PMCID: PMC7246719 DOI: 10.3390/ijms21093046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system tumors are a significant problem for modern medicine because of their location. The explanation of the importance of microRNA (miRNA) in the development of cancerous changes plays an important role in this respect. The first papers describing the presence of miRNA were published in the 1990s. The role of miRNA has been pointed out in many medical conditions such as kidney disease, diabetes, neurodegenerative disorder, arthritis and cancer. There are several miRNAs responsible for invasiveness, apoptosis, resistance to treatment, angiogenesis, proliferation and immunology, and many others. The research conducted in recent years analyzing this group of tumors has shown the important role of miRNA in the course of gliomagenesis. These particles seem to participate in many stages of the development of cancer processes, such as proliferation, angiogenesis, regulation of apoptosis or cell resistance to cytostatics.
Collapse
|
34
|
Park JH, Jeong GH, Lee KS, Lee KH, Suh JS, Eisenhut M, van der Vliet HJ, Kronbichler A, Stubbs B, Solmi M, Dragioti E, Koyanagi A, Shin JI, Gamerith G. Genetic variations in MicroRNA genes and cancer risk: A field synopsis and meta-analysis. Eur J Clin Invest 2020; 50:e13203. [PMID: 31984489 DOI: 10.1111/eci.13203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer risk has been associated with certain gene variations in microRNA (miRNA), but conflicting evidence warrants re-assessing of significant results in meta-analyses. We summarized published meta-analyses that assess the associations between miRNA polymorphism and cancers to show the validity of the findings. METHOD We searched PubMed and investigated the results of meta-analyses published through November 2018. We re-assessed the results based on false-positive report probability (FPRP) to test the noteworthiness of the associations. RESULTS Sixty-eight miRNA polymorphisms in 45 meta-analyses associated with cancer were included. Four (7.4%) and sixteen (25.0%) single nucleotide polymorphisms (SNPs) were noteworthy (FPRP < 0.2) at a prior probability of 0.001 for interesting candidate genes and a statistical power to detect an odds ratio (OR) of 1.1 and 1.5, respectively. The four miRNA SNPs noteworthy at an OR of 1.1 were as follows: miR-146a/rs2910164 Cvs.G; miR-27a/rs895819 Cvs.T; miR-423/rs6505162 Cvs.A; and miR-605/rs2043556 Cvs.T. The 16 SNPs noteworthy at an OR of 1.5 include the four genotype comparisons at an OR of 1.1, and the additional 12 genotype comparisons were as follows: miR-196a2/rs11614913 Tvs.C; miR-27a/rs895819 GGvs.AA + AG; miR-196a2/rs11614913 C vs.T; miR-146a/rs2910164 Gvs.C; miR-196a2/rs11614913 Tvs.C; miR-146a/rs2910164 Cvs.G; miR-499/rs3746444 homozygous model; miR-146a/rs2910164 CCvs.GG + GC; miR-499/rs3746444 TCvs.TT; miR-499/rs3746444 GAvs.AA; miR-146a/rs2910164 CCvs.GG; and miR-499/rs3746444 Gvs.A. No association was noteworthy at a prior probability of 0.000001. CONCLUSION Out of 68 published associations of miRNA polymorphisms with cancer, sixteen have shown noteworthiness in our re-assessing meta-analysis. Our findings summarize the results of meta-analyses on the association of cancer with SNPs and underline the importance of interpreting results with caution.
Collapse
Affiliation(s)
- Jae Hyon Park
- Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Kwang Seob Lee
- Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Soon Suh
- Department of Pediatrics, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, VU University, Amsterdam, The Netherlands
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Brendon Stubbs
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK.,Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Marco Solmi
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Elena Dragioti
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Gabriele Gamerith
- Department of Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
35
|
Mazurek M, Litak J, Kamieniak P, Osuchowska I, Maciejewski R, Roliński J, Grajkowska W, Grochowski C. Micro RNA Molecules as Modulators of Treatment Resistance, Immune Checkpoints Controllers and Sensitive Biomarkers in Glioblastoma Multiforme. Int J Mol Sci 2020; 21:ijms21041507. [PMID: 32098401 PMCID: PMC7073212 DOI: 10.3390/ijms21041507] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Based on genome sequencing, it is estimated that over 90% of genes stored in human genetic material are transcribed, but only 3% of them contain the information needed for the production of body proteins. This group also includes micro RNAs representing about 1%–3% of the human genome. Recent studies confirmed the hypothesis that targeting molecules called Immune Checkpoint (IC) open new opportunities to take control over glioblastoma multiforme (GBM). Detection of markers that indicate the presence of the cancer occupies a very important place in modern oncology. This function can be performed by both the cancer cells themselves as well as their components and other substances detected in the patients’ bodies. Efforts have been made for many years to find a suitable marker useful in the diagnosis and monitoring of gliomas, including glioblastoma.
