1
|
Liu L, Graff SL, Wang Y. New Emerging Therapies Targeting PI3K/AKT/mTOR/PTEN Pathway in Hormonal Receptor-Positive and HER2-Negative Breast Cancer-Current State and Molecular Pathology Perspective. Cancers (Basel) 2024; 17:16. [PMID: 39796647 PMCID: PMC11718791 DOI: 10.3390/cancers17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In hormone receptor-positive and HER2-negative breast cancers, a growing number of revolutionary personalized therapies are in clinical use or trials, such as CDK4/6 inhibitors, immune checkpoint inhibitors, and PIK3CA inhibitors. Those treatment options are largely driven by the presence or absence of genomic alterations in the tumor. Therefore, molecular profiling is often performed during disease progression. The most encountered genomic alterations are in the PI3K/AKT/mTOR/PTEN pathway. This review discusses the genetic alterations associated with the PI3K/AKT/mTOR/PTEN pathway to help clinicians understand drug selection, resistance, or interaction from a molecular pathologist's perspective.
Collapse
Affiliation(s)
- Liu Liu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA;
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Stephanie L. Graff
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
- Division of Medical Oncology, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Brown University Health, Providence, RI 02903, USA;
- Legorreta Cancer Center, Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
2
|
Cipak L, Sivakova B, Bellova J, Danchenko M, Jurcik J, Cipakova I, Lalakova LO, Gregan J, Barath P. Characterization of Ksg1 protein kinase-dependent phosphoproteome in the fission yeast S. pombe. Biochem Biophys Res Commun 2024; 736:150895. [PMID: 39476757 DOI: 10.1016/j.bbrc.2024.150895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/10/2024]
Abstract
Ksg1 is an essential protein kinase of the fission yeast S. pombe that belongs to the AGC kinase family and is homologous to the mammalian PDPK1 kinase. Previous studies have shown that Ksg1 functions in the nutrient-sensing TOR signaling pathway and is involved in the phosphorylation and activation of other AGC kinases, thereby affecting various downstream targets related to metabolism, cell division, stress response, and gene expression. To date, the molecular function of Ksg1 has been analyzed using its temperature sensitive mutants or mutants expressing its truncated isoforms, which are not always suitable for functional studies of Ksg1 and the identification of its targets. To overcome these limitations, we employed a chemical genetic strategy and used a conditional ksg1as mutant sensitive to an ATP analog. Combining this mutant with quantitative phosphoproteomics analysis, we identified 1986 phosphosites that were differentially phosphorylated when Ksg1as kinase was inhibited by an ATP analog. We found that proteins whose phosphorylation was dysregulated after inhibition of Ksg1as kinase were mainly represented by those involved in the regulation of cytokinesis, contractile ring contraction, cell division, septation initiation signaling cascade, intracellular protein kinase cascade, barrier septum formation, protein phosphorylation, intracellular signal transduction, cytoskeleton organization, cellular response to stimulus, or in RNA, ncRNA and rRNA processing. Importantly, proteins with significantly down-regulated phosphorylation were specifically enriched for R-X-X-S and R-X-R-X-X-S motifs, which are typical consensus substrate sequences for phosphorylation by the AGC family of kinases. The results of this study provide a basis for further analysis of the role of the Ksg1 kinase and its targets in S. pombe and may also be useful for studying Ksg1 orthologs in other organisms.
Collapse
Affiliation(s)
- Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jana Bellova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Jurcik
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Ingrid Cipakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Laura Olivia Lalakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria; Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia; Medirex Group Academy, Nitra, Slovakia.
| |
Collapse
|
3
|
Khorasani ABS, Hafezi N, Sanaei MJ, Jafari-Raddani F, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances. Cell Biochem Funct 2024; 42:e3998. [PMID: 38561964 DOI: 10.1002/cbf.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhou W, Huang J, Huang C, Wang G, Tu X. Disruption of Autophagic Flux and Treatment with the PDPK1 Inhibitor GSK2334470 Synergistically Inhibit Renal Cell Carcinoma Pathogenesis. J Cancer 2024; 15:1429-1441. [PMID: 38356720 PMCID: PMC10861819 DOI: 10.7150/jca.92521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Background: Renal cell carcinoma (RCC) frequently exhibits activating PI3K-Akt-mTOR pathway mutations. 3-Phosphoinositide-dependent kinase 1 (PDPK1 or PDK1) has been established to play a pivotal role in modulating PI3K pathway signaling. mTOR is the main autophagy-initiating factor. However, limited advances have been made in understanding the relationship between PDPK1 and autophagy in RCC. Methods: GSK2334470 (GSK470), a novel and highly specific inhibitor of PDPK1, was selected to investigate the anticancer effects in two RCC cell lines. Cell growth was assessed by CCK-8 test and colony formation. Changes in the protein levels of key Akt/mTOR pathway components and apoptosis markers were assessed by Western blotting. Autophagy was assessed by using LC3B expression, transmission electron microscopy, and a tandem mRFP-EGFP-LC3 construct. The effect of PDPK1 and autophagy inhibitor chloroquine in RCC in vivo was examined in a mouse tumor-bearing model. Results: GSK470 significantly inhibited cell proliferation and induces apoptosis in A498 and 786-O RCC cells. GSK470 downregulates the phosphorylation of PDPK1, thereby inhibiting downstream phosphorylation of Akt1 at Thr308 and Ser473 and mTOR complex 1 (mTORC1) activity. Treatment with insulin-like growth factor-1 (IGF-1) partially restored GSK470-induced behaviors/activities. Interestingly, treatment of A498 and 786-O cells with GSK470 or siPDPK1 induced significant increases in the hallmarks of autophagy, including autophagosome accumulation, autophagic flux, and LC3B expression. Importantly, GSK470 and chloroquine synergistically inhibited the growth of RCC cells in vitro and in xenograft models, supporting the protective role of autophagy activation upon blockade of the PDPK1-Akt-mTOR signaling pathway. Conclusion: Our study provides new insight into PDPK1 inhibition combined with autophagy inhibition as a useful treatment strategy for RCC.
Collapse
Affiliation(s)
- Weimin Zhou
- Department of Urology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330000, China
| | - Ji Huang
- Department of Urology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330000, China
| | - Chuansheng Huang
- Department of Pathology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330000, China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xinhua Tu
- Department of Urology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi 330000, China
| |
Collapse
|
5
|
Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188971. [PMID: 37640147 DOI: 10.1016/j.bbcan.2023.188971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Nana Zheng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Jiaqi Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
6
|
Zhang P, Li Z, Cao W, Tang J, Xia Y, Peng L, Ma J. A PD-L1 Antibody-Conjugated PAMAM Dendrimer Nanosystem for Simultaneously Inhibiting Glycolysis and Promoting Immune Response in Fighting Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305215. [PMID: 37522451 DOI: 10.1002/adma.202305215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Breast cancer is the most frequent malignancy affecting women, yet current therapeutic strategies remain ineffective for patients with late-stage or metastatic disease. Here an effective strategy is reported for treating metastatic breast cancer. Specifically, a self-assembling dendrimer nanosystem decorated with an antibody against programmed cell death ligand 1 (PD-L1) is established for delivering a small interfering RNA (siRNA) to target 3-phosphoinositide-dependent protein kinase-1 (PDK1), a kinase involved in cancer metabolism and metastasis. This nanosystem, named PPD, is designed to target PD-L1 for cancer-specific delivery of the siRNA to inhibit PDK1 and modulate cancer metabolism while promoting programmed cell death 1 (PD-1)/PD-L1 pathway-based immunotherapy. Indeed, PPD effectively generates simultaneous inhibition of PDK1-induced glycolysis and the PD-1/PD-L1 pathway-related immune response, leading to potent inhibition of tumor growth and metastasis without any notable toxicity in tumor-bearing mouse models. Collectively, these results highlight the potential use of PPD as an effective and safe tumor-targeting therapy for breast cancer. This study constitutes a successful proof of principle exploiting the intrinsic features of the tumor microenvironment and metabolism alongside a unique self-assembling dendrimer platform to achieve specific tumor targeting and siRNA-based gene silencing in combined and precision cancer therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, China
| | - Zhi Li
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, China
| | - Jingjie Tang
- Aix-Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", Marseille, 13288, France
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Ling Peng
- Aix-Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", Marseille, 13288, France
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
7
|
Zhou Q, Wang J, Zhang H, Sun L, Liu J, Meng L, Li J. Tumor-derived exosomes RNA expression profiling identifies the prognosis, immune characteristics, and treatment in HR+/HER2-breast cancer. Aging (Albany NY) 2023; 15:8471-8486. [PMID: 37647033 PMCID: PMC10497011 DOI: 10.18632/aging.204986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/15/2023] [Indexed: 09/01/2023]
Abstract
Exosomes play crucial roles in intercellular communication and are involved in the onset and progression of various types of cancers, including breast cancer. However, the RNA composition of breast cancer-derived exosomes has not been comprehensively explored. We conducted microarray assays on exosomes isolated from breast cancer and healthy breast epithelial cells from three patients with hormone receptor (HR) +/ human epidermal growth factor receptor (HER2) - breast cancer and identified 817 differentially expressed genes (DEGs). Among these, 315 upregulated tumor-derived exosome genes (UTEGs) were used to classify HR+/HER2- breast cancers into two categories, revealing a difference in survival rates between the groups. We developed and validated a novel prognostic exosome score (ES) model consisting of four UTEGs that provides a refined prognosis prediction in HR+/HER2-breast cancer. ES reflects various immune-related features, including somatic variation, immunogenicity, and tumor immune infiltrate composition. Our findings indicate a considerable positive correlation between the ES and drug sensitivity values for vincristine, paclitaxel, and docetaxel. However, ES was remarkably higher in the endocrine therapy non-responder group than in the responder group. Immunohistochemistry confirmed the remarkable expression of the four model genes in tumor tissues, and their expression in MCF-7 cell exosomes was higher than that in MCF10A cells, as verified via qPCR. In summary, tumor-derived exosome genes provide novel insights into the subtyping, prognosis, and treatment of HR+/HER2-breast cancer.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Breast Surgery, People’s Hospital of Tangshan, Tangshan 063001, Hebei, China
