1
|
Kaushik P, Mishra R, Gopal C, Kumar A. miR-198 targets TOPORS: implications for oral squamous cell carcinoma pathogenesis. Front Oncol 2024; 14:1485802. [PMID: 39697236 PMCID: PMC11652479 DOI: 10.3389/fonc.2024.1485802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
Background miRNAs play a critical role in the progression of various diseases, including oral squamous cell carcinoma (OSCC), which represents a major health concern and is one of the leading causes for new cancer cases worldwide. The miRNA dysregulation causes havoc and could be attributed to various factors, with epigenetic silencing of tumor suppressor genes being a major contributor to tumorigenesis. In this study, we have explored the tumor suppressive role of miR-198 in OSCC. Methods The tumor suppressive effect of miR-198 is established using miRNA analysis in OSCC cell lines, patient samples and xenograft nude mice model. The relationship between the miR-198 and TOPORS is explored using bioinformatics analyses, qRT-PCR, dual-luciferase reporter assay, Western blotting and cancer hall marks assays. The hypermethylation of the MIR198 promoter is confirmed using bisulfite sequencing PCR. Results We have found miR-198 to be upregulated in OSCC cells treated with 5-Azacytidine, a known DNA methyltransferase inhibitor. Upregulation of miR-198 in 5-Azacytidine treated OSCC cells appears to be due to methylation of the MIR198 promoter. Using bioinformatics analysis and dual-luciferase reporter assay, we have identified TOPORS (TOP1 binding arginine/serine rich protein, E3 ubiquitin ligase) as a novel gene target for miR-198. miR-198-mediated repression of TOPORS decreases cell proliferation and anchorage-independent growth and enhances apoptosis of OSCC cells, which is dependent on the presence of the 3'UTR in TOPORS. An inverse correlation between the expression levels of miR-198 and TOPORS is observed in OSCC patient samples, highlighting the biological relevance of their interaction. Delivery of a synthetic miR-198 mimic to OSCC cells results in a significant decrease in xenograft size in nude mice, potentiating its use in therapeutics. Conclusions These results suggest that miR-198 is epigenetically silenced in OSCC, which promotes tumor growth, in part, by upregulating the levels of TOPORS.
Collapse
Affiliation(s)
- Pankhuri Kaushik
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Radha Mishra
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Champaka Gopal
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Jalal D, Ali MY, Elkinaai N, Abdelaziz AS, Zekri W, Sayed AA. Methylation changes and INS-IGF2 expression predict progression in early-stage Wilms tumor. Clin Epigenetics 2024; 16:170. [PMID: 39593106 PMCID: PMC11590261 DOI: 10.1186/s13148-024-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Wilms tumor, the most common pediatric kidney cancer, accounts for 5% of childhood cancers and is classified by stage and histological subtype. Despite high survival rates (80-85%), approximately 15% of patients experience relapse, reducing survival to around 50%. Epigenetic changes, particularly DNA methylation, play a critical role in Wilms tumor pathogenesis. This study investigates the prognostic potential of DNA methylation in stage I and II patients with favorable histology, aiming to identify early relapse biomarkers. Genome-wide methylation was assessed using methylation microarrays in tumor tissues from relapsed patients (n = 9) and those with complete responses (n = 9), alongside normal tissues (n = 3 each). Differentially methylated probes and regions were analyzed, with additional ROC and survival analyses. Real-time PCR was used to measure IGF2 and INS-IGF2 gene expression. The analysis revealed hypomethylation in intergenic regions in remission patients, identifying 14 differentially methylated positions as potential biomarkers. Increased INS-IGF2 expression was associated with relapse, suggesting its role in disease progression. While the study concentrated on stages I and II patients, where relapse rates are lower, this focus inherently led to a smaller sample size. Despite this, the findings provide valuable insights into the potential role of DNA methylation markers for monitoring disease progression and guiding personalized treatment in Wilms tumor patients.
Collapse
Affiliation(s)
- Deena Jalal
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Mohamed Y Ali
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Naglaa Elkinaai
- Department of Pathology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Wael Zekri
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed A Sayed
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
4
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
5
|
Walia Y, de Bock CE, Huang Y. The landscape of alterations affecting epigenetic regulators in T-cell acute lymphoblastic leukemia: Roles in leukemogenesis and therapeutic opportunities. Int J Cancer 2024; 154:1522-1536. [PMID: 38155420 DOI: 10.1002/ijc.34819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy accounting for 10%-15% of pediatric and 20%-25% of adult ALL cases. Epigenetic irregularities in T-ALL include alterations in both DNA methylation and the post-translational modifications on histones which together play a critical role in the initiation and development of T-ALL. Characterizing the oncogenic mutations that result in these epigenetic changes combined with the reversibility of epigenetic modifications represents an opportunity for the development of epigenetic therapies. Oncogenic mutations and deregulated expression of DNA methyltransferases (DNMTs), Ten-Eleven Translocation dioxygenases (TETs), Histone acetyltransferases (HATs) and members of Polycomb Repressor Complex 2 (PRC2) have all been identified in T-ALL. This review focuses on the current understanding of how these mutations lead to epigenetic changes in T-ALL, their association with disease pathogenesis and the current efforts to exploit these clinically through the development of epigenetic therapies in T-ALL treatment.
Collapse
Affiliation(s)
- Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
6
|
Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett 2024; 27:181. [PMID: 38464342 PMCID: PMC10921259 DOI: 10.3892/ol.2024.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are the mainstay of treatment of hormone receptor+/human epidermal growth factor receptor 2-patients with advanced breast cancer (ABC). Despite improvements in overall survival, most patients experience disease progression. Biomarkers derived from a liquid biopsy are appealing for their potential to detect resistance to treatment earlier than computed tomography imaging. However, clinical data concerning microRNAs (miRNAs/miRs) in the context of CDK4/6is are lacking. Thus, the present study assessed the use of miRNAs in patients with ABC treated with CDK4/6is. Patients treated for ABC with CDK4/6is between June and August 2022 were eligible. miRNA expression analyses were performed using a TaqMan™ low-density miRNA array. A total of 80 consecutive patients with ABC treated with CDK4/6is at Maria Sklodowska-Curie National Research Institute of Oncology (Gliwice, Poland) were assessed, with 14 patients diagnosed with progressive disease at the time of sampling, 55 patients exhibited clinical benefit from CDK4/6i treatment and 11 patients were at the beginning of CDK4/6i treatment. Patients with disease progression had significantly higher levels of miR-21 (P=0.027), miR-34a (P=0.011), miR-193b (P=0.032), miR-200a (P=0.027) and miR-200b (P=0.003) compared with patients who benefitted from CDK4/6i treatment. Significantly higher levels of miR-34a expression were observed in patients with progressive disease than in patients beginning treatment (P=0.031). The present study demonstrated the potential innovative role of circulating miRNAs during CDK4/6i treatment. Plasma-based expression of miR-21, -34a, -193b, -200a and -200b effectively distinguished patients with ABC who responded to CDK4/6i treatment from patients who were resistant. However, longitudinal studies are required to verify the predictive and prognostic potential of miRNA.
Collapse
Affiliation(s)
- Marcin Kubeczko
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Patrycja Tudrej
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Tomasz Tyszkiewicz
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MaŁgorzata Oczko-Wojciechowska
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MichaŁ JarzĄb
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| |
Collapse
|
7
|
Wang J, Liao N, Du X, Chen Q, Wei B. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks. BMC Genomics 2024; 25:86. [PMID: 38254021 PMCID: PMC10802018 DOI: 10.1186/s12864-024-09985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Comprehensive analysis of multi-omics data is crucial for accurately formulating effective treatment plans for complex diseases. Supervised ensemble methods have gained popularity in recent years for multi-omics data analysis. However, existing research based on supervised learning algorithms often fails to fully harness the information from unlabeled nodes and overlooks the latent features within and among different omics, as well as the various associations among features. Here, we present a novel multi-omics integrative method MOSEGCN, based on the Transformer multi-head self-attention mechanism and Graph Convolutional Networks(GCN), with the aim of enhancing the accuracy of complex disease classification. MOSEGCN first employs the Transformer multi-head self-attention mechanism and Similarity Network Fusion (SNF) to separately learn the inherent correlations of latent features within and among different omics, constructing a comprehensive view of diseases. Subsequently, it feeds the learned crucial information into a self-ensembling Graph Convolutional Network (SEGCN) built upon semi-supervised learning methods for training and testing, facilitating a better analysis and utilization of information from multi-omics data to achieve precise classification of disease subtypes. RESULTS The experimental results show that MOSEGCN outperforms several state-of-the-art multi-omics integrative analysis approaches on three types of omics data: mRNA expression data, microRNA expression data, and DNA methylation data, with accuracy rates of 83.0% for Alzheimer's disease and 86.7% for breast cancer subtyping. Furthermore, MOSEGCN exhibits strong generalizability on the GBM dataset, enabling the identification of important biomarkers for related diseases. CONCLUSION MOSEGCN explores the significant relationship information among different omics and within each omics' latent features, effectively leveraging labeled and unlabeled information to further enhance the accuracy of complex disease classification. It also provides a promising approach for identifying reliable biomarkers, paving the way for personalized medicine.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Computer and Information Security, Guilin University of Electronic Technology, No. 1 Jinji Road, Guilin City, 541004, Guangxi Zhuang Autonomous Region, China
| | - Nanqing Liao
- School of Medical, Guangxi University, No. 100 East University Road, Nanning, 530004, Guangxi, China
| | - Xiaofei Du
- School of Computer and Information Security, Guilin University of Electronic Technology, No. 1 Jinji Road, Guilin City, 541004, Guangxi Zhuang Autonomous Region, China
| | - Qingfeng Chen
- School of Computer, Electronics and Information, Guangxi University, No. 100 East University Road, Nanning, 530004, Guangxi, China.
