1
|
Habeshian TS, Cannavale KL, Slezak JM, Shu YH, Chien GW, Chen X, Shi F, Siegmund KD, Van Den Eeden SK, Huang J, Chao CR. DNA methylation markers for risk of metastasis in a cohort of men with localized prostate cancer. Epigenetics 2024; 19:2308920. [PMID: 38525786 DOI: 10.1080/15592294.2024.2308920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.
Collapse
Affiliation(s)
- Talar S Habeshian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kimberly L Cannavale
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff M Slezak
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Biostatistics and Innovations, Biostatistics and Programming, Clinical Affairs, Inari Medical, CA, USA
| | - Gary W Chien
- Department of Urology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, CA, USA
| | - XuFeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Feng Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
2
|
de Vasconcelos PC, Freitas TR, de Araújo Lopes LV, Peixoto LR, Xavier MP, Cançado Figueiredo AC, Dias KL, de Oliveira JG, de Oliveira Salles PG, Vago AR, de Paula Sabino A, de Lima Rocha MG. RAP1-GTPase immunostaining is altered in human precancerous and cancerous cervical lesions. Biomark Med 2024; 18:771-785. [PMID: 39254347 PMCID: PMC11457648 DOI: 10.1080/17520363.2024.2394384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Aim: This study investigated RAP1 immunostaining variation in different cell types during CC progression.Methods: Paraffin-embedded cervical tissues from 101 patients were categorized into control, pre-neoplastic and neoplastic groups. RAP1 immunolocalization, HPV detection and genotyping were performed. A semiquantitative immunoreactive score was employed to compare labeling intensity, cellular localization, nuclear labeling, percentage and distribution of reactive cells.Results: 73% (72/99) of cervical specimens were HPV+. RAP1 was localized in the nucleus and cytoplasm of all samples. Cytoplasmic RAP1 immunoscore was higher than nuclear score in all CC groups. RAP1 intensity increased with lesion severity. SCC samples exhibited predominantly intense RAP1 immunostaining.Conclusion: RAP1 is an efficient biomarker for detecting invasive CC lesions but has limited utility in distinguishing SCC grades.
Collapse
Affiliation(s)
- Paula Cristina de Vasconcelos
- Department of Clinical & Toxicological Analysis, College of Pharmacy, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Tulio Resende Freitas
- Department of Clinical & Toxicological Analysis, College of Pharmacy, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Larissa Rodrigues Peixoto
- Department of Morphology, Institute of Biological Sciences, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo Pascoal Xavier
- Department of Pathological Anatomy, College of Medicine – Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 30130-100, Brazil
| | - Anna Carolina Cançado Figueiredo
- Integrated Research Group on Biomarkers, Renée Rachou Research Institute – FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-003, Brazil
| | - Karolina Lopes Dias
- Laboratory of Cellular & Molecular Immunology, Renée Rachou Research Institute – FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-003, Brazil
| | - Jaqueline Germano de Oliveira
- Laboratory of Cellular & Molecular Immunology, Renée Rachou Research Institute – FIOCRUZ, Belo Horizonte, Minas Gerais, 30190-003, Brazil
| | | | - Annamaria Ravaro Vago
- Department of Morphology, Institute of Biological Sciences, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical & Toxicological Analysis, College of Pharmacy, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Gabrielle de Lima Rocha
- Department of Clinical & Toxicological Analysis, College of Pharmacy, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
3
|
Garg R, Williamson M. The metastasis-promoting P1597L mutation in PlexinB1 enhances Ras activity. BMC Cancer 2024; 24:1004. [PMID: 39138404 PMCID: PMC11321201 DOI: 10.1186/s12885-024-12762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We recently found that a single clinically relevant specific amino acid change (Proline1597Leucine, (P1597L)), found in metastatic deposits of prostate cancer patients, converts PlexinB1 from a metastasis suppressor to a gene that drives prostate cancer metastasis in vivo. However, the mechanism by which PlexinB1(P1597L) promotes metastasis is not known. METHODS Pull down assays using GST-RalGDS or -GSTRaf1-RBD were used to reveal the effect of mutant or wild-type PlexinB1 expression on Rap and Ras activity respectively. Protein-protein interactions were assessed in GST pulldown assays, Akt/ERK phosphorylation by immunoblotting and protein stability by treatment with cycloheximide. Rho/ROCK activity was monitored by measuring MLC2 phosphorylation and actin stress fiber formation. PlexinB1 function was measured using cell-collapse assays. RESULTS We show here that the single clinically relevant P1597L amino acid change converts PlexinB1 from a repressor of Ras to a Ras activator. The PlexinB1(P1597L) mutation inhibits the RapGAP activity of PlexinB1, promoting a significant increase in Ras activity. The P1597L mutation also blocks PlexinB1-mediated reduction in Rho/ROCK activity, restraining the decrease in MLC2 phosphorylation and actin stress fiber formation induced by overexpression of wild-type PlexinB1. PlexinB1(P1597L) has little effect on the interaction of PlexinB1 with small GTPases or receptor tyrosine kinases and does not inhibit PlexinB1-stimulated Akt or ERK phosphorylation. These results indicate that the mutation affects Rho signalling via the Rap/Ras pathway. The PlexinB1(P1597L) mutation inhibits morphological cell collapse induced by wild-type PlexinB1 expression, suggesting that the mutation induces a loss of an inhibitory tumour suppressor function. CONCLUSION These results suggest that the clinically relevant P1597L mutation in PlexinB1 may transform PlexinB1 from a suppressor to a driver of metastasis in mouse models of prostate cancer by reducing the RapGAP activity of PlexinB1, leading to Ras activation. These findings highlight the PlexinB1-Rap-Ras pathway for therapeutic intervention in prostate cancer.
Collapse
Affiliation(s)
- Ritu Garg
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Room 2.34B, New Hunts House, London, SE1 1UL, UK
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Room 2.34B, New Hunts House, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Gonzalez-Llerena JL, Espinosa-Rodriguez BA, Treviño-Almaguer D, Mendez-Lopez LF, Carranza-Rosales P, Gonzalez-Barranco P, Guzman-Delgado NE, Romo-Mancillas A, Balderas-Renteria I. Cordycepin Triphosphate as a Potential Modulator of Cellular Plasticity in Cancer via cAMP-Dependent Pathways: An In Silico Approach. Int J Mol Sci 2024; 25:5692. [PMID: 38891880 PMCID: PMC11171877 DOI: 10.3390/ijms25115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.
Collapse
Affiliation(s)
- Jose Luis Gonzalez-Llerena
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Bryan Alejandro Espinosa-Rodriguez
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Daniela Treviño-Almaguer
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Luis Fernando Mendez-Lopez
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Pilar Carranza-Rosales
- Laboratory of Cell Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Mexico;
| | - Patricia Gonzalez-Barranco
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Nancy Elena Guzman-Delgado
- Health Research Division, High Specialty Medical Unit, Cardiology Hospital N. 34. Mexican Social Security Institute, Monterrey 64360, Mexico;
| | - Antonio Romo-Mancillas
- Computer Aided Drug Design and Synthesis Group, School of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Isaias Balderas-Renteria
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| |
Collapse
|
5
|
Ding L, Wang Y, Tang Z, Ni C, Zhang Q, Zhai Q, Liang C, Li J. Exploration of vitamin D metabolic activity-related biological effects and corresponding therapeutic targets in prostate cancer. Nutr Metab (Lond) 2024; 21:17. [PMID: 38566155 PMCID: PMC10988890 DOI: 10.1186/s12986-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Previous studies have unequivocally demonstrated that the vitamin D (VD) metabolism pathway significantly influences prognosis and sensitivity to hormone therapy in prostate cancer (PCa). However, the precise underlying mechanism remains unclear. METHODS We performed molecular profiling of 1045 PCa patients, leveraging genes linked to VD synthesis and VD receptors. We then identified highly variable gene modules with substantial associations with patient stratification. Subsequently, we intersected these modules with differentially expressed genes between PCa and adjacent paracancerous tissues. Following a meticulous process involving single-factor regression and LASSO regression to eliminate extraneous variables and construct a prognostic model. Within the high-risk subgroup defined by the calculated risk score, we analyzed their differences in cell infiltration, immune status, mutation landscape, and drug sensitivity. Finally, we selected Apolipoprotein E (APOE), which featured prominently in this model for further experimental exploration to evaluate its potential as a therapeutic target. RESULTS The prognostic model established in this study had commendable predictive efficacy. We observed diminished infiltration of various T-cell subtypes and reduced expression of co-stimulatory signals from antigen-presenting cells. Mutation analysis revealed that the high-risk cohort harbored a higher frequency of mutations in the TP53 and FOXA genes. Notably, drug sensitivity analysis suggested the heightened responsiveness of high-risk patients to molecular inhibitors targeting the Bcl-2 and MAPK pathways. Finally, our investigation also confirmed that APOE upregulates the proliferative and invasive capacity of PCa cells and concurrently enhances resistance to androgen receptor antagonist therapy. CONCLUSION This comprehensive study elucidated the potential mechanisms through which this metabolic pathway orchestrates the biological behavior of PCa and findings hold promise in advancing the development of combination therapies in PCa.
Collapse
Affiliation(s)
- Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Yong Wang
- Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, 214023, Suqian, China
| | - Zhentao Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chenbo Ni
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qidi Zhai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| |
Collapse
|
6
|
Han S, Zhang M, Qu X, Wu Z, Huang Z, Hu Y, Li Y, Cui L, Si L, Liu J, Shao Y. SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma. Oncogene 2024; 43:434-446. [PMID: 38102338 DOI: 10.1038/s41388-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a β subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-β signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-β/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.