| | - Jing Wang
- Department of Breast Center, People’s Hospital of Tangshan, Tangshan 063001, Hebei, China
| | - Haiping Zhang
- Department of Breast Surgery, People’s Hospital of Tangshan, Tangshan 063001, Hebei, China
| | - Lu Sun
- Department of Oncology, Tangshan People’s Hospital, Tangshan 063001, Hebei, China
| | - Jingjing Liu
- Department of Oncology, Tangshan People’s Hospital, Tangshan 063001, Hebei, China
| | - Lingchao Meng
- Department of Pathology, Tangshan People’s Hospital, Tangshan 063001, Hebei, China
| | - Jingwu Li
- The Cancer Institute, Tangshan People’s Hospital, Tangshan 063001, Hebei, China
| |
Collapse
|
8
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
9
|
Min N, Zhu J, Liu M, Li X. Advancement of secretory breast carcinoma: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1178. [PMID: 36467350 PMCID: PMC9708487 DOI: 10.21037/atm-22-2491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Secretory breast carcinoma (SBC) is a rare breast malignancy. Most available studies on SBC are case reports or small case series, and the few large-sample studies available lack critical information due to database limitations. To improve the understanding of SBC and provide a reference for clinical practice, we systematically reviewed the demographic, clinical, pathologic, and genetic characteristics of SBC, as well as its treatment and prognosis. METHODS We conducted a PubMed search with the keywords "secretory breast carcinoma" or "juvenile breast carcinoma". Relevant English-language publications published from January 1966 to February 2022 were screened manually at 3 levels-title, abstract, and full text-to identify the articles that presented the demographic, clinical, pathologic, and genetic characteristics of SBC, as well as its treatment and prognosis. KEY CONTENT AND FINDINGS SBC lacks specific clinical manifestations and has typical pathological and molecular characteristics, including intracellular and extracellular eosinophilic secretions, immune spectrum similar to hormone receptor-positive tumors, and the ETV6-NTRK3 fusion gene. Surgery remains the primary treatment for SBC. Postoperative radiotherapy is recommended by most researchers for adult SBC but not for pediatric patients. The evidence of chemotherapy and endocrine therapy is insufficient, and targeted therapy of the ETV6-NTRK3 fusion gene shows a good response. Most patients with SBC have a good prognosis except for a few patients who experience distant metastases. Future studies will be focused on the molecular characteristics of those patients with SBC who have a poor prognosis. CONCLUSIONS The development of histopathology and molecular genetics has promoted the progress of the clinical diagnosis of SBC. The purpose of this review is to serve as a guide for the better clinical treatment of SBC, particularly in the areas of disease identification and prognosis classification for patients.
Collapse
Affiliation(s)
- Ningning Min
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjin Zhu
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Mei Liu
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiru Li
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Zhang W, Li L, Guo E, Zhou H, Ming J, Sun L, Hu G, Zhang L. Inhibition of PDK1 enhances radiosensitivity and reverses epithelial-mesenchymal transition in nasopharyngeal carcinoma. Head Neck 2022; 44:1576-1587. [PMID: 35394102 DOI: 10.1002/hed.27053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Radioresistance challenges the clinical outcomes of nasopharyngeal carcinoma (NPC). The 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a crucial kinase of PI3K/AKT signaling pathway which has been implicated in the process of radioresistance. However, the role of PDK1 in NPC remains largely unclear. METHODS The expression of PDK1 was determined by immunohistochemistry and Western blot. The effects of RNA interference and pharmacologic inhibitor of PDK1 in combination with irradiation were investigated. RESULTS Overexpression of PDK1 was correlated with poor prognosis in patients with NPC. PDK1 depletion enhanced radiosensitivity of NPC cells both in vitro and in vivo. Additionally, a specific PDK1 inhibitor also had the potential to enhance radiosensitivity in radioresistant NPC cells. Mechanistically, PDK1 depletion inhibited various targets of AKT including mTOR and GSK-3β and reversed the epithelial-mesenchymal transition. CONCLUSIONS These findings indicated that PDK1 might be a potential target for NPC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Oncology, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Ming
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Gervas P, Molokov A, Babyshkina N, Kiselev A, Zarubin A, Yumov E, Pisareva L, Choynzonov E, Cherdyntseva N. Pathogenicity Reclassification of Genetic Variants Related to Early-Onset Breast Cancer among Women of Mongoloid Origin. Asian Pac J Cancer Prev 2022; 23:2027-2033. [PMID: 35763645 PMCID: PMC9587833 DOI: 10.31557/apjcp.2022.23.6.2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Germline alterations in BRCA1, BRCA2, and other genes are responsible for early-onset breast cancer. However, up to 20% of molecular tests report genetic variant of unknown significance (VUS) or novel variants that have never been previously described and their clinical significance are unknown. This study aimed to reclassify variant of unknown significance (VUS) or novel variants by using the ActiveDriveDB database that annotates variants through the lens of sites of post-translational modifications (PTM). METHODS Our study included thirty-eighth young Buryat BC patients, belonging to the Mongoloid race and anthropologically to the Central Asia. Genomic DNA was extracted from the peripheral blood lymphocytes using the phenol/chloroform method. DNA library were prepared using the Hereditary Cancer SolutionTM kit (Sophia GENETICS, Switzerland) to cover 27 genes, such as ATM, APC, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PIK3CA, PMS2, PMS2CL, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. Paired-end sequencing (2 x 150 bp) was conducted using NextSeq 500 system (Illumina, USA). RESULTS We re-examined 135 rare variants (41 VUS, 25 conflicting, 64 benign and 5 new variants). We identified 10 out of 135 (7.4%) mutations that affected the sites of post-translational modification in proteins. Of 135 rare mutations, 1 benign variant was reclassified as network-rewiring - motif loss mutation, 3 VUS and 1 new variant were reclassified as distal PTM- mutations, 2 new and 1 benign variant were classified as proximal PTM- mutations and 1 benign and 1 conflicting variant were classified as direct PTM- mutations. CONCLUSIONS For the first time, 7.4% (10 out of 135) of mutations that affected the sites of post-translational modification in proteins were identified among early-onset breast cancer women of Mongoloid origin.
Collapse
Affiliation(s)
- Polina Gervas
- Department of Molecular oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| | - Aleksey Molokov
- Department of Molecular oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| | - Nataliya Babyshkina
- Department of Molecular oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| | - Artem Kiselev
- Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Aleksei Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia.
| | - Evgeny Yumov
- Department of Surgery, GBUZ “Buryat Republican clinical oncology dispensary”, Republic of Buryatia, Ulan-Ude, Russia.
| | - Lubov Pisareva
- Department of Molecular oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| | - Evgeny Choynzonov
- Department of Molecular oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| | - Nadezda Cherdyntseva
- Department of Molecular oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia.
| |
Collapse
|
13
|
Levina A, Fleming KD, Burke JE, Leonard TA. Activation of the essential kinase PDK1 by phosphoinositide-driven trans-autophosphorylation. Nat Commun 2022; 13:1874. [PMID: 35387990 PMCID: PMC8986801 DOI: 10.1038/s41467-022-29368-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
Abstract
3-phosphoinositide-dependent kinase 1 (PDK1) is an essential serine/threonine protein kinase, which plays a crucial role in cell growth and proliferation. It is often referred to as a 'master' kinase due to its ability to activate at least 23 downstream protein kinases implicated in various signaling pathways. In this study, we have elucidated the mechanism of phosphoinositide-driven PDK1 auto-activation. We show that PDK1 trans-autophosphorylation is mediated by a PIP3-mediated face-to-face dimer. We report regulatory motifs in the kinase-PH interdomain linker that allosterically activate PDK1 autophosphorylation via a linker-swapped dimer mechanism. Finally, we show that PDK1 is autoinhibited by its PH domain and that positive cooperativity of PIP3 binding drives switch-like activation of PDK1. These results imply that the PDK1-mediated activation of effector kinases, including Akt, PKC, Sgk, S6K and RSK, many of whom are not directly regulated by phosphoinositides, is also likely to be dependent on PIP3 or PI(3,4)P2.
Collapse
Affiliation(s)
- Aleksandra Levina
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
14
|
The Landscape of PDK1 in Breast Cancer. Cancers (Basel) 2022; 14:cancers14030811. [PMID: 35159078 PMCID: PMC8834120 DOI: 10.3390/cancers14030811] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Given that 3-phosphoinositide-dependent kinase 1 (PDK1) plays a crucial role in the malignant biological behaviors of a wide range of cancers, we review the influence of PDK1 in breast cancer (BC). First, we describe the power of PDK1 in cellular behaviors and characterize the interaction networks of PDK1. Then, we establish the roles of PDK1 in carcinogenesis, growth and survival, metastasis, and chemoresistance in BC cells. More importantly, we sort the current preclinical or clinical trials of PDK1-targeted therapy in BC and find that, even though no selective PDK1 inhibitor is currently available for BC therapy, the combination trials of PDK1-targeted therapy and other agents have provided some benefit. Thus, there is increasing anticipation that PDK1-targeted therapy will have its space in future therapeutic approaches related to BC, and we hope the novel approaches of targeted therapy will be conducive to ameliorating the dismal prognosis of BC patients.