| | - Bizhong Wei
- School of Computer and Information Security, Guilin University of Electronic Technology, No. 1 Jinji Road, Guilin City, 541004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
8
|
Barrios-Palacios D, Organista-Nava J, Balandrán JC, Alarcón-Romero LDC, Zubillaga-Guerrero MI, Illades-Aguiar B, Rivas-Alarcón AA, Diaz-Lucas JJ, Gómez-Gómez Y, Leyva-Vázquez MA. The Role of miRNAs in Childhood Acute Lymphoblastic Leukemia Relapse and the Associated Molecular Mechanisms. Int J Mol Sci 2023; 25:119. [PMID: 38203290 PMCID: PMC10779195 DOI: 10.3390/ijms25010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children worldwide. Although ALL patients' overall survival rates in wealthy countries currently surpass 80%, 15-20% of patients still experience relapse. The underlying mechanisms of relapse are still not fully understood, and little progress has been made in treating refractory or relapsed disease. Disease relapse and treatment failure are common causes of leukemia-related death. In ALL relapse, several gene signatures have been identified, but it is also important to study miRNAs involved in ALL relapse in an effort to avoid relapse and to achieve better survival rates since miRNAs regulate target genes that participate in signaling pathways involved in relapse, such as those related to drug resistance, survival signals, and antiapoptotic mechanisms. Several miRNAs, such as miR-24, miR-27a, miR-99/100, miR-124, miR-1225b, miR-128b, miR-142-3p, miR-155 and miR-335-3p, are valuable biomarkers for prognosis and treatment response in ALL patients. Thus, this review aimed to analyze the primary miRNAs involved in pediatric ALL relapse and explore the underlying molecular mechanisms in an effort to identify miRNAs that may be potential candidates for anti-ALL therapy soon.
Collapse
Affiliation(s)
- Dalia Barrios-Palacios
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA;
| | - Luz del Carmen Alarcón-Romero
- Laboratorio de Citopatología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (L.d.C.A.-R.); (M.I.Z.-G.)
| | - Ma Isabel Zubillaga-Guerrero
- Laboratorio de Citopatología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (L.d.C.A.-R.); (M.I.Z.-G.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Alinne Ayulieth Rivas-Alarcón
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Jessica Julieth Diaz-Lucas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (D.B.-P.); (J.O.-N.); (B.I.-A.); (A.A.R.-A.); (J.J.D.-L.)
| |
Collapse
|
9
|
Mondal D, Shinde S, Paul S, Thakur S, Velu GSK, Tiwari AK, Dixit V, Amit A, Vishvakarma NK, Shukla D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front Oncol 2023; 13:1230273. [PMID: 37637043 PMCID: PMC10448964 DOI: 10.3389/fonc.2023.1230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
T-cell malignancy is a broad term used for a diverse group of disease subtypes representing dysfunctional malignant T cells transformed at various stages of their clonal evolution. Despite having similar clinical manifestations, these disease groups have different disease progressions and diagnostic parameters. The effective diagnosis and prognosis of such a diverse disease group demands testing of molecular entities that capture footprints of the disease physiology in its entirety. MicroRNAs (miRNAs) are a group of noncoding RNA molecules that regulate the expression of genes and, while doing so, leave behind specific miRNA signatures corresponding to cellular expression status in an altered stage of a disease. Using miRNAs as a diagnostic tool is justified, as they can effectively distinguish expressional diversity between various tumors and within subtypes of T-cell malignancies. As global attention for cancer diagnosis shifts toward liquid biopsy, diagnosis using miRNAs is more relevant in blood cancers than in solid tumors. We also lay forward the diagnostic significance of miRNAs that are indicative of subtype, progression, severity, therapy response, and relapse. This review discusses the potential use and the role of miRNAs, miRNA signatures, or classifiers in the diagnosis of major groups of T-cell malignancies like T-cell acute lymphoblastic lymphoma (T-ALL), peripheral T-cell lymphoma (PTCL), extranodal NK/T-cell lymphoma (ENKTCL), and cutaneous T-cell lymphoma (CTCL). The review also briefly discusses major diagnostic miRNAs having prominent metabolic roles in these malignancies to highlight their importance among other dysregulated miRNAs.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suresh Thakur
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - GSK Velu
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - Atul Kumar Tiwari
- Department of Zoology, Dr. Bhawan Singh Porte Government College, Pendra, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Satguru Jagjit Singh Namdhari College, Gharwa, Jharkhand, India
| | - Ajay Amit
- Department of Forensic Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
10
|
Prendecka-Wróbel M, Pigoń-Zając D, Sondej D, Grzywna K, Kamińska K, Szuta M, Małecka-Massalska T. Can Dietary Actives Affect miRNAs and Alter the Course or Prevent Colorectal Cancer? Int J Mol Sci 2023; 24:10142. [PMID: 37373289 DOI: 10.3390/ijms241210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer is a diet-related cancer. There is much research into the effects of nutrients on the prevention, modulation, and treatment of colorectal cancer. Researchers are trying to find a correlation between epidemiological observations indicating certain dietary components as the originator in the process of developing colorectal cancer, such as a diet rich in saturated animal fats, and dietary components that could eliminate the impact of harmful elements of the daily nutritional routine, i.e., substances such as polyunsaturated fatty acids, curcumin, or resveratrol. Nevertheless, it is very important to understand the mechanisms underlying how food works on cancer cells. In this case, microRNA (miRNA) seems to be a very significant research target. MiRNAs participate in many biological processes connected to carcinogenesis, progression, and metastasis. However, this is a field with development prospects ahead. In this paper, we review the most significant and well-studied food ingredients and their effects on various miRNAs involved in colorectal cancer.
Collapse
Affiliation(s)
- Monika Prendecka-Wróbel
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Daria Sondej
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Grzywna
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kamińska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 31-155 Kraków, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
11
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
13
|
Sevcikova A, Fridrichova I, Nikolaieva N, Kalinkova L, Omelka R, Martiniakova M, Ciernikova S. Clinical Significance of microRNAs in Hematologic Malignancies and Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15092658. [PMID: 37174123 PMCID: PMC10177548 DOI: 10.3390/cancers15092658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hematologic malignancies are a group of neoplastic conditions that can develop from any stage of the hematopoiesis cascade. Small non-coding microRNAs (miRNAs) play a crucial role in the post-transcriptional regulation of gene expression. Mounting evidence highlights the role of miRNAs in malignant hematopoiesis via the regulation of oncogenes and tumor suppressors involved in proliferation, differentiation, and cell death. In this review, we provide current knowledge about dysregulated miRNA expression in the pathogenesis of hematological malignancies. We summarize data about the clinical utility of aberrant miRNA expression profiles in hematologic cancer patients and their associations with diagnosis, prognosis, and the monitoring of treatment response. Moreover, we will discuss the emerging role of miRNAs in hematopoietic stem cell transplantation (HSCT), and severe post-HSCT complications, such as graft-versus-host disease (GvHD). The therapeutical potential of the miRNA-based approach in hemato-oncology will be outlined, including studies with specific antagomiRs, mimetics, and circular RNAs (circRNAs). Since hematologic malignancies represent a full spectrum of disorders with different treatment paradigms and prognoses, the potential use of miRNAs as novel diagnostic and prognostic biomarkers might lead to improvements, resulting in a more accurate diagnosis and better patient outcomes.