Collapse
Affiliation(s)
- Shujun Han
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mo Zhang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zihao Wu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zongguan Huang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yiming Hu
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Li
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lanlan Cui
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China
| | - Jiankang Liu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Yongping Shao
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
7
|
Yang JF, Liao Q, Lu CL. SOX9 promotes the invasion and migration of lung adenocarcinoma cells by activating the RAP1 signaling pathway. BMC Pulm Med 2023; 23:421. [PMID: 37919693 PMCID: PMC10623714 DOI: 10.1186/s12890-023-02740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE SOX9 has been shown to be related to the metastasis of various cancers. Recently, it has been reported that SOX9 plays a regulatory role in lung adenocarcinoma (LUAD) cell metastasis, but the specific mechanism remains to be explored. Therefore, the objective of this study was to observe the effect and mechanism of SOX9 on the invasion and migration of LUAD cells. METHODS RT-qPCR was applied to observe the expression of SOX9 and RAP1 in tumor tissues and corresponding normal lung tissues collected from LUAD patients. Co-immunoprecipitation and Pearson correlation to analyze the expression correlation of SOX9 with RAP1. To observe the role of SOX9, the invasion and migration levels of LUAD A549 cells in each group were observed by Transwell invasion assay and Scratch migration assay after knocking down or overexpressing SOX9. Besides, the expression levels of RAP1 pathway-related proteins (RAP1, RAP1GAP and RasGRP33) were observed by RT-qCPR or western blot. Subsequently, RAP1 was overexpressed and SOX9 was knocked down in A549 cells, and then the cell invasion/migration level and RAP1 pathway activity were assessed. RESULTS The expression levels of SOX9 and RAP1 in tumor tissues and A549 cells of LUAD patients were significantly increased and positively correlated. Overexpression of SOX9 or RAP1 alone in A549 cells enhanced the invasion and migration ability of cells, as well as up-regulated the expression levels of RAP1, RAP1GAP and RasGRP33. However, knocking down SOX9 decreased cell invasion and migration levels and weakened the activity of RAP1 pathway. Notably, overexpressing RAP1 while knocking down SOX9 significantly activated RAP1 pathway and promoted cell invasion and migration. CONCLUSION Overexpression of SOX9 in LUAD can significantly activate the RAP1 signaling pathway and promote cell invasion and migration.
Collapse
Affiliation(s)
- Jun-Fa Yang
- Department of Respiratory and Critical Care Medicine, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Qing Liao
- Department of Respiratory and Critical Care Medicine, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Chen-Lin Lu
- Department of Respiratory and Critical Care Medicine, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| |
Collapse
|
8
|
Zhang N, Liu Z, Lai X, Liu S, Wang Y. Silencing of CD147 inhibits cell proliferation, migration, invasion, lipid metabolism dysregulation and promotes apoptosis in lung adenocarcinoma via blocking the Rap1 signaling pathway. Respir Res 2023; 24:253. [PMID: 37880644 PMCID: PMC10601207 DOI: 10.1186/s12931-023-02532-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE CD147 is an important glycoprotein that participates in the progression of diverse cancers. This study aims to explore the specific function of CD147 in lung adenocarcinoma (LUAD) and to reveal related downstream molecular mechanisms. METHODS Followed by silencing of CD147, the viability, migration, invasion, and apoptosis of LUAD cells were measured by CCK8, wound healing, transwell assay, and flow cytometer, respectively. The expression of CD147 and two markers of lipid metabolism (FASN and ACOX1) were detected by qRT-PCR. A xenograft tumor model was constructed to investigate the function of CD147 in vivo. Then transcriptome sequencing was performed to explore the potential mechanisms. After measuring the expression of Rap1 and p-p38 MAPK/p38 MAPK by western blot, the changes of CD147 and lipid metabolism markers (FASN, ACOX1) was detected by Immunohistochemistry. Moreover, a Rap1 activator and a Rap1 inhibitor were applied for feedback functional experiments. RESULTS CD147 was up-regulated in LUAD cells, and its silencing inhibited cell proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis, while overexpression of CD147 showed the opposite results. Silencing of CD147 also inhibited the growth of tumor xenografts in mice. Transcriptome sequencing revealed 834 up-regulated differentially expressed genes (DEGs) and 602 down-regulated DEGs. After functional enrichment, the Rap1 signaling pathway was selected as a potential target, which was then verified to be blocked by CD147 silencing. In addition, the treatment of Rap1 activator weakened the inhibiting effects of si-CD147 on the proliferation, migration, invasion, and lipid metabolism in LUAD cells, while the intervention of RAP1 inhibitor showed the opposite results. CONCLUSIONS Silencing of CD147 inhibited the proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis of LUAD cells through blocking the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Gastroenterology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Zhouzhong Liu
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Xuwang Lai
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Shubin Liu
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Yuli Wang
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
9
|
Shorning B, Trent N, Griffiths DF, Worzfeld T, Offermanns S, Smalley MJ, Williamson M. Plexin-B1 Mutation Drives Metastasis in Prostate Cancer Mouse Models. CANCER RESEARCH COMMUNICATIONS 2023; 3:444-458. [PMID: 36936664 PMCID: PMC10019359 DOI: 10.1158/2767-9764.crc-22-0480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Metastatic prostate cancer is essentially incurable and is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We show here that prostate epithelial cell-specific expression of a mutant form of Plexin-B1 (P1597L) which was identified in metastatic deposits in patients with prostate cancer, significantly increases metastasis, in particular metastasis to distant sites, in two transgenic mouse models of prostate cancer (PbCre+Ptenfl /flKrasG12V and PbCre+Ptenfl /flp53fl/ fl ). In contrast, prostate epithelial cell-specific expression of wild-type (WT) Plexin-B1 in PbCre+Ptenfl /flKrasG12V mice significantly decreases metastasis, showing that a single clinically relevant Pro1597Leu amino-acid change converts Plexin-B1 from a metastasis-suppressor to a metastasis-promoter. Furthermore, PLXNB1P1597L significantly increased invasion of tumor cells into the prostate stroma, while PLXNB1WT reduced invasion, suggesting that Plexin-B1 has a role in the initial stages of metastasis. Deletion of RhoA/C or PDZRhoGEF in Ptenfl /flKrasG12VPLXNB1P1597L mice suppressed metastasis, implicating the Rho/ROCK pathway in this phenotypic switch. Germline deletion of Plexin-B1, to model anti-Plexin-B1 therapy, significantly decreased invasion and metastasis in both models. Our results demonstrate that Plexin-B1 plays a complex yet significant role in metastasis in mouse models of prostate cancer and is a potential therapeutic target to block the lethal spread of the disease. Significance Few therapeutic targets have been identified specifically for preventing locally invasive/oligometastatic prostate cancer from becoming more widely disseminated. Our findings suggest Plexin-B1 signaling, particularly from the clinically relevant P1597L mutant, is such a target.
Collapse
Affiliation(s)
- Boris Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Neil Trent
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - David F. Griffiths
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, United Kingdom
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Marburg, Germany
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- Corresponding Author: Magali Williamson, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, United Kingdom. Phone: 4402-0784-86418; E-mail:
| |
Collapse
|
10
|
Lin L, Zhang W, Chen Y, Ren W, Zhao J, Ouyang W, He Z, Su W, Yao H, Yu Y. Immune gene patterns and characterization of the tumor immune microenvironment associated with cancer immunotherapy efficacy. Heliyon 2023; 9:e14450. [PMID: 36950600 PMCID: PMC10025929 DOI: 10.1016/j.heliyon.2023.e14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Although immunotherapy has revolutionized cancer management, most patients do not derive benefits from it. Aiming to explore an appropriate strategy for immunotherapy efficacy prediction, we collected 6251 patients' transcriptome data from multicohort population and analyzed the data using a machine learning algorithm. In this study, we found that patients from three immune gene clusters had different overall survival when treated with immunotherapy (P < 0.001), and that these clusters had differential states of hypoxia scores and metabolism functions. The immune gene score showed good immunotherapy efficacy prediction (AUC was 0.737 at 20 months), which was well validated. The immune gene score, tumor mutation burden, and long non-coding RNA score were further combined to build a tumor immune microenvironment signature, which correlated more strongly with overall survival (AUC, 0.814 at 20 months) than when using a single variable. Thus, we recommend using the characterization of the tumor immune microenvironment associated with immunotherapy efficacy via a multi-omics analysis of cancer.
Collapse
Key Words
- AUC, Area under the curve
- CIs, Confidence intervals
- CTL, Cytotoxic T-lymphocyte infiltration
- Cancer
- GEO, Gene Expression Omnibus
- GO, Gene Ontology
- GSEA, Gene set enrichment analysis
- GSVA, Gene set variation analysis
- HLAs, Human leukocyte antigens
- HRs, Hazard ratios
- Immunotherapy
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LASSO, Penalized logistic least absolute shrinkage and selector operation
- Machine learning
- NSCLC, Non-small cell lung cancer
- OS, Overall survival
- PCA, Principal componentanalysis
- PD-L1, Programmed death ligand-1
- PFS, Profession-free survival
- RNA-seq, Transcriptome RNA sequencing
- ROC, receiver operating characteristic curves
- TCGA, The Cancer Genome Atlas
- TMB, Tumor mutation burden
- TME, Tumor immunemicroenvironment
- Tumor immune microenvironment
- WGCNA, Weighted gene co-expression network analysis
- lncRNA, Long non-coding RNA
Collapse
Affiliation(s)
- Lili Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenda Zhang
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yongjian Chen
- Department of Medical Oncology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zifan He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weifeng Su
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Hong Kong Baptist University, Zhuhai, China
- Corresponding author.
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Corresponding author.
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Hong Kong Baptist University, Zhuhai, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
- Corresponding author. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Medical Research Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Yoshie M, Ohishi K, Ishikawa G, Tsuru A, Kusama K, Azumi M, Tamura K. Small GTP-binding protein Rap1 mediates EGF and HB-EGF signaling and modulates EGF receptor expression in HTR-8/SVneo extravillous trophoblast cells. Reprod Med Biol 2023; 22:e12537. [PMID: 37614815 PMCID: PMC10442520 DOI: 10.1002/rmb2.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Purpose Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion. Methods Expression of Rap1 in the first-trimester placenta was examined by immunohistochemistry. Effect of EGF or HB-EGF on Rap1 activation (GTP-Rap1) and Rap1 knockdown on invasion was assessed in EVT cell line (HTR-8/SVneo). In addition, effect of Rap1 knockdown and Rap1GAP (a Rap1 inactivator) overexpression on the activation of EGF signaling and EGFR expression were examined. Results Rap1 was expressed by EVTs, villous cytotrophoblasts, and syncytiotrophoblasts in the placenta. EGF and HB-EGF activated Rap1 and promoted invasion of HTR-8/SVneo, and these effects were inhibited by Rap1 knockdown. The EGF- and HB-EGF-induced phosphorylation of AKT, ERK1/2, p38MAPK, and Src was inhibited by Rap1 knockdown. Furthermore, the knockdown of Rap1 reduced the EGFR protein level. Overexpression of Rap1GAP repressed EGF- and HB-EGF-induced Rap1 activation and reduced EGFR expression. Conclusion Rap1 may function as a mediator of EGF and HB-EGF signaling pathways and can modulate EGFR expression in EVTs during placental development.