Collapse
Affiliation(s)
- Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (M.M.); (J.L.); (P.K.)
| | - Ida Osuchowska
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
| | - Jacek Roliński
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Wiesława Grajkowska
- Department of Oncopathology and Biostructure, „Pomnik-Centrum Zdrowia Dziecka” Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (I.O.); (R.M.)
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
- Correspondence:
| |
Collapse
|
36
|
Ablation of miR-146b in mice causes hematopoietic malignancy. Blood Adv 2019; 2:3483-3491. [PMID: 30530754 DOI: 10.1182/bloodadvances.2018017954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/21/2018] [Indexed: 12/23/2022] Open
Abstract
Excessive and constitutive activation of nuclear factor-κB (NF-κB) leads to abnormal cell proliferation and differentiation, leading to the development of malignant tumors, including lymphoma. MicroRNA 146a (miR-146a) and miR-146b, both of which carry an identical seed sequence, have been shown to contribute to inflammatory diseases and tumors by suppressing the expression of key molecules required for NF-κB activation. However, the functional and physiological differences between miR-146a and miR-146b in disease onset have not been fully elucidated. In this study, we generated miR-146b-knockout (KO) and miR-146a-KO mice by genome editing and found that both strains developed hematopoietic malignancies such as B-cell lymphoma and acute myeloid leukemia during aging. However, the B-cell lymphomas observed in miR-146a- and miR-146b-KO mice were histologically different in their morphology, and the malignancy rate is lower in miR-146b mice than miR-146a mice. Upon mitogenic stimulation, the expression of miR-146a and miR-146b was increased, but miR-146b expression was lower than that of miR-146a. Using a previously developed screening system for microRNA targets, we observed that miR-146a and miR-146b could target the same mRNAs, including TRAF6, and inhibit subsequent NF-κB activity. Consistent with these findings, both miR-146a- and miR-146b-KO B cells showed a high proliferative capacity. Taken together, sustained NF-κB activation in miR-146b KO mice could lead to the development of hematopoietic malignancy with aging.
Collapse
|
37
|
Wang H, Li X, Li T, Wang L, Wu X, Liu J, Xu Y, Wei W. Multiple roles of microRNA-146a in immune responses and hepatocellular carcinoma. Oncol Lett 2019; 18:5033-5042. [PMID: 31612014 PMCID: PMC6781720 DOI: 10.3892/ol.2019.10862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs), consisting of ~22 nucleotides of single-stranded RNA, participate in post-transcriptional gene regulation by binding to the 3′-untranslated region (UTR) of mRNAs, repressing their translation and promoting their degradation. Studies have shown that certain miRNAs play a key role in the control of various cellular activities, such as inhibiting inflammation, modulating cell differentiation and suppressing cancer growth. The role of miR-146a in the immune response and in the pathogenesis of hepatocellular carcinoma (HCC) has also been investigated. Although some studies have shown that increased miR-146a levels are associated with HCC, others have revealed that miR-146a suppresses cancer cell proliferation, invasion and metastasis. Toll-like receptor 4 (TLR4) signaling has an important role in regulating innate and adaptive immune responses. In addition, TLR4 is functionally expressed in HCC cells and promotes HCC cell proliferation, which can be regulated by miR-146a. The present review focuses on the recent progress in analyzing the multiple roles of miR-146a in mediating the TLR4 pathway and adaptive immune response. Finally, the function of miR-146a in the pathogenesis of HCC is also discussed.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuemei Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xian Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiaqing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
38
|
LMP1–miR-146a–CXCR4 axis regulates cell proliferation, apoptosis and metastasis. Virus Res 2019; 270:197654. [DOI: 10.1016/j.virusres.2019.197654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022]
|
39
|
Zhu Y, Zhu H, Xie X, Zheng Z, Ling Y. MicroRNA expression profile in Treg cells in the course of primary immune thrombocytopenia. J Investig Med 2019; 67:1118-1124. [PMID: 31273052 PMCID: PMC6900216 DOI: 10.1136/jim-2019-001020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune bleeding disorder which characterizes with platelet production impairment and platelet destruction increment. CD4+CD25+Foxp3+ Treg cells (Tregs) are involved in the immune pathogenesis of ITP. MicroRNAs (miRNAs) are also involved in ITP and their loss of function is shown to facilitate immune disorders. Thus, the miRNA expression profile in Tregs from ITP was analyzed in this study. We assessed the genome-wide miRNA expression profile of three newly diagnosed adult patients with ITP and three healthy controls using microarray analysis of CD4+CD25+CD127dim/− Tregs that were sorted using an immune magnetic bead kit. The miRNA microarray chip was based on miRBase 18.0 and Volcano Plot filtering software used to analyze the miRNA profile in Tregs. Distinct miRNA expression was further validated