Collapse
Affiliation(s)
- Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
14
|
Singh VK, Kainat KM, Sharma PK. Crosstalk between epigenetics and tumor promoting androgen signaling in prostate cancer. VITAMINS AND HORMONES 2023; 122:253-282. [PMID: 36863797 DOI: 10.1016/bs.vh.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the major health burdens among all cancer types in men globally. Early diagnosis and efficacious treatment options are highly warranted as far as the incidence of PCa is concerned. Androgen-dependent transcriptional activation of androgen receptor (AR) is central to the prostate tumorigenesis and therefore hormonal ablation therapy remains the first line of treatment for PCa in the clinics. However, the molecular signaling engaged in AR-dependent PCa initiation and progression is infrequent and diverse. Moreover, apart from the genomic changes, non-genomic changes such as epigenetic modifications have also been suggested as critical regulator of PCa development. Among the non-genomic mechanisms, various epigenetic changes such as histones modifications, chromatin methylation and noncoding RNAs regulations etc. play decisive role in the prostate tumorigenesis. Given that epigenetic modifications are reversible using pharmacological modifiers, various promising therapeutic approaches have been designed for the better management of PCa. In this chapter, we discuss the epigenetic control of tumor promoting AR signaling that underlies the mechanism of prostate tumorigenesis and progression. In addition, we have discussed the approaches and opportunities to develop novel epigenetic modifications based therapeutic strategies for targeting PCa including castrate resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - K M Kainat
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Lab, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
15
|
Siqueira IR, Batabyal RA, Freishtat R, Cechinel LR. Potential involvement of circulating extracellular vesicles and particles on exercise effects in malignancies. Front Endocrinol (Lausanne) 2023; 14:1121390. [PMID: 36936170 PMCID: PMC10020195 DOI: 10.3389/fendo.2023.1121390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Physical activity and exercise have been widely related to prevention, treatment, and control for several non-communicable diseases. In this context, there are innumerous pre-clinical and clinical evidence indicating the potential role of exercise, beyond cancer prevention and survival, improved quality of life, including on psychological components, bone health and cachexia, from cancer survivors is described as well. This mini-review raises the potential role of circulating extracellular and particles vesicles (EVPs) cargo, as exerkines, conducting several positive effects on adjacent and/or distant tissues such as tumor, immune, bone and muscle cells. We highlighted new perspectives about microRNAs into EVPs changes induced by exercise and its benefits on malignancies, since microRNAs can be implicated with intricated physiopathological processes. Potential microRNAs into EVPs were pointed out here as players spreading beneficial effects of exercise, such as miR-150-5p, miR-124, miR-486, and miRNA-320a, which have previous findings on involvement with clinical outcomes and as well as tumor microenvironment, regulating intercellular communication and tumor growth. For example, high-intensity interval aerobic exercise program seems to increase miR-150 contents in circulating EVPs obtained from women with normal weight or overweight. In accordance circulating EVPs miR-150-5p content is correlated with prognosis colorectal cancer, and ectopic expression of miR-150 may reduce cell proliferation, invasion and metastasis. Beyond the involvement of bioactive miRNAs into circulating EVPs and their pathways related to clinical and preclinical findings, this mini review intends to support further studies on EVPs cargo and exercise effects in oncology.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- *Correspondence: Ionara Rodrigues Siqueira,
| | - Rachael A. Batabyal
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
- Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Robert Freishtat
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| | - Laura Reck Cechinel
- Center for Genetic Medicine Research, Children’s National Research Institute, Washington, DC, United States
| |
Collapse
|
16
|
A Comprehensive Overview of Recent Advances in Epigenetics in Pediatric Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14215384. [DOI: 10.3390/cancers14215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Recent years have brought a novel insight into our understanding of childhood acute lymphoblastic leukemia (ALL), along with several breakthrough treatment methods. However, multiple aspects of mechanisms behind this disease remain to be elucidated. Evidence suggests that leukemogenesis in ALL is widely influenced by epigenetic modifications. These changes include: DNA hypermethylation, histone modification and miRNA alteration. DNA hypermethylation in promoter regions, which leads to silencing of tumor suppressor genes, is a common epigenetic alteration in ALL. Histone modifications are mainly caused by an increased expression of histone deacetylases. A dysregulation of miRNA results in changes in the expression of their target genes. To date, several hundred genes were identified as suppressed by epigenetic mechanisms in ALL. What is promising is that epigenetic alterations in ALL may be used as potential biomarkers for classification of subtypes, predicting relapse and disease progression and assessing minimal residual disease. Furthermore, since epigenetic lesions are potentially reversible, an activation of epigenetically silenced genes with the use of hypomethylating agents or histone deacetylase inhibitors may be utilized as a therapeutic strategy for ALL. The following review summarizes our current knowledge about epigenetic modifications in ALL and describes potential uses of epigenetics in the clinical management of this disease.
Collapse
|
17
|
Gladbach YS, Sklarz LM, Roolf C, Beck J, Schütz E, Fuellen G, Junghanss C, Murua Escobar H, Hamed M. Molecular Characterization of the Response to Conventional Chemotherapeutics in Pro-B-ALL Cell Lines in Terms of Tumor Relapse. Genes (Basel) 2022; 13:genes13071240. [PMID: 35886023 PMCID: PMC9316692 DOI: 10.3390/genes13071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Little is known about optimally applying chemotherapeutic agents in a specific temporal sequence to rapidly reduce the tumor load and to improve therapeutic efficacy. The clinical optimization of drug efficacy while reducing side effects is still restricted due to an incomplete understanding of the mode of action and related tumor relapse mechanisms on the molecular level. The molecular characterization of transcriptomic drug signatures can help to identify the affected pathways, downstream regulated genes and regulatory interactions related to tumor relapse in response to drug application. We tried to outline the dynamic regulatory reprogramming leading to tumor relapse in relapsed MLL-rearranged pro-B-cell acute lymphoblastic leukemia (B-ALL) cells in response to two first-line treatments: dexamethasone (Dexa) and cytarabine (AraC). We performed an integrative molecular analysis of whole transcriptome profiles of each treatment, specifically considering public knowledge of miRNA regulation via a network-based approach to unravel key driver genes and miRNAs that may control the relapse mechanisms accompanying each treatment. Our results gave hints to the crucial regulatory roles of genes leading to Dexa-resistance and related miRNAs linked to chemosensitivity. These genes and miRNAs should be further investigated in preclinical models to obtain more hints about relapse processes.
Collapse
Affiliation(s)
- Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Madeleine Sklarz
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Catrin Roolf
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Julia Beck
- Chronix Biomedical GmbH, 37073 Göttingen, Germany; (J.B.); (E.S.)
| | - Ekkehard Schütz
- Chronix Biomedical GmbH, 37073 Göttingen, Germany; (J.B.); (E.S.)
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
| | - Christian Junghanss
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Hugo Murua Escobar
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
- Correspondence:
| |
Collapse
|
18
|
Adetutu A, Owoade AO, Adegbola PI. Inhibitory effects of ethyl acetate and butanol fractions from Morinda lucida benth on benzene-induced leukemia in mice. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Implication of microRNAs in Carcinogenesis with Emphasis on Hematological Malignancies and Clinical Translation. Int J Mol Sci 2022; 23:ijms23105838. [PMID: 35628648 PMCID: PMC9143361 DOI: 10.3390/ijms23105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs, that are involved in the multistep process of carcinogenesis, contributing to all established hallmarks of cancer. In this review, implications of miRNAs in hematological malignancies and their clinical utilization fields are discussed. As components of the complex regulatory network of gene expression, influenced by the tissue microenvironment and epigenetic modifiers, miRNAs are “micromanagers” of all physiological processes including the regulation of hematopoiesis and metabolic pathways. Dysregulated miRNA expression levels contribute to both the initiation and progression of acute leukemias, the metabolic reprogramming of malignantly transformed hematopoietic precursors, and to the development of chemoresistance. Since they are highly stable and can be easily quantified in body fluids and tissue specimens, miRNAs are promising biomarkers for the early detection of hematological malignancies. Besides novel opportunities for differential diagnosis, miRNAs can contribute to advanced chemoresistance prediction and prognostic stratification of acute leukemias. Synthetic oligonucleotides and delivery vehicles aim the therapeutic modulation of miRNA expression levels. However, major challenges such as efficient delivery to specific locations, differences of miRNA expression patterns between pediatric and adult hematological malignancies, and potential side effects of miRNA-based therapies should be considered.
Collapse
|
20
|
Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 2022; 12:5885. [PMID: 35393513 PMCID: PMC8991185 DOI: 10.1038/s41598-022-09920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the most important cancers worldwide, and if it is diagnosed early, its progression in humans can be prevented and long-term survival will be achieved accordingly. This study aimed to identify novel micro-RNA (miRNA) and gene-based biomarkers for diagnosing BC. The microarray dataset of BC tissues (GSE13507) listed in the GEO database was analyzed for this purpose. The gene expression data from three BC tissues including 165 primary bladder cancer (PBC), 58 normal looking-bladder mucosae surrounding cancer (NBMSC), and 23 recurrent non-muscle invasive tumor tissues (RNIT) were used to reconstruct gene co-expression networks. After preprocessing and normalization, deferentially expressed genes (DEGs) were obtained and used to construct the weighted gene co-expression network (WGCNA). Gene co-expression modules and low-preserved modules were extracted among BC tissues using network clustering. Next, the experimentally validated mRNA-miRNA interaction information were used to reconstruct three mRNA-miRNA bipartite networks. Reactome pathway database and Gene ontology (GO) was subsequently performed for the extracted genes of three bipartite networks and miRNAs, respectively. To further analyze the data, ten hub miRNAs (miRNAs with the highest degree) were selected in each bipartite network to reconstruct three bipartite subnetworks. Finally, the obtained biomarkers were comprehensively investigated and discussed in authentic studies. The obtained results from our study indicated a group of genes including PPARD, CST4, CSNK1E, PTPN14, ETV6, and ADRM1 as well as novel miRNAs (e.g., miR-16-5p, miR-335-5p, miR-124-3p, and let-7b-5p) which might be potentially associated with BC and could be a potential biomarker. Afterward, three drug-gene interaction networks were reconstructed to explore candidate drugs for the treatment of BC. The hub miRNAs in the mRNA-miRNA bipartite network played a fundamental role in BC progression; however, these findings need further investigation.
Collapse
Affiliation(s)
- Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sahar Sadat Hosseini
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
21
|
Li Y, Lv M, Lu M, Guan H. miR-124a Involves in the Regulation of Wnt/ β-Catenin and P53 Pathways to Inhibit Abdominal Aortic Aneurysm via Targeting BRD4. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9241959. [PMID: 35096137 PMCID: PMC8799344 DOI: 10.1155/2022/9241959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) belongs to a progressive, gradual aortic rupture, which can lead to death without surgical intervention. The key factors regulating the occurrence and progress of AAA are not clear. Increasing studies have indicated that microRNA (miRNA) plays an important role in cancer development. miR-124a serves as a tumor suppressor in several neoplasms, and its upregulation can greatly inhibit the life activities such as malignant growth and migration of tumor cells. AIM The objective of this study is to explore the association of miR-124a with AAA and to uncover the regulated mechanism of miR-124a on AAA progression. METHODS The specimens from the AAA patients were used for observing the miR-124a expression, and human aortic endothelial cells (hAoECs) were treated with AngII to establish the AAA cell models. The quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), CCK-8, transwell assay, flow cytometry assay, and western blot were conducted to unearth the regulation mechanism of miR-124a on AAA, and the dual-luciferase reporter assay was employed to investigate the downstream target of miR-124a. RESULTS miR-124a was significantly downregulated in the whole blood of the patients, and the decreased miR-124a was also observed in AAA cell models. Overexpressing miR-124a could effectively inhibit the proliferation and migration and promote the apoptosis of the AAA cells. The dual-luciferase reporter assay confirmed that BRD4 was a downstream target of miR-124a, and BRD4 upregulation could obviously reverse the effects of miR-124a on the phenotype of AAA cells. Moreover, it was found that miR-124a could regulate the activities of Wnt/β-catenin and P53 pathways via targeting the BRD4. CONCLUSION Our data suggested that miR-124a could regulate the activities of Wnt/β-catenin and P53 to suppress the AAA progression via targeting the BRD4.
