1
|
Wu YR, Xiong W, Dong YJ, Chen X, Zhong YY, He XL, Wang YJ, Lin QF, Tian XF, Zhou Q. Chemical Constituents and Pharmacological Properties of Frankincense: Implications for Anticancer Therapy. Chin J Integr Med 2024; 30:759-767. [PMID: 38816637 DOI: 10.1007/s11655-024-4105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 06/01/2024]
Abstract
The discovery of novel antitumor agents derived from natural plants is a principal objective of anticancer drug research. Frankincense, a widely recognized natural antitumor medicine, has undergone a systematic review encompassing its species, chemical constituents, and diverse pharmacological activities and mechanisms. The different species of frankincense include Boswellia serrata, Somali frankincense, Boswellia frereana, and Boswellia arabica. Various frankincense extracts and compounds exhibit antitumor, anti-inflammatory, and hepatoprotective properties and antioxidation, memory enhancement, and immunological regulation capabilities. They also have comprehensive effects on regulating flora. Frankincense and its principal chemical constituents have demonstrated promising chemoprophylactic and therapeutic abilities against tumors. This review provides a systematic summary of the mechanism of action underlying the antitumor effects of frankincense and its major constituents, thus laying the foundations for developing effective tumor-combating targets.
Collapse
Affiliation(s)
- Yong-Rong Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Xiong
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China
| | - Ying-Jing Dong
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xin Chen
- College of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuan-Yuan Zhong
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xin-Ling He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yu-Jia Wang
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qun-Fang Lin
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China
| | - Xue-Fei Tian
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Changsha, 410208, China
| | - Qing Zhou
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China.
- Hunan Sexual and Reproductive Health Clinical Medical Research Center of Traditional Chinese Medicine, Changsha, 410021, China.
| |
Collapse
|
2
|
Pan D, Wang Q, Tang S, Wu X, Cai L, Wang Z, Li Y, Huang M, Zhou Y, Shen YQ. Acetyl-11-keto-beta-boswellic acid inhibits cell proliferation and growth of oral squamous cell carcinoma via RAB7B-mediated autophagy. Toxicol Appl Pharmacol 2024; 485:116906. [PMID: 38513840 DOI: 10.1016/j.taap.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Natural products can overcome the limitations of conventional chemotherapy. Acetyl-11-keto-beta-boswellic acid (AKBA) as a natural product extracted from frankincense, exhibited chemotherapeutic activities in different cancers. However, whether AKBA exerts inhibiting effect of oral squamous cell carcinoma (OSCC) cells growth and the mechanism need to be explored. We attempted to investigate the therapeutic effects of AKBA against OSCC and explore the mechanism involved. Here we attempt to disclose the cell-killing effect of AKBA on OSCC cell lines and try to figure out the specifical pathway. The presence of increase autophagosome and the production of mitochondrial reactive oxygen species were confirmed after the application of AKBA on OSCC cells, and RAB7B inhibition enhanced autophagosome accumulation. Though the increase autophagosome was detected induced by AKBA, autophagic flux was inhibited as the failure fusion of autophagosome and lysosome. Cal27 xenografts were established to verify the role of anti-OSCC cells of AKBA in vivo. Based above findings, we speculate that natural product AKBA suppresses OSCC cells growth via RAB7B-mediated autophagy and may serve as a promising strategy for the therapy of OSCC.
Collapse
Affiliation(s)
- Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Xingbo Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Mei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
3
|
Valente IVB, Garcia D, Abbott A, Spruill L, Siegel J, Forcucci J, Hanna G, Mukherjee R, Hamann M, Hilliard E, Lockett M, Cole DJ, Klauber-DeMore N. The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancer. Breast Cancer Res Treat 2024; 204:521-530. [PMID: 38194131 PMCID: PMC10959833 DOI: 10.1007/s10549-023-07215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Boswellic acids, active components of frankincense, suppress tumor proliferation in vitro with a strong clinical trial safety profile in patients with inflammatory diseases. We performed a Phase Ia window of opportunity trial of Boswellia serrata (B. serrata) in patients with breast cancer to evaluate its biologic activity and safety. METHODS Patients with invasive breast cancer were treated pre-operatively with B. Serrata (2400 mg/day PO) until the night before surgery for a median of 11 days (SD 6 days; range: 5-23 days). Paraffin-embedded sections from pretreatment diagnostic core biopsies and post-treatment surgical excisions were evaluated using a tunnel assay and immunohistochemistry staining with Ki-67 antibodies. A non-intervention retrospective control arm consisting of core and surgical tissue specimens from untreated patients was used to compare patients treated with B. Serrata. The change in proliferation and apoptosis between diagnostic core specimens and surgical specimens was compared between the control and treatment groups using a two-tailed paired t-test. RESULTS Twenty-two patients were enrolled, of which 20 received treatment, and 18 had sufficient tissue for IHC. There was an increase in percent change in proliferation from core biopsy to surgical excision in the control group (n = 18) of 54.6 ± 21.4%. In the B. serrata-treated group there was a reduction in proliferation between core biopsy and excision (n = 18) of 13.8 ± 11.7%. This difference was statistically significant between the control and B. serrata-treated groups (p = 0.008). There was no difference in change in apoptosis. There were no serious adverse events related to the drug. CONCLUSION Boswellia serrata inhibited breast cancer proliferation and was well-tolerated in a Phase Ia window of opportunity trial.
Collapse
Affiliation(s)
| | - Denise Garcia
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Andrea Abbott
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Laura Spruill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Julie Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica Forcucci
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - George Hanna
- College of Pharmacy Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rupak Mukherjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamann
- College of Pharmacy Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Lockett
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
- Medical University of South Carolina, MSC 295, Room 240, 114 Doughty Street, Charleston, SC, 29425, USA.
| |
Collapse
|
4
|
Verma M, Fatima S, Saeed M, Ansari IA. Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells. Mol Biotechnol 2024:10.1007/s12033-024-01089-7. [PMID: 38502429 DOI: 10.1007/s12033-024-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Prostate cancer incidences are rising worldwide at an alarming rate. Drug resistance and relapse are two major challenges in the treatment of prostate cancer. Therefore, new multimodal, safe, and effective therapeutic agents are urgently required which could effectively mitigate the menace of tumor recurrence and chemo-resistance. Plant-derived products are increasingly being utilized due to their antioxidant, antibacterial, and anti-tumor potential. In the current study, 3-acetyl-11-keto-β-boswellic acid, a triterpenoid isolated from plant Boswellia, was utilized to ascertain its chemotherapeutic potential against human prostate cancer cells. Various in vitro assays including cell viability, nuclear staining, mitochondria potential, reactive oxygen species (ROS) generation, and quantification of apoptosis, were performed for the evaluation of the cytotoxic potential of AKBA. We observed that AKBA (10-50 µM) dose-dependently suppressed cell proliferation and caused programmed cell death in PC3 cells via both intrinsic and extrinsic pathway. Intriguingly, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin. To the best of our knowledge, this is the first study to document the synergistic chemosensitizing impact of AKBA when combined with doxorubicin in prostate cancer cells.This showcases the potential of AKBA in combinatorial therapy or adjuvant therapy for the management of prostate cancer. In sum, our results suggested that AKBA is a promising drug-like molecule against prostate cancer. Our investigation introduces a novel perspective, elucidating a previously unexplored dimension, and uncovering a compelling chemosensitizing phenomenon along with a strong synergistic effect arising from the concurrent application of these two agents.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
5
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
6
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Yuan C, Dong X, Xu S, Zhu Q, Xu X, Zhang J, Gong W, Ding Y, Pan J, Lu G, Chen W, Xie T, Li B, Xiao W. AKBA alleviates experimental pancreatitis by inhibiting oxidative stress in Macrophages through the Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 121:110501. [PMID: 37364326 DOI: 10.1016/j.intimp.2023.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory condition of the pancreas characterized by oxidative stress and inflammation in its pathophysiology. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid with antioxidant activity. This article seeks to assess the impact of AKBA on AP and investigate its underlying mechanisms. METHODS AP was induced in wild-type, Lyz2+/cre Nrf2fl/fl mice and Pdx1+/cre Nrf2fl/fl mice by caerulein. Serum amylase and lipase levels, along with histological grading, were utilized to evaluate the severity of AP. Murine bone marrow-derived macrophages (BMDMs) were isolated, cultured, and polarized to the M1 subtype. Flow cytometry and ELISA were utilized to identify the macrophage phenotype. Alterations in oxidative stress damage and intracellular ROS were observed. Nrf2/HO-1 signaling pathways were also evaluated. RESULTS In a caerulein-induced mouse model of AP, treatment with AKBA reduced blood amylase and lipase activity and ameliorated pancreatic tissue histological and pathological features. Furthermore, AKBA significantly mitigated oxidative stress-induced damage and induced the expression of Nrf2 and HO-1 protein. Additionally, by using conditional knockout mice (Lyz2+/cre Nrf2fl/fl and Pdx1+/cre Nrf2fl/fl mice), we verified that Nrf2 primarily functions in macrophages rather than acinar cells. In vitro, AKBA inhibits pro-inflammatory M1-subtype macrophage polarization and reduces ROS generation through Nrf2/HO-1 oxidative stress pathway. Moreover, the protective effects of AKBA against AP were abolished in myeloid-specific Nrf2-deficient mice and BMDMs. Molecular docking results revealed interactions between AKBA and Nrf2. CONCLUSION Our results confirm that AKBA exerts protective effects against AP in mice by inhibiting oxidative stress in macrophages through the Nrf2/HO-1 Pathway.
