1
|
Wang C, Zhang X, Li Q, Hou Y, Sun M, Sun J, Lou Z, Han X, Li Y. A review of carbohydrate polymer-synthesized nanoparticles in cancer immunotherapy: Past, present and future perspectives. Int J Biol Macromol 2025; 286:138195. [PMID: 39645110 DOI: 10.1016/j.ijbiomac.2024.138195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Cancer continues to be a leading factor in mortality and tackling it has been made difficult by the development of immune escape. Furthermore, alternative treatments like surgery, chemotherapy, and radiation have been unsuccessful in eradicating cancer. Despite being effective, they have not succeeded in providing a full cancer treatment and exhibit several negative effects. The field of immunotherapy has been improved by utilizing cancer vaccines, immune checkpoint inhibitors (ICIs), and adoptive cell transfer to enhance immune responses to tumors. Nevertheless, cancer cells need to adapt and become immune to immune reactions, leading to the need for innovative treatment methods. Carbohydrate polymers and their nanoparticles have been beneficial in improving cancer immunotherapy by being customizable to specifically target the immune system. These nanoparticles can change the tumor microenvironment and accelerate immunotherapy by affecting immune cells such as T cells and dendritic cells. Incorporating both chemotherapy and phototherapy into nanoparticles can improve immunotherapy. Furthermore, besides controlling immune reactions, carbohydrate polymer nanoparticles can also be used for theranostic purposes, where they are used to image tumor cells and activate the immune system to eradicate cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Yuxin Hou
- Department of Ultrasonic Diagnosis, The Benxi Hospital of China Medical University, Benxi, China
| | - Minglu Sun
- Department of Ultrasonic Diagnosis, The Cancer Hospital of China Medical University, Shenyang, China
| | - Jun Sun
- Department of Intervention, the Fourth Hospital of China Medical University, Shenyang, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wu Z, Li W, Tan M, How FYX, Sadhasivan H, Mahendran R, Wu Q, Chiong E, Le MTN. IL-12 minicircle delivery via extracellular vesicles as immunotherapy for bladder cancer. Cell Prolif 2025; 58:e13739. [PMID: 39193804 PMCID: PMC11693561 DOI: 10.1111/cpr.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Interleukin-12 (IL-12) holds significant potential in cancer therapy; however, its clinical applicability is hindered by dose-limiting toxicity. Delivery of the IL-12 gene directly to tumours for constitutive IL-12 expression is a possible strategy to enhance its effectiveness while minimizing systemic toxicity. In this study, we investigate the potential of red blood cell-derived extracellular vesicles (RBCEVs) as a carrier for Il-12 plasmid delivery. We demonstrate that RBCEVs can be loaded with minicircle plasmid encoding IL-12 and delivered to MB49 bladder cancer cells for IL-12 expression. The expression of transgenes from minicircles was significantly higher than from the parental plasmids. RBCEV-mediated IL-12 expression stimulated immune responses in mouse splenocytes. Intratumoral delivery of Il-12 plasmid-loaded RBCEVs suppressed bladder cancer tumour growth, stimulated immune responses and promoted immune cell infiltration. In conclusion, our study demonstrates the promising potential of RBCEVs as an effective, safe and redosable nucleic acid drug delivery platform for IL-12.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Li
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Shanghai University of Medicine & Health SciencesShanghaiChina
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Melissa Tan
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Carmine TherapeuticsSingaporeSingapore
| | - Faith Yuan Xin How
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Haripriya Sadhasivan
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qinghui Wu
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of UrologyNational University HospitalSingaporeSingapore
| | - Edmund Chiong
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of UrologyNational University HospitalSingaporeSingapore
| | - Minh T. N. Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell Therapy, A*STARSingaporeSingapore
| |
Collapse
|
3
|