by fluorescence-based real-time quantitative PCR (qPCR). We found that 502 human miRNAs were differentially expressed (244 upregulated and 258 downregulated) in patients with ITP compared with healthy donors. We identified 37 miRNAs expressed significantly, including 26 upregulated and 11 downregulated. Among the deregulated miRNAs, three downregulated miRNAs including miR-155–5p, miR-146b-5p, and miR-142–3p were selected for qPCR verification. We confirmed that miR-155–5p, miR-146b–5p, and miR-142–3p were significantly decreased in Tregs from patients with ITP compared with healthy controls. Compared with the healthy controls, miRNAs expressed differentially in the Tregs of patients with ITP. The levels of expression of miR-155–5p, miR-146b-5p, and miR-142–3p were significantly decreased. Therefore, the deregulation of miRNAs may affect the function of Tregs in the course of ITP.
Collapse
Affiliation(s)
- Yuandong Zhu
- Department of Hematology, The Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Huan Zhu
- Department of Hematology, The Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Xiaobao Xie
- Department of Hematology, The Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital, Soochow University, Changzhou, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital, Soochow University, Changzhou, China
| |
Collapse
|
40
|
Huang W, Guo L, Zhao M, Zhang D, Xu H, Nie Q. The Inhibition on MDFIC and PI3K/AKT Pathway Caused by miR-146b-3p Triggers Suppression of Myoblast Proliferation and Differentiation and Promotion of Apoptosis. Cells 2019; 8:cells8070656. [PMID: 31261950 PMCID: PMC6678156 DOI: 10.3390/cells8070656] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/30/2023] Open
Abstract
Accumulating studies report that microRNAs (miRNAs) are actively involved in skeletal myogenesis. Previously, our study revealed that miR-146b-3p was related to the growth of skeletal muscle. Here, we further report that miR-146b-3p is essential for the proliferation, differentiation, and apoptosis of chicken myoblast. Elevated expression of miR-146b-3p can dramatically suppress proliferation and differentiation, and facilitate apoptosis of chicken myoblast. Besides, we identified two target genes of miR-146b-3p, AKT1 and MDFIC, and found that miR-146b-3p can inhibit the PI3K/AKT pathway. Our study also showed that both AKT1 and MDFIC can promote the proliferation and differentiation while inhibit the apoptosis of myoblast in chicken. Overall, our results demonstrate that miR-146b-3p, directly suppressing PI3K/AKT pathway and MDFIC, acts in the proliferation, differentiation, and apoptosis of myoblast in chicken.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Minxing Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
41
|
Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: a comprehensive meta-analysis and bioinformatics analysis. Cancer Cell Int 2019; 19:167. [PMID: 31285693 PMCID: PMC6592002 DOI: 10.1186/s12935-019-0886-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background/aims Studies have shown that miR-146a-5p was differentially expressed in diverse cancers, but the associations between miR-146a-5p expression and prognosis across multiple types of cancer as well its potential targets and downstream pathways have not been comprehensively analyzed. In this study, we performed the first meta-analysis of the prognostic value of miR-146a-5p expression in diverse malignancies and explored prospective targets of miR-146a-5p and related signaling pathways. Methods A thorough search for articles related to miR-146a-5p was performed, and RNA-seq data from The Cancer Genome Atlas (TCGA) and microarray data from gene expression omnibus profiles were used to collect information about the prognostic value of miR-146a-5p. A comprehensive meta-analysis was conducted. Twelve platforms in miRWalk 2.0 were applied to predict targets of miR-146a-5p. TCGA RNA-seq data were used to validate the inverse relationships between miR-146a-5p and its likely targets. Subsequently, gene ontology and pathway analyses were conducted using Funrich version 3.1.3. Potential protein–protein interaction (PPI) networks were constructed. Potential target genes of miR-146a-5p in lung cancer were validated by RT-qPCR. Results We included 10 articles in the meta-analysis. In a pooled analysis, the high miR-146a-5p expression group showed a better overall survival in solid cancers, particularly in reproductive system cancers and digestive system cancers. A total of 120 predicted target genes were included in a bioinformatics analysis. Five pathways involving phospholipase C (PLC) and aquaporins (AQPs) were the most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways. Moreover, the PPI network displayed the related signaling pathways and interactions among proteins. AQP1 and FYN were validated by RT-qPCR to be potential targets of miR-146a-5p in lung cancer. Conclusion There is a close link between high miR-146a-5p expression and better overall survival in 21 types of solid cancer, especially in reproductive system and digestive system cancers. Furthermore, miR-146a-5p could inhibit diverse malignancies by modulating pathways linked to PLC or AQPs. In summary, miR-146a-5p is a potential prognostic biomarker and therapeutic target for various cancers.