Collapse
|
15
|
Yang K, Li B, Chen J. Knockdown of phosphoinositide-dependent kinase 1 (PDK1) inhibits fibrosis and inflammation in lipopolysaccharide-induced acute lung injury rat model by attenuating NF-κB/p65 pathway activation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1671. [PMID: 34988180 PMCID: PMC8667129 DOI: 10.21037/atm-21-5476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 01/11/2023]
Abstract
Background Acute lung injury (ALI) is a common inflammatory disease of the lung. This study aimed to investigate the effect of 3-phosphoinositide-dependent kinase 1 (PDK1) interference on the levels of fibrosis and proinflammatory factors in lipopolysaccharide (LPS)-induced ALI and discuss the relevant mechanism. Methods An ALI model was established by intravenous injection of LPS treatment. A total of 24 Sprague-Dawley (SD) rats were randomly divided into 4 groups: sham group; ALI group; ALI + shRNA-NC group; and ALI + PDK1-shRNA group. Lung injury score, minute ventilation, lung volume, and airway resistance were used to evaluate lung function injury. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect PDK1 messenger RNA (mRNA) level. Western blot was performed to detect expression levels of PDK1, transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), toll-like receptor 4 (TLR4), p65, and myeloid differentiation primary response gene 88 (MyD88). The contents of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) were detected by enzyme-linked immunosorbent assay (ELISA). The pathological changes and fibrosis of lung tissues were estimated by hematoxylin and eosin (H&E) and Masson staining. Results The results revealed that high lung injury score, low minute ventilation, low lung volume, and small airway resistance were present in the ALI group. Likewise, severe histopathological damage and fibrosis were apparent in the ALI group. Otherwise, contents of TNF-α, iNOS, IL-6, MCP-1, and levels of α-SMA, TGF-β, TLR4, phosphorylated (p)-p65, and MyD88 were enhanced in the ALI group. Interestingly, pathological changes and fibrosis were improved significantly in the ALI + PDK1-shRNA group. Besides, knockdown of PDK1 reduced lung injury score and enhanced minute ventilation, lung volume, and airway resistance. Moreover, knockdown of PDK1 decreased the contents of TNF-α, iNOS, IL-6, MCP-1, and levels of TGF-β, α-SMA, TLR4, p-p65, and MyD88. Conclusions Knockdown of PDK1 protects LPS-induced ALI via attenuating activation of the nuclear factor-κB (NF-κB)/p65 pathway.
Collapse
Affiliation(s)
- Keke Yang
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, China
| | - Boqian Li
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, China
| | - Jinghua Chen
- Jiamusi College, Heilongjiang University of Traditional Chinese Medicine, Jiamusi, China
| |
Collapse
|
16
|
TMEM116 is required for lung cancer cell motility and metastasis through PDK1 signaling pathway. Cell Death Dis 2021; 12:1086. [PMID: 34789718 PMCID: PMC8599864 DOI: 10.1038/s41419-021-04369-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell-cell and cell-environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.
Collapse
|
17
|
PDK1 Inhibitor BX795 Improves Cisplatin and Radio-Efficacy in Oral Squamous Cell Carcinoma by Downregulating the PDK1/CD47/Akt-Mediated Glycolysis Signaling Pathway. Int J Mol Sci 2021; 22:ijms222111492. [PMID: 34768921 PMCID: PMC8584253 DOI: 10.3390/ijms222111492] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Oral squamous cell carcinoma (OSCC) has a high prevalence and predicted global mortality rate of 67.1%, necessitating better therapeutic strategies. Moreover, the recurrence and resistance of OSCC after chemo/radioresistance remains a major bottleneck for its effective treatment. Molecular targeting is one of the new therapeutic approaches to target cancer. Among a plethora of targetable signaling molecules, PDK1 is currently rising as a potential target for cancer therapy. Its aberrant expression in many malignancies is observed associated with glycolytic re-programming and chemo/radioresistance. Methods: Furthermore, to better understand the role of PDK1 in OSCC, we analyzed tissue samples from 62 patients with OSCC for PDK1 expression. Combining in silico and in vitro analysis approaches, we determined the important association between PDK1/CD47/LDHA expression in OSCC. Next, we analyzed the effect of PDK1 expression and its connection with OSCC orosphere generation and maintenance, as well as the effect of the combination of the PDK1 inhibitor BX795, cisplatin and radiotherapy in targeting it. Results: Immunohistochemical analysis revealed that higher PDK1 expression is associated with a poor prognosis in OSCC. The immunoprecipitation assay indicated PDK1/CD47 binding. PDK1 ligation significantly impaired OSCC orosphere formation and downregulated Sox2, Oct4, and CD133 expression. The combination of BX795 and cisplatin markedly reduced in OSCC cell’s epithelial-mesenchymal transition, implying its synergistic effect. p-PDK1, CD47, Akt, PFKP, PDK3 and LDHA protein expression were significantly reduced, with the strongest inhibition in the combination group. Chemo/radiotherapy together with abrogation of PDK1 inhibits the oncogenic (Akt/CD47) and glycolytic (LDHA/PFKP/PDK3) signaling and, enhanced or sensitizes OSCC to the anticancer drug effect through inducing apoptosis and DNA damage together with metabolic reprogramming. Conclusions: Therefore, the results from our current study may serve as a basis for developing new therapeutic strategies against chemo/radioresistant OSCC.
Collapse
|
18
|
Abstract
BACKGROUND The serum and glucocorticoid-induced kinase-1 (SGK1) belonging to the AGC protein kinase family phosphorylates serine and threonine residues of target proteins. It regulates numerous ion channels and transporters and promotes survival under cellular stress. Unique to SGK1 is a tight control at transcriptional and post-transcriptional levels. SGK1 regulates multiple signal transduction pathways related to tumor development. Several studies have reported that SGK1 is upregulated in different types of human malignancies and induces resistance against inhibitors, drugs, and targeted therapies. RESULTS AND CONCLUSION This review highlights the cellular functions of SGK1, its crucial role in cancer development, and clinical insights for SGK1 targeted therapies. Furthermore, the role of SGK1-mediated autophagy as a potential therapeutic target for cancer has been discussed.
Collapse
|
19
|
Li H, Prever L, Hirsch E, Gulluni F. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers (Basel) 2021; 13:3517. [PMID: 34298731 PMCID: PMC8304822 DOI: 10.3390/cancers13143517] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the primary cause of cancer death in women worldwide. Although early diagnosis and cancer growth inhibition has significantly improved breast cancer survival rate over the years, there is a current need to develop more effective systemic treatments to prevent metastasis. One of the most commonly altered pathways driving breast cancer cell growth, survival, and motility is the PI3K/AKT/mTOR signaling cascade. In the past 30 years, a great surge of inhibitors targeting these key players has been developed at a rapid pace, leading to effective preclinical studies for cancer therapeutics. However, the central role of PI3K/AKT/mTOR signaling varies among diverse biological processes, suggesting the need for more specific and sophisticated strategies for their use in cancer therapy. In this review, we provide a perspective on the role of the PI3K signaling pathway and the most recently developed PI3K-targeting breast cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (H.L.); (L.P.); (E.H.)
| |
Collapse
|
20
|
Mezynski MJ, Farrelly AM, Cremona M, Carr A, Morgan C, Workman J, Armstrong P, McAuley J, Madden S, Fay J, Sheehan KM, Kay EW, Holohan C, Elamin Y, Rafee S, Morris PG, Breathnach O, Grogan L, Hennessy BT, Toomey S. Targeting the PI3K and MAPK pathways to improve response to HER2-targeted therapies in HER2-positive gastric cancer. J Transl Med 2021; 19:184. [PMID: 33933113 PMCID: PMC8088633 DOI: 10.1186/s12967-021-02842-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background Aberrant PI3K signalling is implicated in trastuzumab resistance in HER2-positive gastric cancer (GC). The role of PI3K or MEK inhibitors in sensitising HER2-positive GCs to trastuzumab or in overcoming trastuzumab resistance is unclear. Methods Using mass spectrometry-based genotyping we analysed 105 hotspot, non-synonymous somatic mutations in PIK3CA and ERBB-family (EGFR, ERBB2, ERBB3 and ERBB4) genes in gastric tumour samples from 69 patients. A panel of gastric cell lines (N87, OE19, ESO26, SNU16, KATOIII) were profiled for anti-proliferative response to the PI3K inhibitor copanlisib and the MEK1/2 inhibitor refametinib alone and in combination with anti-HER2 therapies. Results Patients with HER2-positive GC had significantly poorer overall survival compared to HER2-negative patients (15.9 months vs. 35.7 months). Mutations in PIK3CA were only identified in HER2-negative tumours, while ERBB-family mutations were identified in HER2-positive and HER2-negative tumours. Copanlisib had anti-proliferative effects in 4/5 cell lines, with IC50s ranging from 23.4 (N87) to 93.8 nM (SNU16). All HER2-positive cell lines except SNU16 were sensitive to lapatinib (IC50s 0.04 µM–1.5 µM). OE19 cells were resistant to trastuzumab. The combination of lapatinib and copanlisib was synergistic in ESO-26 and OE-19 cells (ED50: 0.83 ± 0.19 and 0.88 ± 0.13, respectively) and additive in NCI-N87 cells (ED50:1.01 ± 0.55). The combination of copanlisib and trastuzumab significantly improved growth inhibition compared to either therapy alone in NCI-N87, ESO26 and OE19 cells (p < 0.05). Conclusions PI3K or MEK inhibition alone or in combination with anti-HER2 therapy may represent an improved treatment strategy for some patients with HER2-positive GC, and warrants further investigation in a clinical trial setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02842-1.