Song J, Sun X, Wang T, Li C, Yuan L. Circulating levels of cytokines and risk of urologic cancers: a two-sample Mendelian randomization study. BMC Cancer 2024; 24:1261. [PMID: 39390542 PMCID: PMC11465925 DOI: 10.1186/s12885-024-13016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Chronic inflammation is associated with the etiology of various cancers. However, there is a lack of systematic research in urologic cancers. This study aims to use a two-sample Mendelian randomization (MR) approach to evaluate the role of circulating cytokines in the development of urologic cancers. METHODS We obtained the summary-level data for bladder cancer (373,295 cases and 372,016 controls), prostate cancer (462,933 cases and 459,664 controls), and kidney cancer (463,010 cases and 461,896 controls) from the UK Biobank. Genetic variations linked to 41 circulating cytokines were used as instrumental variables (IVs) in meta-analyses of genome-wide association studies (GWASs) involving 8,293 individuals from Finland. We primarily used the inverse-variance weighted (IVW) method to assess the potential associations between the 41 cytokines and the risk of 3 common urologic cancers. Weighted-median method, weighted mode and simple-median method were used to assess the sensitivity. Heterogeneity and pleiotropic outlier were evaluated by Cochran's Q test and MR-Egger regression. Genetic correlation, colocalization analysis and multivariable MR analysis were used to further validate the potential pleiotropy. RESULTS After the Bonferroni correction, there was an observed association between elevated genetically predicted levels of CCL27 and a heightened risk for bladder cancer. Conversely, IL-12p70 levels were found to have a protective association against the risk of bladder cancer. Sensitivity analyses utilizing various IV sets and MR approach remained robust. Furthermore, we found potential associations of 7 cytokines with urologic cancers (4.07 × 10-4 ≤ P < 0.05). CONCLUSION Our study supported causal associations between CCL27, IL-12p70 and bladder cancer risk and potential associations of 7 cytokines with the risk of urologic cancers, helping us to further understand the pathogenesis of urologic cancers and providing clues for improving diagnostic accuracy and therapies.
Collapse
Affiliation(s)
- Jinbo Song
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China.
| | - Xiaoke Sun
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| | - Ting Wang
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| | - Chao Li
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| | - Leihong Yuan
- Department of Urology Surgery, Honghui Hospital, Xi'an Jiaotong University, Beilin District, Xi'an, Shaanxi Province, 710000, China
| |
Collapse
|
4
|
Zeng S, Xing S, Zhang Y, Wang H, Liu Q. Nano-Bacillus Calmette-Guérin immunotherapies for improved bladder cancer treatment. J Zhejiang Univ Sci B 2024; 25:557-567. [PMID: 39011676 PMCID: PMC11254686 DOI: 10.1631/jzus.b2300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/29/2023] [Indexed: 07/13/2024]
Abstract
Cancer immunotherapy has rapidly become the fourth mainstream treatment alternative after surgery, radiotherapy, and chemotherapy, with some promising results. It aims to kill tumor cells by mobilizing or stimulating cytotoxic immune cells. However, the clinical applications of tumor immunotherapies are limited owing to a lack of adequate delivery pathways and high toxicity. Recently, nanomaterials and genetic engineering have shown great potential in overcoming these limitations by protecting the delivery of antigens, activating targeted T cells, modulating the immunosuppressive tumor microenvironment, and improving the treatment efficacy. Bacillus Calmette-Guérin (BCG) is a live attenuated Mycobacterium bovis vaccine used to prevent tuberculosis, which was first reported to have antitumor activity in 1927. BCG therapy can activate the immune system by inducing various cytokines and chemokines, and its specific immune and inflammatory responses exert antitumor effects. BCG was first used during the 1970s as an intravesical treatment agent for bladder cancer, which effectively improved immune antitumor activity and prevented tumor recurrence. More recently, nano-BCG and genetically engineered BCG have been proposed as treatment alternatives for bladder cancer due to their ability to induce stronger and more stable immune responses. In this study, we outline the development of nano-BCG and genetically engineered BCG for bladder cancer immunotherapy and review their potential and associated challenges.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Shaoqiang Xing
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China
| | - Yifei Zhang
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China
| | - Haifeng Wang
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China.