Collapse
Affiliation(s)
- Chenchen Yuan
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xiaowu Dong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Songxin Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Qingtian Zhu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Xingmeng Xu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Junxian Zhang
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weijuan Gong
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Yanbing Ding
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Jiajia Pan
- Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China; Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ting Xie
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Baiqiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Weiming Xiao
- Pancreatic Center, Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Yangzhou Key Laboratory of Pancreatic Disease, Institute of Digestive Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou University, China.
| |
Collapse
|
8
|
Elnawasany S, Haggag YA, Shalaby SM, Soliman NA, EL Saadany AA, Ibrahim MAA, Badria F. Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line. BMC Complement Med Ther 2023; 23:270. [PMID: 37516826 PMCID: PMC10386659 DOI: 10.1186/s12906-023-04096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND liver cancer is one of the most common cancers in the world. So far, there is no gold standard treatment for hepatocellular carcinoma. We conducted this in vitro study to assess the effect of three natural products: Boswellic acids, curcumin and naringin versus corresponding nanoparticles (NPs) on Hep G2 cells proliferation. METHODS Boswellic acid, curcumin, naringin-loaded NPs were prepared using nanoprecipitation method. Human liver (HepG2) cell line was cultured in Dulbecco's modified Eagle's medium (DMEM). The cell growth inhibition and cytotoxicity were evaluated by MTT assay. RESULTS Boswellic acid, curcumin, naringin were able to inhibit HepG2 cells proliferation. IC50 at 24 h, 48 h showed significant lower values in NPs versus Free herbs. IC50 values of free Boswellic acids and NPs at 24 h were (24.60 ± 1.89 and 7.78 ± 0.54, P < 0.001), at 48 h were (22.45 ± 1.13 and 5.58 ± 0.27, P < 0.001) respectively. IC50 values of free curcumin and NPs at 24 h were (5.89 ± 0.8 and 3.46 ± 0.23, P < 0.05), at 48 h were (5.57 ± 0.94 and 2.51 ± 0.11, P < 0.05), respectively. For free and naringenin NPs, IC50 values at 24 h were (14.57 ± 1.78 and 7.25 ± 0.17, P < 0.01), at 48 h were (11.37 ± 1.45 and 5.21 ± 0.18, P < 0.01) respectively. CONCLUSION Boswellic acid, curcumin, naringin and their nanoprecipitation prepared nanoparticles suppressed Hep G2 cells proliferation.
Collapse
Affiliation(s)
- Sally Elnawasany
- Tropical Medicine Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, 31111 Egypt
| | - Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Shahinaz M. Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Nema A. Soliman
- Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Amira A. EL Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Marwa A. A. Ibrahim
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Farid Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Gastrointestinally absorbable lactoferrin-heparin conjugate with anti-angiogenic activity for treatment of brain tumor. J Control Release 2023; 355:730-744. [PMID: 36764526 DOI: 10.1016/j.jconrel.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a central nervous system disease with poor prognosis. Curative treatments for GBM involve chemotherapy, radiotherapy, and surgical pathways. Recently, antiangiogenic therapy through medications has been tried to slow tumor growth, but the drugs can induce side effects. To overcome these limitations, we developed a new orally absorbable form of heparin that can attenuate angiogenic activity by binding to growth factors around the tumor tissue. We conjugated lactoferrin (Lf) to heparin because Lf can be orally absorbed, and it interacts with the lactoferrin receptor (Lf-R) expressed on the intestine, blood-brain barrier (BBB), and glioma tumor masses. We successfully conjugated Lf and heparin by amide bond formation, as evidenced by advanced physicochemical properties such as pharmacokinetics and stability in acidic condition. This new material inhibited angiogenesis in vitro without toxicity. In addition, Lf-heparin administered orally to GBM orthotopic mice was absorbed in the small intestine and delivered specifically to the brain tumor by receptor transcytosis (Lf-R). Lf-heparin further attenuated angiogenesis progression in GBM orthotopic mice. Based on these results, Lf-heparin shows potential as a new oral medication for treatment of glioblastoma.
Collapse
|
10
|
Farahani MK, Bitaraf FS, Atashi A, Jabbarpour Z. Evaluation of anticancer effects of frankincense on breast cancer stem-like cells. Cancer Rep (Hoboken) 2023; 6:e1693. [PMID: 36806721 PMCID: PMC9939999 DOI: 10.1002/cnr2.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Relapse and metastasis in breast cancer are linked to cancer stem cells (CSCs) resistant to anticancer therapies. The presence of cancer stem-like cells (CSLCs) and their ability to self-renew is determined by in vitro spheroid formation. AIMS Many studies have found that frankincense has anticancer impacts, although these effects on breast CSLCs have never been evaluated. METHODS AND RESULTS A population of heterogeneous breast tumor cells was extracted from the tumor mass after generating an animal model of triple-negative breast cancer (TNBC). Spheroid formation was used as an in vitro assay to determine the existence of CSLCs in these cells. MTT assay was used to determine frankincense's cytotoxic activity. An annexin V- propidium iodide (PI) staining and scratch test were used to assess the induction of apoptosis and antimetastatic effects of frankincense. The frankincense extract has significant cytotoxic and apoptotic effects on breast CSLCs. Although, the breast CSLCs are more resistant to these impacts than other breast cancer cells. CONCLUSION Our study is the first report that indicates that frankincense extract has anticancer properties in breast CSLCs. Compared to many anticancer chemicals, which have limited potential to battle cancer stem cells, frankincense is an appropriate option to combat breast CSCs.
Collapse
Affiliation(s)
| | - Fateme Sadat Bitaraf
- Department of Medical Biotechnology, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, School of ParamedicalShahroud University of Medical SciencesShahroudIran
| | - Zahra Jabbarpour
- Gene Therapy Research Center, Digestive Disease Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Gong C, Li W, Wu J, Li YY, Ma Y, Tang LW. AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis. JOURNAL OF RADIATION RESEARCH 2023; 64:33-43. [PMID: 36300343 PMCID: PMC9855320 DOI: 10.1093/jrr/rrac064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Acetyl-keto-b-boswellic acid (AKBA) functions in combating human malignant tumors, including lung cancer. However, the function of AKBA in regulating the radioresistance of lung cancer and its underlying mechanism still need to be elucidated. Radiation-resistant lung cancer cells (RA549) were established. Quantitative real-time polymerase chain reaction (QRT-PCR) and Western blot were employed to examine the messenger RNA (mRNA) and protein expressions. After being treated with AKBA and different doses of X-ray, cell proliferation and survival were examined using colony formation assay and cell-counting kit-8 (CCK-8) assay. The cellular localization of Forkhead box 1 (FOXO1) was measured by immunofluorescence (IF). Flow cytometry was employed to analyze cell cycle and apoptosis. In addition, in vivo experiment was performed to determine the effect of AKBA on the sensitivity of tumors to radiation. Herein, we found that AKBA could enhance the radiosensitivity in RA549, suppress cell proliferation, induce cell apoptosis and arrest cell cycle. It was observed that maspin was lowly expressed and hypermethylated in RA549 cells compared to that in A549 cells, while these changes were all eliminated by AKBA treatment. Maspin knockdown could reverse the regulatory effects of AKBA on radioresistance and cellular behaviors of RA549 cells. In addition, we found that AKBA treatment could repress the phosphorylation of Serine/Threonine Kinase (AKT), and FOXO1, increase the translocation of FOXO1 and p21 level in RA549 cells, which was abolished by maspin knockdown. Moreover, results of tumor xenograft displayed that AKBA could enhance the sensitivity of tumor to radiation through the maspin/AKT/FOXO1/p21 axis. We discovered that AKBA enhanced the radiosensitivity of radiation-resistant lung cancer cells by regulating maspin-mediated AKT/FOXO1/p21 axis.