Collapse
|
42
|
Zhu J, Xu C, Ruan L, Wu J, Li Y, Zhang X. MicroRNA-146b Overexpression Promotes Human Bladder Cancer Invasion via Enhancing ETS2-Mediated mmp2 mRNA Transcription. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:531-542. [PMID: 31071529 PMCID: PMC6506625 DOI: 10.1016/j.omtn.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 01/20/2023]
Abstract
Although microRNAs have been validated to play prominent roles in the occurrence and development of human bladder cancer (BC), alterations and function of many microRNAs (miRNAs) in bladder cancer invasion are not fully explored yet. miR-146b was reported to be a tumor suppressor or oncomiRNA in various types of cancer. However, its accurate expression, function, and mechanism in bladder cancer remain unclear. Here we discovered that miR-146b was frequently upregulated in bladder cancer tissues compared with adjacent non-cancerous tissues. Inhibition of miR-146b resulted in a significant inhibitory effect on the invasion of bladder cancer cells by reducing mmp2 mRNA transcription and protein expression. We further demonstrated that knockdown of miR-146b attenuated ETS2 expression, which was the transcription factor of matrix metalloproteinase (MMP)2. Moreover, mechanistic studies revealed that miR-146b inhibition stabilized ARE/poly(U)-binding/degradation factor 1 (auf1) mRNA by directly binding to its mRNA 3′ UTR, further reduced ets2 mRNA stability, and finally inhibited mmp2 transcription and attenuated bladder cancer invasion abilities. The identification of the miR-146b/AUF1/ETS2/MMP2 mechanism for promoting bladder cancer invasion provides significant insights into understanding the nature of bladder cancer metastasis. Targeting the pathway described here may be a novel approach for inhibiting invasion and metastasis of bladder cancer.
Collapse
Affiliation(s)
- Junlan Zhu
- The Precision Medicine Laboratory, Beilun People's Hospital, Ningbo, Zhejiang, China.
| | - Chunxia Xu
- The Precision Medicine Laboratory, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Liming Ruan
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianping Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Li
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China.