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
5
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
6
|
Mantooth SM, Hancock AM, Thompson PM, Varghese P J G, Meritet DM, Vrabel MR, Hu J, Zaharoff DA. Characterization of an Injectable Chitosan Hydrogel for the Tunable, Localized Delivery of Immunotherapeutics. ACS Biomater Sci Eng 2024; 10:905-920. [PMID: 38240491 DOI: 10.1021/acsbiomaterials.3c01580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Localized delivery of immunotherapeutics within a tumor has the potential to reduce systemic toxicities and improve treatment outcomes in cancer patients. Unfortunately, local retention of therapeutics following intratumoral injection is problematic and is insufficiently considered. Dense tumor architectures and high interstitial pressures rapidly exclude injections of saline and other low-viscosity solutions. Hydrogel-based delivery systems, on the other hand, can resist shear forces that cause tumor leakage and thus stand to improve the local retention of coformulated therapeutics. The goal of the present work was to construct a novel, injectable hydrogel that could be tuned for localized immunotherapy delivery. A chitosan-based hydrogel, called XCSgel, was developed and subsequently characterized. Nuclear magnetic resonance studies were performed to describe the chemical properties of the new entity, while cryo-scanning electron microscopy allowed for visualization of the hydrogel's cross-linked network. Rheology experiments demonstrated that XCSgel was shear-thinning and self-healing. Biocompatibility studies, both in vitro and in vivo, showed that XCSgel was nontoxic and induced transient mild-to-moderate inflammation. Release studies revealed that coformulated immunotherapeutics were released over days to weeks in a charge-dependent manner. Overall, XCSgel displayed several clinically important features, including injectability, biocompatibility, and imageability. Furthermore, the properties of XCSgel could also be controlled to tune the release of coformulated immunotherapeutics.
Collapse
Affiliation(s)
- Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Asher M Hancock
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Peter M Thompson
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Danielle M Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
7
|
Erman A, Kamenšek U, Peskar D, Veranič P. Establishment of Mouse Orthotopic Urinary Bladder Tumor Model and Its Analysis by Light and Electron Microscopy. Methods Mol Biol 2024; 2773:33-49. [PMID: 38236534 DOI: 10.1007/978-1-0716-3714-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mouse tumor models are an important tool in cancer research, and the orthotopic cancer cell transplantation model is the most widely used among them. Methods for establishing tumor models may differ in many ways, including the selection of cancer cell lines and the type of urinary bladder pretreatment. Here, we describe our mouse orthotopic bladder tumor model using a labeled MB49 urothelial cancer cell line and chemical pretreatment with the cationic polypeptide poly-L-lysine to traumatize the bladder epithelium. Double labeling of MB49 cancer cells by their transduction with GFP and internalization of metal nanoparticles allows the study of their implantation process from the first hours to several days after intravesical injection, as well as the analysis of developed tumors after 3 weeks. Thus, our model provides a comprehensive analysis of the early and late stages of tumor development in the bladder at the light and electron microscopic level.
Collapse
Affiliation(s)
- Andreja Erman
- Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Dominika Peskar
- Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| |
Collapse
|
8
|
Santollani L, Wittrup KD. Spatiotemporally programming cytokine immunotherapies through protein engineering. Immunol Rev 2023; 320:10-28. [PMID: 37409481 DOI: 10.1111/imr.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Cytokines have long been considered promising cancer immunotherapy agents due to their endogenous role in activating and proliferating lymphocytes. However, since the initial FDA approvals of Interleukin-2 (IL-2) and Interferon-ɑ (IFNɑ) for oncology over 30 years ago, cytokines have achieved little success in the clinic due to narrow therapeutic windows and dose-limiting toxicities. This is attributable to the discrepancy between the localized, regulated manner in which cytokines are deployed endogenously versus the systemic, untargeted administration used to date in most exogenous cytokine therapies. Furthermore, cytokines' ability to stimulate multiple cell types, often with paradoxical effects, may present significant challenges for their translation into effective therapies. Recently, protein engineering has emerged as a tool to address the shortcomings of first-generation cytokine therapies. In this perspective, we contextualize cytokine engineering strategies such as partial agonism, conditional activation and intratumoral retention through the lens of spatiotemporal regulation. By controlling the time, place, specificity, and duration of cytokine signaling, protein engineering can allow exogenous cytokine therapies to more closely approach their endogenous exposure profile, ultimately moving us closer to unlocking their full therapeutic potential.