Collapse
Affiliation(s)
- M Janusz Mezynski
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Angela M Farrelly
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Mattia Cremona
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Aoife Carr
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Clare Morgan
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Julie Workman
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Armstrong
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Jennifer McAuley
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Joanna Fay
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Katherine M Sheehan
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elaine W Kay
- Department of Histopathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ciara Holohan
- Department of Medical Oncology, St. James's Hospital, Dublin, Ireland
| | - Yasir Elamin
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Shereen Rafee
- Department of Medical Oncology, St. James's Hospital, Dublin, Ireland
| | - Patrick G Morris
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Oscar Breathnach
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Liam Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Bryan T Hennessy
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.,Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Sinead Toomey
- Medical Oncology Group, Department of Molecular Medicine, Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
21
|
Sherekar S, Viswanathan GA. Boolean dynamic modeling of cancer signaling networks: Prognosis, progression, and therapeutics. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021. [DOI: 10.1002/cso2.1017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shubhank Sherekar
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai India
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering Indian Institute of Technology Bombay, Powai Mumbai India
| |
Collapse
|
22
|
Domrachev B, Singh S, Li D, Rudloff U. Mini-Review: PDPK1 (3-phosphoinositide dependent protein kinase-1), An Emerging Cancer Stem Cell Target. ACTA ACUST UNITED AC 2021; 5:30-35. [PMID: 34079928 PMCID: PMC8168947 DOI: 10.29245/2578-2967/2021/1.1194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are subpopulations of tumor cells that possess abilities for self-renewal, differentiation, and tumor initiation. These rare but therapy-recalcitrant cells are assumed to repopulate tumors following administration of systemic chemotherapy driving therapy failure, tumor recurrence, and disease progression. In early clinical trials, anti-CSC therapies have found limited success to-date possibly due to the inherent heterogeneity and plasticity of CSCs and the incomplete characterization of essential CSC targets. Here, we review the role of 3-phosphoinositide dependent protein kinase-1 (PDPK1) as an emerging CSC target. While most previous studies have relied on CSC models which are based on lineage and tissue-specific marker profiles to define the relationships between putative target and CSC traits, this review discusses PDPK1 and its role in CSC biology with an emphasis on CSC systems which are based on proposed function like label-retaining cancer cells (LRCCs).
Collapse
Affiliation(s)
- Bogdan Domrachev
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sitanshu Singh
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dandan Li
- Thoracic & GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Thoracic & GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
23
|
Zhang H, Yuan F, Qi Y, Liu B, Chen Q. Circulating Tumor Cells for Glioma. Front Oncol 2021; 11:607150. [PMID: 33777749 PMCID: PMC7987781 DOI: 10.3389/fonc.2021.607150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy has entered clinical applications for several cancers, including metastatic breast, prostate, and colorectal cancer for CTC enumeration and NSCLC for EGFR mutations in ctDNA, and has improved the individualized treatment of many cancers, but relatively little progress has been made in validating circulating biomarkers for brain malignancies. So far, data on circulating tumor cells about glioma are limited, the application of circulating tumor cells as biomarker for glioma patients has only just begun. This article reviews the research status and application prospects of circulating tumor cells in gliomas. Several detection methods and research results of circulating tumor cells about clinical research in gliomas are briefly discussed. The wide application prospect of circulating tumor cells in glioma deserves further exploration, and the research on more sensitive and convenient detection methods is necessary.
Collapse
Affiliation(s)
- Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Chang DY, Ma WL, Lu YS. Role of Alpelisib in the Treatment of PIK3CA-Mutated Breast Cancer: Patient Selection and Clinical Perspectives. Ther Clin Risk Manag 2021; 17:193-207. [PMID: 33707948 PMCID: PMC7943556 DOI: 10.2147/tcrm.s251668] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
The PI3K/AKT/mTOR pathway has long been known to play a major role in the growth and survival of cancer cells. Breast tumors often harbor PIK3CA gene alterations, which therefore constitute a rational drug target. However, it has taken many years to demonstrate clinically-relevant efficacy of PI3K inhibition and eventually attain regulatory approvals. As data on PI3K inhibitors continue to mature, this review updates and summarizes the current state of the science, including the prognostic role of PIK3CA alterations in breast cancer; the evolution of PI3K inhibitors; the clinical utility of the first-in-class oral selective PI3Kα inhibitor, alpelisib; PIK3CA mutation detection techniques; and adverse effect management. PIK3CA-mutated breast carcinomas predict survival benefit from PI3K inhibitor therapy. The pan-PI3K inhibitor, buparlisib and the beta-isoform-sparing PI3K inhibitor, taselisib, met efficacy endpoints in clinical trials, but pictilisib did not; moreover, poor tolerability of these three drugs abrogated further clinical trials. Alpelisib is better tolerated, with a more manageable toxicity profile; the principal adverse events, hyperglycemia, rash and diarrhea, can be mitigated by intensive monitoring and timely intervention, thereby enabling patients to remain adherent to clinically beneficial treatment. Alpelisib plus endocrine therapy shows promising efficacy for treating postmenopausal women with HR+/HER2- advanced breast cancer. Available evidence supporting using alpelisib after disease progression on first-line endocrine therapy with or without CDK4/6 inhibitors justifies PIK3CA mutation testing upon diagnosing HR+/HER2- advanced breast cancer, which can be done using either tumor tissue or circulating tumor DNA. With appropriate toxicity management and patient selection using validated testing methods, all eligible patients can potentially benefit from this new treatment. Further clinical trials to assess combinations of hormone therapy with PI3K, AKT, mTOR, or CDK 4/6 inhibitors, or studies in men and women with other breast subtypes are ongoing.
Collapse
Affiliation(s)
- Dwan-Ying Chang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Li Ma
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Bhattarai S, Saini G, Gogineni K, Aneja R. Quadruple-negative breast cancer: novel implications for a new disease. Breast Cancer Res 2020; 22:127. [PMID: 33213491 PMCID: PMC7678108 DOI: 10.1186/s13058-020-01369-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Based on the androgen receptor (AR) expression, triple-negative breast cancer (TNBC) can be subdivided into AR-positive TNBC and AR-negative TNBC, also known as quadruple-negative breast cancer (QNBC). QNBC characterization and treatment is fraught with many challenges. In QNBC, there is a greater paucity of prognostic biomarkers and therapeutic targets than AR-positive TNBC. Although the prognostic role of AR in TNBC remains controversial, many studies revealed that a lack of AR expression confers a more aggressive disease course. Literature characterizing QNBC tumor biology and uncovering novel biomarkers for improved management of the disease remains scarce. In this comprehensive review, we summarize the current QNBC landscape and propose avenues for future research, suggesting potential biomarkers and therapeutic strategies that warrant investigation.
Collapse
Affiliation(s)
- Shristi Bhattarai
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Geetanjali Saini
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA
| | - Keerthi Gogineni
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, 100 Piedmont Ave, Atlanta, GA, 30303, USA.
| |
Collapse
|
26
|
Nalairndran G, Hassan Abdul Razack A, Mai C, Fei‐Lei Chung F, Chan K, Hii L, Lim W, Chung I, Leong C. Phosphoinositide-dependent Kinase-1 (PDPK1) regulates serum/glucocorticoid-regulated Kinase 3 (SGK3) for prostate cancer cell survival. J Cell Mol Med 2020; 24:12188-12198. [PMID: 32926495 PMCID: PMC7578863 DOI: 10.1111/jcmm.15876] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy and is the second leading cause of cancer among men globally. Using a kinome-wide lentiviral small-hairpin RNA (shRNA) library screen, we identified phosphoinositide-dependent kinase-1 (PDPK1) as a potential mediator of cell survival in PCa cells. We showed that knock-down of endogenous human PDPK1 induced significant tumour-specific cell death in PCa cells (DU145 and PC3) but not in the normal prostate epithelial cells (RWPE-1). Further analyses revealed that PDPK1 mediates cancer cell survival predominantly via activation of serum/glucocorticoid-regulated kinase 3 (SGK3). Knock-down of endogenous PDPK1 in DU145 and PC3 cells significantly reduced SGK3 phosphorylation while ectopic expression of a constitutively active SGK3 completely abrogated the apoptosis induced by PDPK1. In contrast, no such effect was observed in SGK1 and AKT phosphorylation following PDPK1 knock-down. Importantly, PDPK1 inhibitors (GSK2334470 and BX-795) significantly reduced tumour-specific cell growth and synergized docetaxel sensitivity in PCa cells. In summary, our results demonstrated that PDPK1 mediates PCa cells' survival through SGK3 signalling and suggest that inactivation of this PDPK1-SGK3 axis may potentially serve as a novel therapeutic intervention for future treatment of PCa.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyonFrance
| | - Kok‐Keong Chan
- School of MedicineInternational Medical UniversityKuala LumpurMalaysia
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- Faculty of MedicineUniversity of Malaya Cancer Research InstituteUniversity of MalayaKuala LumpurMalaysia
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
27
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
28
|
He Y, Du J, Dong Z. Myeloid deletion of phosphoinositide-dependent kinase-1 enhances NK cell-mediated antitumor immunity by mediating macrophage polarization. Oncoimmunology 2020; 9:1774281. [PMID: 32923133 PMCID: PMC7458637 DOI: 10.1080/2162402x.2020.1774281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A large number of heterogeneous macrophages can be observed in solid tumor lesions. Classically activated M1 macrophages are a powerful killer of cancer cells. In contrast, tumor-associated macrophages (TAMs) are often referred to as M2 phenotype and usually impair tumor immunity mediated by cytotoxic lymphocytes, natural killer (NK) cells and CD8+ T cells. Therefore, orchestrating M2 to M1 reprogramming will provide a promising approach to tumor immunotherapy. Here we used a PyMT-induced spontaneous breast cancer model in which M2-polarized macrophages were abundant. This M2 phenotype was closely related to tumor progression and immune dysfunction of NK cells and CD8+ T cells. We then found that these TAMs showed increased energy expenditure and over-activation of two kinases, Akt and mammalian target of rapamycin (mTOR). Myeloid inactivation of phosphoinositide-dependent kinase-1 (PDK1), the upstream regulator for Akt and mTOR signaling, significantly reduced excessive metabolic activation of macrophages. Notably, the loss of PDK1 significantly led to regression of breast cancer and prevented lung metastasis. Mechanistically, PDK1 deficiency mainly inhibited the activation of mTOR complex 1 (mTORC1), transforming TAMs into M1 phenotype, thereby reversing tumor-related dysfunction of T cells and NK cells. Therefore, targeting PDK1 may be a new approach for M2 macrophage-enriched solid tumor immunotherapy.