Collapse
Affiliation(s)
- Yunhui Li
- Department of Vascular Surgery, Jinan People's Hospital Affiliated to Shandong First Medical University, China
| | - Meifeng Lv
- Pharmacy Department of Jinan Second Maternal and Child Health Hospital, China
| | - Mingshu Lu
- Department of Vascular Surgery, Jinan People's Hospital Affiliated to Shandong First Medical University, China
| | - Hongliang Guan
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, China
| |
Collapse
|
22
|
Epi-miRNAs: Regulators of the Histone Modification Machinery in Human Cancer. JOURNAL OF ONCOLOGY 2022; 2022:4889807. [PMID: 35087589 PMCID: PMC8789461 DOI: 10.1155/2022/4889807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death and disability worldwide. Epigenetic deregulation is one of the most critical mechanisms in carcinogenesis and can be classified into effects on DNA methylation and histone modification. MicroRNAs are small noncoding RNAs involved in fine-tuning their target genes after transcription. Various microRNAs control the expression of histone modifiers and are involved in a variety of cancers. Therefore, overexpression or downregulation of microRNAs can alter cell fate and cause malignancies. In this review, we discuss the role of microRNAs in regulating the histone modification machinery in various cancers, with a focus on the histone-modifying enzymes such as acetylases, deacetylases, methyltransferases, demethylases, kinases, phosphatases, desumoylases, ubiquitinases, and deubiquitinases. Understanding of microRNA-related aberrations underlying histone modifiers in pathogenesis of different cancers can help identify novel therapeutic targets or early detection approaches that allow better management of patients or monitoring of treatment response.
Collapse
|
23
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Boldrin E, Gaffo E, Niedermayer A, Boer JM, Zimmermann M, Weichenhan D, Claus R, Münch V, Sun Q, Enzenmüller S, Seyfried F, Demir S, Zinngrebe J, Cario G, Schrappe M, Den Boer ML, Plass C, Debatin KM, Te Kronnie G, Bortoluzzi S, Meyer LH. MicroRNA-497/195 is tumor suppressive and cooperates with CDKN2A/B in pediatric acute lymphoblastic leukemia. Blood 2021; 138:1953-1965. [PMID: 34098582 DOI: 10.1182/blood.2020007591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)- and cyclin-D3 (CCND3)-mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195-mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.
Collapse
Affiliation(s)
- Elena Boldrin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- Department of Biology, University of Padua, Padua, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, Padua University, Padua, Italy
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Judith M Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Claus
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
- Department of Hematology/Oncology, Augsburg University Medical Center, Augsburg, Germany
| | - Vera Münch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Qian Sun
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Felix Seyfried
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Salih Demir
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Gunnar Cario
- Pediatric Hematology and Oncology, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | - Martin Schrappe
- Pediatric Hematology and Oncology, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | - Monique L Den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Geertruij Te Kronnie
- Department of Women's and Children's Health, Padua University, Padua, Italy; and
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, Padua University, Padua, Italy
- Interdepartmental Research Center for Innovative Biotechnologies, Padua University, Padua, Italy
| | - Lüder Hinrich Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
25
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
26
|
Restoration of miR-124 serves as a promising therapeutic approach in CRC by affecting CDK6 which is itself a prognostic and diagnostic factor. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Porazzi P, De Dominici M, Salvino J, Calabretta B. Targeting the CDK6 Dependence of Ph+ Acute Lymphoblastic Leukemia. Genes (Basel) 2021; 12:genes12091355. [PMID: 34573335 PMCID: PMC8467343 DOI: 10.3390/genes12091355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Ph+ ALL is a poor-prognosis leukemia subtype driven by the BCR-ABL1 oncogene, either the p190- or the p210-BCR/ABL isoform in a 70:30 ratio. Tyrosine Kinase inhibitors (TKIs) are the drugs of choice in the therapy of Ph+ ALL. In combination with standard chemotherapy, TKIs have markedly improved the outcome of Ph+ ALL, in particular if this treatment is followed by bone marrow transplantation. However, resistance to TKIs develops with high frequency, causing leukemia relapse that results in <5-year overall survival. Thus, new therapies are needed to address relapsed/TKI-resistant Ph+ ALL. We have shown that expression of cell cycle regulatory kinase CDK6, but not of the highly related CDK4 kinase, is required for the proliferation and survival of Ph+ ALL cells. Comparison of leukemia suppression induced by treatment with the clinically-approved dual CDK4/6 inhibitor palbociclib versus CDK6 silencing revealed that the latter treatment was markedly more effective, probably reflecting inhibition of CDK6 kinase-independent effects. Thus, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that preferentially degrade CDK6 over CDK4. One compound termed PROTAC YX-2-107, which degrades CDK6 by recruiting the Cereblon ubiquitin ligase, markedly suppressed leukemia burden in mice injected with de novo or TKI-resistant Ph+ ALL. The effect of PROTAC YX-2-107 was comparable or superior to that of palbociclib. The development of CDK6-selective PROTACs represents an effective strategy to exploit the “CDK6 dependence” of Ph+ ALL cells while sparing a high proportion of normal hematopoietic progenitors that depend on both CDK6 and CDK6 for their survival. In combination with other agents, CDK6-selective PROTACs may be valuable components of chemotherapy-free protocols for the therapy of Ph+ ALL and other CDK6-dependent hematological malignancies.
Collapse
Affiliation(s)
- Patrizia Porazzi
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| | - Marco De Dominici
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
28
|
Andrikopoulou A, Shalit A, Zografos E, Koutsoukos K, Korakiti AM, Liontos M, Dimopoulos MA, Zagouri F. MicroRNAs as Potential Predictors of Response to CDK4/6 Inhibitor Treatment. Cancers (Basel) 2021; 13:cancers13164114. [PMID: 34439268 PMCID: PMC8391635 DOI: 10.3390/cancers13164114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary MicroRNAs are endogenous non-coding 20–22 nucleotide long RNAs that play a fundamental role in the post-transcriptional control of gene expression. Consequently, microRNAs are involved in multiple biological processes of cancer and could be used as biomarkers with prognostic and predictive significance. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have become a mainstay of treatment for patients with advanced hormone receptor-positive (HR) breast cancer. Despite the initial high response rates, approximately 10% of patients demonstrate primary resistance to CDK4/6 inhibitors while acquired resistance is almost inevitable. Considering the fundamental role of miRNAs in tumorigenesis, we aimed to explore the potential involvement of microRNAs in response to CDK4/6 inhibition in solid tumors. A number of microRNAs were shown to confer resistance or sensitivity to CDK4/6 inhibitors in preclinical studies, although this remains to be proved in human studies. Abstract Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as novel treatment options in the management of advanced or metastatic breast cancer. MicroRNAs are endogenous non-coding 19–22-nucleotide-long RNAs that regulate gene expression in development and tumorigenesis. Herein, we systematically review all microRNAs associated with response to CDK4/6 inhibitors in solid tumors and hematological malignancies. Eligible articles were identified by a search of the MEDLINE and ClinicalTrials.gov databases for the period up to1 January 2021; the algorithm consisted of a predefined combination of the words “microRNAs”, “cancer” and “CDK 4/6 inhibitors”. Overall, 15 studies were retrieved. Six microRNAs (miR-126, miR-326, miR3613-3p, miR-29b-3p, miR-497 and miR-17-92) were associated with sensitivity to CDK4/6 inhibitors. Conversely, six microRNAs (miR-193b, miR-432-5p, miR-200a, miR-223, Let-7a and miR-21) conferred resistance to treatment with CDK4/6 inhibitors. An additional number of microRNAs (miR-124a, miR9, miR200b and miR-106b) were shown to mediate cellular response to CDK4/6 inhibitors without affecting sensitivity to treatment. Collectively, our review provides evidence that microRNAs could serve as predictive biomarkers for treatment with CDK4/6 inhibitors. Moreover, microRNA-targeted therapy could potentially maximize sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Almog Shalit
- Medical School, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Anna-Maria Korakiti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
- Correspondence: ; Tel.: +30-21-0338-1554; Fax: +30-21-3216-2511
| |
Collapse
|
29
|
Pajares MJ, Alemany-Cosme E, Goñi S, Bandres E, Palanca-Ballester C, Sandoval J. Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. Int J Mol Sci 2021; 22:ijms22147350. [PMID: 34298969 PMCID: PMC8306710 DOI: 10.3390/ijms22147350] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a complex disease involving alterations of multiple processes, with both genetic and epigenetic features contributing as core factors to the disease. In recent years, it has become evident that non-coding RNAs (ncRNAs), an epigenetic factor, play a key role in the initiation and progression of cancer. MicroRNAs, the most studied non-coding RNAs subtype, are key controllers in a myriad of cellular processes, including proliferation, differentiation, and apoptosis. Furthermore, the expression of miRNAs is controlled, concomitantly, by other epigenetic factors, such as DNA methylation and histone modifications, resulting in aberrant patterns of expression upon the occurrence of cancer. In this sense, aberrant miRNA landscape evaluation has emerged as a promising strategy for cancer management. In this review, we have focused on the regulation (biogenesis, processing, and dysregulation) of miRNAs and their role as modulators of the epigenetic machinery. We have also highlighted their potential clinical value, such as validated diagnostic and prognostic biomarkers, and their relevant role as chromatin modifiers in cancer therapy.