Collapse
Affiliation(s)
- Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Sabahi M, Salehipour A, Bazl MSY, Rezaei N, Mansouri A, Borghei-Razavi H. Local immunotherapy of glioblastoma: A comprehensive review of the concept. J Neuroimmunol 2023; 381:578146. [PMID: 37451079 DOI: 10.1016/j.jneuroim.2023.578146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Despite advancements in standard treatments, the prognosis of Glioblastoma (GBM) remains poor, prompting research for novel therapies. Immunotherapy is a promising treatment option for GBM, and many immunotherapeutic agents are currently under investigation. Chimeric antigen receptor (CAR) T cells are rapidly evolving in immunotherapy of GBM with many clinical trials showing efficacy of CAR T cells exerting anti-tumor activity following recognition of tumor-associated antigens (TAAs). Exhaustion in CAR T cells can reduce their capacity for long-term persistence and anti-tumor action. Local immunotherapy, which targets the tumor microenvironment and creates a more hospitable immunological environment for CAR T cells, has the potential to reduce CAR T cell exhaustion and increase immunity. Tertiary lymphoid structures (TLS) are ectopic lymphoid-like formations that can develop within the tumor microenvironment or in other non-lymphoid tissues. As a comprehensive local immunotherapy tool, the incorporation of TLS into an implanted biodegradable scaffold has amazing immunotherapeutic potential. The immune response to GBM can be improved even further by strategically inserting a stimulator of interferon genes (STING) agonist into the scaffold. Additionally, the scaffold's addition of glioma stem cells (GSC), which immunotherapeutic approaches may use to target, enhances the removal of cancer cells from their source. Furthermore, it has been demonstrated that GSCs have an impact on TLS formation, which helps to create a favorable tumor microenvironment. Herein, we overview local delivery of a highly specific tandem AND-gate CAR T cell along with above mentioned components. A multifaceted approach that successfully engages the immune system to mount an efficient targeted immune response against GBM is provided by the integration of CAR T cells, TLS, STING agonists, and GSCs within an implantable biodegradable scaffold. This approach offers a promising therapeutic approach for patients with GBM.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| | - Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sajjad Yavari Bazl
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| |
Collapse
|
10
|
A novel 17 apoptosis-related genes signature could predict overall survival for bladder cancer and its associations with immune infiltration. Heliyon 2022; 8:e11343. [DOI: 10.1016/j.heliyon.2022.e11343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
|
11
|
The past, present, and future of immunotherapy for bladder tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:236. [PMID: 36175715 DOI: 10.1007/s12032-022-01828-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Bladder cancer is a prominent cancer worldwide with a relatively low survival rate for patients with increased stage and metastasis. Current treatments are based on surgical removal, bacillus Calmette-Guerin (BCG) Immunotherapy, and platinum-based chemotherapy. However, treatment resistance due to genetic instability of bladder tumors, as well as intolerance to treatment adverse effects leads to the necessity to further treatment options. New advancements in immunotherapy are on the rise for treatment of various cancers and specifically has shown promise in the treatment of bladder cancer. This review summarizes these new advancements in treatment options involving cytokines and cytokine blockade. Such a study might be helpful for urologists to manage patients with bladder cancer more effectively.
Collapse
|
12
|
Song Y, Liu Y, Teo HY, Liu H. Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:914839. [PMID: 35747139 PMCID: PMC9210953 DOI: 10.3389/fimmu.2022.914839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
γδT cells represent a small percentage of T cells in circulation but are found in large numbers in certain organs. They are considered to be innate immune cells that can exert cytotoxic functions on target cells without MHC restriction. Moreover, γδT cells contribute to adaptive immune response via regulating other immune cells. Under the influence of cytokines, γδT cells can be polarized to different subsets in the tumor microenvironment. In this review, we aimed to summarize the current understanding of antigen recognition by γδT cells, and the immune regulation mediated by γδT cells in the tumor microenvironment. More importantly, we depicted the polarization and plasticity of γδT cells in the presence of different cytokines and their combinations, which provided the basis for γδT cell-based cancer immunotherapy targeting cytokine signals.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Yee Teo
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Haiyan Liu,
| |
Collapse
|
13
|
Li G, Tao T, Deng D, Zhang S, Chao Y, Dai Y, Li Y, Tao R, Yuan S, Liu Z, Wu S. Collagen-targeted tumor-specific transepithelial penetration enhancer mediated intravesical chemoimmunotherapy for non-muscle-invasive bladder cancer. Biomaterials 2022; 283:121422. [DOI: 10.1016/j.biomaterials.2022.121422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
|
14
|