| | - Xingguo Zhang
- The Precision Medicine Laboratory, Beilun People's Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
43
|
Iacona JR, Lutz CS. miR-146a-5p: Expression, regulation, and functions in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1533. [PMID: 30895717 DOI: 10.1002/wrna.1533] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cancer as we know it is actually an umbrella term for over 100 very unique malignancies in various tissues throughout the human body. Each type, and even subtype of cancer, has different genetic, epigenetic, and other cellular events responsible for malignant development and metastasis. Recent work has indicated that microRNAs (miRNAs) play a major role in these processes, sometimes by promoting cancer growth and other times by suppressing tumorigenesis. miRNAs are small, noncoding RNAs that negatively regulate expression of specific target genes. This review goes into an in-depth look at the most recent finding regarding the significance of one particular miRNA, miR-146a-5p, and its involvement in cancer. Target gene validation and pathway analysis have provided mechanistic insight into this miRNA's purpose in assorted tissues. Additionally, this review outlines novel findings that suggest miR-146a-5p may be useful as a noninvasive biomarker and as a targeted therapeutic in several cancers. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and the School of Graduate Studies, Health Sciences Campus - Newark, Newark, New Jersey
| |
Collapse
|
44
|
p16INK4a inhibits the proliferation of osteosarcoma cells through regulating the miR-146b-5p/TRAF6 pathway. Biosci Rep 2019; 39:BSR20181268. [PMID: 30643010 PMCID: PMC6356052 DOI: 10.1042/bsr20181268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/18/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
Down-regulation of p16INK4a and miR-146b-5p contributes to tumorigenesis in osteosarcoma (OS). However, the correlation between p16INK4a and miR-146b-5p in OS proliferation remains largely unknown. In the present study, we demonstrated that miR-146b-5p expression was positively correlated with p16INK4a in OS, but inversely correlated with TNF receptor associated factor 6 (TRAF6) expression. Overexpression of miR-146b-5p dramatically suppressed OS cell proliferation. Mechanistically, we validated TRAF6 as a direct functional target of miR-146b-5p and found that miR-146b-5p overexpression significantly decreased the level of phosphorylated PI3k and Akt, which are the pivotal downstream effectors of TRAF6. Moreover, TRAF6 expression was positively correlated with Ki-67 but inversely correlated with miR-146b-5p expression. In OS cells, silencing of TRAF6 mimicked the anti-tumor effects of miR-146b-5p. p16INK4a is an important tumor suppressor gene frequently down-regulated in OS. We found that this inhibitory effect is associated with the suppression of the miR-146b-5p, and is mediated via up-regulating TRAF6 expression. Our findings identified p16INK4a and miR-146b-5p as tumor suppressors, and suggested p16INK4a, miR-146b-5p and TRAF6 as potential therapeutic candidates for malignant OS.
Collapse
|
45
|
Meng G, Li G, Yang X, Xiao N. Inhibition of miR146b-5p suppresses CT-guided renal cell carcinoma by targeting TRAF6. J Cell Biochem 2019; 120:2382-2390. [PMID: 30206978 DOI: 10.1002/jcb.27566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system. Due to the lack of early symptoms, diagnosis of RCC usually occurs at late stages or after cancer metastasis leading to poor prognosis. Therefore, it is crucial to study early molecular mechanisms and biomarkers. Previous studies have suggested that microRNAs are involved in RCC initiation and development, making them a good candidate for early diagnosis and therapy. MiR146b-5P plays important roles in the progression of multiple cancers including thyroid cancer, pancreatic cancer, cervical cancer. However, it is not clear whether and how miR146b-5P is involved in RCC. In this study, we aimed to investigate the function of miR146b-5P in RCC. We examined the expression levels of miR146b-5p in renal cancer tissue and cell lines. We also explored the effects of blocking miR146b-5p in renal tumor growth and inflammatory signaling. Finally, we determined if miR146b-5p regulates tumorigenesis through TRAF6. We found that miR146b-5p levels were significantly increased in renal cancer tissue and renal cancer cells. Blocking miR146b-5p suppressed renal tumor growth and enhanced inflammatory response through increased TRAF6 expression. These effects were eliminated in TRAF6 knockout mice. Our results suggest that enhanced miR146b-5p expression may be a biomarker for RCC and modulating miR146b-5p and TRAF6 levels represent a potential therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Gaopei Meng
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guoce Li
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xue Yang
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Na Xiao
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
46
|