Collapse
Affiliation(s)
- María J. Pajares
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
| | - Ester Alemany-Cosme
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Saioa Goñi
- Biochemistry Area, Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.J.P.); (S.G.)
| | - Eva Bandres
- IDISNA Navarra’s Health Research Institute, 31008 Pamplona, Spain;
- Immunology Unit, Department of Hematology, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Cora Palanca-Ballester
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit, Health Research Institute la Fe, 460026 Valencia, Spain; (E.A.-C.); (C.P.-B.)
- Epigenomics Core Facility, Health Research Institute la Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-961246709
| |
Collapse
|
30
|
Yadav P, Bandyopadhayaya S, Ford BM, Mandal C. Interplay between DNA Methyltransferase 1 and microRNAs During Tumorigenesis. Curr Drug Targets 2021; 22:1129-1148. [PMID: 33494674 DOI: 10.2174/1389450122666210120141546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023]
Abstract
Cancer is a genetic disease resulting from genomic changes; however, epigenetic alterations act synergistically with these changes during tumorigenesis and cancer progression. Epigenetic variations are gaining more attention as an important regulator in tumor progression, metastasis and therapy resistance. Aberrant DNA methylation at CpG islands is a central event in epigeneticmediated gene silencing of various tumor suppressor genes. DNA methyltransferase 1 (DNMT1) predominately methylates at CpG islands on hemimethylated DNA substrates in proliferation of cells. DNMT1 has been shown to be overexpressed in various cancer types and exhibits tumor-promoting potential. The major drawbacks to DNMT1-targeted cancer therapy are the adverse effects arising from nucleoside and non-nucleoside based DNMT1 inhibitors. This paper focuses on the regulation of DNMT1 by various microRNAs (miRNAs), which may be assigned as future DNMT1 modulators, and highlights how DNMT1 regulates various miRNAs involved in tumor suppression. Importantly, the role of reciprocal inhibition between DNMT1 and certain miRNAs in tumorigenic potential is approached in this review. Hence, this review seeks to project an efficient and strategic approach using certain miRNAs in conjunction with conventional DNMT1 inhibitors as a novel cancer therapy. It has also been pinpointed to select miRNA candidates associated with DNMT1 regulation that may not only serve as potential biomarkers for cancer diagnosis and prognosis, but may also predict the existence of aberrant methylation activity in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX 78209, United States
| | - Chandi Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh- 305817, Ajmer, Rajasthan, India
| |
Collapse
|
31
|
Cyclin-Dependent Kinase Inhibitors in Hematological Malignancies-Current Understanding, (Pre-)Clinical Application and Promising Approaches. Cancers (Basel) 2021; 13:cancers13102497. [PMID: 34065376 PMCID: PMC8161389 DOI: 10.3390/cancers13102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cyclin-dependent kinases are involved in the regulation of cancer-initiating processes like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression. Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and signaling molecule activities are considered as potential biomarkers. We therefore summarized relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and further discuss molecular mechanisms of resistance and other open questions. Abstract Genetically altered stem or progenitor cells feature gross chromosomal abnormalities, inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases (CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity and different clinical presentation is challenging for selecting the right target and defining the ideal combination to mediate long-term disease control. Preclinical and early clinical data suggest that specific CDKIs have activity in selected patients, dependent on the existing rearrangements and mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6 inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide an overview on molecular mechanisms of response vs. resistance and discuss open questions.
Collapse
|
32
|
Gębarowska K, Mroczek A, Kowalczyk JR, Lejman M. MicroRNA as a Prognostic and Diagnostic Marker in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2021; 22:5317. [PMID: 34070107 PMCID: PMC8158355 DOI: 10.3390/ijms22105317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/14/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a biologically and genetically heterogeneous disease with a poor prognosis overall and several subtypes. The neoplastic transformation takes place through the accumulation of numerous genetic and epigenetic abnormalities. There are only a few prognostic factors in comparison to B cell precursor acute lymphoblastic leukemia, which is characterized by a lower variability and more homogeneous course. The microarray and next-generation sequencing (NGS) technologies exploring the coding and non-coding part of the genome allow us to reveal the complexity of the genomic and transcriptomic background of T-ALL. miRNAs are a class of non-coding RNAs that are involved in the regulation of cellular functions: cell proliferations, apoptosis, migrations, and many other processes. No miRNA has become a significant prognostic and diagnostic factor in T-ALL to date; therefore, this topic of investigation is extremely important, and T-ALL is the subject of intensive research among scientists. The altered expression of many genes in T-ALL might also be caused by wide miRNA dysregulation. The following review focuses on summarizing and characterizing the microRNAs of pediatric patients with T-ALL diagnosis and their potential future use as predictive factors.
Collapse
Affiliation(s)
- Katarzyna Gębarowska
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Mroczek
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.R.K.)
| | - Jerzy R. Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.R.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
33
|
Huang HY, Li J, Tang Y, Huang YX, Chen YG, Xie YY, Zhou ZY, Chen XY, Ding SY, Luo MF, Jin CN, Zhao LS, Xu JT, Zhou Y, Lin YCD, Hong HC, Zuo HL, Hu SY, Xu PY, Li X, Huang HD. MethHC 2.0: information repository of DNA methylation and gene expression in human cancer. Nucleic Acids Res 2021; 49:D1268-D1275. [PMID: 33270889 PMCID: PMC7779066 DOI: 10.1093/nar/gkaa1104] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
DNA methylation is an important epigenetic regulator in gene expression and has several roles in cancer and disease progression. MethHC version 2.0 (MethHC 2.0) is an integrated and web-based resource focusing on the aberrant methylomes of human diseases, specifically cancer. This paper presents an updated implementation of MethHC 2.0 by incorporating additional DNA methylomes and transcriptomes from several public repositories, including 33 human cancers, over 50 118 microarray and RNA sequencing data from TCGA and GEO, and accumulating up to 3586 manually curated data from >7000 collected published literature with experimental evidence. MethHC 2.0 has also been equipped with enhanced data annotation functionality and a user-friendly web interface for data presentation, search, and visualization. Provided features include clinical-pathological data, mutation and copy number variation, multiplicity of information (gene regions, enhancer regions, and CGI regions), and circulating tumor DNA methylation profiles, available for research such as biomarker panel design, cancer comparison, diagnosis, prognosis, therapy study and identifying potential epigenetic biomarkers. MethHC 2.0 is now available at http://awi.cuhk.edu.cn/∼MethHC.
Collapse
Affiliation(s)
- Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yun Tang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yi-Xian Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yi-Gang Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yue-Yang Xie
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Zhe-Yuan Zhou
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xin-Yi Chen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Si-Yuan Ding
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Meng-Fan Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Chen-Nan Jin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Le-Shan Zhao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Jia-Tong Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Ying Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Si-Yao Hu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Pei-Yi Xu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Xin Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province 518172, China
| |
Collapse
|
34
|
Zhong Y, Li L, Chen Z, Diao S, He Y, Zhang Z, Zhang H, Yuan X, Li J. MIR143 Inhibits Steroidogenesis and Induces Apoptosis Repressed by H3K27me3 in Granulosa Cells. Front Cell Dev Biol 2020; 8:565261. [PMID: 33195195 PMCID: PMC7604341 DOI: 10.3389/fcell.2020.565261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The granulosa cell growth factor and apoptotic factor are two factors to determine follicular apoptosis. Whether ssc-miR-143-3p (MIR143) plays as an apoptosis factor in porcine granulosa cells (pGCs) remain unclear. This study tries to investigate what function of MIR143 is and how MIR143 gets these functions in pGCs from 3 to 5 mm medium-sized follicles. Firstly, 5' RACE was used to identify the structure of MIR143, and in situ hybridization, qPCR, and DNA pull-down were employed to exhibit the spatio-temporal expression and transcriptional regulation of MIR143. Furthermore, ELISA, Western blotting, and flow cytometry were adopted to explore the functions of MIR143 in pGCs. It was found that MIR143 was an exonic miRNA located in host gene LOC100514340 with an increasing expression during follicular growth. Moreover, MIR143 suppressed steroidogenesis related genes of HSD17β4, ER1, and PTGS2, negatively regulating estrogen, androgen, progesterone, and prostaglandin. MIR143 induced the apoptosis via activation of BAX-dependent Caspase 3 signaling. Furthermore, H3K27me3 influenced the recruitment of transcription factors and binding proteins to repress MIR143 transcription. At last, H3K27me3 agonist with MIR143 inhibition activated steroidogenesis but repressed apoptosis. These findings suggest that H3K27me3-mediated MIR143 inhibition play a critical role in follicular atresia by regulating cell apoptosis and steroidogenesis, which will provide useful information for further investigations of H3K27me3-miediated MIR143 epigenetic regulation in follicular growth in mammals.