Nguyen KG, Wagner ES, Vrabel MR, Mantooth SM, Meritet DM, Zaharoff DA. Safety and Pharmacokinetics of Intravesical Chitosan/Interleukin-12 Immunotherapy in Murine Bladders. Bladder Cancer 2021; 7:427-437. [PMID: 38993985 PMCID: PMC11181725 DOI: 10.3233/blc-211542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intravesical administration of interleukin 12 (IL-12) co-formulated with the biopolymer, chitosan (CS/IL-12), has demonstrated remarkable antitumor activity against preclinical models of bladder cancer. However, given historical concerns regarding severe toxicities associated with systemic IL-12 administration in clinical trials, it is important to evaluate the safety of intravesical CS/IL-12 prior to clinical translation. OBJECTIVE To evaluate the pharmacokinetics as well as the local and systemic toxicities of intravesical CS/IL-12 immunotherapy in laboratory mice. METHODS Local inflammatory responses in mouse bladders treated with intravesical IL-12 or CS/IL-12 were assessed via histopathology. Serum cytokine levels following intravesical and subcutaneous (s.c.) administrations of IL-12 or CS/IL-12 in laboratory mice were compared. Systemic toxicities were evaluated via body weight and liver enzyme levels. RESULTS Intravesical IL-12 and CS/IL-12 treatments did not induce significant local or systemic toxicity. IL-12 dissemination and exposure from intravesical administration was significantly lower compared to s.c. injections. Weekly intravesical CS/IL-12 treatments were well-tolerated and did not result in blunted immune responses. CONCLUSIONS Intravesical CS/IL-12 is safe and well-tolerated in mice. In particular, the lack of cystitis and acute inflammation justifies continued investigation of intravesical CS/IL-12 immunotherapy in larger animals and patients with bladder cancer.
Collapse
Affiliation(s)
- Khue G. Nguyen
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Ethan S. Wagner
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Maura R. Vrabel
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Siena M. Mantooth
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| | - Danielle M. Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - David A. Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
15
|
Ji N, Mukherjee N, Shu ZJ, Reyes RM, Meeks JJ, McConkey DJ, Gelfond JA, Curiel TJ, Svatek RS. γδ T Cells Support Antigen-Specific αβ T cell-Mediated Antitumor Responses during BCG Treatment for Bladder Cancer. Cancer Immunol Res 2021; 9:1491-1503. [PMID: 34607803 PMCID: PMC8691423 DOI: 10.1158/2326-6066.cir-21-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is the most effective intravesical agent at reducing recurrence for patients with high-grade, non-muscle-invasive bladder cancer. Nevertheless, response to BCG is variable and strategies to boost BCG efficacy have not materialized. Prior work demonstrated a requirement for either conventional αβ or nonconventional γδ T cells in mediating BCG treatment efficacy, yet the importance of T-cell antigen specificity for BCG's treatment effect is unclear. Here, we provide direct evidence to show that BCG increases the number of tumor antigen-specific αβ T cells in patients with bladder cancer and protects mice from subsequent same-tumor challenge, supporting BCG induction of tumor-specific memory and protection. Adoptive T-cell transfers of antigen-specific αβ T cells into immunodeficient mice challenged with syngeneic MB49 bladder tumors showed that both tumor and BCG antigen-specific αβ T cells contributed to BCG efficacy. BCG-specific antitumor immunity, however, also required nonconventional γδ T cells. Prior work shows that the mTOR inhibitor rapamycin induces the proliferation and effector function of γδ T cells. Here, rapamycin increased BCG efficacy against both mouse and human bladder cancer in vivo in a γδ T cell-dependent manner. Thus, γδ T cells augment antitumor adaptive immune effects of BCG and support rapamycin as a promising approach to boost BCG efficacy in the treatment of non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Niannian Ji
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Zhen-Ju Shu
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Ryan M Reyes
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Joshua J Meeks
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - David J McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan A Gelfond
- Department of Epidemiology and Biostatistics, UT Health San Antonio, San Antonio, Texas
| | - Tyler J Curiel
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Robert S Svatek
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
16
|
Zhang J, Zhao X. Administration of fusion cytokines induces tumor regression and systemic antitumor immunity. MedComm (Beijing) 2021; 2:256-268. [PMID: 34766145 PMCID: PMC8491205 DOI: 10.1002/mco2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
It is difficult to improve the curative effects of cancer immunotherapy on solid tumors. Cytokines, as powerful immune regulators, show potential in activating host antitumor immunity. We have previously found that the administration of certain cytokine combinations induces complete tumor clearance. Here, we constructed cognate fusion cytokines and evaluated their antitumor effects in various mouse tumor models. The in situ induction of the expression of the fusion cytokine IL12IL2GMCSF caused tumor eradication, including that of the tumors at advanced stages. An immune memory against unrelated syngeneic tumors was also elicited. Furthermore, flow cytometry analysis revealed that tumor‐infiltrating CD3+ cells were greatly increased in the treated tumors and were accompanied by an elevation of CD8+/CD4+ ratios. This fusion protein exhibited superior immune activating capability compared to that of cytokine mixtures, in the experiments done in vitro. We also induced tumor regression in various immunocompetent tumor models via intratumoral injection. To improve its translational potential for clinical application, a systemically‐administered immunocytokine, IL12IL2DiaNFGMCSF, was constructed by inserting a tumor‐targeting diabody in the fusion protein. This protein also displayed good immune stimulating activities in vitro. Intravenous infusion of IL12IL2DiaNFGMCSF induced tumor‐infiltrating immune cell alterations like IL12IL2GMCSF, with moderate serum IFNγ increment. Therapeutic effects were observed in the various tumor models after systemic administration of IL12IL2DiaNFGMCSF, but with slight toxicity. These results show the feasibility of developing a versatile cancer immunotherapy.