Collapse
Affiliation(s)
| | | | - Jing Wu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Yao-Yao Li
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Yi Ma
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Li-Wen Tang
- Corresponding author. Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95, Shaoshan Middle Road, Yuhua District, Changsha 410007, Hunan Province, P.R. China. Tel: +86-13739072892;
| |
Collapse
|
12
|
Li W, Li J, Hu X, Xu L, Liu X, Qian Z, Jin L, Zhang Y, Wei J, Liu X. Tumour suppression by Chinese cordyceps extract via antiangiogenic activity. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Acetyl-11-Keto- β-Boswellic Acid (AKBA) Prevents Lipopolysaccharide-Induced Inflammation and Cytotoxicity on H9C2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2620710. [PMID: 35399644 PMCID: PMC8986374 DOI: 10.1155/2022/2620710] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Acetyl-11-keto-beta-boswellic acid (AKBA), the major component of Boswellia serrata, exhibits anti-inflammatory activities. This in vitro study investigated the protective effects of AKBA against lipopolysaccharide (LPS)-induced cardiac dysfunction. In this study, the H9C2 cardiomyocytes were pretreated with AKBA (2.5, 5, and 10 μM for 24 h), and then cotreated with LPS for another 24 h. The MTT assay, ELISA test kits, and quantitative real-time PCR analysis assessed the cell viability, levels of proinflammatory factors (IL-β, IL-6, TNF- α, and PGE2), and the gene expression of IL-β, IL-6, TNF- α, iNOS, and COX-2, respectively. The nitric oxide (NO) and thiol levels were also measured using a biochemical assay. The results indicated that LPS exposure markedly reduced cell viability and total thiol content, but increased the inflammatory cytokines, NO metabolites, and gene expression of proinflammatory mediators in H9C2 cells. AKBA pretreatment significantly altered the mentioned factors induced by LPS. Our results demonstrated that AKBA might be a promising therapeutic agent for treating sepsis-related cardiac dysfunction in the future.
Collapse
|
14
|
Zheng Z, Li M, Jiang P, Sun N, Lin S. Peptides derived from sea cucumber accelerate cells proliferation and migration for wound healing by promoting energy metabolism and upregulating the ERK/AKT pathway. Eur J Pharmacol 2022; 921:174885. [DOI: 10.1016/j.ejphar.2022.174885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
15
|
Khajehdehi M, Khalaj-Kondori M, Baradaran B. Molecular evidences on anti-inflammatory, anticancer, and memory-boosting effects of frankincense. Phytother Res 2022; 36:1194-1215. [PMID: 35142408 DOI: 10.1002/ptr.7399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
Chemical diversity of natural products with drug-like features has attracted much attention from medicine to develop more safe and effective drugs. Their anti-inflammatory, antitumor, analgesic, and other therapeutic properties are sometimes more successful than chemical drugs in controlling disease due to fewer drug resistance and side effects and being more tolerable in a long time. Frankincense, the oleo gum resin extracted from the Boswellia species, contains some of these chemicals. The anti-inflammatory effect of its main ingredient, boswellic acid, has been traditionally used to treat many diseases, mainly those target memory functions. In this review, we have accumulated research evidence from the beneficial effect of Frankincense consumption in memory improvement and the prevention of inflammation and cancer. Besides, we have discussed the molecular pathways mediating the therapeutic effects of this natural supplement.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
The protective effect of Boswellic acid and Ellagic acid loaded, colon targeted, and pH-sensitive N-succinyl chitosan in ulcerative colitis rat model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Anti-Cancer Effects of α-Cubebenoate Derived from Schisandra chinensis in CT26 Colon Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030737. [PMID: 35164001 PMCID: PMC8839175 DOI: 10.3390/molecules27030737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
α-Cubebenoate derived from Schisandra chinensis has been reported to possess anti-allergic, anti-obesity, and anti-inflammatory effects and to exhibit anti-septic activity, but its anti-cancer effects have not been investigated. To examine the anti-cancer activity of α-cubebenoate, we investigated its effects on the proliferation, apoptosis, and metastasis of CT26 cells. The viabilities of CT26 cells (a murine colorectal carcinoma cell line) and HCT116 cells (a human colon cancer cell line) were remarkably and dose-dependently diminished by α-cubebenoate, whereas the viability of CCD-18Co cells (a normal human fibroblast cell line) were unaffected. Furthermore, α-cubebenoate treatment increased the number of apoptotic CT26 cells as compared with Vehicle-treated cells and increased Bax, Bcl-2, Cas-3, and Cleaved Cas-3 protein levels by activating the MAP kinase signaling pathway. α-Cubebenoate also suppressed CT26 migration by regulating the PI3K/AKT signaling pathway. Furthermore, similar reductions were observed in the expression levels of some migration-related proteins including VEGFA, MMP2, and MMP9. Furthermore, reduced VEGFA expression was found to be accompanied by the phosphorylations of FAK and MLC in the downstream signaling pathway of adhesion protein. The results of the present study provide novel evidence that α-cubebenoate can stimulate apoptosis and inhibit metastasis by regulating the MAPK, PI3K/AKT, and FAK/MLC signaling pathways.
Collapse
|
18
|
Anticancer Effect of Heparin-Taurocholate Conjugate on Orthotopically Induced Exocrine and Endocrine Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225775. [PMID: 34830928 PMCID: PMC8616444 DOI: 10.3390/cancers13225775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic cancer has a less than 9% 5-year survival rate among patients because it is very difficult to detect and diagnose early. Combinatorial chemotherapy with surgery or radiotherapy is a potential remedy to treat pancreatic cancer. However, these strategies still have side effects such as hair loss, skin soreness and fatigue. To overcome these side effects, angiogenesis inhibitors such as sunitinib are used to deliver targeted blood vessels around tumor tissues, including pancreatic cancer tumors. It is still controversial whether antiangiogenesis therapy is sufficient to treat pancreatic cancer. So far, many scientists have not been focused on the tumor types of pancreatic cancer when they have developed antipancreatic cancer medication. Here, we used heparin–taurocholate (LHT) as an anticancer drug to treat pancreatic cancer through inhibition of angiogenic growth factors. In this study, we examined the anticancer efficacy of LHT on various types of pancreatic cancer in an orthotopic model. Abstract Pancreatic cancers are classified based on where they occur, and are grouped into those derived from exocrine and those derived from neuroendocrine tumors, thereby experiencing different anticancer effects under medication. Therefore, it is necessary to develop anticancer drugs that can inhibit both types. To this end, we developed a heparin–taurocholate conjugate, i.e., LHT, to suppress tumor growth via its antiangiogenic activity. Here, we conducted a study to determine the anticancer efficacy of LHT on pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine tumor (PNET), in an orthotopic animal model. LHT reduced not only proliferation of cancer cells, but also attenuated the production of VEGF through ERK dephosphorylation. LHT effectively reduced the migration, invasion and tube formation of endothelial cells via dephosphorylation of VEGFR, ERK1/2, and FAK protein. Especially, these effects of LHT were much stronger on PNET (RINm cells) than PDAC (PANC1 and MIA PaCa-2 cells). Eventually, LHT reduced ~50% of the tumor weights and tumor volumes of all three cancer cells in the orthotopic model, via antiproliferation of cancer cells and antiangiogenesis of endothelial cells. Interestingly, LHT had a more dominant effect in the PNET-induced tumor model than in PDAC in vivo. Collectively, these findings demonstrated that LHT could be a potential antipancreatic cancer medication, regardless of pancreatic cancer types.
Collapse
|
19
|
Wu L, Chen W, Wang Z. Traditional Indian medicine in China: The status quo of recognition, development and research. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114317. [PMID: 34111541 DOI: 10.1016/j.jep.2021.114317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Indian medicine is one of the oldest medical systems and remains popular worldwide. Traditional medicine systems in China and India have historical origins pertaining to mutual learning, reference, and development from medical theory to the drugs used. The exchange of traditional medicine between China and India began in the Qin and Han Dynasties (221 BC-220 AD), prospered in the Tang Dynasty (618-907 AD), and declined after the Song Dynasty (960-1279 AD). It was also directly related to the rise and fall of Buddhism. The traditional medicines of the two countries are highly complementary because of differences in geographical climate and the modernisation process of traditional medicine. AIM This review aimed to understand the spread and development of traditional Indian medicine in China to further promote exchange and cooperation between China and India in the field of traditional medicine. MATERIALS AND METHODS We performed a systematic search of MEDLINE via PubMed, CNKI, Science Direct, Sci-Hub, and other databases using the terms 'traditional Indian medicine' or 'Indian medicine' or 'Ayurveda' or 'Yoga' or 'Unani', and limiting the search to articles published between 1958 and 2019. We analysed the sources, publication date, type, and topic of the retrieved articles/studies. RESULTS Based on the results of research on traditional Indian medicine carried out by Chinese scholars, 518 academic papers and 60 classic works published in China and abroad were collected. The results showed the following. First, Chinese scholars have systematically investigated traditional Indian medicine including its composition, management, and education; the scale of medicinal and pharmaceutical plants; protective measures of intellectual property rights of traditional medicine; and international promotion of Yoga. Second, studies have examined the development status of traditional Indian medicine in China including the spread of Yoga in the country and the industrial scale of, education in, existing problems in, and clinical research on Yoga. In addition, Chinese scholars conducted research on and the translation of classic works and terms of Ayurveda, and studied the theory, treatment, and medicine thereof. Third, the historical exchange and trading status of traditional medicine between India and China have been discussed, including the exchange of traditional medicine between the two countries, effect of traditional Indian medicine on Chinese Buddhism, and minority medicine and trade in medicinal materials between the two countries. CONCLUSION India attaches great importance to the management of, education in, and industry of traditional medicine, and has made various efforts to protect intellectual property rights. Indian Yoga is very popular in China, and Chinese scholars have conducted some clinical research thereon. However, regulatory systems and legislation for Yoga are lacking in China. At present, traditional Chinese medicine scholars have an enhanced understanding of the term Yoga and less knowledge of the terms Ayurveda, Siddha, Unani, and similar concepts. We suggest that Chinese scholars further study the classic works, basic theories, treatment of clinical diseases, medicinal materials, and prescriptions compounding traditional Indian medicine. The results of this study highlight directions for Chinese scholars to pursue in further studying traditional Indian medicine comprehensively, and will help promote exchange and cooperation between China and India in the field of traditional medicine.