Collapse
Affiliation(s)
- Mikihiro Yoshie
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kensuke Ohishi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Gen Ishikawa
- Department of ObstetricsMiyagi Children's HospitalSendaiJapan
| | - Atsuya Tsuru
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuya Kusama
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Mana Azumi
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Kazuhiro Tamura
- Department of Endocrine PharmacologyTokyo University of Pharmacy and Life SciencesTokyoJapan
| |
Collapse
|
12
|
Marklund M, Schultz N, Friedrich S, Berglund E, Tarish F, Tanoglidi A, Liu Y, Bergenstråhle L, Erickson A, Helleday T, Lamb AD, Sonnhammer E, Lundeberg J. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat Commun 2022; 13:5475. [PMID: 36115838 PMCID: PMC9482614 DOI: 10.1038/s41467-022-33069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.
Collapse
Affiliation(s)
- Maja Marklund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Niklas Schultz
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Stefanie Friedrich
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden
| | - Emelie Berglund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Firas Tarish
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Anna Tanoglidi
- Department of Pathology, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Yao Liu
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Ludvig Bergenstråhle
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Thomas Helleday
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
13
|
Mao W, Yu Q, Wang K, Ma Q, Zheng Y, Zhang G, Luo W, Wang N, Wang Y. Comprehensive Analysis of the Transcriptome-wide m6A Methylome in Lung Adenocarcinoma by MeRIP Sequencing. Front Oncol 2022; 12:791332. [PMID: 35903698 PMCID: PMC9315447 DOI: 10.3389/fonc.2022.791332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. There is increasing evidence that m6A plays a key role in tumor progression, so it is important to analyze m6A modifications within the transcriptome-wide in lung adenocarcinoma (LUAD). Three pairs of LUAD samples and tumor-adjacent normal tissues were obtained from the South University of Science and Technology Hospital. And then methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were used to identify differential m6A modifications between tumor and tumor-adjacent normal tissues. We identified 4041 aberrant m6A peaks, of which 1192 m6A peaks were upregulated and 2849 m6A peaks downregulated. It was found that genes with the dysregulated m6A peaks were enriched in the pathways in cancer, Rap1 signaling pathway, and insulin resistance. Additionally, 612 genes with abnormal regulation of m6A peaks and RNA expression were identified by combining MeRIP-seq and RNA-seq data. Through KEGG analysis, the 612 genes were enriched in cancer-related signaling pathways, such as the cGMP-PKG signaling pathway, and the Rap1 signaling pathway. What’s more, GSEA enrichment analysis showed these genes were enriched in cell cycle phase transition, cell division, cellular response to DNA damage stimulus, and chromosome organization. To further explore the relationship between differential m6A modified genes and clinical parameters of LUAD patients, we searched The Cancer Genome Atlas (TCGA) and identified 2 genes (FCRL5 and GPRIN1) that were associated with the prognosis and diagnosis of LUAD patients. Furthermore, we found a positive correlation between GPRIN1 and m6A reader YTHDF1 in the GEPIA2 database. It was verified that YTHDF1 binds to GPRIN1 mRNA and regulates its expression. Our study results suggest that m6A modification plays important role in the progression and prognosis of LUAD and maybe a potential new therapeutic target for LUAD patients in the future.
Collapse
Affiliation(s)
- Wenli Mao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qingzhen Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Kefeng Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qiang Ma
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yuxin Zheng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guojun Zhang
- Nutrition Department, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Wei Luo
- Department of Clinical Laboratory, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Nianwu Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yukun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, China
- *Correspondence: Yukun Wang,
| |
Collapse
|
14
|
Li X, Lu W, Zhou T, Zhao F, Yang L. Timosaponin AIII Suppresses RAP1 Signaling Pathway to Enhance the Inhibitory Effect of Paclitaxel on Nasopharyngeal Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6756676. [PMID: 35586672 PMCID: PMC9110172 DOI: 10.1155/2022/6756676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022]
Abstract
Although PTX has been identified as an effective drug for nasopharyngeal carcinoma (NPC) therapy, it has serious side effects in the human body. Previous studies have shown that timosaponin AIII (TSAIII) can inhibit the malignant progression of NPC cells. This study investigated the active mechanism of the combination of TSAIII and paclitaxel (PTX) on NPC. Cellular viability, apoptosis, apoptotic factors, and RAP1 signaling regulators were detected in the PNC cells (CNE-1 and HNE-2) and the subcutaneous CNE-1 transplanted nude mice treated with PTX or/and TSAIII. The results showed that TSAIII notably strengthened the inhibitory effect of PTX on the proliferation of NPC cells CNE-1 and HNE-2; upregulated the expression of Bax B-cell lymphoma 2 (Bcl-2)/Bcl-xL-associated death promoter (Bad), and Ras-associated protein1 (RAP1) GTPase activating protein (Rap1GAP); inhibited the level of Bcl-2, RAP1, and Ras guanine nucleotide releasing protein (RasGRP2); and significantly enhanced the promoting effect of PTX on apoptosis in the CNE-1 and HNE-2 cells. Besides, TSAIII strengthened the inhibitory effect of PTX on xenograft tumor in nude mice without adverse reactions. In conclusion, the combination administration of TSAIII and PTX had a significantly therapeutic effect on NPC and avoided the PTX's side effects, which may have acted as a new direction for the study of therapeutic approaches for NPC clinically.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wen Lu
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tianjiao Zhou
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Zhao
- Department of Otorhinolarynology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Yang
- Department of Head and Neck Surgery, People's Hospital of Guang'an City, Guang'an 638001, China
| |
Collapse
|
15
|
Jin K, Liu C, Cheng H, Fei Q, Huang Q, Xiao Z, Yu X, Wu W. TGF-β1-induced RAP2 regulates invasion in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:361-369. [PMID: 35538031 PMCID: PMC9828032 DOI: 10.3724/abbs.2022015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is highly lethal due to its aggressive invasive properties and capacity for metastatic dissemination. Additional therapeutic targets and effective treatment options for patients with tumours of high invasive capacity are required. Ras-related protein-2a (RAP2) is a member of the GTP-binding proteins. RAP2 has been reported to be widely upregulated in many types of cancers via regulating cytoskeleton reorganization, cell proliferation, migration, and adhesion, as well as inflammation. As a member of the RAS oncogene family, which has been demonstrated to drive pancreatic cancer oncogenesis and many other malignancies, the physiological roles of RAP2 in pancreatic cancer have seldom been discussed. In the present study, we explored the correlation between RAP2 expression and the prediction of overall survival of pancreatic cancer patients. Mechanistic studies were carried out to shed light on the role of RAP2 in pancreatic cancer invasion and how RAP2 is regulated in the invasive process. Our results demonstrated that patients with higher RAP2 expression showed unfavourable prognoses. studies demonstrated that silencing of inhibited the invasion of pancreatic cancer cells. Moreover, our results demonstrated that transforming growth factor-β1 (TGF-β1), an inducer of the metastatic potential of pancreatic cancer cells, regulates the expression of RAP2 via the transcription factor c-Myc. In conclusion, the present study uncovered RAP2 as a novel predictive marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Kaizhou Jin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Chen Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - He Cheng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Qinglin Fei
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Qiuyi Huang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Zhiwen Xiao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| | - Weiding Wu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Shanghai Pancreatic Cancer InstituteShanghai200032China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032China
| |
Collapse
|
16
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
17
|
Huang H, Xie L, Feng X, Zheng Z, Ouyang J, Li Y, Yu J. An integrated analysis of DNA promoter methylation, microRNA regulation, and gene expression in gastric adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1414. [PMID: 34733966 PMCID: PMC8506766 DOI: 10.21037/atm-21-3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
Background Gastric adenocarcinoma (GAC), a common type of gastric cancer, poses a significant public health threat worldwide. This study aimed to determine the transcriptional regulatory mechanisms of GAC. Methods HTSeq-FPKM raw data were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma data collection. Subsequently, the limma package in R was used to identify differentially expressed genes (DEGs). Differentially methylated genes (DMGs), DEGs, and differentially expressed microRNAs (miRNAs) in normal, and tumor tissues of the same patients were screened and compared using R software tools. A functional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) for various DEGs, DMGs, promoter methylation, and miRNAs. DEG-specific methylation and transcription factors were analyzed using ENCODE ChIP-seq. Results DEGs were centrally modified by the histone trimethylation of lysine 27 on histone H3 (H3K27me3). Upstream transcription factors of DEGs were enriched in different ChIP-seq clusters, such as Forkhead Box M1, E2F Transcription Factor 4, and suppressor of zest 12. Integrated regulatory networks of DEGs, promoter methylation, and miRNAs were constructed. Two miRNAs (hsa-mir-1 and hsa-mir-133a) and four DEGs (A disintegrin and metalloproteinase domain 12, transcription factor AP-2 alpha, solute carrier family 5 member 7, and cadherin 19) separately played important roles in the integrated regulatory network. Therefore, these DEGs, DMGs, promoter methylation, and miRNAs may play an important role in GAC pathogenesis. Conclusions In summary, the present study results provide insights into the oncogenesis and progression of GAC, thus accelerating the development of novel targeted GAC therapies.