Collapse
Affiliation(s)
- Yuexi He
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Hansen T, Thant C, White JA, Banerjee R, Thuamsang B, Gunawardena S. Excess active P13K rescues huntingtin-mediated neuronal cell death but has no effect on axonal transport defects. Apoptosis 2020; 24:341-358. [PMID: 30725352 DOI: 10.1007/s10495-019-01520-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High levels of oxidative stress is detected in neurons affected by many neurodegenerative diseases, including huntington's disease. Many of these diseases also show neuronal cell death and axonal transport defects. While nuclear inclusions/accumulations likely cause cell death, we previously showed that cytoplasmic axonal accumulations can also contribute to neuronal death. However, the cellular mechanisms responsible for activating cell death is unclear. One possibility is that perturbations in normal axonal transport alter the function of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-pathway, a signal transduction pathway that promotes survival/growth in response to extracellular signals. To test this proposal in vivo, we expressed active PI3K in the context of pathogenic huntingtin (HTT-138Q) in Drosophila larval nerves, which show axonal transport defects and neuronal cell death. We found that excess expression of active P13K significantly suppressed HTT-138Q-mediated neuronal cell death, but had no effect on HTT-138Q-mediated axonal transport defects. Expression of active PI3K also rescued Paraquat-mediated cell death. Further, increased levels of pSer9 (inactive) glycogen synthase kinase 3β was seen in HTT-138Q-mediated larval brains, and in dynein loss of function mutants, indicating the modulation of the pro-survival pathway. Intriguingly, proteins in the PI3K/AKT-pathway showed functional interactions with motor proteins. Taken together our observations suggest that proper axonal transport is likely essential for the normal function of the pro-survival PI3K/AKT-signaling pathway and for neuronal survival in vivo. These results have important implications for targeting therapeutics to early insults during neurodegeneration and death.
Collapse
Affiliation(s)
- Timothy Hansen
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Claire Thant
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Joseph A White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Bhasirie Thuamsang
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, 14260, US. .,The State University of New York at Buffalo, 109 Cooke Hall, North/Amherst Campus, Buffalo, NY, 14260, US.
| |
Collapse
|
30
|
Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel) 2020; 8:E18. [PMID: 32210163 PMCID: PMC7151639 DOI: 10.3390/medsci8010018] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women. There were over two-million new cases in world in 2018. It is the second leading cause of death from cancer in western countries. At the molecular level, breast cancer is a heterogeneous disease, which is characterized by high genomic instability evidenced by somatic gene mutations, copy number alterations, and chromosome structural rearrangements. The genomic instability is caused by defects in DNA damage repair, transcription, DNA replication, telomere maintenance and mitotic chromosome segregation. According to molecular features, breast cancers are subdivided in subtypes, according to activation of hormone receptors (estrogen receptor and progesterone receptor), of human epidermal growth factors receptor 2 (HER2), and or BRCA mutations. In-depth analyses of the molecular features of primary and metastatic breast cancer have shown the great heterogeneity of genetic alterations and their clonal evolution during disease development. These studies have contributed to identify a repertoire of numerous disease-causing genes that are altered through different mutational processes. While early-stage breast cancer is a curable disease in about 70% of patients, advanced breast cancer is largely incurable. However, molecular studies have contributed to develop new therapeutic approaches targeting HER2, CDK4/6, PI3K, or involving poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and immunotherapy.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
31
|
Jing P, Zhou S, Xu P, Cui P, Liu X, Liu X, Liu X, Wang H, Xu W. PDK1 promotes metastasis by inducing epithelial–mesenchymal transition in hypopharyngeal carcinoma via the Notch1 signaling pathway. Exp Cell Res 2020; 386:111746. [DOI: 10.1016/j.yexcr.2019.111746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022]
|
32
|
Xu X, Chen Y, Fu Q, Ni D, Zhang J, Li X, Lu S. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem 2019; 34:361-374. [PMID: 30734603 PMCID: PMC6327997 DOI: 10.1080/14756366.2018.1553167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Phosphoinositide-dependent protein kinase-1 (PDK1) is an important protein in mediating the PI3K-AKT pathway and is thus identified as a promising target. The catalytic activity of PDK1 is tightly regulated by allosteric modulators, which bind to the PDK1 Interacting Fragment (PIF) pocket of the kinase domain that is topographically distinct from the orthosteric, ATP binding site. Allosteric modulators by attaching to the less conserved PIF-pocket have remarkable advantages such as higher selectivity, less side effect, and lower toxicity. Targeting allosteric PIF-pocket of PDK1 has become the focus of recent attention. In this review, we summarise the current advances in the structure-based discovery of PDK1 allosteric modulators. We will first present the three-dimensional structure of PDK1 and illustrate the allosteric regulatory mechanism of PDK1 through the modulation of the PIF-pocket. Then, the recent advances of PDK1 allosteric modulators targeting the PIF-pocket will be recapitulated detailly according to the structural similarity of allosteric modulators.
Collapse
Affiliation(s)
- Xinyuan Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood 2019; 134:1847-1858. [DOI: 10.1182/blood.2019000185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022] Open
Abstract
The investigators explore the role of PDK1 (phosphoinositide-dependent protein kinase 1) in the cytoskeletal regulation of platelet production and furnish new insights into megakaryocyte maturation and proplatelet formation.
Collapse
|
34
|
Riebensahm C, Joosse SA, Mohme M, Hanssen A, Matschke J, Goy Y, Witzel I, Lamszus K, Kropidlowski J, Petersen C, Kolb-Kokocinski A, Sauer S, Borgmann K, Glatzel M, Müller V, Westphal M, Riethdorf S, Pantel K, Wikman H. Clonality of circulating tumor cells in breast cancer brain metastasis patients. Breast Cancer Res 2019; 21:101. [PMID: 31481116 PMCID: PMC6720990 DOI: 10.1186/s13058-019-1184-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background The incidence of brain metastases in breast cancer (BCBM) patients is increasing. These patients have a very poor prognosis, and therefore, identification of blood-based biomarkers, such as circulating tumor cells (CTCs), and understanding the genomic heterogeneity could help to personalize treatment options. Methods Both EpCAM-dependent (CellSearch® System) and EpCAM-independent Ficoll-based density centrifugation methods were used to detect CTCs from 57 BCBM patients. DNA from individual CTCs and corresponding primary tumors and brain metastases were analyzed by next-generation sequencing (NGS) in order to evaluate copy number aberrations and single nucleotide variations (SNVs). Results CTCs were detected after EpCAM-dependent enrichment in 47.7% of the patients (≥ 5 CTCs/7.5 ml blood in 20.5%). The CTC count was associated with ERBB2 status (p = 0.029) of the primary tumor as well as with the prevalence of bone metastases (p = 0.021). EpCAM-independent enrichment revealed CTCs in 32.6% of the patients, especially among triple-negative breast cancer (TNBC) patients (70.0%). A positive CTC status after enrichment of either method was significantly associated with decreased overall survival time (p < 0.05). Combining the results of both enrichment methods, 63.6% of the patients were classified as CTC positive. In three patients, the matched tumor tissue and single CTCs were analyzed by NGS showing chromosomal aberrations with a high genomic clonality and mutations in pathways potentially important in brain metastasis formation. Conclusion The detection of CTCs, regardless of the enrichment method, is of prognostic relevance in BCBM patients and in combination with molecular analysis of CTCs can help defining patients with higher risk of early relapse and suitability for targeted treatment. Electronic supplementary material The online version of this article (10.1186/s13058-019-1184-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlotta Riebensahm
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annkathrin Hanssen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yvonne Goy
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jolanthe Kropidlowski
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine (BIMSB and BIH), Berlin, Germany.,Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
35
|
Hoda RS, Brogi E, Pareja F, Nanjangud G, Murray MP, Weigelt B, Reis-Filho JS, Wen HY. Secretory carcinoma of the breast: clinicopathologic profile of 14 cases emphasising distant metastatic potential. Histopathology 2019; 75:213-224. [PMID: 31012486 DOI: 10.1111/his.13879] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/19/2019] [Indexed: 12/30/2022]
Abstract
AIMS Secretory carcinoma of the breast (SCB) is a rare histological type of breast carcinoma with a generally indolent clinical behaviour. We aim to elucidate the clinical, pathological and molecular findings of SCB cases and identify characteristics associated with aggressive clinical courses. METHODS AND RESULTS Fourteen patients with SCB were identified, including 12 women and two men, with a median age of 56 years (range = 8-81 years). Clinical data, histological diagnosis, molecular findings and follow-up were reviewed. Eight patients presented with palpable masses and four patients with radiographic abnormalities. All cases were unilateral. Surgical procedures included excisional biopsies and ipsilateral mastectomies. In 10 cases, oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) results were obtained, with six cases positive for ER and three positive for PR. All cases lacked HER2 overexpression. Sentinel lymph node biopsy was performed in 10 cases, and two patients had axillary lymph node metastasis. Follow-up ranged from 21 to 212 months (median = 70 months). Two patients developed distant metastasis of SCB. Molecular analysis of these aggressive tumours revealed amplification of the 16p13.3 locus, a TERT promotor mutation and loss of 9p21.3 locus. Review of the literature for SCB cases with distant metastasis was performed. CONCLUSIONS Although SCBs are generally associated with a favourable prognosis, our study and review demonstrate that a subset of SCBs may develop distant metastases. Further studies are warranted to identify markers predictive of more aggressive clinical behaviour in this rare breast cancer subtype.