Ji H, Sang M, Liu F, Ai N, Geng C. miR-124 regulates EMT based on ZEB2 target to inhibit invasion and metastasis in triple-negative breast cancer. Pathol Res Pract 2018; 215:697-704. [PMID: 30611621 DOI: 10.1016/j.prp.2018.12.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is highly invasive and aggressive and lacks specific molecular targets to improve the prognosis. MicroRNAs (miRNAs) serve a role in promoting and suppressing tumors in various types of malignant cancer, including TNBC. However, the regulatory mechanism of miR-124 in TNBC has still remains unclear. METHODS Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-124. Cell viability was analyzed with CCK-8 assay. Cell colony formation ability was detected with colony formation assay. Cell invasion was measured with transwell assay. Dual luciferase reporter assay was conducted to verify whether ZEB2 is a target gene of miR-124. The mRNA and protein expression levels of ZEB2 and EMT markers were detected by quantitative real time PCR and western blot, respectively. RESULTS Our results showed that miR-124 was down-regulated in TNBC tissues and cells. Overexpression of miR-124 inhibited the proliferation, metastasis and epithelial-mesenchymal transition (EMT) of TNBC cells. Furthermore, ZEB2 3'UTR was considered to be a direct target of miR-124 with luciferase reporter assay. Rescue experiments confirmed that EMT was regulated by miR-124 via suppression of ZEB2. CONCLUSION miR-124 suppresses EMT and metastasis via ZEB2. Therefore, miR-124 may represent a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hong Ji
- Department of General Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meixiang Sang
- Medical Research Center, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Liu
- Medical Research Center, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ning Ai
- Department of Interventional Radiology, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuizhi Geng
- Department of General Surgery, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
47
|
McAnena P, Lowery A, Kerin MJ. Role of micro-RNAs in breast cancer surgery. Br J Surg 2018; 105:e19-e30. [PMID: 29341144 DOI: 10.1002/bjs.10790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The management of breast cancer has changed dramatically in the molecular era. Micro-RNAs can contribute to multiple facets of cancer surgery. METHODS This narrative review, based on years of research on the role of micro-RNAs, focused on the potential of these small, robust RNAs to influence all aspects of breast cancer surgery. RESULTS Micro-RNAs have a potential role as biomarkers in the diagnosis, prognosis and evaluation of response to therapy in breast cancer. They may also contribute to future therapeutic strategies. CONCLUSION The molecular era has changed understanding of cancer. Micro-RNAs have the potential for use in personalized cancer strategies.
Collapse
Affiliation(s)
- P McAnena
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - A Lowery
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| | - M J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
48
|
Yu C, Zhang L, Luo D, Yan F, Liu J, Shao S, Zhao L, Jin T, Zhao J, Gao L. MicroRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid 2018; 28:1627-1641. [PMID: 30244634 PMCID: PMC6308293 DOI: 10.1089/thy.2017.0626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: MiR-146b has been reported to be overexpressed in papillary thyroid cancer (PTC) tissues and associated with aggressive PTC. MiR-146b is regarded as a relevant diagnostic marker for this type of cancer. MiR-146b-5p has been confirmed to increase cell proliferation by repressing SMAD4. However, detailed functional analysis of another mature form of miR-146b, miR-146b-3p, has not been carried out. This study aimed to identify the differential expression of miR-146b-5p and miR-146b-3p in more aggressive PTC associated with lymph node metastasis, and further elucidate the contribution and mechanism of miR-146b-3p in the process of PTC metastasis. Methods: Expression of miR-146b-5p and miR-146b-3p was assessed in formalin-fixed paraffin-embedded tissue samples from PTC patients, and the relationship with lymph node metastasis was analyzed. A variety of PTC cells, including BHP10-3, BHP10-3SCmice, and K1 cells, were cultured and treated with miR-146b-5p or miR-146b-3p mimics/inhibitors. The cell migration and invasion abilities were characterized by the real-time cell analyzer assay and Transwell™ assay. PTC xenograft models were used to examine the effect of miR-146b-3p on PTC metastatic ability in vivo. Direct downstream targets of miR-146b-3p were analyzed by luciferase reporter assay and Western blotting. The mechanism by which miR-146b-3p affects cell metastasis was further characterized by co-transfection with merlin, the protein product of the NF2 gene. Results: MiR-146b-5p and miR-146b-3p expression was significantly higher in thyroid cancer tissues and cell lines than in normal thyroid tissue and cells. Moreover, expression of miR-146b-5p and miR-146b-3p was further increased in thyroid metastatic nodes than in thyroid cancer. After overexpression of miR-146b-5p or miR-146b-3p in BHP10-3 or K1 cells, PTC migration and invasion were increased. Notably, miR-146b-3p increased cell migration and invasion more obviously than did miR-146b-5p. Overexpression of miR-146b-3p also significantly promoted PTC tumor metastasis in vivo. Luciferase reporter assay results revealed that NF2 is a downstream target of miR-146b-3p in PTC cells, as miR-146b-3p bound directly to the 3' untranslated region of NF2, thus reducing protein levels of NF2. Overexpression of merlin reversed the enhanced aggressive effects of miR-146b-3p. Conclusions: Overexpression of miR-146b-5p and miR-146b-3p is associated with PTC metastasis. MiR-146b-3p enhances cell invasion and metastasis more obviously than miR-146b-5p through the suppression of the NF2 gene. These findings suggest a potential diagnostic and therapeutic value of these miRNAs in PTC metastasis.