Collapse
Affiliation(s)
| | - Xuan Zhao
- Institute for Immunology and School of Medicine Tsinghua University Beijing China
| |
Collapse
|
17
|
Wang B, He Z, Yu H, Ou Z, Chen J, Yang M, Fan X, Lin T, Huang J. Intravesical Pseudomonas aeruginosa mannose-sensitive Hemagglutinin vaccine triggers a tumor-preventing immune environment in an orthotopic mouse bladder cancer model. Cancer Immunol Immunother 2021; 71:1507-1517. [PMID: 34718847 DOI: 10.1007/s00262-021-03063-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Bacillus Calmette-Guerin (BCG) immunotherapy can prevent recurrence and progression in selected patients with non-muscle-invasive bladder cancer (NMIBC); however, significant adverse events and treatment failure suggest the need for alternative agents. A commercial anti-infection vaccine comprises a genetically engineered heat-killed Pseudomonas aeruginosa (PA) expressing many mannose-sensitive hemagglutination (MSHA) fimbriae, termed PA-MSHA, which could be a candidate for bladder cancer intravesical therapy. In an immunocompetent orthotopic MB49 bladder cancer model, we characterized the antitumor effects and mechanisms of PA-MSHA compared with those of BCG. Three weekly intravesical PA-MSHA or BCG treatments reduced tumor involvement; however, only PA-MSHA prolonged survival against MB49 implantation significantly. In non-tumor-bearing mice after treatment, flow-cytometry analysis showed PA-MSHA and BCG induced an increased CD4/CD8 ratio, the levels of effector memory T cell phenotypes (CD44, CXCR-3, and IFN-γ), and the proportion of CD11b+Ly6G-Ly6C-IA/IE+ mature macrophages, but a decrease in the proportion of CD11b+Ly6G-Ly6C+IA/IE- monocytic myeloid-derived suppressor cells (Mo-MDSCs) and the expression of suppressive molecules on immune cells (PD-L1, PD-1, TIM-3, and LAG-3). Notably, PA-MSHA, but not BCG, significantly reduced PD-1 and TIM-3 expression on CD4+ T cells, which might account for the better effects of PA-MSHA than BCG. However, in tumor-bearing mice after treatment, the increased proportion of Mo-MDSCs and high expression of PD-L1 might be involved in treatment failure. Thus, modulating the balance among adaptive and innate immune responses was identified as a key process underlying PA-MSHA-mediated treatment efficacy. The results demonstrated mechanisms underlying intravesical PA-MSHA therapy, pointing at its potential as an alternative effective treatment for NMIBC.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhihua He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China.,Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Ziwei Ou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Junyu Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Meihua Yang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510120, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic drugs, patients often experience side effects and drug resistance. Biopolymers could be used to overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan, chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent. Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application in cancer therapy.