Collapse
Affiliation(s)
- Hongyun Huang
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lang Xie
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Feng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zheng Zheng
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Juntao Ouyang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinlong Yu
- Department of General Surgery of Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Gao J, Wang Y, Lyu B, Chen J, Chen G. Component Identification of Phenolic Acids in Cell Suspension Cultures of Saussureainvolucrata and Its Mechanism of Anti-Hepatoma Revealed by TMT Quantitative Proteomics. Foods 2021; 10:foods10102466. [PMID: 34681515 PMCID: PMC8535732 DOI: 10.3390/foods10102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Saussurea involucrata (S. involucrata) had been reported to have anti-hepatoma function. However, the mechanism is complex and unclear. To evaluate the anti-hepatoma mechanism of S. involucrata comprehensively and make a theoretical basis for the mechanical verification of later research, we carried out this work. In this study, the total phenolic acids from S. involucrata determined by a cell suspension culture (ESPI) was mainly composed of 4,5-dicaffeoylquinic acid, according to the LC-MS analysis. BALB/c nude female mice were injected with HepG2 cells to establish an animal model of liver tumor before being divided into a control group, a low-dose group, a middle-dose group, a high-dose group, and a DDP group. Subsequently, EPSI was used as the intervention drug for mice. Biochemical indicators and differences in protein expression determined by TMT quantitative proteomics were used to resolve the mechanism after the low- (100 mg/kg), middle- (200 mg/kg), and high-dose (400 mg/kg) interventions for 24 days. The results showed that EPSI can not only limit the growth of HepG2 cells in vitro, but also can inhibit liver tumors significantly with no toxicity at high doses in vivo. Proteomics analysis revealed that the upregulated differentially expressed proteins (DE proteins) in the high-dose group were over three times that in the control group. ESPI affected the pathways significantly associated with the protein metabolic process, metabolic process, catalytic activity, hydrolase activity, proteolysis, endopeptidase activity, serine-type endopeptidase activity, etc. The treatment group showed significant differences in the pathways associated with the renin-angiotensin system, hematopoietic cell lineage, etc. In conclusion, ESPI has a significant anti-hepatoma effect and the potential mechanism was revealed.
Collapse
Affiliation(s)
- Junpeng Gao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
19
|
Chadchan SB, Popli P, Ambati CR, Tycksen E, Han SJ, Bulun SE, Putluri N, Biest SW, Kommagani R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci Alliance 2021; 4:4/12/e202101224. [PMID: 34593556 PMCID: PMC8500332 DOI: 10.26508/lsa.202101224] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Chandrasekhar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott W Biest
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Division of Minimally Invasive Gynecologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA .,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
20
|
Suman M, Dugué PA, Wong EM, Joo JE, Hopper JL, Nguyen-Dumont T, Giles GG, Milne RL, McLean C, Southey MC. Association of variably methylated tumour DNA regions with overall survival for invasive lobular breast cancer. Clin Epigenetics 2021; 13:11. [PMID: 33461604 PMCID: PMC7814464 DOI: 10.1186/s13148-020-00975-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tumour DNA methylation profiling has shown potential to refine disease subtyping and improve the diagnosis and prognosis prediction of breast cancer. However, limited data exist regarding invasive lobular breast cancer (ILBC). Here, we investigated the genome-wide variability of DNA methylation levels across ILBC tumours and assessed the association between methylation levels at the variably methylated regions and overall survival in women with ILBC. Methods Tumour-enriched DNA was prepared by macrodissecting formalin-fixed paraffin embedded (FFPE) tumour tissue from 130 ILBCs diagnosed in the participants of the Melbourne Collaborative Cohort Study (MCCS). Genome-wide tumour DNA methylation was measured using the HumanMethylation 450K (HM450K) BeadChip array. Variably methylated regions (VMRs) were identified using the DMRcate package in R. Cox proportional hazards regression models were used to assess the association between methylation levels at the ten most significant VMRs and overall survival. Gene set enrichment analyses were undertaken using the web-based tool Metaspace. Replication of the VMR and survival analysis findings was examined using data retrieved from The Cancer Genome Atlas (TCGA) for 168 ILBC cases. We also examined the correlation between methylation and gene expression for the ten VMRs of interest using TCGA data. Results We identified 2771 VMRs (P < 10−8) in ILBC tumours. The ten most variably methylated clusters were predominantly located in the promoter region of the genes: ISM1, APC, TMEM101, ASCL2, NKX6, HIST3H2A/HIST3H2BB, HCG4P3, HES5, CELF2 and EFCAB4B. Higher methylation level at several of these VMRs showed an association with reduced overall survival in the MCCS. In TCGA, all associations were in the same direction, however stronger than in the MCCS. The pooled analysis of the MCCS and TCGA data showed that methylation at four of the ten genes was associated with reduced overall survival, independently of age and tumour stage; APC: Hazard Ratio (95% Confidence interval) per one-unit M-value increase: 1.18 (1.02–1.36), TMEM101: 1.23 (1.02–1.48), HCG4P3: 1.37 (1.05–1.79) and CELF2: 1.21 (1.02–1.43). A negative correlation was observed between methylation and gene expression for CELF2 (R = − 0.25, P = 0.001), but not for TMEM101 and APC. Conclusions Our study identified regions showing greatest variability across the ILBC tumour genome and found methylation at several genes to potentially serve as a biomarker of survival for women with ILBC.
Collapse
Affiliation(s)
- Medha Suman
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ee Ming Wong
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - JiHoon Eric Joo
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - John L Hopper
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tu Nguyen-Dumont
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Health, The Alfred Hospital, Melbourne, VIC, 3181, Australia
| | - Melissa C Southey
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia. .,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia. .,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
21
|
Ye T, Li S, Zhang Y. Genomic pan-cancer classification using image-based deep learning. Comput Struct Biotechnol J 2021; 19:835-846. [PMID: 33598099 PMCID: PMC7848437 DOI: 10.1016/j.csbj.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Accurate cancer type classification based on genetic mutation can significantly facilitate cancer-related diagnosis. However, existing methods usually use feature selection combined with simple classifiers to quantify key mutated genes, resulting in poor classification performance. To circumvent this problem, a novel image-based deep learning strategy is employed to distinguish different types of cancer. Unlike conventional methods, we first convert gene mutation data containing single nucleotide polymorphisms, insertions and deletions into a genetic mutation map, and then apply the deep learning networks to classify different cancer types based on the mutation map. We outline these methods and present results obtained in training VGG-16, Inception-v3, ResNet-50 and Inception-ResNet-v2 neural networks to classify 36 types of cancer from 9047 patient samples. Our approach achieves overall higher accuracy (over 95%) compared with other widely adopted classification methods. Furthermore, we demonstrate the application of a Guided Grad-CAM visualization to generate heatmaps and identify the top-ranked tumor-type-specific genes and pathways. Experimental results on prostate and breast cancer demonstrate our method can be applied to various types of cancer. Powered by the deep learning, this approach can potentially provide a new solution for pan-cancer classification and cancer driver gene discovery. The source code and datasets supporting the study is available at https://github.com/yetaoyu/Genomic-pan-cancer-classification.
Collapse
Affiliation(s)
- Taoyu Ye
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Sen Li
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yang Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
22
|
Wu F, Lin X, Shan SK, Li F, Xu F, Zhong JY, Guo B, Zheng MH, Wang Y, Mo ZH, Yuan LQ. The Suppression of miR-199a-3p by Promoter Methylation Contributes to Papillary Thyroid Carcinoma Aggressiveness by Targeting RAP2a and DNMT3a. Front Cell Dev Biol 2020; 8:594528. [PMID: 33365310 PMCID: PMC7750465 DOI: 10.3389/fcell.2020.594528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background It was previously demonstrated that miR-199a-3p plays an important role in tumor progression; especially, its down-regulation in papillary thyroid cancer (PTC) is associated with cancer cell invasion and proliferation. In the present report, we investigated the mechanism involved in the down-regulation of miR-199a-3p in PTC and how miR-199a-3p regulates PTC invasion both in vivo and in vitro. Methods qRT-PCR and Western blot assays were used to determine the expression of the investigated genes. Bisulfite sequencing PCR was used to investigate miR-199a-3p methylation. The functions of miR-199a-3p were investigated by a series of in vitro and in vivo experiments. Results Our results showed hypermethylation of the miR-199a-3p promoter, which resulted in decreased miR-199a-3p expression both in PTC cell lines and PTC tissues. DNA-methyltransferase 3a (DNMT3a), a target gene of miR-199a-3p, was increased both in PTC cell lines and PTC tissues, while 5-aza-2′-deoxycytidine (methyltransferase-specific inhibitor) or knock-down using DNMT3a Small-Interfering RNA could restore the expression of miR-199a-3p, and the over-expression of miR-199a-3p could decrease the expression of DNMT3a; this suggests that miR-199a-3p/DNMT3a constructs a regulatory circuit in regulating miR-199a-3p/DNMT3a expression. Moreover, gain- and loss-of-function studies revealed that miR-199a-3p is involved in cancer cell migration, invasion, and growth. Meanwhile, we found that RAP2a was also a direct target of miR-199a-3p, which might mediate the tumor-growth-inhibiting effect of miR-199a-3p. To further confirm the tumor-suppressive properties of miR-199a-3p, stable overexpression of miR-199a-3p in a PTC cell line (BCPAP cells) was xenografted to athymic BALB/c nude mice, resulting in delayed tumor growth in vivo. In clinical PTC samples, the expression of RAP2a and DNMT3a was increased significantly, and the expression of RAP2a was inversely correlated with that of miR-199a-3p. Conclusion Our studies demonstrate that an epigenetic change in the promoter region of miR-199a contributes to the aggressive behavior of PTC via the miR-199a-3p/DNMT3a regulatory circuit and directly targets RAP2a.