Collapse
Affiliation(s)
- Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Address correspondence to: Chunxiao Yu, PhD, Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong 2500021, China
| | - Li Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Department of Endocrinology, Shandong Provincial Third Hospital, Shandong, P.R. China
| | - Dandan Luo
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- School of Medicine, Shandong University, Shandong, P.R. China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital affiliated to Shandong University, Shandong, P.R. China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Tong Jin
- Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Shandong, P.R. China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
| | - Ling Gao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Shandong, P.R. China
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Shandong, P.R. China
- Ling Gao, PhD, MD, Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong 2500021, China
| |
Collapse
|
49
|
Farokhizadeh Z, Dehbidi S, Geramizadeh B, Yaghobi R, Malekhosseini SA, Behmanesh M, Sanati MH, Afshari A, Moravej A, Karimi MH. Association of MicroRNA Polymorphisms With Hepatocellular Carcinoma in an Iranian Population. Ann Lab Med 2018; 39:58-66. [PMID: 30215231 PMCID: PMC6143471 DOI: 10.3343/alm.2019.39.1.58] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/06/2017] [Accepted: 08/16/2018] [Indexed: 12/25/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) can modulate various biological processes by influencing microRNA (miRNA) biogenesis and altering target selection. Common SNPs may alter the processing of miRNA and may be associated with hepatocellular carcinoma (HCC). We investigated the relationship between miR-499A>G, miR-149C>T, miR-196a2T>C, and miR-146aG>C and HCC susceptibility, examining the interaction of the miRNAs with hepatitis B virus (HBV). Methods We evaluated the associations of miR-499A>G (rs3746444), miR-149C>T (rs2292832), miR-196a2T>C (rs11614913), and miR-146aG>C (rs2910164) with HCC susceptibility in 100 HCC patients (70 males and 30 females) and 120 healthy controls (70 males and 50 females), using the PCR-restriction fragment length polymorphism method. Results For miR-499A>G, the frequencies of the AG genotype and G allele were higher in female HCC patients than in female controls (P=0.02 and 0.045, respectively). The frequency of the A allele was higher in HBV-positive HCC patients than in controls (P=0.019). For miR-149C>T, the frequency of the CC genotype was higher in female HCC patients than in female controls (P=0.009). For miR-196a2T>C, the frequencies of the CT and CC genotypes and the C allele were higher in HBV-positive HCC patients than in controls (P<0.001, P=0.009, and P<0.001, respectively). The frequencies of miR-146aG>C polymorphisms did not differ between HCC patients and controls. Conclusions miR-499A>G, miR-149C>T, and miR-196a2T>C were associated with the development of HCC in women and/or that of HBV-related HCC. They can be considered genetic risk factors for the development of HCC among Iranians.
Collapse
Affiliation(s)
| | - Sahar Dehbidi
- Nour Danesh Institute of Higher Education, Mimeh, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | - Afsoon Afshari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moravej
- Noncommunicable Diseases Research Centre, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
50
|
Identifying a miRNA signature for predicting the stage of breast cancer. Sci Rep 2018; 8:16138. [PMID: 30382159 PMCID: PMC6208346 DOI: 10.1038/s41598-018-34604-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a heterogeneous disease and one of the most common cancers among women. Recently, microRNAs (miRNAs) have been used as biomarkers due to their effective role in cancer diagnosis. This study proposes a support vector machine (SVM)-based classifier SVM-BRC to categorize patients with breast cancer into early and advanced stages. SVM-BRC uses an optimal feature selection method, inheritable bi-objective combinatorial genetic algorithm, to identify a miRNA signature which is a small set of informative miRNAs while maximizing prediction accuracy. MiRNA expression profiles of a 386-patient cohort of breast cancer were retrieved from The Cancer Genome Atlas. SVM-BRC identified 34 of 503 miRNAs as a signature and achieved a 10-fold cross-validation mean accuracy, sensitivity, specificity, and Matthews correlation coefficient of 80.38%, 0.79, 0.81, and 0.60, respectively. Functional enrichment of the 10 highest ranked miRNAs was analysed in terms of Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations. Kaplan-Meier survival analysis of the highest ranked miRNAs revealed that four miRNAs, hsa-miR-503, hsa-miR-1307, hsa-miR-212 and hsa-miR-592, were significantly associated with the prognosis of patients with breast cancer.
Collapse
|