Collapse
|
19
|
Bunch BL, Morse J, Asby S, Blauvelt J, Aydin AM, Innamarato P, Hajiran A, Beatty M, Poch M, Pilon-Thomas S. Systemic and intravesical adoptive cell therapy of tumor-reactive T cells can decrease bladder tumor growth in vivo. J Immunother Cancer 2021; 8:jitc-2020-001673. [PMID: 33303579 PMCID: PMC7733200 DOI: 10.1136/jitc-2020-001673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The therapeutic armamentarium of bladder cancer has been recently enriched with the introduction of new therapies including immune checkpoint inhibitors, receptor tyrosine kinase inhibitors and antibody drug conjugates, however treatment responses and duration of responses are still less than expected. Adoptive cellular therapy (ACT) using tumor-infiltrating lymphocytes (TILs) has potential to treat bladder cancer, as previously demonstrated by successful expansion of tumor reactive T cells from human bladder tumors. METHODS A model system using OT-I T cells and an ovalbumin expressing MB49 tumor cell line (MB49OVA) was developed to study ACT in bladder cancer. Systemic ACT-treated mice were given T cells intravenously after lymphodepleting chemotherapy and followed by interleukin (IL)-2 administration. Intravesical ACT treated mice were given T cells directly into the bladder, without chemotherapy or IL-2. TILs were isolated from MB49 orthotopic tumors and expanded ex vivo in IL-2. Immune cell infiltrates were analyzed by flow cytometry. T cell infiltration was studied using a CXCR3 blocking antibody. RESULTS Systemic ACT-treated mice had a decrease in tumor growth, increase in T cell infiltration and long-term immune protection compared with control-treated mice. OT-I T cells delivered intravesically were able to control tumor growth without lymphodepleting chemotherapy or IL-2 in MB49OVA orthotopic tumors. Intravesical delivery of TIL expanded from MB49 tumors was also able to decrease tumor growth in mice with MB49 orthotopic tumors. Blocking CXCR3 on OT-I T cells prior to intravesical delivery decreased T cell infiltration into the tumor and prevented the control of tumor growth. CONCLUSIONS This study demonstrates how TIL therapy can be used in treating different stages of bladder cancer.
Collapse
Affiliation(s)
- Brittany L Bunch
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jennifer Morse
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sarah Asby
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jamie Blauvelt
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ahmet M Aydin
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ali Hajiran
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Matthew Beatty
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael Poch
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA .,Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
20
|
Roy D, Ehtesham NZ, Hasnain SE. Is Mycobacterium tuberculosis carcinogenic to humans? FASEB J 2021; 35:e21853. [PMID: 34416038 DOI: 10.1096/fj.202001581rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
We highlight the ability of the tuberculosis (TB) causing bacterial pathogen, Mycobacterium tuberculosis (Mtb), to induce key characteristics that are associated with established IARC classified Group 1 and Group 2A carcinogenic agents. There is sufficient evidence from epidemiological case-control, cohort and meta-analysis studies of increased lung cancer (LC) risk in pre-existing/active/old TB cases. Similar to carcinogens and other pathogenic infectious agents, exposure to aerosol-containing Mtb sprays in mice produce malignant transformation of cells that result in squamous cell carcinoma. Convincing, mechanistic data show several characteristics shared between TB and LC which include chronic inflammation, genomic instability and replicative immortality, just to name a few cancer hallmarks. These hallmarks of cancer may serve as precursors to malignant transformation. Together, these findings form the basis of our postulate that Mtb is a complete human pulmonary carcinogen. We also discuss how Mtb may act as both an initiating agent and promoter of tumor growth. Forthcoming experimental studies will not only serve as proof-of-concept but will also pivot our understanding of how to manage/treat TB cases as well as offer solutions to clinical conundrums of TB lesions masquerading as tumors. Clinical validation of our concept may also help pave the way for next generation personalized medicine for the management of pulmonary TB/cancer particularly for cases that are not responding well to conventional chemotherapy or TB drugs.