Collapse
Affiliation(s)
- Lei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wanyue Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Institute of Traditional Indian Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Haque A, Brazeau D, Amin AR. Perspectives on natural compounds in chemoprevention and treatment of cancer: an update with new promising compounds. Eur J Cancer 2021; 149:165-183. [PMID: 33865202 PMCID: PMC8113151 DOI: 10.1016/j.ejca.2021.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Cancer is the second deadliest disease worldwide. Although recent advances applying precision treatments with targeted (molecular and immune) agents are promising, the histological and molecular heterogeneity of cancer cells and huge mutational burdens (intrinsic or acquired after therapy) leading to drug resistance and treatment failure are posing continuous challenges. These recent advances do not negate the need for alternative approaches such as chemoprevention, the pharmacological approach to reverse, suppress or prevent the initial phases of carcinogenesis or the progression of premalignant cells to invasive disease by using non-toxic agents. Although data are limited, the success of several clinical trials in preventing cancer in high-risk populations suggests that chemoprevention is a rational, appealing and viable strategy to prevent carcinogenesis. Particularly among higher-risk groups, the use of safe, non-toxic agents is the utmost consideration because these individuals have not yet developed invasive disease. Natural dietary compounds present in fruits, vegetables and spices are especially attractive for chemoprevention and treatment because of their easy availability, high margin of safety, relatively low cost and widespread human consumption. Hundreds of such compounds have been widely investigated for chemoprevention and treatment in the last few decades. Previously, we reviewed the most widely studied natural compounds and their molecular mechanisms, which were highly exploited by the cancer research community. In the time since our initial review, many promising new compounds have been identified. In this review, we critically review these promising new natural compounds, their molecular targets and mechanisms of anticancer activity that may create novel opportunities for further design and conduct of preclinical and clinical studies.
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Arm R Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
21
|
Al-Harrasi A, Khan AL, Rehman NU, Csuk R. Biosynthetic diversity in triterpene cyclization within the Boswellia genus. PHYTOCHEMISTRY 2021; 184:112660. [PMID: 33524859 DOI: 10.1016/j.phytochem.2021.112660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
This review is not intended to describe the triterpenes isolated from the Boswellia genus, since this information has been covered elsewhere. Instead, the aim is to provide insights into the biosynthesis of triterpenes in Boswellia. This genus, which has 24 species, displays fascinating structural diversity and produces a number of medicinally important triterpenes, particularly boswellic acids. Over 300 volatile components have been reported in the essential oil of Boswellia, and more than 100 diterpenes and triterpenes have been isolated from this genus. Given that no triterpene biosynthetic enzymes have yet been isolated from any members of the Boswellia genus, this review will cover the likely biosynthetic pathways as inferred from structures in nature and the probable types of biosynthetic enzymes based on knowledge of triterpene biosynthesis in other plant species. It highlights the importance of frankincense and the factors and threats affecting its production. It covers triterpene biosynthesis in the genus Boswellia, including dammaranes, tirucallic acids, lupanes, oleananes, ursanes and boswellic acids. Strategies for elucidating triterpene biosynthetic pathways in Boswellia are considered. Furthermore, the possible mechanisms behind wound-induced resin synthesis by the tree and related gene expression profiling are covered. In addition, the influence of the environment and the genotype on the biosynthesis of resin and on variations in the compositions and types of resins will also be reviewed.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Shi J, Gu Y, Wang Y, Bai J, Xiong L, Tao Y, Xue Y, Xu Y, Yang H, Ye H, Geng D. Inhibitory effect of acetyl-11-keto-β-boswellic acid on titanium particle-induced bone loss by abrogating osteoclast formation and downregulating the ERK signaling pathway. Int Immunopharmacol 2021; 94:107459. [PMID: 33611061 DOI: 10.1016/j.intimp.2021.107459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Wear debris-induced osteoclast accumulation around implants plays a crucial role during the progression of periprosthetic osteolysis (PPO). We have confirmed that acetyl-11-keto-β-boswellic acid (AKBA) promotes bone formation and protects against particle-induced bone destruction in vivo. However, the effect of AKBA on titanium-induced bone resorption is unknown. In this study, we detected the inhibitory effect of AKBA on titanium-induced bone erosion in vivo and used RAW264.7 cells and bone marrow macrophages (BMMs) to investigate the effect and underlying mechanism of AKBA on the differentiation and resorptive function of osteoclasts. Our findings revealed that AKBA inhibited particle-induced bone loss and osteoclast formation in vivo. Furthermore, AKBA exerted inhibitory effects on RANKL-induced osteoclastogenesis, osteoclastic ring-dependent resorption and the expression of osteoclast marker genes via the ERK signaling pathway in vitro. Our data further established the protective effect of AKBA on titanium particle-induced bone erosion from a new perspective of bone erosion prevention, strongly confirming that AKBA is an appropriate agent for protection against PPO.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215500, China
| | - Yong Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Longbin Xiong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi Xue
- Department of Orthopedics, Changshu Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Changshu 215000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Hongwei Ye
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu 215500, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
23
|
Song YL, Zhang PB, Tong RJ, Li L, Meng YQ. Design and synthesis of VEGFR-2 inhibitors based on oleanolic acid moiety. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:176-188. [PMID: 31888388 DOI: 10.1080/10286020.2019.1706500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
In this study, twenty-four oleanolic acid (OA) derivatives were rationally designed based on molecule docking studies and their VEGFR-2 inhibitory activities were tested by Homogeneous time-resolved fluorescence (HTRF) method in vitro. All of the synthesized compounds were identified as new compounds, and the structures of these compounds were determined by 1H-NMR and ESI-MS. In the screening for VEGFR-2 inhibitors, compounds I6 and I7 exhibited excellent inhibitory effect. The results indicated that insertion of phenylurea group with a linker at position C-28 of OA can increase the activity against VEGFR-2 significantly. [Formula: see text].
Collapse
Affiliation(s)
- Yan-Ling Song
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Peng-Bo Zhang
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Rui-Jie Tong
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ling Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yan-Qiu Meng
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
24
|
Zhang P, Lai X, Zhu MH, Long M, Liu XL, Wang ZX, Zhang Y, Guo RJ, Dong J, Lu Q, Sun P, Fang C, Zhao M. Saikosaponin A, a Triterpene Saponin, Suppresses Angiogenesis and Tumor Growth by Blocking VEGFR2-Mediated Signaling Pathway. Front Pharmacol 2021; 12:713200. [PMID: 34776948 PMCID: PMC8588445 DOI: 10.3389/fphar.2021.713200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Saikosaponin A (SSA), a main triterpenoid saponin component from Radix Bupleurum, has been revealed to have a variety of pharmacological activities. However, whether SSA can inhibit angiogenesis, a key step in solid tumor progression, remains unknown. In this study, we demonstrated that SSA could powerfully suppress the proliferation, migration, and tube formation of human umbilical vein endothelial cells. SSA also significantly inhibited angiogenesis in the models of the chick embryo chorioallantoic membrane and Matrigel plugs. Moreover, SSA was found to inhibit tumor growth in both orthotopic 4T1 breast cancer and subcutaneous HCT-15 colorectal tumor by the inhibition of tumor angiogenesis. Western blot assay indicated the antiangiogenic mechanism of SSA in the suppression of the protein phosphorylation of VEGFR2 and the downstream protein kinase including PLCγ1, FAK, Src, and Akt. In summary, SSA can suppress angiogenesis and tumor growth by blocking the VEGFR2-mediated signaling pathway.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Lai
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mao-Hua Zhu
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mei Long
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xue-Liang Liu
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zi-Xiang Wang
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yifan Zhang
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Run-Jie Guo
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Dong
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Qin Lu
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, China
| | - Chao Fang
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
26
|
Abstract
OPINION STATEMENT Corticosteroids have been essential in the management of brain tumor patients for decades, primarily for the treatment of peritumoral cerebral edema and its associated neurologic deficits. Dexamethasone is the drug of choice with standard practice being administration up to four times per day, however, because of its long biologic half-life and high potency, once or twice a day dosing is likely adequate in patients without elevated intracranial pressure. The length of corticosteroid treatment should be limited to the shortest period of time to minimize the risk of potential toxicities that can significantly affect quality of life, as well as to avoid a possible detrimental impact on survival in high-grade glioma patients and abrogation of the effect of immunotherapy. Agents such as bevacizumab should be considered in patients who are unable to wean completely off of steroids as well as those who have symptomatic edema and are on immunotherapy. Several other agents have been studied without much success. An increased understanding of the complex pathophysiology of peritumoral vasogenic edema is critically needed to discover new agents that are safer and more effective.