Collapse
Affiliation(s)
- Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Yu Zhong
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Hui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020; 42:101093. [PMID: 33007425 PMCID: PMC7578269 DOI: 10.1016/j.molmet.2020.101093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tumor cells experience hypoxia, acidosis, and hypoglycemia. Metabolic adaptation to glucose shortage is essential to maintain tumor cells' survival because of their high glucose requirement. This study evaluated the hypothesis that acidosis might promote tumor survival during glucose shortage and if so, explored a novel drug targeting metabolic vulnerability to glucose shortage. METHODS Cell survival and bioenergetics metabolism were assessed in lung cancer cell lines. Our in-house small-molecule compounds were screened to identify those that kill cancer cells under low-glucose conditions. Cytotoxicity against non-cancerous cells was also assessed. Tumor growth was evaluated in vivo using a mouse engraft model. RESULTS Acidosis limited the cellular consumption of glucose and ATP, causing tumor cells to enter a metabolically dormant but energetically economic state, which promoted tumor cell survival during glucose deficiency. We identified ESI-09, a previously known exchange protein directly activated by cAMP (EAPC) inhibitor, as an anti-cancer compound that inhibited cancer cells under low-glucose conditions even when associated with acidosis. Bioenergetic studies showed that independent of EPAC inhibition, ESI-09 was a safer mitochondrial uncoupler than a classical uncoupler and created a futile cycle of mitochondrial respiration, leading to decreased ATP production, increased ATP dissipation, and fuel scavenging. Accordingly, ESI-09 exhibited more cytotoxic effects under low-glucose conditions than under normal glucose conditions. ESI-09 was also more effective than actively proliferating cells on quiescent glucose-restricted cells. Cisplatin showed opposite effects. ESI-09 inhibited tumor growth in lung cancer engraft mice. CONCLUSIONS This study highlights the acidosis-induced promotion of tumor survival during glucose shortage and demonstrates that ESI-09 is a novel potent anti-cancer mitochondrial uncoupler that targets a metabolic vulnerability to glucose shortage even when associated with acidosis. The higher cytotoxicity under lower-than-normal glucose conditions suggests that ESI-09 is safer than conventional chemotherapy, can target the metabolic vulnerability of tumor cells to low-glucose stress, and is applicable to many cancer cell types.
Collapse
Affiliation(s)
- Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Tsuji
- Department of Medicine, Otsuki Municipal Hospital, 1255 Hanasaki, Otsuki-chou, Otsuki-shi, Yamanashi, 401-0015, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| |
Collapse
|
24
|
Li Y, Meng L, Shi T, Ren J, Deng Q. Diagnosis and prognosis potential of four gene promoter hypermethylation in prostate cancer. Cell Biol Int 2020; 45:117-126. [PMID: 32991011 DOI: 10.1002/cbin.11474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/01/2020] [Accepted: 09/26/2020] [Indexed: 11/10/2022]
Abstract
The current prostate special antigen (PSA) test causes the overtreatment of indolent prostate cancer (PCa). It also increases the risk of delayed treatment of aggressive PCa. DNA methylation aberrations are important events for gene expression dysregulation during tumorigenesis and have been suggested as novel candidate biomarkers for PCa. This may improve the diagnosis and prognosis of PCa. This study assessed the differential methylation and messenger RNA (mRNA) expression between normal and PCa samples. Correlation between promoter methylation and mRNA expression was estimated using Pearson's correlation coefficients. Moreover, the diagnostic potential of candidate methylation markers was estimated by the receiver operating characteristic (ROC) curve using continuous beta values. Survival and Cox analysis was performed to evaluate the prognostic potential of the candidate methylation markers. A total of 359 hypermethylated sites 3435 hypomethylation sites, 483 upregulated genes, and 1341 downregulated genes were identified from The Cancer Genome Atlas database. Furthermore, 17 hypermethylated sites (covering 13 genes), including known genes associated with hypermethylation in PCa (e.g., AOX1 and C1orf114), showed high discrimination between adjacent normal tissues and PCa samples with the area under the ROC curve from 0.88 to 0.94. Notably, ANXA2, FGFR2, HAAO, and KCNE3 were identified as valuable prognostic markers of PCa through the Kaplan-Meier analysis. Using gene methylation as a continuous variable, four promoter hypermethylation was significantly associated with disease-free survival in univariate Cox regression and multivariate Cox regression. This study identified four novel diagnostic and prognostic markers for PCa. The markers provide important strategies for improving the timely diagnosis and prognosis of PCa.
Collapse
Affiliation(s)
- Yang Li
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingyin Meng
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Shi
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Ren
- Precision Medicine Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
25
|
Looi CK, Hii LW, Ngai SC, Leong CO, Mai CW. The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player? Biomedicines 2020; 8:biomedicines8090334. [PMID: 32906721 PMCID: PMC7555474 DOI: 10.3390/biomedicines8090334] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/05/2023] Open
Abstract
Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: ; Tel.: +60-3-2731-7596
| |
Collapse
|
26
|
Nussinov R, Jang H, Zhang M, Tsai CJ, Sablina AA. The Mystery of Rap1 Suppression of Oncogenic Ras. Trends Cancer 2020; 6:369-379. [PMID: 32249186 PMCID: PMC7211489 DOI: 10.1016/j.trecan.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Decades ago, Rap1, a small GTPase very similar to Ras, was observed to suppress oncogenic Ras phenotype, reverting its transformation. The proposed reason, persisting since, has been competition between Ras and Rap1 for a common target. Yet, none was found. There was also Rap1's puzzling suppression of Raf-1 versus activation of BRAF. Reemerging interest in Rap1 envisages capturing its Ras suppression action by inhibitors. Here, we review the literature and resolve the enigma. In vivo oncogenic Ras exists in isoform-distinct nanoclusters. The presence of Rap1 within the nanoclusters reduces the number of the clustered oncogenic Ras molecules, thus suppressing Raf-1 activation and mitogen-activated protein kinase (MAPK) signaling. Nanoclustering suggests that Rap1 suppression is Ras isoform dependent. Altogether, a potent Rap1-like inhibitor appears unlikely.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna A Sablina
- VIB Center for the Biology of Disease and KU Leuven Department of Oncology, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
27
|
Das P, Roychowdhury A, Das S, Roychoudhury S, Tripathy S. sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic. Front Genet 2020; 11:247. [PMID: 32346383 PMCID: PMC7169426 DOI: 10.3389/fgene.2020.00247] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/02/2020] [Indexed: 11/26/2022] Open
Abstract
Biological data are accumulating at a faster rate, but interpreting them still remains a problem. Classifying biological data into distinct groups is the first step in understanding them. Data classification in response to a certain treatment is an extremely important aspect for differentially expressed genes in making present/absent calls. Many feature selection algorithms have been developed including the support vector machine recursive feature elimination procedure (SVM-RFE) and its variants. Support vector machine RFEs are greedy methods that attempt to find superlative possible combinations leading to binary classification, which may not be biologically significant. To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. The “sigFeature” R package is centered around a function called “sigFeature,” which provides automatic selection of features for the binary classification. Using six publicly available microarray data sets (downloaded from Gene Expression Omnibus) with different biological attributes, we further compared the performance of “sigFeature” to three other feature selection algorithms. A small number of selected features (by “sigFeature”) also show higher classification accuracy. For further downstream evaluation of its biological signature, we conducted gene set enrichment analysis with the selected features (genes) from “sigFeature” and compared it with the outputs of other algorithms. We observed that “sigFeature” is able to predict the signature of four out of six microarray data sets accurately, whereas the other algorithms predict less data set signatures. Thus, “sigFeature” is considerably better than related algorithms in discovering differentially significant features from microarray data sets.
Collapse
Affiliation(s)
- Pijush Das
- Computational Genomics lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Subhadeep Das
- Computational Genomics lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Sucheta Tripathy
- Computational Genomics lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
28
|
Fan M, Ma X, Wang F, Zhou Z, Zhang J, Zhou D, Hong Y, Wang Y, Wang G, Dong Q. MicroRNA-30b-5p functions as a metastasis suppressor in colorectal cancer by targeting Rap1b. Cancer Lett 2020; 477:144-156. [PMID: 32112903 DOI: 10.1016/j.canlet.2020.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Colorectal liver metastasis (CRLM) is the leading cause of death in patients with colorectal cancer (CRC). MiR-30b-5p can function as an oncogene or tumor suppressor in cancers, but its role in CRLM is still unknown. Here, we found that miR-30b-5p overexpression suppressed the invasion, migration, adhesion, and motility of HCT116 and LoVo cells. The expression of EMT (Zeb1, Snail, and vimentin) and adhesion-related proteins (p-paxillin and p-Src) was decreased. We validated Rap1b, a Ras family small GTPase that regulates cell adhesion and mobility, as the direct and functional target of miR-30b-5p. Rap1b overexpression rescued the aggressive characteristics of CRC cells that were inhibited by miR-30b-5p. Rap1b knockdown suppressed invasion and migration and decreased CRC cell-matrix adhesion and spreading, which was consistent with the results of miR-30b-5p overexpression. Further in vivo experiments demonstrated that miR-30b-5p overexpression inhibited CRLM, but Rap1b rescue attenuated the inhibitory effect of miR-30b-5p. In addition, miR-30b-5p was downregulated in CRC specimens, and Rap1b showed a negative correlation with miR-30b-5p expression in primary CRC and LM tissues. These results indicate that miR-30b-5p functions as a metastasis suppressor by targeting Rap1b and may provide a new target for the treatment of CRLM.
Collapse
Affiliation(s)
- Mengjing Fan
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ximei Ma
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feifan Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuha Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Difan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiyang Hong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihong Wang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guanyu Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qinghua Dong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China.
| |
Collapse
|
29
|
Lin X, Huang Y, Sun Y, Tan X, Ouyang J, Zhao B, Wang Y, Xing X, Liu J. 4E-BP1 Thr46 Phosphorylation Association with Poor Prognosis in Quantitative Phosphoproteomics of Portal Vein Tumor Thrombus Revealed that 4E-BP1Thr46 Phosphorylation is Associated with Poor Prognosis in HCC. Cancer Manag Res 2020; 12:103-115. [PMID: 32021427 PMCID: PMC6954833 DOI: 10.2147/cmar.s230849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose Early formation of portal vein tumor thrombosis (PVTT) is a key characteristic of hepatocellular carcinoma (HCC) metastasis, but to date, the aetiology of PVTT in HCC metastasis is largely unknown. We aim to find highly sensitive and specific biomarkers for the prediction of HCC prognosis. Patients and methods We used isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative phosphoproteomics approach to investigate the molecular signatures of the HCC with PVTT in primary HCC tissues, surrounding non-cancerous tissues and PVTT tissues. The different proteome profiles in three groups were investigated and might reveal different underlying molecular mechanisms. Results In total, we identified 1745 phosphoproteins with 2724 phosphopeptides and 4594 phosphorylation sites in three groups. Among these phosphoproteins, 80 phosphoproteins were dysregulated in PVTT/Pan group, 51 phosphoproteins were dysregulated in HCC/Pan group, and 10 phosphoproteins were dysregulated in PVTT/HCC group. Furthermore, the phosphorylation of 4E-BP1 was elevated in HCC tissues and PVTT tissues in comparison with surrounding non-cancerous tissues, and the elevated fold change of phosphorylation level was higher than that in expression level of 4E-BP1. The further IHC analysis in acohort of 20 HCC tissues showed that the phosphorylation of 4E-BP1 on Thr46 might be closely related to HCC prognosis. Conclusion The high phosphorylation level of 4E-BP1Thr46 might serve as a biomarker for the diagnosis of early recurrence and metastasis of HCC.