Collapse
Affiliation(s)
- Yuyi Zhong
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liying Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingting He
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Karimzadeh MR, Pourdavoud P, Ehtesham N, Qadbeigi M, Asl MM, Alani B, Mosallaei M, Pakzad B. Regulation of DNA methylation machinery by epi-miRNAs in human cancer: emerging new targets in cancer therapy. Cancer Gene Ther 2020; 28:157-174. [PMID: 32773776 DOI: 10.1038/s41417-020-00210-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Disruption in DNA methylation processes can lead to alteration in gene expression and function that would ultimately result in malignant transformation. In this way, studies have shown that, in cancers, methylation-associated silencing inactivates tumor suppressor genes, as effectively as mutations. DNA methylation machinery is composed of several genes, including those with DNA methyltransferases activity, proteins that bind to methylated cytosine in the promoter region, and enzymes with demethylase activity. Based on a prominent body of evidence, DNA methylation machinery could be regulated by microRNAs (miRNAs) called epi-miRNAs. Numerous studies demonstrated that dysregulation in DNA methylation regulators like upstream epi-miRNAs is indispensable for carcinogenesis; consequently, the malignant capacity of these cells could be reversed by restoring of this regulatory system in cancer. Conceivably, recognition of these epi-miRNAs in cancer cells could not only reveal novel molecular entities in carcinogenesis, but also render promising targets for cancer therapy. In this review, at first, we have an overview of the methylation alteration in cancers, and the effect of this phenomenon in miRNAs expression and after that, we conduct an in-depth discussion about the regulation of DNA methylation regulators by epi-miRNAs in cancer cells.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | | | - Naeim Ehtesham
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masood Movahedi Asl
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Pakzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
36
|
Pan X, Guo Z, Chen Y, Zheng S, Peng M, Yang Y, Wang Z. STAT3-Induced lncRNA SNHG17 Exerts Oncogenic Effects on Ovarian Cancer through Regulating CDK6. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:38-49. [PMID: 32911343 PMCID: PMC7490451 DOI: 10.1016/j.omtn.2020.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Emerging studies indicate that long noncoding RNAs (lncRNAs) play crucial roles in ovarian cancer (OC). By analyzing high-throughput data, we found that SNHG17 was highly expressed in multiple OC cohorts. However, its functions in OC were not explored. In this study, lncRNA expression in OC was analyzed by a series of microarray data. The functions of SNHG17 were investigated by various in vitro and in vivo assays. Fluorescence in situ hybridization (FISH), RNA pull-down, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation (RIP), and luciferase reporter assays were used to reveal the potential mechanisms involved in the effects of SNHG17. We found that SNHG17 was overexpressed in OC and that the oncogenic transcription factor STAT3 was involved in promoting its expression. In addition, high SNHG17 expression was associated with a poor prognosis in OC. Functional analysis revealed that SNHG17 could promote OC cell growth. Mechanistically, SNHG17 was found to be located predominantly in the cytoplasm. It could regulate expression of CDK6, an important cell-cycle regulator, by acting as a molecular sponge for miR-214-3p. In summary, our study suggested that SNHG17 acted as an oncogene in OC, which might serve as a novel target for OC diagnosis and therapy.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhiheng Guo
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yanyan Chen
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shu Zheng
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Min Peng
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yi Yang
- Center for Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Zhenpeng Wang
- Department of Gynecologic Oncology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
37
|
Burke MJ, Kostadinov R, Sposto R, Gore L, Kelley SM, Rabik C, Trepel JB, Lee MJ, Yuno A, Lee S, Bhojwani D, Jeha S, Chang BH, Sulis ML, Hermiston ML, Gaynon P, Huynh V, Verma A, Gardner R, Heym KM, Dennis RM, Ziegler DS, Laetsch TW, Oesterheld JE, Dubois SG, Pollard JA, Glade-Bender J, Cooper TM, Kaplan JA, Farooqi MS, Yoo B, Guest E, Wayne AS, Brown PA. Decitabine and Vorinostat with Chemotherapy in Relapsed Pediatric Acute Lymphoblastic Leukemia: A TACL Pilot Study. Clin Cancer Res 2020; 26:2297-2307. [PMID: 31969338 PMCID: PMC7477726 DOI: 10.1158/1078-0432.ccr-19-1251] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/20/2019] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Treatment failure from drug resistance is the primary reason for relapse in acute lymphoblastic leukemia (ALL). Improving outcomes by targeting mechanisms of drug resistance is a potential solution. PATIENTS AND METHODS We report results investigating the epigenetic modulators decitabine and vorinostat with vincristine, dexamethasone, mitoxantrone, and PEG-asparaginase for pediatric patients with relapsed or refractory B-cell ALL (B-ALL). Twenty-three patients, median age 12 years (range, 1-21) were treated in this trial. RESULTS The most common grade 3-4 toxicities included hypokalemia (65%), anemia (78%), febrile neutropenia (57%), hypophosphatemia (43%), leukopenia (61%), hyperbilirubinemia (39%), thrombocytopenia (87%), neutropenia (91%), and hypocalcemia (39%). Three subjects experienced dose-limiting toxicities, which included cholestasis, steatosis, and hyperbilirubinemia (n = 1); seizure, somnolence, and delirium (n = 1); and pneumonitis, hypoxia, and hyperbilirubinemia (n = 1). Infectious complications were common with 17 of 23 (74%) subjects experiencing grade ≥3 infections including invasive fungal infections in 35% (8/23). Nine subjects (39%) achieved a complete response (CR + CR without platelet recovery + CR without neutrophil recovery) and five had stable disease (22%). Nine (39%) subjects were not evaluable for response, primarily due to treatment-related toxicities. Correlative pharmacodynamics demonstrated potent in vivo modulation of epigenetic marks, and modulation of biologic pathways associated with functional antileukemic effects. CONCLUSIONS Despite encouraging response rates and pharmacodynamics, the combination of decitabine and vorinostat on this intensive chemotherapy backbone was determined not feasible in B-ALL due to the high incidence of significant infectious toxicities. This study is registered at http://www.clinicaltrials.gov as NCT01483690.
Collapse
Affiliation(s)
- Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Rumen Kostadinov
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Richard Sposto
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lia Gore
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Shannon M Kelley
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Cara Rabik
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | - Deepa Bhojwani
- Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sima Jeha
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Bill H Chang
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Maria Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle L Hermiston
- Department of Pediatrics, UCSF Medical Center-Mission Bay, San Francisco, California
| | - Paul Gaynon
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Van Huynh
- Department of Pediatrics, Children's Hospital of Orange County, Orange, California
| | - Anupam Verma
- Department of Pediatrics, Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | - Rebecca Gardner
- Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Kenneth M Heym
- Department of Pediatrics, Cook Children's Medical Center, Fort Worth, Texas
| | - Robyn M Dennis
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia
| | - Theodore W Laetsch
- Department of Pediatrics, UT Southwestern/Harold C. Simmons Comprehensive Cancer Center, Dallas, Texas
- Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health, Dallas, Texas
| | - Javier E Oesterheld
- Department of Pediatrics, Carolinas Medical Center/Levine Cancer Institute, Charlotte, North Carolina
| | - Steven G Dubois
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Jessica A Pollard
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Julia Glade-Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Todd M Cooper
- Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Joel A Kaplan
- Department of Pediatrics, Carolinas Medical Center/Levine Cancer Institute, Charlotte, North Carolina
| | - Midhat S Farooqi
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | - Byunggil Yoo
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | - Erin Guest
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, Missouri
| | - Alan S Wayne
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Patrick A Brown
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
38
|
Qiao C, Liu W, Jiang H, He M, Yang Q, Xing Y. Integrated analysis of miRNA and mRNA expression profiles in p53-edited PFF cells. Cell Cycle 2020; 19:949-959. [PMID: 32213107 DOI: 10.1080/15384101.2020.1742852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
p53 is the most frequently mutated gene in human cancers, with over half of all tumors harboring mutation at this locus. R248 and R249 (corresponding to porcine R241 and R242), are among the hotspot mutations frequently mutated in liver, lung, breast, and some other cancers. In this study, p53 gene was knocked out or point-edited (R241 and R242 were converted to 241W and 242S) in porcine fetal fibroblast (PFF) cells via CRISPR-Cas9 technique. High throughput sequencing of miRNA and mRNA uncovered a total of 225 differentially expressed miRNAs (DEMs) and 738 differentially expressed genes (DEGs) in the p53 knockout (p53-KO) cells, and a total of 211 DEMs and 722 DEGs in the point-modified (p53-241W242S) cells. Totally 28 annotated DEMs were found to overlap between p53-KO/p53-WT and p53-241W242S/p53-WT miRNAs datasets, of which miR-34 c, miR-218, miR-205, miR-105-1, miR-105-2, miR-206, miR-224 and miR-429 play important roles in p53 regulatory network. Among the top 10 DEGs in p53-KO and p53-241W242S cells, most genes were reported to be involved in tumors, cell proliferation or cell migration. p53-KO and p53-241W242S cells showed a significantly higher (P < 0.01) proliferation rate compared with p53-WT cells. In conclusion, genetic modifications of p53 gene significantly affect the expression levels of a large number of genes and miRNAs in the PFF cells. The p53-edited PFF cells could be used as non-tumor cell models for investigating the p53 signaling network, and as donor cells for somatic nuclear transfer, with the aim to develop porcine models with the corresponding p53 mutations.Abbreviations: CRISPR-Cas9: Clustered regularly interspaced short palindromic repeats-associated protein 9; PFF: porcine fetal fibroblasts; SCNT: somatic cell nuclear transfer; RNA sequencing: small RNA sequencing and mRNA sequencing; DEGs: differentially expressed mRNAs; DEMs: differentially expressed miRNAs.