Collapse
|
27
|
Lv M, Zhuang X, Zhang Q, Cheng Y, Wu D, Wang X, Qiao T. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction, and autophagy suppression via p21-dependent signaling pathway. Cell Biol Toxicol 2020; 37:209-228. [PMID: 32562082 PMCID: PMC8012341 DOI: 10.1007/s10565-020-09541-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin-based therapy is a widely used chemotherapeutic regimen for non-small cell lung cancer (NSCLC); however, drug resistance limits its efficacy. Acetyl-11-keto-β-boswellic acid (AKBA), a bioactive compound from frankincense, has been shown to exert anti-cancer effects. The aim of this study is to explore the potential of AKBA in combination with cisplatin as a new regimen for NSCLC. CCK8 assay and clone formation assay were used to determine the effects of AKBA in combination with cisplatin on cell viability of NSCLC cell lines. A three-dimensional spherification assay was used to simulate in vivo tumor formation. Flow cytometry was performed to examine cell cycle distribution and the percentages of apoptotic cells. The associated proteins and mRNA of cell cycle, apoptosis, and autophagy were measured by western blotting and real-time fluorescence quantitative PCR. Immunofluorescence assay was used to test apoptotic nuclei and autolysosome. Small interfering RNA experiments were used to silence the expression of p21. Combination treatment of AKBA and cisplatin inhibited cell viability, clone formation, and three-dimensional spherification, enhanced G0/G1 phase arrest, increased the percentages of apoptotic cells, and decreased the ratio of positive autolysosomes, compared with cisplatin alone. AKBA in combination with cisplatin suppressed the protein expressions of cyclin A2, cyclin E1, p-cdc2, CDK4, Bcl-xl, Atg5, and LC3A/B, and upregulated p27 and p21 mRNA levels in A549 cells. Downregulation of p21 decreased G0/G1 phase arrest and the percentages of apoptotic cells, and promoted autophagy in NSCLC A549 cells. Our study demonstrates that AKBA enhances the cisplatin sensitivity of NSCLC cells and that the mechanisms involve G0/G1 phase arrest, apoptosis induction, and autophagy suppression via targeting p21-dependent signaling pathway.
Collapse
Affiliation(s)
- Minghe Lv
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Qi Zhang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Xiangdong Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
28
|
Zhang Q, Li T, Wang Z, Kuang X, Shao N, Lin Y. lncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J Cell Mol Med 2020; 24:8236-8247. [PMID: 32548873 PMCID: PMC7348140 DOI: 10.1111/jcmm.15499] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.
Collapse
Affiliation(s)
- Qi Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tianfu Li
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhecun Wang
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaying Kuang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
29
|
Sharma T, Jana S. A Validated LC-MS/MS Method for Simultaneous Determination of 3-O-Acetyl-11-Keto-β-Boswellic Acid (AKBA) and its Active Metabolite Acetyl-11-Hydroxy-β-Boswellic Acid (Ac-11-OH-BA) in Rat Plasma: Application to a Pharmacokinetic Study. J Chromatogr Sci 2020; 58:485-493. [PMID: 32134105 DOI: 10.1093/chromsci/bmaa010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 11/13/2022]
Abstract
The aim of this study was to develop and validate a new, rapid, sensitive, selective and reliable liquid chromatography-tandem mass spectrometry method for simultaneous determination of 3-O-Acetyl-11-keto-β-boswellic acid (AKBA) and its active metabolite 3-O-Acetyl-11-hydroxy-β-boswellic acid (Ac-11-hydroxy-BA) in rat plasma. Both analytes (AKBA and Ac-11-hydroxy-BA) and the internal standard (IS, ursolic acid) were extracted from 100 μL of rat plasma by protein precipitation. Chromatographic separation was achieved on PRP-H1 RP-C18 column (75 mm × 2 mm, 1.6 μm) using acetonitrile-water (95.5 v/v) as the mobile phase. Mass detection was conducted by electrospray ionization in positive ion multiple reaction monitoring (MRM) mode. A linear dynamic range of 1-1,000 ng/mL for both AKBA and Ac-11-hydroxy-BA was established with mean correlation coefficient (r (1)) of 0.999. Intra- and inter-day precision (% CV) of analysis were found in the range of 1.9-7.4%. The accuracy determined for these analytes ranged from 92.4 to 107.2%. The extraction recoveries for both analytes ranged from 92.6 to 97.3% for spiked plasma samples and were consistent. The % change in stability samples compared to nominal concentration ranged from 0.4 to 4.2%. This method was successfully tested to a pharmacokinetic (PK) study for estimation of AKBA and acetyl-11-hydroxy-BA in rat plasma following oral administration of AKBA. This method has been validated with the advantage of shorter run time that can be used for high-throughput analysis and has been successfully applied to the pharmacokinetic study of AKBA in rats.
Collapse
Affiliation(s)
- Tarun Sharma
- Deptartment of Pharmaceutical Chemistry, Bhagwant University, Sikar Road, Ajmer, Rajasthan, India
| | - Snehasis Jana
- Trivedi Science Research Laboratory, Thane-West, Maharashtra, India
| |
Collapse
|
30
|
Jebelli A, Khalaj-Kondori M, Rahmati-Yamchi M. The Effect of Beta-Boswellic Acid on the Expression of Camk4 and Camk2α Genes in the PC12 Cell Line. Adv Pharm Bull 2020; 10:437-443. [PMID: 32665903 PMCID: PMC7335997 DOI: 10.34172/apb.2020.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: Beta-boswellic acid (βBA) may play central roles in neural plasticity. Neural plasticity has significant implications for learning and memory which are governed by strict memoryrelated molecular pathways. To gain insight into the molecular mechanism by which βBA affects these pathways this study analyzed the expression patterns of Camk2α and Camk4 genes in PC12 cells treated with βBA. Methods: The cytotoxic effects of different βBA concentrations on PC12 cells were examined by MTT assay. For gene expression analysis, cells were treated with concentrations of 1 and 10 µM of βBA for 12, 24, 48, and 72 hours. Total RNA was purified by RNX-Plus solution and reverse transcribed into cDNA using Thermo Scientific Reverse Transcription reagents. The expression patterns of Camk2α and Camk4 genes were quantified by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: MTT assay indicated that βBA reduced PC12 cell viability in a time- and concentrationdependent manner. The 50% inhibitory concentrations for the 48 and 72 hours time points were 35 and 26 µM, respectively; while, the βBA concentrations up to 100 µM failed to kill 50% of the cells after 24 hours. According to the qRT-PCR data, the Camk2α variant is not expressed in either βBA-treated or untreated PC12 cells. However, a significant upregulation was observed inCamk4 after 12 hours of treatment with βBA, which followed by a significant downregulation after 24 hours and a persistent expression equal to the control until 72 hours. Conclusion: these findings indicate that PC12 cells not only does not express Camk2α but also its expression cannot be induced by βBA. However, βBA does modulate the expression of Camk4. This result provides further insight into the molecular mechanism by which βBA affects memory.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
|
32
|
Cytotoxic Evaluation and Anti-Angiogenic Effects of Two Furano-Sesquiterpenoids from Commiphora myrrh Resin. Molecules 2020; 25:molecules25061318. [PMID: 32183153 PMCID: PMC7144466 DOI: 10.3390/molecules25061318] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Commiphora myrrh resin (Myrrh) has been used in traditional Arabic medicine to treat various inflammatory diseases. Two furano-sesquiterpenoids, 2-methoxyfuranodiene (CM1) and 2-acetoxyfuranodiene (CM2), were isolated from the chloroform fraction of the ethanolic extract of Arabic Commiphora myrrh resin. The cytotoxicity of the compounds was evaluated using human liver carcinoma, breast cancer cells (HepG2 and MCF-7, respectively) and normal human umbilical vein endothelial cells (HUVECs) cell lines. The development toxicity and anti-angiogenic activity of both compounds were also evaluated using zebrafish embryos. Cell survival assays demonstrated that both compounds were highly cytotoxic in HepG2 and MCF7 cells, with IC50 values of 3.6 and 4.4 µM, respectively. Both compounds induced apoptosis and caused cell cycle arrest in treated HepG2 cells, which was observed using flow cytometric analysis. The development toxicity in zebrafish embryos showed the chronic toxicity of both compounds. The toxicity was only seen when the embryos remained exposed to the compounds for more than three days. The compound CM2 showed a significant level of anti-angiogenic activity in transgenic zebrafish embryos at sublethal doses. Thus, we demonstrated the cytotoxic properties of both compounds, suggesting that the molecular mechanism of these compounds should be further assessed.