Collapse
Affiliation(s)
- Raza S Hoda
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gouri Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melissa P Murray
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
Li X, Zhang ZS, Zhang XH, Yang SN, Liu D, Diao CR, Wang H, Zheng FP. Cyanidin inhibits EMT induced by oxaliplatin via targeting the PDK1-PI3K/Akt signaling pathway. Food Funct 2019; 10:592-601. [PMID: 30672917 DOI: 10.1039/c8fo01611a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anthocyanins have been shown to exhibit antitumor activity in several cancers in vitro and in vivo. Oxaliplatin is widely used as an anti-cancer drug. However, a large proportion of patients receiving platinum-based anti-cancer drug treatments will relapse because of metastasis and drug resistance. The aim of this study is to discover an effective anthocyanin that possesses the combinational anti-metastatic effects of oxaliplatin. Our results showed that cyanidin, one of the main constituents of anthocyanins, widely found in black rice, black bean, Hawthorn and other foods, could reverse drug resistance and enhance the effects of oxaliplatin on hepatic cellular cancer (HCC). Cyanidin inhibited migration and reversed EMT biomarker changes induced by low dose OXA. Moreover, 3-phosphoinositide-dependent protein kinase 1 (PDK1) can be considered a potential target and cyanidin significantly increased OXA sensitivity and inhibited the EMT induced by OXA via PI3K/Akt signaling in HCC.
Collapse
Affiliation(s)
- Xiang Li
- School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224051, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li B, Wang W, Miao S, Li G, Lv Y, Xiang C, Pei R. HOXA11-AS promotes the progression of oral squamous cell carcinoma by targeting the miR-518a-3p/PDK1 axis. Cancer Cell Int 2019; 19:140. [PMID: 31139017 PMCID: PMC6530053 DOI: 10.1186/s12935-019-0838-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are promising therapeutic molecules of cancer. Here we aim to study the therapeutic effect and mechanism of a lncRNA, HOXA11-AS, in oral squamous cell carcinoma (OSCC). Methods OSCC tissues and adjacent matched paraneoplastic normal tissues used in this study were collected from 42 OSCC patients. The significant downregulation or upregulation of HOXA11-AS expression in OSCC cells was confirmed by quantitative real-time PCR (qRT-PCR). Bioinformatics analysis of StarBase were performed to investigate the potential microRNAs mediated by HOXA11-AS. HOXA11-AS-transfected cells or control cells were subcutaneously injected into nude mice to further determine the effects of HOXA11-AS on OSCC progression in vivo. Results qRT-PCR analysis indicated that HOXA11-AS expression was significantly upregulated in OSCC tissues. Functional studies revealed that HOXA11-AS significantly promotes cell proliferation, reduces the percentage of G0/G1 phase cells and enhances the cell invasion in OSCC. Bioinformatics analysis suggested that a microRNA (miRNA), miR-518a-3p, is as a target of HOXA11-AS. Alteration of miR-518a-3p levels by HOXA11-AS transduced to changes in PDK1 expression. In a mouse model of OSCC, HOXA11-AS overexpression promoted tumor growth, concomitant with reduced miR-518a-3p expression and increased PDK1 expression. Conclusion Taken together, our study demonstrates that HOXA11-AS/miR-518a-3p/PDK1 axis is an important regulator of OSCC progression and may serve as a potential therapeutic target in OSCC. HARMU20150128, registered at Jan, 28 2018.
Collapse
Affiliation(s)
- Baojun Li
- 1Department of Head and Neck Surgery, The Affiliated Tumour Hospital, Harbin Medical University, Harbin, 150081 Heilongjiang People's Republic of China
| | - Wei Wang
- 2Department of Oral Maxillofacial Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001 Heilongjiang People's Republic of China
| | - Susheng Miao
- 1Department of Head and Neck Surgery, The Affiliated Tumour Hospital, Harbin Medical University, Harbin, 150081 Heilongjiang People's Republic of China
| | - Guofu Li
- 3Department of Neurosurgery, The Affiliated Tumour Hospital, Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Yuanjing Lv
- 3Department of Neurosurgery, The Affiliated Tumour Hospital, Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Cheng Xiang
- 3Department of Neurosurgery, The Affiliated Tumour Hospital, Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Rong Pei
- 3Department of Neurosurgery, The Affiliated Tumour Hospital, Harbin Medical University, No. 150 Haping Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| |
Collapse
|
38
|
Emmanouilidi A, Fyffe CA, Ferro R, Edling CE, Capone E, Sestito S, Rapposelli S, Lattanzio R, Iacobelli S, Sala G, Maffucci T, Falasca M. Preclinical validation of 3-phosphoinositide-dependent protein kinase 1 inhibition in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:191. [PMID: 31088502 PMCID: PMC6518649 DOI: 10.1186/s13046-019-1191-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/25/2019] [Indexed: 11/02/2022]
Abstract
BACKGROUND The very aggressive nature and low survival rate of pancreatic ductal adenocarcinoma (PDAC) dictates the necessity to find novel efficacious therapies. Recent evidence suggests that phosphoinositide 3-kinase (PI3K) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) are key effectors of oncogenic KRAS in PDAC. Herein, we report the role and mechanism of action of PDK1, a protein kinase of the AGC family, in PDAC. METHODS PDAC cell lines were treated with selective PDK1 inhibitors or transfected with specific PDK1-targeting siRNAs. In vitro and in vivo assays were performed to investigate the functional role of PDK1 in PDAC. Specifically, anchorage-dependent and anchorage-independent growth was assessed in PDAC cells upon inhibition or downregulation of PDK1. Detailed investigation of the effect of PDK1 inhibition/downregulation on specific signalling pathways was also performed by Western blotting analysis. A xenograft tumour mouse model was used to determine the effect of pharmacological inhibition of PDK1 on PDAC cells growth in vivo. RESULTS Treatment with specific inhibitors of PDK1 impaired anchorage-dependent and anchorage-independent growth of pancreatic cancer cell lines, as well as pancreatic tumour growth in a xenograft model. Mechanistically, inhibition or downregulation of PDK1 resulted in reduced activation of the serum/glucocorticoid regulated kinase family member 3 and subsequent reduced phosphorylation of its target N-Myc downstream regulated 1. Additionally, we found that combination of sub-optimal concentrations of inhibitors selective for PDK1 and the class IB PI3K isoform p110γ inhibits pancreatic cancer cell growth and colonies formation more potently than each single treatment. CONCLUSIONS Our data indicate that PDK1 is a suitable target for therapeutic intervention in PDAC and support the clinical development of PDK1 inhibitors for PDAC.
Collapse
Affiliation(s)
- Aikaterini Emmanouilidi
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Chanse A Fyffe
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Charlotte E Edling
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Simona Sestito
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126, Pisa, Italy
| | - Rossano Lattanzio
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Stefano Iacobelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy.,MediaPharma Srl, Via della Colonnetta, 50/A, 66100, Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University G. d'Annunzio di Chieti-Pescara, Centro Studi sull Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia. .,Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, E1 2AT, London, UK.
| |
Collapse
|
39
|
Liu R, Chen Z, Yi X, Huang F, Hu G, Liu D, Li X, Zhou H, Liu Z. 9za plays cytotoxic and proapoptotic roles and induces cytoprotective autophagy through the PDK1/Akt/mTOR axis in non-small-cell lung cancer. J Cell Physiol 2019; 234:20728-20741. [PMID: 31004362 DOI: 10.1002/jcp.28679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is an aggressive subtype of pulmonary carcinomas with high mortality. However, chemotherapy drug resistance and high recurrence rates hinder the curative effect of platinum-based first-line chemotherapy, which makes it urgent to develop new antitumor drugs for NSCLC. 9za, a new candidate drug synthesized by our research group, has been verified with potent antilung cancer activity in preliminary experiments. However, the underlying molecular mechanism of 9za remains largely vague. This work revealed that 9za could play important cytotoxic and proapoptotic roles in NSCLC cells. Moreover, 9za could induce autophagy and promote autophagy flux. Interestingly, the cytotoxic and proapoptotic roles were significantly dependent on 9za-induced cytoprotective autophagy. That is, the coadministration of 9za with an autophagy inhibitor such as chloroquine or 3-methyladenine exhibited increased cytotoxic and proapoptotic effects compared with 9za treatment alone. In addition, 9za exposure suppressed the phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1), protein kinase B (Akt), mammalian targets of rapamycin (mTOR), p70 S6 kinase, and 4E binding protein 1 by a dose-dependent way, manifesting that the Akt/mTOR axis was implicated in 9za-induced autophagy. In addition, the overexpression of PDK1 resulted in increased phosphorylation of PDK1 and Akt and blocking of 9za-mediated autophagy. These data showed that the PDK1/Akt/mTOR pathway was involved in 9za-induced autophagy. Hence, this work provides a theoretical basis for exploiting 9za as a new antilung cancer candidate drug and hints that the combination of 9za with an autophagy inhibitor is a feasible alternative approach for the therapy of NSCLC.