Collapse
Affiliation(s)
- Xincong Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Yao Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Ying Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jiahe Ouyang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Xiaohua Xing
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.,The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| |
Collapse
|
30
|
Huang N, Dai W, Li Y, Sun J, Ma C, Li W. LncRNA PCAT-1 upregulates RAP1A through modulating miR-324-5p and promotes survival in lung cancer. Arch Med Sci 2020; 16:1196-1206. [PMID: 32864009 PMCID: PMC7444700 DOI: 10.5114/aoms.2019.84235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Lung cancer is the malignant tumor with the fastest increase in morbidity and mortality and the greatest threat to human health and life. Long non-coding RNA (lncRNA) is emerging as an important regulator in many cancers. Recently, it was found that lncRNA prostate cancer associated transcript 1 (PCAT-1) was up-regulated in lung cancer, playing oncogenic roles. However, the underlying regulatory mechanism of PCAT-1 remains unknown. MATERIAL AND METHODS The expression levels of PCAT-1 and miR-324-5p were analyzed by real-time PCR, and RAP1A expression was determined by western blotting. RNA pull-down, luciferase and western blotting assays were used to examine the target relationship between PCAT-1 and miR-324-5p or that between miR-324-5p and RAP1A. The functional effects of PCAT-1 and miR-324-5p were examined using cell viability and cell apoptosis assays. RESULTS PCAT-1 overexpression remarkably promoted cell proliferation and suppressed cell apoptosis. Mechanistic investigations demonstrated that PCAT-1 can interact with miR-324-5p and repress its expression, thereby increasing the expression of its target RAP1A. Additionally, rescue experiments revealed that PCAT-1 served as an oncogene partly through sponging miR-324-5p and upregulating RAP1A in lung cancer cells. CONCLUSIONS Our findings demonstrate that on account of the dual function of pro-proliferation and anti-apoptosis, PCAT-1/miR-324-5p/RAP1A may be novel candidates for application in the diagnosis, prognosis and therapy of lung cancer.
Collapse
Affiliation(s)
- Na Huang
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Wenjing Dai
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Yunhui Li
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Jian Sun
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Chunlan Ma
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| | - Wancheng Li
- Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medicine University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway. Biomed Pharmacother 2019; 123:109717. [PMID: 31865146 DOI: 10.1016/j.biopha.2019.109717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is frequently inactivated but functions as a tumor suppressor in many solid tumors. However, the characterization of CADM1 expression in ovarian cancer cells and the mechanisms of its tumor suppressor function are not fully understood. We generated ovarian cancer cell lines in which CADM1 was stably upregulated or downregulated. CADM1 expression was significantly decreased in ovarian cancer tissue and cells lines. Functionally, knockdown of CADM1 promoted the growth, migration and invasion of ovarian cancer cells. Conversely, further experimental evidence indicated that overexpression of CADM1 inhibited the migration and invasion of ovarian cancer cells potentially through inhibition of the PI3K/Akt/mTOR signaling pathway by regulating upstream regulators (LXR/RXR, IGF1, IFI44L and C4BPA) and downstream effectors (APP, EDN1, TGFBI and Rap1A). In conclusion, CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR signaling pathway. CADM1 could be a potential therapeutic target for ovarian cancer.
Collapse
|
32
|
Hu X, Liu W, Jiang X, Wang B, Li L, Wang J, Ma J. Long noncoding RNA LINC00460 aggravates invasion and metastasis by targeting miR-30a-3p/Rap1A in nasopharyngeal carcinoma. Hum Cell 2019; 32:465-476. [DOI: 10.1007/s13577-019-00262-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/08/2019] [Indexed: 11/30/2022]
|
33
|
Alharatani R, Griffin JN, Liu KJ. Expression of the guanine nucleotide exchange factor, RAPGEF5, during mouse and human embryogenesis. Gene Expr Patterns 2019; 34:119057. [PMID: 31163262 DOI: 10.1016/j.gep.2019.119057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/25/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023]
Abstract
Rap GTPases mediate fundamental cellular processes, including cell adhesion, migration and intracellular signal transduction. The subcellular activity of these GTPases is regulated by dedicated activators (guanine nucleotide exchange factors, GEFs) and deactivators (GTPase-activating proteins, GAPs). RAPGEF5 is a potent activator of Rap proteins and mutations in RAPGEF5 have been linked to both neurological disorders and congenital heart disease. In the frog model, Xenopus tropicalis, Rapgef5 is a critical regulator of the canonical Wnt signalling pathway and is required for normal gastrulation and correct establishment of the left-right body axis. However, requirements for RAPGEF5 in other developmental contexts, and in mammalian embryogenesis in particular, remain undefined. Here, we describe RAPGEF5 mRNA expression patterns during mouse (E9.5 - E16.5) and human (Carnegie stage 21) development, as an initial step towards better understanding its developmental functions.
Collapse
Affiliation(s)
- Reham Alharatani
- The Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - John N Griffin
- The Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| | - Karen J Liu
- The Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
34
|
Zha H, Matsunami E, Blazon-Brown N, Koutsogiannaki S, Hou L, Bu W, Babazada H, Odegard KC, Liu R, Eckenhoff RG, Yuki K. Volatile anesthetics affect macrophage phagocytosis. PLoS One 2019; 14:e0216163. [PMID: 31071106 PMCID: PMC6508649 DOI: 10.1371/journal.pone.0216163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background Perioperative infections, particularly surgical site infections pose significant morbidity and mortality. Phagocytosis is a critical step for microbial eradication. We examined the effect of commonly used anesthetics on macrophage phagocytosis and its mechanism. Methods The effect of anesthetics (isoflurane, sevoflurane, propofol) on macrophage phagocytosis was tested using RAW264.7 mouse cells, mouse peritoneal macrophages, and THP-1 human cells. Either opsonized sheep erythrocytes or fluorescent labeled Escherichia coli were used as phagocytic objects. The activation of Rap1, a critical protein in phagocytosis was assessed using the active Rap1 pull-down and detection kit. To examine anesthetic binding site(s) on Rap1, photolabeling experiments were performed using azi-isoflurane and azi-sevoflurane. The alanine scanning mutagenesis of Rap1 was performed to assess the role of anesthetic binding site in Rap1 activation and phagocytosis. Results Macrophage phagocytosis was significantly attenuated by the exposure of isoflurane (50% reduction by 1% isoflurane) and sevoflurane (50% reduction by 1.5% sevoflurane), but not by propofol. Photolabeling experiments showed that sevoflurane directly bound to Rap1. Mutagenesis analysis demonstrated that the sevoflurane binding site affected Rap1 activation and macrophage phagocytosis. Conclusions We showed that isoflurane and sevoflurane attenuated macrophage phagocytosis, but propofol did not. Our study showed for the first time that sevoflurane served as a novel small GTPase Rap1 inhibitor. The finding will further enrich our understanding of yet-to-be determined mechanism of volatile anesthetics and their off-target effects. The sevoflurane binding site was located outside the known Rap1 functional sites, indicating the discovery of a new functional site on Rap1 and this site would serve as a pocket for the development of novel Rap1 inhibitors.
Collapse
Affiliation(s)
- Hui Zha
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Union Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Erika Matsunami
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Anesthesia, Kawasaki Saiwai Hospital, Kawasaki, Kanagawa, Japan
| | - Nathan Blazon-Brown
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hasan Babazada
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirsten C. Odegard
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 2019; 49:375-391. [PMID: 31063756 PMCID: PMC6506189 DOI: 10.1016/j.devcel.2019.04.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the most devastating stage of cancer progression and causes the majority of cancer-related deaths. Clinical observations suggest that most cancers metastasize to specific organs, a process known as "organotropism." Elucidating the underlying mechanisms may help identify targets and treatment strategies to benefit patients. This review summarizes recent findings on tumor-intrinsic properties and their interaction with unique features of host organs, which together determine organ-specific metastatic behaviors. Emerging insights related to the roles of metabolic changes, the immune landscapes of target organs, and variation in epithelial-mesenchymal transitions open avenues for future studies of metastasis organotropism.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Jin X, Di X, Wang R, Ma H, Tian C, Zhao M, Cong S, Liu J, Li R, Wang K. RBM10 inhibits cell proliferation of lung adenocarcinoma via RAP1/AKT/CREB signalling pathway. J Cell Mol Med 2019; 23:3897-3904. [PMID: 30955253 PMCID: PMC6533519 DOI: 10.1111/jcmm.14263] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
Initial functional studies have demonstrated that RNA‐binding motif protein 10 (RBM10) can promote apoptosis and suppress cell proliferation; however, the results of several studies suggest a tumour‐promoting role for RBM10. Herein, we assessed the involvement of RBM10 in lung adenocarcinoma cell proliferation and explored the potential molecular mechanism. We found that, both in vitro and in vivo, RBM10 overexpression suppresses lung adenocarcinoma cell proliferation, while its knockdown enhances cell proliferation. Using complementary DNA microarray analysis, we previously found that RBM10 overexpression induces significant down‐regulation of RAP1A expression. In this study, we have confirmed that RBM10 decreases the activation of RAP1 and found that EPAC stimulation and inhibition can abolish the effects of RBM10 knockdown and overexpression, respectively, and regulate cell growth. This effect of RBM10 on proliferation was independent of the MAPK/ERK and P38/MAPK signalling pathways. We found that RBM10 reduces the phosphorylation of CREB via the AKT signalling pathway, suggesting that RBM10 exhibits its effect on lung adenocarcinoma cell proliferation via the RAP1/AKT/CREB signalling pathway.