Collapse
|
33
|
Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin Cancer Biol 2020; 80:39-57. [PMID: 32027979 DOI: 10.1016/j.semcancer.2020.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-β boswellic acid, α- and β-boswellic acids, 11-keto-β-boswellic acid and other boswellic acids, lupeolic acids, incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.
Collapse
|
34
|
Li J, Tang F, Li R, Chen Z, Lee SMY, Fu C, Zhang J, Leung GPH. Dietary compound glycyrrhetinic acid suppresses tumor angiogenesis and growth by modulating antiangiogenic and proapoptotic pathways in vitro and in vivo. J Nutr Biochem 2019; 77:108268. [PMID: 31830590 DOI: 10.1016/j.jnutbio.2019.108268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/04/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
Glycyrrhetinic acid (GA) is a major bioactive compound of licorice. The objective of this study was to investigate the effects of GA on ovarian cancer, particularly those related to angiogenesis and apoptosis, and to elucidate the underlying mechanisms of action. In vitro studies showed that GA significantly inhibited proliferation, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. GA inhibited the phosphorylation of major receptors and enzymes involved in angiogenesis, such as VEGFR2, mTOR, Akt, ERK1/2, MEK1/2, p38 and JNK1/2 in HUVECs. In addition, GA induced apoptosis, loss of mitochondrial membrane potential and cell cycle arrest in G1 phase in A2780 ovarian cancer cells. The proapoptotic effect of GA involved the increased phosphorylation of p38 and JNK1/2; increased cleavage of caspase 3, caspase 9 and PARP; reduced phosphorylation of mTOR, Akt and ERK1/2; and reduced expressions of survivin and cyclin D1. Ex vivo studies showed that GA significantly inhibited microvessel sprouting in rat aortic ring model. In vivo studies showed that GA inhibited the formation of new blood vessels in zebrafish and mouse Matrigel plug. GA also significantly reduced the size of ovarian cancer xenograft tumors in nude mice. Taken together, GA possesses potential antitumor effects, and the underlying mechanisms may involve the inhibition of signaling pathways related to angiogenesis and the activation of apoptotic pathways in cancer cells. Our findings suggest that GA could serve as an effective regimen in the prevention or treatment of cancer.
Collapse
Affiliation(s)
- Jingjing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Zhejie Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
35
|
Alotaibi S. Biophysical properties and finger print of Boswellia Sp. Burseraceae. Saudi J Biol Sci 2019; 26:1450-1457. [PMID: 31762608 PMCID: PMC6864145 DOI: 10.1016/j.sjbs.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
For the first time a finger print analysis via high-performance thin layer chromatography (HPTLC) of Boswellia Sp. Burseraceae was accomplished. A preliminary investigation of the Boswellia Sp. Burseraceae displayed the presence of chemical constituents that could be involved in the production of innovative pharmaceuticals for an array of antiviral, anticancer, and antibacterial uses. Moreover, the finger print analysis would deem useful for establishing HPTLC standardization for natural and herbal photochemical constituents.
Collapse
Affiliation(s)
- S.H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, 21995, Saudi Arabia
| |
Collapse
|
36
|
Han L, Xia Q, Zhang L, Zhang X, Li X, Zhang S, Wang L, Liu C, Liu K. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos/larvae by acetyl-11-keto-β-boswellic acid (AKBA) through oxidative stress. Drug Chem Toxicol 2019; 45:143-150. [PMID: 31656113 DOI: 10.1080/01480545.2019.1663865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acetyl-11-keto-β-boswellic acid (AKBA), a triterpenoid from Boswellia serrate, is regarded as an angiogenesis inhibitor. However, its toxicity is unknown. The aim of this study was to examine its developmental toxicity and cardiotoxicity. A developmental toxicity assay in zebrafish embryos/larvae from 4 to 96 hours post-fertilization (hpf) was performed and a cardiotoxicity assay was designed from 48 to 72 hpf. Markers of oxidative stress and related genes were selected to access the possible mechanisms. According to the results, AKBA induced pericardium edema, yolk-sac edema, abnormal melanin, spinal curvature, hatching inhibition and shortened body length. Further, increased SV-BA distance, reduced heart rate, increased pericardium area and decreased blood flow velocity were detected in AKBA treated groups. The inhibition of cardiac progenitor gene expression, such as Nkx2.5 and Gata4, may be related to cardiotoxicity. The activities of antioxidant enzymes were decreased and the content of MDA was increased. In addition, AKBA treatment decreased the expression levels of Mn-Sod, Cat, and Gpx. These results suggested that AKBA induced developmental toxicity and cardiotoxicity through oxidative stress. As far as we know, this is the first report on the toxicity of AKBA. It reminds us to pay attention to developmental toxicity and cardiotoxicity of AKBA.
Collapse
Affiliation(s)
- Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Lei Zhang
- Biological Science Section, Therapeutic Good Administration , Symonston , Australia
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Changxiao Liu
- Tianjin Center for New Drug Evaluation and Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research , Tianjin , People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| |
Collapse
|
37
|
Bakhtiari S, Nematzade F, Hakemi-Vala M, Talebi G. Phenotypic Investigation of the Antimicrobial Effect of Organic and Hydro-Alcoholic Extracts of Boswellia serrata on Oral Microbiota. Front Dent 2019; 16:386-392. [PMID: 32123879 PMCID: PMC7040560 DOI: 10.18502/fid.v16i5.2287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/04/2019] [Indexed: 11/24/2022] Open
Abstract
Objectives: Considering the emergence of resistant microbes and side effects of chemical drugs, in this study, the inhibitory effect of organic and hydro-alcoholic extracts of Boswellia serrata (B. serrata) on some oral microbiota was investigated. Materials and Methods: In this experimental study, standard strains of Candida albicans (C. albicans; PTCC 5027), Candida glabrata (C. glabrata; PTCC 5295), Candida krusei (C. krusei; PTCC 5297), and Streptococcus mutans (S. mutans; PTCC 1688) were collected from the Iranian Research Organization for Science and Technology (IROST). Then, the minimum inhibitory concentration (MIC) of organic and hydro-alcoholic extracts of B. serrata was determined based on the CLSI protocol and using the micro-dilution method. The contents of each well were subcultured in Müller-Hinton agar (Candida species) and blood agar (S. mutans). The lowest concentration with no growth was considered as the minimum fungicidal concentration (MFC) or bactericidal concentration (MBC). Statistical analyses were performed using Mann-Whitney test. Results: Hydro-alcoholic extract of B. serrata at the concentration of 50 mg/ml inhibited the growth of C. albicans and S. mutans. It also inhibited the growth of C. krusei and C. glabrata at the concentration of 100 mg/ml. Organic extract of B. serrata at the concentration of 200 mg/ml only inhibited the growth of C. glabrata. Conclusion: Hydro-alcoholic extract of B. serrata had a greater inhibitory effect on C. albicans and S. mutans compared to the organic extract.
Collapse
Affiliation(s)
- Sedigheh Bakhtiari
- Preventative Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Oral Medicine, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mojdeh Hakemi-Vala
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Talebi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
38
|
Xiong L, Liu Y, Zhu F, Lin J, Wen D, Wang Z, Bai J, Ge G, Xu C, Gu Y, Xu Y, Zhou J, Geng D. Acetyl-11-keto-β-boswellic acid attenuates titanium particle-induced osteogenic inhibition via activation of the GSK-3β/β-catenin signaling pathway. Theranostics 2019; 9:7140-7155. [PMID: 31695758 PMCID: PMC6831297 DOI: 10.7150/thno.35988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Peri-prosthetic osteolysis (PPO) is mainly induced by wear particles and represents the leading cause of implant failure and revision surgery. Previous studies have identified mitigation of wear particle-induced inflammation and bone resorption as the main approaches to treat PPO. Recently, wear particle-induced reduction of bone formation around the prosthesis was identified as a major factor in the development of PPO. Acetyl-11-keto-β-boswellic acid (AKBA), a derivative of frankincense, has been shown to play a potential role in bone metabolism. However, whether AKBA enhances bone formation in wear particle-induced osteolysis remains unknown. In this study, we examined whether AKBA attenuates titanium particle-induced osteogenic reduction. Methods: Titanium particles were used to induce osteolysis in murine calvaria, and micro-CT and histological analyses were used to evaluate the results. Mouse osteoblast cells, MC3T3-E1 were co-cultured with titanium particles to determine their effect on osteoblast formation in vitro. Results: We demonstrated that AKBA treatment significantly inhibited titanium particle-induced osteogenic inhibition by enhancing osteogenesis both in vivo and in vitro. AKBA treatment also enhanced the phosphorylation of GSK-3β, decreased the degradation of β-catenin, and increased the translocation of β-catenin from the cytoplasm to the nucleus. Taken together, these results showed that AKBA treatment attenuated titanium-induced osteogenic inhibition by activating the GSK-3β/β-catenin signaling pathway. Conclusion: These findings suggest that AKBA is a promising new target in the prevention and treatment of PPO.