Collapse
Affiliation(s)
- Chuanmin Qiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Haoyun Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qiang Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
39
|
Rashed WM, Hamza MM, Matboli M, Salem SI. MicroRNA as a prognostic biomarker for survival in childhood acute lymphoblastic leukemia: a systematic review. Cancer Metastasis Rev 2020; 38:771-782. [PMID: 31807971 DOI: 10.1007/s10555-019-09826-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies suggest abnormal microRNA (miRNA) expression may have potential prognostic value in childhood acute lymphoblastic leukemia (ALL). In this systematic review, we searched different databases (PubMed, ASH, ASCO, and SIOP) for studies published from 2008 to 2018 that evaluated the prognostic impact of miRNAs in childhood ALL. We also used DIANA-miRPath v3.0 to further characterize the functional role of the significant prognostic miRNAs identified in our systematic review. Here we evaluate 15 studies with a total of 38 different miRNAs and 1545 children with B-cell ALL (B-ALL) or T-cell ALL (T-ALL) recruited over approximately 3 decades (1984-2016) with different treatment protocols and ethnicities. Out of the 15 studies examined, 14 reported 32 dysregulated miRNAs with significant prognostic impact in pediatric ALL patients. Only one Brazilian study reported no significant prognostic effect of 7 miRNAs, while the seventh miRNA (miR-100) showed prognostic significance in a Chinese study. Using DIANA-TarBase v7.0 of DIANA-miRPath v3.0, pathway enrichment analysis revealed 25 miRNAs modulated 24 molecular pathways involved in cancer development. To remove the effect of salvage therapy, 9 studies carried out multivariate cox regression analysis for both relapse-free survival and disease-free survival to develop a panel of 23 miRNAs acting as independent prognostic biomarkers. To enhance the clinical application, utility, and validity of the miRNAs discussed here, their potential prognostic value should be confirmed in larger cohort studies within different ethnicities and different ALL protocols adjusted for other contemporary validated prognostic factors in childhood ALL.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Clinical Trials Unit, Clinical Research, Children's Cancer Hospital Egypt-57357 (CCHE-57357), Cairo, Egypt.
| | - Mahmoud M Hamza
- Biostatistics Unit, Clinical Research, Children's Cancer Hospital Egypt-57357 (CCHE-57357), Cairo, Egypt
| | - Marwa Matboli
- Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherin I Salem
- Cytogenetics Department, Children's Cancer Hospital Egypt-57357 (CCHE-57357), Cairo, Egypt
- National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
40
|
Zhu Z, Jin Z, Zhang H, Zhang M, Sun D. Integrative Clustering Reveals a Novel Subtype of Soft Tissue Sarcoma With Poor Prognosis. Front Genet 2020; 11:69. [PMID: 32127798 PMCID: PMC7038822 DOI: 10.3389/fgene.2020.00069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background Soft tissue sarcomas (STSs) are heterogeneous at the clinical and molecular level and need to be further sub-clustered for treatment and prognosis. Materials And Methods STSs were sub-clustered based on RNAseq and miRNAseq data extracted from The Cancer Genome Atlas (TCGA) through the combined process of similarity network fusion (SNF) and consensus clustering (CC). The expression and clinical characteristics of each sub-cluster were analyzed. The genes differentially expressed (lncRNAs, miRNAs, and mRNAs) between the poor prognosis and good prognosis clusters were used to construct a competing endogenous RNA (ceRNA) network. Functional enrichment analysis was conducted and a hub network was extracted from the constructed ceRNA network. Results A total of 247 STSs were classified into three optimal sub-clusters, and patients in cluster 2 (C2) had a significantly lower rate of survival. A ceRNA network with 91 nodes and 167 edges was constructed according to the hypothesis of ceRNA. Functional enrichment analysis revealed that the network was mainly associated with organism development functions. Moreover, LncRNA (KCNQ1OT1)-miRNA (has-miR-29c-3p)-mRNA (JARID2, CDK8, DNMT3A, TET1)-competing endogenous gene pairs were identified as hub networks of the ceRNA network, in which each component showed survival significance. Conclusion Integrative clustering analysis revealed that the STSs could be clustered into three sub-clusters. The ceRNA network, especially the subnetwork LncRNA (KCNQ1OT1)-miRNA (has-miR-29c-3p)-mRNA (JARID2, CDK8, DNMT3A, TET1) was a promising therapeutic target for the STS sub-cluster associated with a poor prognosis.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haibo Zhang
- College of Chemistry, Jilin University, Changchun, China
| | - Mei Zhang
- College of Chemistry, Jilin University, Changchun, China
| | - Dahui Sun
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Tapeh BEG, Alivand MR, Solali S. The role of microRNAs in acute lymphoblastic leukaemia: From biology to applications. Cell Biochem Funct 2019; 38:334-346. [PMID: 31833074 DOI: 10.1002/cbf.3466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) that are characterized by small, noncoding RNA have an essential role in the pathogenesis of human diseases, including cancer. Furthermore, miRNAs, as a new paradigm of epigenetic regulators, play an important role in normal development and cellular function. This literature review summarizes the recurrent mechanism of gene regulation through miRNAs and, consequently, the impact of regulated genes on different cellular processes, including proliferation, metastasis, prognosis, and apoptosis. Additionally, what is important to note is that the expression of miRNAs in various cancer cells is different, and miRNAs have various target genes in various cancers. Accordingly, a proper understanding of gene regulation by miRNAs contributes to new perspectives in miRNA-based therapeutic strategies. SIGNIFICANCE OF THE STUDY: MiRNAs are considered as a crucial regulator of gene expression. The genes also play an important role in the expression of miRNAs; as a result, there is a relationship between them. In recent years, targeted therapy with miRNAs has been a significant challenge. Studying the mechanisms through which miRNAs regulate various cancer cell processes, including apoptosis, proliferation, and metastasis, is very critical in the treatment of cancer through miRNAs. Definitely, a proper understanding of the impacts of aberrant expression of miRNAs on cancer cell processes leads to new therapeutic strategies in the targeted therapy with miRNAs.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Division of Hematology and Blood Banking, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Role of MicroRNA-124 as a Prognostic Factor in Multiple Neoplasms: A Meta-Analysis. DISEASE MARKERS 2019; 2019:1654780. [PMID: 31885731 PMCID: PMC6893269 DOI: 10.1155/2019/1654780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Objective MicroRNA-124 (miR-124) was revealed to be an attractive prognostic tumour biomarker in recent studies. However, the results remain inconclusive. Hence, this meta-analysis was carried out to clarify the precise predictive value of miR-124. Materials and Methods Relevant studies were searched in PubMed, EMBASE, Web of Science, and the Cochrane Library up to October 2018. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were extracted from the selected studies. Results A total of 29 articles investigating the correlation between miR-124 expression and prognosis were initially identified. The pooled HR for overall survival (OS) of high miR-124 expression in multiple cancers was 0.55 (95%CI = 0.50–0.61). Disease-free survival (DFS)/progression-free survival (HR = 0.48, 95%CI = 0.38–0.61) revealed a protective role of increased miR-124 expression. Epigenetic hypermethylation of miR-124 mediated the silencing of its expression, which is correlated significantly with unfavourable survival (OS: HR = 2.06, 95%CI = 1.68–2.53; DFS/recurrence-free survival: HR = 2.77, 95%CI = 1.85–4.16). Conclusions Taken together, our results suggest that miR-124 plays an antioncogenic role in various tumors, such as lung cancer and colorectal cancer. If methylation of miR-124 could be prevented, progression and metastasis would be improved; thus, miR-124 may be a promising biomarker and novel therapeutic target. Further large-scale studies are needed to confirm this possible effect.
Collapse
|
43
|
Hypermethylation-mediated inactivation of miR-124 predicts poor prognosis and promotes tumor growth at least partially through targeting EZH2/H3K27me3 in ESCC. Clin Exp Metastasis 2019; 36:381-391. [PMID: 31197517 DOI: 10.1007/s10585-019-09974-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Accumulating evidences indicated that some microRNAs (miRNAs) play a critical role during the carcinogenesis. In the present study, we found that miR-124 is down-regulated in esophageal squamous cell carcinoma (ESCC) tissues. Three miR-124 encoding genes, including mir-124-1, mir-124-2, and mir-124-3, harboring CpG islands undergo methylation-mediated miR-124 inactivation in ESCC tissues. The methylation status of all these three genes was negatively associated with the expression of miR-124. The low expression of miR-124 and the hypermethylation of mir-124-1 and mir-124-3 were associated with the clinico-pathological parameters indicating the poor prognosis. In addition, promoter methylation of all three genes plus low expression of miR-124 was the independent poor prognostic marker for ESCC patients. In conclusion, miR-124 may function as a tumor suppressive miRNA, and hypermethylation-mediated inactivation of miR-124 may be useful for a poor prognostic marker for ESCC patients.
Collapse
|
44
|
Luo B, Zhou Y, Lv H, Sun S, Tang W. MS-275 potentiates the effect of YM-155 in lung adenocarcinoma via survivin downregulation induced by miR-138 and miR-195. Thorac Cancer 2019; 10:1355-1368. [PMID: 31090206 PMCID: PMC6558485 DOI: 10.1111/1759-7714.13076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND YM-155 has been proven to be an efficient antitumor suppressor in non-small cell lung cancer (NSCLC) cells. However, the suppressive effect of YM-155 on the expression of survivin is not sufficient and has a short half-life. MS-275, a histone deacetylase inhibitor, has significant antitumor capacity with a relatively long half-life. Our study explored whether MS-275 could enhance the inhibitory effect of YM-155 on LUAD proliferation. METHODS To investigate the synergistic effect of MS-275 and YM-155, we employed methyl thiazolyl tetrazolium and colony formation assays to access the inhibition effect of MS-275, YM-155, or a combination in A549 and HCC827 cell lines. We then detected the effect of MS-275 and YM-155 on the expression of survivin and pro-apoptotic proteins by Western blot and miR-138 or miR-195 expression by quantitative PCR. We also analyzed the methylation level of microRNAs (miRNAs) using methylation-sensitive quantitative PCR. Finally, we investigated the interaction between miRNAs and survivin by luciferase reporter assay. RESULTS MS-275 facilitated an inhibitory effect of YM-155 on lung adenocarcinoma cell proliferation. MS-275 can upregulate the level of acetylated H3, promote the degradation of DNA methyltransferases, and inhibit the methylation of miR-138 and miR-195 genes to elevate the expression of miR-138 and miR-195. Moreover, miR-138 and miR-195 showed a synergistic effect with YM-155 by directly binding to the 3 untranslated region of survivin to attenuate its expression. CONCLUSION For the first time, we report the synergistic effective of MS-275 and YM-155 and suggest a new direction for the future application of YM-155.