Collapse
Affiliation(s)
- Xin Jin
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.,Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ruimin Wang
- Department of Operation room, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Tian
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaying Liu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
ANXA2 Tyr23 and FLNA Ser2152 phosphorylation associate with poor prognosis in hepatic carcinoma revealed by quantitative phosphoproteomics analysis. J Proteomics 2019; 200:111-122. [PMID: 30951906 DOI: 10.1016/j.jprot.2019.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Hepatoma is one of the most common malignant tumors, and most patients have very poor prognosis. Early prediction and intervention of the hepatoma recurrence/metastasis are the most effective way to improve the patients' clinical outcomes. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative phospho-proteomics approach to identify biomarkers associated with hepatoma recurrence/metastasis in hepatoma cell lines with increasing metastasis ability. In total, 75 phosphorylated peptides corresponding to 60 phosphoproteins were significantly dysregulated and the participated biological processes of these phosphoproteins were tightly associated with tumor metastasis. Further signaling pathway analysis revealed that key signaling pathways which play crucial roles in cancer metastasis have been significantly over activated in the highly metastatic cells. Furthermore, the phosphorylation of FLNASer2152 and ANXA2Tyr23 were validated to be significantly up regulated in the high-metastatic cells comparing with the low-metastatic cells. By further investigation the clinical significance of the phosphorylation of FLNASer2152 and ANXA2Tyr23 in large-scale clinical samples, revealed that the over phosphorylation of FLNASer2152 and ANXA2Tyr23 were associated with poor prognosis and might be potential prognostic biomarkers for the primary hepatoma. When FLNASer2152 combined with ANXA2Tyr23, it had a better prognostic value for both OS and TTR.
Collapse
|
38
|
Gao L, Pu X, Huang Y, Huang J. MicroRNA-340-5p relieved chronic constriction injury-induced neuropathic pain by targeting Rap1A in rat model. Genes Genomics 2019; 41:713-721. [PMID: 30848438 DOI: 10.1007/s13258-019-00802-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Neuropathic pain (NP) is one of the main challenges towards NP syndrome treatment. miR-340-5p exhibit different expression levels in NP models. Its effects on NP remained unclear. The objective of this study was to explore the potential regulation mechanisms of miR-340-5p in NP. METHODS Rat model of chronic constriction injury (CCI) was established to induce NP in vivo. NP levels were assessed using mechanical withdrawal threshold (MWT). The inflammation response in CCI rats were determined by HE staining and ELISA assay. The target genes of miR-340-5p were verified by luciferase report assays. RESULTS In CCI rats, level of miR-340-5p was down-regulated both in spinal cord tissues and isolated microglial cells. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were decreased in CCI rats, which were restored upon miR-340-5p overexpression. miR-340-5p overexpression also decreased inflammation as well as expression levels of COX-2, IL-1β, TNF-α and IL-6 in CCI rats. Luciferase report assays revealed Rap1A was a target gene of miR-340-5p in the experimental model. Elevated miR-340-5p decreased Rap1A expression level in vitro and in vivo. Overexpression of Rap1A protein restored expression levels of COX-2, IL-1β, TNF-α and IL-6, reduced the PWT and PWL and increased inflammation response in CCI rats. CONCLUSION miR-340-5p alleviated CCI-induced NP by targeting Rap1A. miR-340-5p and Rap1A may be the potential treatment targets for NP therapeutics.
Collapse
Affiliation(s)
- Lu Gao
- Department of Neurology, Taizhou People's Hospital, No. 366 Taihu Road, Hailing District, Taizhou, 225300, Jiangsu, China
| | - Xuehua Pu
- Department of ICU, Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China.
| | - Yujing Huang
- Department of Neurology, Taizhou People's Hospital, No. 366 Taihu Road, Hailing District, Taizhou, 225300, Jiangsu, China
| | - Jing Huang
- Department of Neurology, Taizhou People's Hospital, No. 366 Taihu Road, Hailing District, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
39
|
Creating a potential diagnostic for prostate cancer risk stratification (InformMDx™) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7). Clin Sci (Lond) 2019; 133:269-286. [DOI: 10.1042/cs20180519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Increased PSA-based screening for prostate cancer has resulted in a growing number of diagnosed cases. However, around half of these are ‘indolent’, neither metastasizing nor leading to disease specific death. Treating non-progressing tumours with invasive therapies is currently regarded as unnecessary over-treatment with patients being considered for conservative regimens, such as active surveillance (AS). However, this raises both compliance and protocol issues. Great clinical benefit could accrue from a biomarker able to predict long-term patient outcome accurately at the time of biopsy and initial diagnosis. Here we delineate the translation of a laboratory discovery through to the precision development of a clinically validated, novel prognostic biomarker assay (InformMDx™). This centres on determining transcript levels for phosphodiesterase-4D7 (PDE4D7), an enzyme that breaks down cyclic AMP, a signalling molecule intimately connected with proliferation and androgen receptor function. Quantifiable detection of PDE4D7 mRNA transcripts informs on the longitudinal outcome of post-surgical disease progression. The risk of post-surgical progression increases steeply for patients with very low ‘PDE4D7 scores’, while risk decreases markedly for those patients with very high ‘PDE4D7 scores’. Combining clinical risk variables, such as the Gleason or CAPRA (Cancer of the Prostate Risk Assessment) score, with the ‘PDE4D7 score’ further enhances the prognostic power of this personalized, precision assessment. Thus the ‘PDE4D7 score’ has the potential to define, more effectively, appropriate medical intervention/AS strategies for individual prostate cancer patients.
Collapse
|
40
|
Yan Y, Zhang R, Zhang X, Zhang A, Zhang Y, Bu X. RNA-Seq profiling of circular RNAs and potential function of hsa_circ_0002360 in human lung adenocarcinom. Am J Transl Res 2019; 11:160-175. [PMID: 30787976 PMCID: PMC6357307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
CircRNAs have been identified play a key role in various different types of cancer. However, their role in lung adenocarcinoma remains unclear. In this study, we explored the specific circular transcriptome and characterized the circRNA expression profiles of five paired lung adenocarcinoma (LAC) tissues relative to adjacent normal tissues from LAC patients using next-generation sequencing (NGS). To illuminate circRNAs function, their gene targets were initially predicted before using, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses to further analyse the associated significant cell signalling pathways and functions. The potential interactions between circRNA-miRNA-mRNA were also investigated. Additionally, qRT-PCR assay, Western blot and Immunohistochemistry were performed to validate the differential expression of circRNA, microRNA and mRNA in the LAC group in comparison to the control group. Two-hundred-eighty-five dysregulated circular transcripts were found in LAC tissues, among which 102 and 183 were either up or down regulated, respectively. Our biological analysis suggested that the host genes of differentially expressed circRNAs targeted to cancer-related processes and mechanisms. The interaction maps of the circRNA-miRNA-target gene were constructed using Cytoscope. In further study, hsa_circ_0002360 was found to be the most significantly overexpressed circRNA in LAC tissues by interacting with miRNA and its corresponding mRNA. Our results showed that hsa_circ_0002360 was aberrantly and abundantly expressed and implicated in the development of LAC, suggesting a valuable therapeutic target for LAC treatment.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Riting Zhang
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Xuanfeng Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Anwei Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Yao Zhang
- Clinical Medicine College of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| |
Collapse
|
41
|
Zhang C, Xiong J, Yang Q, Wang Y, Shi H, Tian Q, Huang H, Kong D, Lv J, Liu D, Gao X, Zi X, Sun Y. Profiling and bioinformatics analyses of differential circular RNA expression in prostate cancer cells. Future Sci OA 2018; 4:FSOA340. [PMID: 30416748 PMCID: PMC6222276 DOI: 10.4155/fsoa-2018-0046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
AIM There is little knowledge about the expression profile and function of circular RNAs (circRNAs) in prostate cancer (PCa). METHODS The expression profiles of circRNAs in RWPE-1, 22RV1 and PC3 cells were explored via high-throughput circRNAs sequencing and validated by real-time qPCR. The roles of differentially expressed circRNAs were evaluated by bioinformatics analyses. RESULTS Altogether 9545 circRNAs were identified and hundreds of differentially expressed circRNAs were recognized. CircRNA-miRNA networks analysis showed that many circRNAs, including circSLC7A6, circGUCY1A2 and circZFP57 could cross-talk with tumor-related miRNAs such as miR-21, miR-143 and miR-200 family. CONCLUSION The results of our bioinformatics analyses suggested that circRNAs should play critical roles in the development and progression of PCa.
Collapse
Affiliation(s)
- Chunlei Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Urology, Lanzhou General Hospital of PLA, Lanzhou, PR China
| | - Jun Xiong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Histological Embryology, Second Military Medical University, Shanghai, PR China
| | - Qi Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Urology, Lanzhou General Hospital of PLA, Lanzhou, PR China
| | - Ye Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Haoqing Shi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Qinqin Tian
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Hai Huang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Depei Kong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Jianmin Lv
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Dan Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Xiaoyuan Zi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
- Department of Cell Biology, Second Military Medical University, Shanghai, PR China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
42
|
The Many Faces of Rap1 GTPase. Int J Mol Sci 2018; 19:ijms19102848. [PMID: 30241315 PMCID: PMC6212855 DOI: 10.3390/ijms19102848] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably stimulated by posttranslational modifications (geranylgeranylation) or guanine nucleotide exchange factors (GEFs), and inhibited by GTPase-activating proteins (GAPs). Rap1 is a ubiquitous protein that plays an essential role in the control of metabolic processes, such as signal transduction from plasma membrane receptors, cytoskeleton rearrangements necessary for cell division, intracellular and substratum adhesion, as well as cell motility, which is needed for extravasation or fusion. We present several examples of how Rap1 affects cells and organs, pointing to possible molecular manipulations that could have application in the therapy of several diseases.