Collapse
|
39
|
Seeing the Unseen of the Combination of Two Natural Resins, Frankincense and Myrrh: Changes in Chemical Constituents and Pharmacological Activities. Molecules 2019; 24:molecules24173076. [PMID: 31450584 PMCID: PMC6749531 DOI: 10.3390/molecules24173076] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
For the treatment of diseases, especially chronic diseases, traditional natural drugs have more effective therapeutic advantages because of their multi-target and multi-channel characteristics. Among many traditional natural medicines, resins frankincense and myrrh have been proven to be effective in the treatment of inflammation and cancer. In the West, frankincense and myrrh have been used as incense in religious and cultural ceremonies since ancient times; in traditional Chinese and Ayurvedic medicine, they are used mainly for the treatment of chronic diseases. The main chemical constituents of frankincense and myrrh are terpenoids and essential oils. Their common pharmacological effects are anti-inflammatory and anticancer. More interestingly, in traditional Chinese medicine, frankincense and myrrh have been combined as drug pairs in the same prescription for thousands of years, and their combination has a better therapeutic effect on diseases than a single drug. After the combination of frankincense and myrrh forms a blend, a series of changes take place in their chemical composition, such as the increase or decrease of the main active ingredients, the disappearance of native chemical components, and the emergence of new chemical components. At the same time, the pharmacological effects of the combination seem magically powerful, such as synergistic anti-inflammation, synergistic anticancer, synergistic analgesic, synergistic antibacterial, synergistic blood-activation, and so on. In this review, we summarize the latest research on the main chemical constituents and pharmacological activities of these two natural resins, along with chemical and pharmacological studies on the combination of the two.
Collapse
|
40
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
41
|
3-acetyl-11-keto-beta-boswellic acid decreases the malignancy of taxol resistant human ovarian cancer by inhibiting multidrug resistance (MDR) proteins function. Biomed Pharmacother 2019; 116:108992. [DOI: 10.1016/j.biopha.2019.108992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
|
42
|
Albini A, Bassani B, Baci D, Dallaglio K, Gallazzi M, Corradino P, Bruno A, Noonan DM. Nutraceuticals and "Repurposed" Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer. Curr Med Chem 2019; 26:973-987. [PMID: 28933290 DOI: 10.2174/0929867324666170920144130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic, degenerative diseases are often characterized by inflammation and aberrant angiogenesis. For these pathologies, including rheumatoid arthritis, cardiovascular and autoimmune diseases, cancer, diabetes, and obesity, current therapies have limited efficacy. OBJECTIVES The validation of novel (chemo)preventive and interceptive approaches, and the use of new or repurposed agents, alone or in combination with registered drugs, are urgently required. RESULTS Phytochemicals (triterpenoids, flavonoids, retinoids) and their derivatives, nonsteroidal anti-inflammatory drugs (aspirin) as well as biguanides (metformin and phenformin) originally developed from phytochemical backbones, are multi-target agents showing antiangiogenic and anti-anti-inflammatory proprieties. Many of them target AMPK and metabolic pathways such as the mTOR axis. We summarize the beneficial effects of several compounds in conferring protection and supporting therapy, and as a paradigm, we present data on terpenoids & biquanides on beer hop xanthohumol and hydroxytryrosol from olive mill waste waters. CONCLUSIONS These molecules could be employed for combinatorial chemoprevention and interception approaches or chemoprevention/therapy regimens for cancer and other chronic complex diseases.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Barbara Bassani
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Denisa Baci
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Katiuscia Dallaglio
- Laboratory of Translational Research, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Matteo Gallazzi
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Corradino
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy.,Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
43
|
Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:173. [PMID: 31023337 PMCID: PMC6482513 DOI: 10.1186/s13046-019-1156-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Breast cancer angiogenesis is key for metastasis and predicts a poor prognosis. Angiotensin-converting enzyme 2 (ACE2), as a member of the renin-angiotensin system (RAS), was reported to restrain the progression of hepatocellular carcinoma (HCC) and non-small cell lung cancer (NSCLC) through inhibiting angiogenesis. However, the relationship between ACE2 and breast cancer angiogenesis remains unclear. METHODS The prognosis and relative gene selection were analysed using the GEPIA, GEO, TCGA and STRING databases. ACE2 expression in breast cancer tissue was estimated by reverse transcription-quantitative polymerase chain reaction (qPCR). Breast cancer cell migration, proliferation and angiogenesis were assessed by Transwell migration, proliferation, tube formation, and wound healing assays. The expression of vascular endothelial growth factor A (VEGFa) was detected by qPCR and Western blotting. The phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), mitogen-activated protein kinase 1/2 (MEK1/2), and extracellular signal-regulated protein kinase 1/2 (ERK1/2) was examined by Western blotting. Breast cancer metastasis and angiogenesis in vivo were measured using a zebrafish model. RESULTS ACE2 was downregulated in breast cancer patients. Patients with higher ACE2 expression had longer relapse-free survival (RFS). In vitro, ACE2 inhibited breast cancer migration. Meanwhile, ACE2 in breast cancer cells inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, tube formation and migration. In the zebrafish model, ACE2 inhibited breast cancer cell metastasis, as demonstrated by analyses of the number of disseminated foci and the metastatic distance. Neo-angiogenesis was also decreased by ACE2. ACE2 downregulated the expression of VEGFa in breast cancer cells. Furthermore, ACE2 in breast cancer cells inactivated the phosphorylation of VEGFR2, MEK1/2, and ERK1/2 in HUVECs. CONCLUSIONS Our findings suggest that ACE2, as a potential resister to breast cancer, might inhibit breast cancer angiogenesis through the VEGFa/VEGFR2/ERK pathway. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Qi Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China.,Guangdong Key Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Sihong Lu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China.,Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China
| | - Tianfu Li
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China
| | - Liang Yu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China
| | - Yunjian Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China
| | - Huijuan Zeng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China
| | - Xueke Qian
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Jiong Bi
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No.58 of Zhongshan 2nd road, Yuexiu district, Guangzhou, 510080, China.
| |
Collapse
|
44
|
Pang X, Yi Z, Zhang J, Lu B, Sung B, Qu W, Aggarwal BB, Liu M. Correction: Celastrol Suppresses Angiogenesis-Mediated Tumor Growth through Inhibition of AKT/Mammalian Target of Rapamycin Pathway. Cancer Res 2019; 79:685. [DOI: 10.1158/0008-5472.can-18-3859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Apolipoprotein(a) Kringles for Gene Therapy of Colon Cancer. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Parr C, Ali AY. Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. J Transl Med 2018; 16:281. [PMID: 30314527 PMCID: PMC6186110 DOI: 10.1186/s12967-018-1660-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) plays a pivotal role in breast cancer cell motility, invasion and angiogenesis. These pro-metastatic events are triggered through HGF coupling and activation of the c-Met receptor. Reports have demonstrated that HGF/c-Met signalling plays an important part in breast cancer progression and that their expression is linked to poor patient outcome. In the present study, we investigated the anti-metastatic potential of an extract from traditional Somalian frankincense, Boswellia frereana, on human breast cancer cells. In addition, we also examined the effect of this Boswellia frereana extract (BFE) upon HGF-mediated stimulation of the c-Met receptor. METHODS Two triple negative human breast cancer cell lines, BT549 and MDA-MB-231, were utilised in the study to examine the effect of BFE on tumour cell proliferation, migration, matrix-adhesion, angiogenesis and invasion. Cell migration was investigated using a Cell IQ time-lapsed motion analysis system; while tumour cell-matrix adhesion, angiogenesis and invasion were assessed through Matrigel-based in vitro assays. Breast cancer cell growth and spheroid formation was examined through proliferation assay and 3D non-scaffold cell culture techniques. Western Blotting was employed to determine the phosphorylation status of the c-Met receptor tyrosine kinase following BFE treatment and subsequent HGF stimulation. RESULTS Following HGF treatment, the breast cancer cells displayed a significant increase in migration, matrix adhesion, vessel/tubule formation, invasion and c-Met activation. HGF did not appear to have any bearing on the proliferation rate or spheroid formation of these breast cancer cells. The addition of the BFE extract quenched the HGF-enhanced migratory, angiogenic and invasive potential of these cells. Further study revealed that BFE inhibited c-Met receptor tyrosine kinase phosphorylation within these breast cancer cells. CONCLUSIONS Our findings reveal that BFE was able to significantly suppress the influence of HGF in breast cancer cell motility and invasion in vitro, through the ability of BFE to reduce HGF/c-Met signalling events. Therefore, these results indicate that BFE could play a novel role in the treatment of breast cancer.