Collapse
Affiliation(s)
- Rangru Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xinan Yi
- The United Laboratory for Neurosciences of Hainan Medical University and the Fourth Military Medical University, Haikou, Hainan, China
| | - Fengying Huang
- Key Laboratory of Tropical Diseases and Translational Medicine of the Ministry of Education, Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Picco ME, Castro MV, Quezada MJ, Barbero G, Villanueva MB, Fernández NB, Kim H, Lopez-Bergami P. STAT3 enhances the constitutive activity of AGC kinases in melanoma by transactivating PDK1. Cell Biosci 2019; 9:3. [PMID: 30622697 PMCID: PMC6317239 DOI: 10.1186/s13578-018-0265-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023] Open
Abstract
Background The PI3K/Akt and the STAT3 pathways are functionally associated in many tumor types. Both in vitro and in vivo studies have revealed that either biochemical or genetic manipulation of the STAT3 pathway activity induce changes in the same direction in Akt activity. However, the implicated mechanism has been poorly characterized. Our goal was to characterize the precise mechanism linking STAT3 with the activity of Akt and other AGC kinases in cancer using melanoma cells as a model. Results We show that active STAT3 is constitutively bound to the PDK1 promoter and positively regulate PDK1 transcription through two STAT3 responsive elements. Transduction of WM9 and UACC903 melanoma cells with STAT3-small hairpin RNA decreased both PDK1 mRNA and protein levels. STAT3 knockdown also induced a decrease of the phosphorylation of AGC kinases Akt, PKC, and SGK. The inhibitory effect of STAT3 silencing on Akt phosphorylation was restored by HA-PDK1. Along this line, HA-PDK1 expression significantly blocked the cell death induced by dacarbazine plus STAT3 knockdown. This effect might be mediated by Bcl2 proteins since HA-PDK1 rescued Bcl2, Bcl-XL, and Mcl1 levels that were down-regulated upon STAT3 silencing. Conclusions We show that PDK1 is a transcriptional target of STAT3, linking STAT3 pathway with AGC kinases activity in melanoma. These data provide further rationale for the ongoing effort to therapeutically target STAT3 and PDK1 in melanoma and, possibly, other malignancies. Electronic supplementary material The online version of this article (10.1186/s13578-018-0265-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Elisa Picco
- 1Instituto de Medicina y Biología Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Castro
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - María Josefina Quezada
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - Gastón Barbero
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - María Belén Villanueva
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- 1Instituto de Medicina y Biología Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hyungsoo Kim
- 3Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA USA
| | - Pablo Lopez-Bergami
- 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, CONICET, Hidalgo 775, 6th Floor, Lab 602, Buenos Aires, Argentina
| |
Collapse
|
41
|
Wang Y, Zhang Y, Chen X, Hong Y, Wu Z. [Combined treatment with myo-inositol and luteolin selectively suppresses growth of human lung cancer A549 cells possibly by suppressing activation of PDK1 and Akt]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1378-1383. [PMID: 30514689 DOI: 10.12122/j.issn.1673-4254.2018.11.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study the effects of myo-inositol and luteolin on human lung cancer A549 cells and explore the possible mechanisms. METHODS A549 cells were treated with different concentrations of myo-inositol and luteolin, either alone or in combination, and the cell viability was examined using MTT assay. A549 cells and human bronchial epithelial Beas-2B cells were treated for 48 h with 10 mmol/L myo-inositol and 20 μmol/L luteolin, alone or in combination, and the cell proliferation was detected using MTT assay; the colony formation and migration of the cells were examined with colony formation assay and wound healing assay, respectively. The protein expression levels in A549 cells were detected using Western blotting. RESULTS Both myo-inositol and luteolin could dose-dependently inhibit the viability of A549 cells. Treatments with 10 mmol/L myo-inositol, 20 μmol/L luteolin, and both for 48 h caused significant reduction in the cell viability (92%, 83% and 70% of the control level, respectively) and colony number (79%, 73% and 43%, respectively), and significantly lowered the wound closure rate (24.61%, 13.08% and 8.65%, respectively, as compared with 29.99% in the control group). Similar treatments with myoinositol and luteolin alone or in combination produced no significant inhibitory effect on the growth, colony formation or migration of Beas-2B cells. The expressions of p-PDK1 and p-Akt in myo-inositol-treated A549 cells and the expression of pPDK1 in luteolin-treated cells were significantly decreased (P < 0.05), and the decrements were more obvious in the combined treatment group (P < 0.05). CONCLUSIONS Luteolin combined with myo-inositol can selectively inhibit the proliferation and migration of A549 cells, and these effects are probably mediated, at least in part, by suppressing the activation of PDK1 and Akt.
Collapse
Affiliation(s)
- Yun Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Yuyuan Zhang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Xue Chen
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Yun Hong
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Zhengdong Wu
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
42
|
Luo D, Xu X, Li J, Chen C, Chen W, Wang F, Xie Y, Li F. The PDK1/c‑Jun pathway activated by TGF‑β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Oncol 2018; 53:2067-2080. [PMID: 30106127 DOI: 10.3892/ijo.2018.4525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/23/2018] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant tumor affecting the human brain. Despite improvements in therapeutic technologies, patients with GBM have a poor clinical result and the molecular mechanisms responsible for the development of GBM have not yet been fully elucidated. 3-phosphoinositide dependent protein kinase 1 (PDK1) is upregulated in various tumors and promotes tumor invasion. In glioma, transforming growth factor-β (TGF‑β) promotes cell invasion; however, whether TGF‑β directly regulates PDK1 protein and promotes proliferation and invasion is not yet clear. In this study, PDK1 levels were measured in glioma tissues using tissue microarray (TMA) by immunohistochemistry (IHC) and RT‑qPCR. Kaplan-Meier analyses were used to calculate the survival rate of patients with glioma. In vitro, U251 and U87 glioma cell lines were used for functional analyses. Cell proliferation and invasion were analyzed using siRNA transfection, MTT assay, RT‑qPCR, western blot analysis, flow cytometry and invasion assay. In vivo, U251 glioma cell xenografts were established. The results revealed that PDK1 protein was significantly upregulated in glioma tissues compared with non-tumorous tissues. Furthermore, the higher PDK1 levels were associated with a large tumor size (>5.0 cm), a higher WHO grade and a shorter survival of patients with GBM. Univariate and multivariate analyses indicated that PDK1 was an independent prognostic factor. In vivo, PDK1 promoted glioma tumor xenograft growth. In vitro, functional analyses confirmed that TGF‑β upregulated PDK1 protein expression and PDK1 promoted cell migration and invasion, and functioned as an oncogene in GBM, by upregulating c‑Jun protein and inducing epithelial-mesenchymal transition (EMT). c‑Jun protein were overexpressed in glioma tissues and positively correlated with PDK1 levels. Moreover, our findings were further validated by the online Oncomine database. On the whole, the findings of this study indicate that in GBM, PDK1 functions as an oncogene, promoting proliferation and invasion.
Collapse
Affiliation(s)
- Dingyuan Luo
- Department of Vascular and Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Junliang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangyu Wang
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Yanping Xie
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| | - Fangcheng Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
43
|
Manne BK, Münzer P, Badolia R, Walker-Allgaier B, Campbell RA, Middleton E, Weyrich AS, Kunapuli SP, Borst O, Rondina MT. PDK1 governs thromboxane generation and thrombosis in platelets by regulating activation of Raf1 in the MAPK pathway. J Thromb Haemost 2018; 16:1211-1225. [PMID: 29575487 PMCID: PMC5984143 DOI: 10.1111/jth.14005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 01/02/2023]
Abstract
Essentials Phosphoinositide 3-kinase and MAPK pathways crosstalk via PDK1. PDK1 is required for adenosine diphosphate-induced platelet activation and thromboxane generation. PDK1 regulates RAF proto-oncogene Ser/Thr kinase (Raf1) activation in the MAPK pathway. Genetic ablation of PDK1 protects against platelet-dependent thrombosis in vivo. SUMMARY Background Platelets are dynamic effector cells with functions that span hemostatic, thrombotic and inflammatory continua. Phosphoinositide-dependent protein kinase 1 (PDK1) regulates protease-activated receptor 4-induced platelet activation and thrombus formation through glycogen synthase kinase3β. However, whether PDK1 also signals through the ADP receptor and its functional importance in vivo remain unknown. Objective To establish the mechanism of PDK1 in ADP-induced platelet activation and thrombosis. Methods We assessed the role of PDK1 on 2MeSADP-induced platelet activation by measuring aggregation, thromboxane generation and phosphorylation events in the presence of BX-795, which inhibits PDK1, or by using platelet-specific PDK1 knockout mice and performing western blot analysis. PDK1 function in thrombus formation was assessed with an in vivo pulmonary embolism model. Results PDK1 inhibition with BX-795 reduced 2-methylthio-ADP (2MeSADP)-induced aggregation of human and murine platelets by abolishing thromboxane generation. Similar results were observed in pdk1-/- mice. PDK1 was also necessary for the phosphorylation of mitogen-activated protein kinase kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2, and cytosolic phospholipase A2, indicating that PDK1 regulates an upstream kinase in the mitogen-activated protein kinase (MAPK) pathway. We next determined that this upstream kinase is Raf-1, a serine/threonine kinase that is necessary for the phosphorylation of MEK1/2, as pharmacological inhibition and genetic ablation of PDK1 were sufficient to prevent Raf1 phosphorylation. Furthermore, in vivo inhibition or genetic ablation of PDK1 protected mice from collagen/epinephrine-induced pulmonary embolism. Conclusion PDK1 governs thromboxane generation and thrombosis in platelets that are stimulated with 2MeSADP by regulating activation of the MAPK pathway.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Patrick Münzer
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, 19140 USA
| | - Britta Walker-Allgaier
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Robert A Campbell
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Elizabeth Middleton
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Andrew S Weyrich
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, 19140 USA
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, 72076 Germany
| | - Matthew T. Rondina
- Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112 USA
- Department of Internal Medicine, GRECC, George E. Wahlen VAMC, Salt Lake City, UT, 84148
| |
Collapse
|
44
|
Dissecting the Mutational Landscape of Cutaneous Melanoma: An Omic Analysis Based on Patients from Greece. Cancers (Basel) 2018; 10:cancers10040096. [PMID: 29596374 PMCID: PMC5923351 DOI: 10.3390/cancers10040096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a lethal type of skin cancer, unless it is diagnosed early. Formalin-fixed, paraffin-embedded (FFPE) tissue is a valuable source for molecular assays after diagnostic examination, but isolated nucleic acids often suffer from degradation. Here, for the first time, we examine primary melanomas from Greek patients, using whole exome sequencing, so as to derive their mutational profile. Application of a bioinformatic framework revealed a total of 10,030 somatic mutations. Regarding the genes containing putative protein-altering mutations, 73 were common in at least three patients. Sixty-five of these 73 top common genes have been previously identified in melanoma cases. Biological processes related to melanoma were affected by varied genes in each patient, suggesting differences in the components of a pathway possibly contributing to pathogenesis. We performed a multi-level analysis highlighting a short list of candidate genes with a probable causative role in melanoma.