Collapse
|
43
|
Shah S, Brock EJ, Jackson RM, Ji K, Boerner JL, Sloane BF, Mattingly RR. Downregulation of Rap1Gap: A Switch from DCIS to Invasive Breast Carcinoma via ERK/MAPK Activation. Neoplasia 2018; 20:951-963. [PMID: 30144784 PMCID: PMC6106701 DOI: 10.1016/j.neo.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023] Open
Abstract
Diagnosis of breast ductal carcinoma in situ (DCIS) presents a challenge since we cannot yet distinguish those cases that would remain indolent and not require aggressive treatment from cases that may progress to invasive ductal cancer (IDC). The purpose of this study is to determine the role of Rap1Gap, a GTPase activating protein, in the progression from DCIS to IDC. Immunohistochemistry (IHC) analysis of samples from breast cancer patients shows an increase in Rap1Gap expression in DCIS compared to normal breast tissue and IDCs. In order to study the mechanisms of malignant progression, we employed an in vitro three-dimensional (3D) model that more accurately recapitulates both structural and functional cues of breast tissue. Immunoblotting results show that Rap1Gap levels in MCF10.Ca1D cells (a model of invasive carcinoma) are reduced compared to those in MCF10.DCIS (a model of DCIS). Retroviral silencing of Rap1Gap in MCF10.DCIS cells activated extracellular regulated kinase (ERK) mitogen-activated protein kinase (MAPK), induced extensive cytoskeletal reorganization and acquisition of mesenchymal phenotype, and enhanced invasion. Enforced reexpression of Rap1Gap in MCF10.DCIS-Rap1GapshRNA cells reduced Rap1 activity and reversed the mesenchymal phenotype. Similarly, introduction of dominant negative Rap1A mutant (Rap1A-N17) in DCIS-Rap1Gap shRNA cells caused a reversion to nonmalignant phenotype. Conversely, expression of constitutively active Rap1A mutant (Rap1A-V12) in noninvasive MCF10.DCIS cells led to phenotypic changes that were reminiscent of Rap1Gap knockdown. Thus, reduction of Rap1Gap in DCIS is a potential switch for progression to an invasive phenotype. The Graphical Abstract summarizes these findings.
Collapse
Affiliation(s)
- Seema Shah
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ethan J Brock
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ryan M Jackson
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie L Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bonnie F Sloane
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Raymond R Mattingly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
44
|
Liu L, Yan X, Wu D, Yang Y, Li M, Su Y, Yang W, Shan Z, Gao Y, Jin Z. High expression of Ras-related protein 1A promotes an aggressive phenotype in colorectal cancer via PTEN/FOXO3/CCND1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:178. [PMID: 30064475 PMCID: PMC6069867 DOI: 10.1186/s13046-018-0827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
Background Colorectal cancer (CRC) is a commonly diagnosed digestive malignancy worldwide. Ras-related protein 1A (RAP1A) is a member of the Ras superfamily of small GTPases and has been recently identified as a novel oncoprotein in several human malignancies. However, its specific role in CRC remains unclear. Method In this study, we firstly analyzed its expression and clinical significance in a retrospective cohort of 144 CRC patients. Then, cellular assays in vitro and in vivo were performed to clarify its biological role in CRC cells. Finally, microarray analysis was utilized to investigate the molecular mechanisms regulated by RAP1A in CRC progression. Results Firstly, RAP1A expression was abnormally higher in CRC tissues as compared with adjacent normal tissues, and significantly correlated tumor invasion. High RAP1A expression was an independent unfavourable prognostic factor for CRC patients. Combining RAP1A expression and preoperative CEA level contributed to a more accurate prognostic stratification in CRC patients. Secondly, knockdown of RAP1A dramatically inhibited the growth of CRC cells, while it was opposite for RAP1A overexpression. Finally, the microarray analysis revealed RAP1A promoted CRC growth partly through phosphatase and tensin homolog (PTEN)/forkhead box O3(FOXO3)/cyclin D1(CCND1) signaling pathway. FOXO3 overexpression could partly mimic the inhibitory effect of RAP1A knockdown in CRC growth. Moreover, FOXO3 overexpression inhibited CCND1 expression, but had no impact on RAP1A and PTEN expression. Conclusion RAP1A promotes CRC development partly through PTEN/FOXO3 /CCND1 signaling pathway. It has a great potential to be an effective clinical biomarker and therapeutic target for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0827-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liguo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Dapeng Wu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Chinese Medicine, Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Mengcheng Li
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Yang Su
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Wenchao Yang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Zezhi Shan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China.
| | - Yuping Gao
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, People's Republic of China.
| | - Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China.
| |
Collapse
|
45
|
Zhang T, Jiang K, Zhu X, Zhao G, Wu H, Deng G, Qiu C. miR-433 inhibits breast cancer cell growth via the MAPK signaling pathway by targeting Rap1a. Int J Biol Sci 2018; 14:622-632. [PMID: 29904277 PMCID: PMC6001658 DOI: 10.7150/ijbs.24223] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is one of the most lethal cancers in the world. The fight against breast cancer has also become a major task for medical workers. MicroRNAs (miRNAs) are often aberrantly expressed in diverse cancers and are involved in progression and metastasis. Many studies have found that miRNAs can act as oncogenes or as tumor suppressor genes. Here, we show that miR-433 is significantly decreased in breast cancer cells. In addition, we demonstrate the effects of miR-433 on breast cancer cell apoptosis, migration and proliferation in an attempt to elucidate the mechanism of action of miR-433. Moreover, Rap1a was predicted to be a potential target of miR-433 using bioinformatic approaches, and we found that the expression of Rap1a is inversely correlated with the level of miR-433. Further studies through overexpression and knockdown of Rap1a confirmed that Rap1a, as a direct target gene of miR-433, contributes to the functions of miR-433. In addition, we found that Rap1a activates the MAPK signaling pathway, which can contribute to cell migration and proliferation and can inhibit apoptosis. Overall, these findings highlight miR-433 as a tumor suppressor gene in the regulation of the progression and metastatic potential of breast cancer and may benefit the future development of therapies targeting miR-433 in breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
46
|
Gao L, Zhang LJ, Li SH, Wei LL, Luo B, He RQ, Xia S. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis. Pathol Res Pract 2018; 214:732-749. [DOI: 10.1016/j.prp.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
|
47
|
Iorio F, Garcia-Alonso L, Brammeld JS, Martincorena I, Wille DR, McDermott U, Saez-Rodriguez J. Pathway-based dissection of the genomic heterogeneity of cancer hallmarks' acquisition with SLAPenrich. Sci Rep 2018; 8:6713. [PMID: 29713020 PMCID: PMC5928049 DOI: 10.1038/s41598-018-25076-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages. Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks' predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.
Collapse
Affiliation(s)
- Francesco Iorio
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
| | - Luz Garcia-Alonso
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Jonathan S Brammeld
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Iňigo Martincorena
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - David R Wille
- GlaxoSmithKline, Gunnels Wood Rd, Stevenage Herts, SG1 2NY, UK
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, MTZ Pauwelstrasse 19, Aachen, 52074, Germany.
- Open Targets, Wellcome Genome Campus, Cambridge, CB10 1SD, UK.
| |
Collapse
|
48
|
Mo SJ, Hou X, Hao XY, Cai JP, Liu X, Chen W, Chen D, Yin XY. EYA4 inhibits hepatocellular carcinoma growth and invasion by suppressing NF-κB-dependent RAP1 transactivation. Cancer Commun (Lond) 2018; 38:9. [PMID: 29764501 PMCID: PMC5993152 DOI: 10.1186/s40880-018-0276-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Background Our previous studies demonstrated that eyes absent homolog 4 (EYA4), a member of the eye development-related EYA family in Drosophila, is frequently methylated and silenced in hepatocellular carcinoma (HCC) specimens and associated with shorter survival. The current work aimed to explore the mechanisms through which EYA4 functions as a tumor suppressor in HCC. Methods Stable EYA4-expressing plasmid (pEYA4) transfectants of the human HCC cell lines Huh-7 and PLC/PRF/5 (PLC) were established. Xenografts tumors were established via subcutaneous injection of the stable transfectants into BALB/c nude mice. Tissue samples were obtained from 75 pathologically diagnosed HCC patients. Quantitative real-time polymerase chain reaction, Western blotting and immunohistochemistry were performed to determine the expression of EYA4 in cell lines, xenografts and clinical specimens. The cell proliferation, colony formation, invasiveness and tumor formation of stable transfectants were studied. A gene expression microarray was utilized to screen genes regulated by EYA4 expression. The effect of EYA4 on nuclear factor-κB (NF-κB)/RAS-related protein 1 (RAP1) signaling was demonstrated through the co-transfection of pEYA4 and Flag-tagged RAS-related protein 1A gene-expressing plasmid (Flag-RAP1A), functional studies, chromatin immunoprecipitation, immunofluorescence staining and cellular ubiquitination assay. Results The restoration of EYA4 expression in HCC cell lines suppressed cell proliferation, inhibited clonogenic outgrowth, reduced cell invasion and restrained xenograft tumor growth, and Flag-RAP1A reversed the suppressive effects of pEYA4 in vitro. Activation of NF-κB with tumor necrosis factor-α (TNF-α) increased the binding of p65 to the RAP1A gene promoter and up-regulated RAP1 protein expression. The inhibition of NF-κB with BAY 11-7085 and p65 siRNA successfully blocked TNF-α-induced RAP1 up-regulation. EYA4 antagonized the TNF-α-induced phosphorylation and ubiquitination of inhibitor of NF-κBα (IκBα) as well as the nuclear translocation and transactivation of p65, resulting in repressed NF-κB activity and RAP1 expression. Blocking the serine/threonine phosphatase activity of EYA4 with calyculin A notably abrogated its suppressive effect on NF-κB activity. In addition, EYA4 expression was inversely correlated with IκBα/RAP1 activity in clinical HCC specimens. Conclusion Our findings provide a functional and mechanistic basis for identifying EYA4 as a bona fide tumor suppressor that disrupts aberrant activation of the NF-κB/RAP1 signaling pathway and thus orchestrates a physiological impediment to HCC growth and invasion.
Collapse
Affiliation(s)
- Shi-Jing Mo
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xun Hou
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xiao-Yi Hao
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Jian-Peng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xin Liu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Wei Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Dong Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China
| | - Xiao-Yu Yin
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Er Road, Guangzhou, 510080, Guangdong, P. R. China.
| |
Collapse
|
49
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
50
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|