Collapse
Affiliation(s)
- Bai‐Ling Luo
- Respiratory DepartmentThe First Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Zhou
- Respiratory DepartmentThe First Xiangya Hospital of Central South UniversityChangshaChina
- Respiratory DepartmentThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Hui Lv
- Department of Pathology, School of MedicineUniversity of Colorado Anschutz Medical CampusAurora, ColoradoUSA
| | - Sheng‐Hua Sun
- Respiratory DepartmentThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Wen‐Xiang Tang
- Respiratory DepartmentThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
45
|
Zhu R, Liu X, He Z. Association of miR-122, miR-124 miR-126 and miR-143 gene polymorphisms with ischemic stroke in the northern Chinese Han population. Int J Neurosci 2019; 129:916-922. [PMID: 30895838 DOI: 10.1080/00207454.2019.1593979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Fan YF, Yu ZP, Cui XY. lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) Promotes Proliferation and Inhibits Apoptosis in Non-Small Cell Lung Cancer Cells by Regulating the miR-641/CDK6 Axis. Med Sci Monit 2019; 25:2745-2755. [PMID: 30982057 PMCID: PMC6477934 DOI: 10.12659/msm.913420] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) gene has been reported as a potential oncogene in NSCLC. Nevertheless, the molecular mechanism of CRNDE in NSCLC progression remains largely unknown. MATERIAL AND METHODS qRT-PCR assay was performed to detect the expression levels of CRNDE, miR-641, and cyclin-dependent kinase 6 (CDK6) in NSCLC. Western blot assay was employed to assess CDK6 protein level in treated NSCLC cells. si-CRNDE#1, si-CRNDE#2, miR-641 mimics, miR-641 inhibitors, or Vector-CDK6 were transfected into NSCLC cells to change the expression levels of CRNDE, miR-641, or CDK6. Dual-luciferase reporter assay was performed to validate the direct interrelated miRNA of CRNDE and the potential target of miR-641. MTT and flow cytometry assays were performed to assess the capacities of cell proliferation and apoptosis, respectively. RESULTS CRNDE level was upregulated in NSCLC, and its knockdown suppressed NSCLC cells proliferation and enhanced apoptosis, whereas miR-641 antagonized the regulatory effect of CRNDE knockdown by directly binding to CRNDE. Moreover, CDK6 was a target of miR-641 and miR-641 exerted anti-proliferation and pro-apoptosis effects through CDK6. CONCLUSIONS CRNDE promoted proliferation and inhibited apoptosis of NSCLC cells at least in part by regulating the miR-641/CDK6 axis, suggesting that CRNDE is a potential therapeutic target for NSCLC treatment.
Collapse
|
47
|
Wu X, Shen J, Xiao Z, Li J, Zhao Y, Zhao Q, Cho CH, Li M. An overview of the multifaceted roles of miRNAs in gastric cancer: Spotlight on novel biomarkers and therapeutic targets. Biochem Pharmacol 2019; 163:425-439. [PMID: 30857828 DOI: 10.1016/j.bcp.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that have displayed strong association with gastric cancer (GC). Through the repression of target mRNAs, miRNAs regulate many biological pathways that are involved in cell proliferation, apoptosis, migration, invasion, metastasis as well as drug resistance. The detection of miRNAs in tissues and in body fluids emerges as a promising method in the diagnosis and prognosis of GC, due to their unique expression pattern in correlation with GC. Notably, miRNAs are also identified as potential therapeutic targets for GC therapy. The present review is thus to highlight the multifaceted roles of miRNAs in GC and in GC therapies, which would give indications for future research.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
48
|
Ranjbar R, Karimian A, Aghaie Fard A, Tourani M, Majidinia M, Jadidi-Niaragh F, Yousefi B. The importance of miRNAs and epigenetics in acute lymphoblastic leukemia prognosis. J Cell Physiol 2018; 234:3216-3230. [PMID: 29384211 DOI: 10.1002/jcp.26510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL), one of the most common malignant human disorders, originates in different important genetic lesions in T-cell or B-cell progenitors. ALL is a malignant lymphoid progenitor with peak prevalence in children (2-5 years). The rate of survival when one is suffering from ALL depends on various agents including the age of the patient, responses to anti-leukemic therapy, and cell biology. miRNAs and epigenetics are important regulatory factors in the expression of genes. miRNAs are noncoding RNA with inhibitory effectors on specific mRNA. Patterns of DNA methylation are profoundly changed in ALL by epigenetic mechanisms. The deciphering of miRNA and the epigenetic pathogenesis in ALL could revolutionize response to the therapy and outcome, and create an enormous promise for novel approaches to reduce the toxic side-effects of intensive leukemia. Hence, pathogenetic miRNAs and epigenetics leading to the initiation and the progression of ALL are summarized in this review.
Collapse
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cancer & Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Arad Aghaie Fard
- Faculty of Medical Science, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Tourani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Yang T, Jin X, Lan J, Wang W. Long non-coding RNA SNHG16 has Tumor suppressing effect in acute lymphoblastic leukemia by inverse interaction on hsa-miR-124-3p. IUBMB Life 2018; 71:134-142. [PMID: 30380185 DOI: 10.1002/iub.1947] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the deadly forms of childhood cancers in the world. In the present study, we used both in vitro and in vivo models to evaluate the functional mechanisms of a long noncoding RNA (lncRNA), small nucleolar RNA host gene 16 (SNHG16) in ALL. SNHG16 gene expression was evaluated by quantitative real-time PCR (qPCR) in both in vitro ALL cell lines and in vivo human samples of T lymphocytes. Lentivirus-mediated SNHG16 downregulation was performed in MOLT3 and SUP-B15 cells, to evaluate its functional effects on ALL cell proliferation, migration in vitro, and ALL transplant in vivo. Epigenetic regulation of SNHG16 on human miR-124-3p (hsa-miR-124-3p) was evaluated by dual-luciferase activity assay and qPCR. Hsa-miR-124-3p was inhibited in SNHG16-downregulated MOLT3 and SUP-B15 cells to further evaluate the functional correlation between SNHG16 and hsa-miR-124-3p in ALL. SNHG16 is upregulated in both in vitro ALL cell lines and in vivo human leukemic T-cells. SNHG16 downregulation suppressed ALL proliferation and migration in vitro, and ALL explant in vivo. Hsa-miR-124-3p was demonstrated to interact with SNHG16, and upregulated in SNHG16-downregulated ALL cells. In addition, inhibiting hsa-miR-124-3p reversed SNHG16-downregulation-mediated tumor suppressive functions in ALL. SNHG16 is upregulated in ALL, and its inhibition has tumor suppressive effect in ALL, likely through epigenetic interaction on hsa-miR-124-3p. © 2018 IUBMB Life, 71(1):134-142, 2019.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| | - Xing Jin
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| | - Jianping Lan
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| | - Wensong Wang
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| |
Collapse
|
50
|
Hoareau-Aveilla C, Quelen C, Congras A, Caillet N, Labourdette D, Dozier C, Brousset P, Lamant L, Meggetto F. miR-497 suppresses cycle progression through an axis involving CDK6 in ALK-positive cells. Haematologica 2018; 104:347-359. [PMID: 30262555 PMCID: PMC6355472 DOI: 10.3324/haematol.2018.195131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022] Open
Abstract
Anaplastic large-cell lymphoma, a T-cell neoplasm, is primarily a pediatric disease. Seventy-five percent of pediatric anaplastic large-cell lymphoma cases harbor the chromosomal translocation t(2;5)(p23;q35) leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. NPM-ALK consists of an N-terminal nucleophosmin (NPM) domain fused to an anaplastic lymphoma kinase (ALK) cytoplasmic domain. Pediatric NPM-ALK+ anaplastic large-cell lymphoma is often a disseminated disease and young patients are prone to chemoresistance or relapse shortly after chemotherapeutic treatment. Furthermore, there is no gold standard protocol for the treatment of relapses. To the best of our knowledge, this is the first study on the potential role of the microRNA, miR-497, in NPM-ALK+ anaplastic large-cell lymphoma tumorigenesis. Our results show that miR-497 expression is repressed in NPM-ALK+ cell lines and patient samples through the hypermethylation of its promoter and the activity of NPM-ALK is responsible for this epigenetic repression. We demonstrate that overexpression of miR-497 in human NPM-ALK+ anaplastic large-cell lymphoma cells inhibits cellular growth and causes cell cycle arrest by targeting CDK6, E2F3 and CCNE1, the three regulators of the G1 phase of the cell cycle. Interestingly, we show that a scoring system based on CDK6, E2F3 and CCNE1 expression could help to identify relapsing pediatric patients. In addition, we demonstrate the sensitivity of NPM-ALK+ cells to CDK4/6 inhibition using for the first time a selective inhibitor, palbociclib. Together, our findings suggest that CDK6 could be a therapeutic target for the development of future treatments for NPM-ALK+ anaplastic large-cell lymphoma.
Collapse
Affiliation(s)
- Coralie Hoareau-Aveilla
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Cathy Quelen
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Annabelle Congras
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Nina Caillet
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Delphine Labourdette
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Christine Dozier
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France
| | - Pierre Brousset
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, F-31024 Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, UK
| | - Laurence Lamant
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, F-31024 Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, UK
| | - Fabienne Meggetto
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France .,Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.,CNRS, ERL5294 CRCT, F-31000 Toulouse, France.,Institut Carnot Lymphome-CALYM, F-31024 Toulouse, France.,Laboratoire d'Excellence Toulouse Cancer-TOUCAN, F-31024 Toulouse, France.,European Research Initiative on ALK-Related Malignancies, Cambridge, UK
| |
Collapse
|