Collapse
|
45
|
Gagliardi PA, Puliafito A, Primo L. PDK1: At the crossroad of cancer signaling pathways. Semin Cancer Biol 2018; 48:27-35. [DOI: 10.1016/j.semcancer.2017.04.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
46
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
47
|
Waniczek D, Śnietura M, Lorenc Z, Nowakowska-Zajdel E, Muc-Wierzgoń M. Assessment of PI3K/AKT/PTEN signaling pathway activity in colorectal cancer using quantum dot-conjugated antibodies. Oncol Lett 2017; 15:1236-1240. [PMID: 29422975 DOI: 10.3892/ol.2017.7392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/19/2017] [Indexed: 01/18/2023] Open
Abstract
In certain patients with advanced colorectal cancer, loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) activity is observed. PTEN is a major gatekeeper gene of the AKT serine/threonine kinase (AKT) signaling pathway responsible for the proliferative activity of cells. The assessment of AKT activity may be a prognostic factor or a predictor of response to the targeted therapies against particular signaling proteins. To precisely identify the cause and the place of the pathway deregulation, it is necessary to identify phosphorylation states and concentrations of several proteins located at different levels of the regulatory cascade. In the present study, we propose the simultaneous use of specific antibodies conjugated with different quantum dots to highlight the nature of AKT/PKB cascade deregulation in patients with colorectal cancer and the loss of PTEN expression in tumor tissue. Fifty patients with colorectal cancer of no specific location were enrolled in the study. The expression of the PTEN protein, and concentrations of phosphorylated/activated forms of 3-Phosphoinositide-dependent kinase 1 (PDK1) and AKT were assessed using quantum dot-conjugated antibodies. In patients with a diminished or complete loss of the PTEN expression in the tumor tissue increased levels of activated/phosphorylated forms of PDK1 (Phospho-PDK1-Ser241) and AKT (Phospho-AKT-Thr308) proteins were found, which are responsible for the permanent activation of the phosphoinositide 3-kinase/AKT/PTEN signaling pathway in certain cases of colorectal cancer.
Collapse
Affiliation(s)
- Dariusz Waniczek
- SHS in Katowice, Department of Surgery Propedeutics, Chair of General, Colorectal and Trauma Surgery, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mirosław Śnietura
- Tumor Pathology Department, Maria Sklodowska-Curie Memoria Cancer Center and Institute of Oncology, Gliwice Branch, 41-120 Gliwice, Poland
| | - Zbigniew Lorenc
- SHS in Katowice, Chair of General, Colorectal and Polytrauma Surgery, Medical University of Silesia, 40-055 Katowice, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition Related Disease Prevention, School of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
48
|
Targeting PDK1 for Chemosensitization of Cancer Cells. Cancers (Basel) 2017; 9:cancers9100140. [PMID: 29064423 PMCID: PMC5664079 DOI: 10.3390/cancers9100140] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite the rapid development in the field of oncology, cancer remains the second cause of mortality worldwide, with the number of new cases expected to more than double in the coming years. Chemotherapy is widely used to decelerate or stop tumour development in combination with surgery or radiation therapy when appropriate, and in many cases this improves the symptomatology of the disease. Unfortunately though, chemotherapy is not applicable to all patients and even when it is, there are many cases where a successful initial treatment period is followed by chemotherapeutic drug resistance. This is caused by a number of reasons, ranging from the genetic background of the patient (innate resistance) to the formation of tumour-initiating cells (acquired resistance). In this review, we discuss the potential role of PDK1 in the development of chemoresistance in different types of malignancy, and the design and application of potent inhibitors which can promote chemosensitization.
Collapse
|
49
|
Bramhecha YM, Guérard KP, Rouzbeh S, Scarlata E, Brimo F, Chevalier S, Hamel L, Dragomir A, Aprikian AG, Lapointe J. Genomic Gain of 16p13.3 in Prostate Cancer Predicts Poor Clinical Outcome after Surgical Intervention. Mol Cancer Res 2017; 16:115-123. [PMID: 28993510 DOI: 10.1158/1541-7786.mcr-17-0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/27/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Identifying tumors with high metastatic potential is key to improving the clinical management of prostate cancer. Recently, we characterized a chromosome 16p13.3 gain frequently observed in prostate cancer metastases and now demonstrate the prognostic value of this genomic alteration in surgically treated prostate cancer. Dual-color FISH was used to detect 16p13.3 gain on a human tissue microarray representing 304 primary radical prostatectomy (RP) cases with clinical follow-up data. The results were validated in an external dataset. The 16p13.3 gain was detected in 42% (113/267) of the specimens scorable by FISH and was significantly associated with clinicopathologic features of aggressive prostate cancer, including high preoperative PSA (P = 0.03) levels, high Gleason score (GS, P < 0.0001), advanced pathologic tumor stage (P < 0.0001), and positive surgical margins (P = 0.009). The 16p13.3 gain predicted biochemical recurrence (BCR) in the overall cohort (log-rank P = 0.0005), and in subsets of patients with PSA ≤10 or GS ≤7 (log-rank P = 0.02 and P = 0.006, respectively). Moreover, combining the 16p13.3 gain status with standard prognostic markers improved BCR risk stratification and identified a subgroup of patients with high probability of recurrence. The 16p13.3 gain status was also associated with an increased risk of developing distant metastases (log-rank P = 0.03) further substantiating its role in prostate cancer progression.Implications: This study demonstrates the prognostic significance of the 16p13.3 genomic gain in primary prostate tumors, suggesting potential utility in the clinical management of the disease by identifying patients at high risk of recurrence who may benefit from adjuvant therapies. Mol Cancer Res; 16(1); 115-23. ©2017 AACR.
Collapse
Affiliation(s)
- Yogesh M Bramhecha
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Karl-Philippe Guérard
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Shaghayegh Rouzbeh
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Eleonora Scarlata
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Simone Chevalier
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Lucie Hamel
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Alice Dragomir
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Armen G Aprikian
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jacques Lapointe
- Department of Surgery, Division of Urology, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Division of Experimental Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
50
|
Kanhaiya K, Czeizler E, Gratie C, Petre I. Controlling Directed Protein Interaction Networks in Cancer. Sci Rep 2017; 7:10327. [PMID: 28871116 PMCID: PMC5583175 DOI: 10.1038/s41598-017-10491-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Control theory is a well-established approach in network science, with applications in bio-medicine and cancer research. We build on recent results for structural controllability of directed networks, which identifies a set of driver nodes able to control an a-priori defined part of the network. We develop a novel and efficient approach for the (targeted) structural controllability of cancer networks and demonstrate it for the analysis of breast, pancreatic, and ovarian cancer. We build in each case a protein-protein interaction network and focus on the survivability-essential proteins specific to each cancer type. We show that these essential proteins are efficiently controllable from a relatively small computable set of driver nodes. Moreover, we adjust the method to find the driver nodes among FDA-approved drug-target nodes. We find that, while many of the drugs acting on the driver nodes are part of known cancer therapies, some of them are not used for the cancer types analyzed here; some drug-target driver nodes identified by our algorithms are not known to be used in any cancer therapy. Overall we show that a better understanding of the control dynamics of cancer through computational modelling can pave the way for new efficient therapeutic approaches and personalized medicine.
Collapse
Affiliation(s)
- Krishna Kanhaiya
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Eugen Czeizler
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
- National Institute for Research and Development for Biological Sciences, Bucharest, Romania
| | - Cristian Gratie
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland
| | - Ion Petre
- Computational Biomodeling Laboratory, Turku Centre for Computer Science, and Department of Computer Science, Åbo Akademi University, Turku, 20500, Finland.
| |
Collapse
|