Collapse
Affiliation(s)
- Christian Parr
- Connective Tissue Laboratories, Sir Martin Evans Building, School of Biosciences, Cardiff, UK
| | - Ahmed Y. Ali
- Connective Tissue Laboratories, Sir Martin Evans Building, School of Biosciences, Cardiff, UK
| |
Collapse
|
47
|
Cho HD, Moon KD, Park KH, Lee YS, Seo KI. Effects of auriculasin on vascular endothelial growth factor (VEGF)-induced angiogenesis via regulation of VEGF receptor 2 signaling pathways in vitro and in vivo. Food Chem Toxicol 2018; 121:612-621. [PMID: 30236598 DOI: 10.1016/j.fct.2018.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 12/31/2022]
Abstract
Angiogenesis plays an important role in various pathological conditions such as cancer via excessive delivery of oxygen and nutrients. Recent studies have demonstrated that understanding the molecular basis of natural agents in angiogenesis is critical for the development of promising cancer therapeutics. In this study, auriculasin, an active component from Flemingia philippinensis, was found to exert strong anti-angiogenesis activity. Treatment with auriculasin suppressed proliferation of human umbilical vein endothelial cells (HUVECs) by modulating expression of Bcl-2, Bcl-XL, and vascular endothelial growth factor (VEGF). Further, auriculasin inhibited VEGF-induced chemotactic migration, invasion, and capillary-like structure formation of endothelial cells. In addition, auriculasin abrogated VEGF-induced vascular network formation around rat aortic rings as well as blocked accumulation of hemoglobin, endothelial cells and VEGF in the Matrigel plug of C57BL/6 mice. The inhibitory effect of auriculasin on angiogenesis was well correlated with inhibition of VEGF receptor 2 (VEGFR2) activation as well as phosphorylation of intracellular downstream protein kinases of VEGFR2 containing Akt, mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K), p-38, extracellular signal-related kinase (ERK), and Src. Taken together, this study reports that auriculasin potently inhibits angiogenesis by modulating VEGFR2-related signaling pathways, which further validates its great potential in clinical applications.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Food Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwang-Deog Moon
- Department of Food Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki-Hun Park
- Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea
| | - Kwon-Il Seo
- Department of Biotechnology, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
48
|
Yang J, Wei K, Wang Y, Li Y, Ding N, Huo D, Wang T, Yang G, Yang M, Ju T, Zeng W, Zhu C. Construction of a small-caliber tissue-engineered blood vessel using icariin-loaded β-cyclodextrin sulfate for in situ anticoagulation and endothelialization. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1178-1188. [PMID: 30159681 DOI: 10.1007/s11427-018-9348-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
The rapid endothelialization of tissue-engineered blood vessels (TEBVs) can effectively prevent thrombosis and inhibit intimal hyperplasia. The traditional Chinese medicine ingredient icariin is highly promising for the treatment of cardiovascular diseases. β-cyclodextrin sulfate is a type of hollow molecule that has good biocompatibility and anticoagulation properties and exhibits a sustained release of icariin. We studied whether icariin-loaded β-cyclodextrin sulfate can promote the endothelialization of TEBVs. The experimental results showed that icariin could significantly promote the proliferation and migration of endothelial progenitor cells; at the same time, icariin could promote the migration of rat vascular endothelial cells (RAVECs). Subsequently, we used an electrostatic force to modify the surface of the TEBVs with icariin-loaded β-cyclodextrin sulfate, and these vessels were implanted into the rat common carotid artery. After 3 months, micro-CT results showed that the TEBVs modified using icariin-loaded β-cyclodextrin sulfate had a greater patency rate. Scanning electron microscopy (SEM) and CD31 immunofluorescence results showed a better degree of endothelialization. Taken together, icariin-loaded β-cyclodextrin sulfate can achieve anticoagulation and rapid endothelialization of TEBVs to ensure their long-term patency.
Collapse
Affiliation(s)
- Jingyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Keyu Wei
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yeqin Wang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ning Ding
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Da Huo
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Tianran Wang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Guanyuan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Mingcan Yang
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Tan Ju
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Weng Zeng
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.
| | - Chuhong Zhu
- Department of Anatomy, State Key Laboratory of Trauma, Burn and Combined Injury, National & Regional Engineering Laboratory of Tissue Engineering, State and Local Joint Engineering Laboratory for Vascular Implants, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
49
|
Yang K, Zhang F, Han P, Wang ZZ, Deng K, Zhang YY, Zhao WW, Song W, Cai YQ, Li K, Cui BB, Zhu ZJ. Metabolomics approach for predicting response to neoadjuvant chemotherapy for colorectal cancer. Metabolomics 2018; 14:110. [PMID: 30830371 DOI: 10.1007/s11306-018-1406-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a clinically heterogeneous disease, which necessitates a variety of treatments and leads to different outcomes. Only some CRC patients will benefit from neoadjuvant chemotherapy (NACT). OBJECTIVES An accurate prediction of response to NACT in CRC patients would greatly facilitate optimal personalized management, which could improve their long-term survival and clinical outcomes. METHODS In this study, plasma metabolite profiling was performed to identify potential biomarker candidates that can predict response to NACT for CRC. Metabolic profiles of plasma from non-response (n = 30) and response (n = 27) patients to NACT were studied using UHPLC-quadruple time-of-flight)/mass spectrometry analyses and statistical analysis methods. RESULTS The concentrations of nine metabolites were significantly different when comparing response to NACT. The area under the receiver operating characteristic curve value of the potential biomarkers was up to 0.83 discriminating the non-response and response group to NACT, superior to the clinical parameters (carcinoembryonic antigen and carbohydrate antigen 199). CONCLUSION These results show promise for larger studies that could result in more personalized treatment protocols for CRC patients.
Collapse
Affiliation(s)
- Kai Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Fan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Peng Han
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhuo-Zhong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Kui Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yuan-Yuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Wei-Wei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Wei Song
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Yu-Qing Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China.
| | - Bin-Bin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
50
|
Zhao Y, Tan Y, Meng T, Liu X, Zhu Y, Hong Y, Yang X, Yuan H, Huang X, Hu F. Simultaneous targeting therapy for lung metastasis and breast tumor by blocking the NF-κB signaling pathway using Celastrol-loaded micelles. Drug Deliv 2018; 25:341-352. [PMID: 29355035 PMCID: PMC6058533 DOI: 10.1080/10717544.2018.1425778] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Metastasis is one of the major obstacles for successful therapy of breast tumor. To inhibit the metastasis and growth of breast tumor simultaneously, a Celastrol (Cela) loaded glucolipid-like conjugates (CSOSA/Cela) with αvβ3-ligand Tetraiodothyroacetic acid (TET) modification (TET-CSOSA/Cela) were established to block nuclear factor-kappa B (NF-κB) signaling pathway. The distribution of TET-CSOSA was remarkably increased in lung metastasis and primary tumor of 4T1 tumor-bearing mice by means of αvβ3 receptor-mediated interaction. The results demonstrated that TET-CSOSA/Cela significantly suppressed Bcl-2 activation of lung metastatic cells and reduced MMP-9 expression of 4T1 breast tumor cells by blocking NF-κB. The inhibitory rates of TET-CSOSA/Cela against lung metastasis and primary tumor were raised to 90.72 and 81.15%, compared to those of Celastrol (72.15 and 46.40%), respectively. All results demonstrated the αvβ3 receptor targeted TET-CSOSA/Cela micelles exhibited great potential in treating lung metastasis and primary tumor simultaneously via blocking NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- a Ocean College , Zhejiang University , Zhoushan , China
| | - Yanan Tan
- a Ocean College , Zhejiang University , Zhoushan , China
| | - Tingting Meng
- b College of Pharmaceutical Science , Zhejiang University , Hangzhou , China
| | - Xuan Liu
- b College of Pharmaceutical Science , Zhejiang University , Hangzhou , China
| | - Yun Zhu
- a Ocean College , Zhejiang University , Zhoushan , China
| | - Yun Hong
- c The First Affiliated Hospital, College of Pharmaceutical Medicine , Zhejiang University , Hangzhou , China
| | - Xiqin Yang
- b College of Pharmaceutical Science , Zhejiang University , Hangzhou , China
| | - Hong Yuan
- b College of Pharmaceutical Science , Zhejiang University , Hangzhou , China
| | - Xuan Huang
- d Department of Pharmacy, School of Medicine Science , Jiaxing University , Zhejiang , China
| | - Fuqiang Hu
- a Ocean College , Zhejiang University , Zhoushan , China.,b College of Pharmaceutical Science , Zhejiang University , Hangzhou , China
| |
Collapse
|