Collapse
Affiliation(s)
- Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| |
Collapse
|
21
|
Yang Z, Xu Y, Bi Y, Zhang N, Wang H, Xing T, Bai S, Shen Z, Naz F, Zhang Z, Yin L, Shi M, Wang L, Wang L, Wang S, Xu L, Su X, Wu S, Yu C. Immune escape mechanisms and immunotherapy of urothelial bladder cancer. J Clin Transl Res 2021; 7:485-500. [PMID: 34541363 PMCID: PMC8445627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/12/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND AIM Urothelial bladder cancer (UBC) is a common malignant tumor of the urogenital system with a high rate of recurrence. Due to the sophisticated and largely unexplored mechanisms of tumorigenesis of UBC, the classical therapeutic approaches including transurethral resection and radical cystectomy combined with chemotherapy have remained unchanged for decades. However, with increasingly in-depth understanding of the microenvironment and the composition of tumor-infiltrating lymphocytes of UBC, novel immunotherapeutic strategies have been developed. Bacillus Calmette-Guerin (BCG) therapy, immune checkpoint blockades, adoptive T cell immunotherapy, dendritic cell (DC) vaccines, etc., have all been intensively investigated as immunotherapies for UBC. This review will discuss the recent progress in immune escape mechanisms and immunotherapy of UBC. METHODS Based on a comprehensive search of the PubMed and ClinicalTrials.gov database, this review included the literature reporting the immune escape mechanisms of UBC and clinical trials assessing the effect of immunotherapeutic strategies on tumor or immune cells in UBC patients published in English between 1999 and 2020. RESULTS Immune surveillance, immune balance, and immune escape are the three major processes that occur during UBC tumorigenesis. First, the role of immunosuppressive cells, immunosuppressive molecules, immunosuppressive signaling molecules, and DCs in tumor microenvironment is introduced elaborately in the immune escape mechanisms of UBC section. In addition, recent progress of immunotherapies including BCG, checkpoint inhibitors, cytokines, adoptive T cell immunotherapy, DCs, and macrophages on UBC patients are summarized in detail. Finally, the need to explore the mechanisms, molecular characteristics and immune landscape during UBC tumorigenesis and development of novel and robust immunotherapies for UBC are also proposed and discussed. CONCLUSION At present, BCG and immune checkpoint blockades have been approved by the US Food and Drug Administration for the treatment of UBC patients and have achieved encouraging therapeutic results, expanding the traditional chemotherapy and surgery-based treatment for UBC. RELEVANCE FOR PATIENTS Immunotherapy has achieved desirable results in the treatment of UBC, which not only improve the overall survival but also reduce the recurrence rate and the occurrence of treatment-related adverse events of UBC patients. In addition, the indicators to predict the effectiveness and novel therapy strategies, such as combination regimen of checkpoint inhibitor with checkpoint inhibitor or chemotherapy, should be further studied.
Collapse
Affiliation(s)
- Zhao Yang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,2Department of Bioscience, College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China,
Corresponding authors: Zhao Yang College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China. E-mail:
| | - Yinyan Xu
- 3Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Ying Bi
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nan Zhang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wang
- 4Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Tianying Xing
- 5Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Suhang Bai
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongyi Shen
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Faiza Naz
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zichen Zhang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqi Yin
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengran Shi
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Luyao Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shihui Wang
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Wu
- 3Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China,
Song Wu Department of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China.
| | - Changyuan Yu
- 1Department of Biomedical Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,
Changyuan Yu College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Gorbet MJ, Singh A, Mao C, Fiering S, Ranjan A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int J Hyperthermia 2021; 37:18-33. [PMID: 33426995 DOI: 10.1080/02656736.2020.1802519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy to treat cancer is now an established clinical approach. Immunotherapy can be applied systemically, as done with checkpoint blockade antibodies, but it can also be injected directly into identified tumors, in a strategy of in situ vaccination (ISV). ISV is designed to stimulate a strong local antitumor immune response involving both innate and adaptive immune cells, and through this generate a systemic antitumor immune response against metastatic tumors. A variety of ISVs have been utilized to generate an immunostimulatory tumor microenvironment (TME). These include attenuated microorganisms, recombinant proteins, small molecules, physical disruptors of TME (alternating magnetic and focused ultrasound heating, photothermal therapy, and radiotherapy), and more recently nanoparticles (NPs). NPs are attractive and unique since they can load multiple drugs or other reagents to influence immune and cancer cell functions in the TME, affording a unique opportunity to stimulate antitumor immunity. Here, we describe the NP-ISV therapeutic mechanisms, review chemically synthesized NPs (i.e., liposomes, polymeric, chitosan-based, inorganic NPs, etc.), biologically derived NPs (virus and bacteria-based NPs), and energy-activated NP-ISVs in the context of their use as local ISV. Data suggests that NP-ISVs can enhance outcomes of immunotherapeutic regimens including those utilizing tumor hyperthermia and checkpoint blockade therapies.
Collapse
Affiliation(s)
| | - Akansha Singh
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Chenkai Mao
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center at Dartmouth and Dartmouth Hitchcock, Lebanon, NH, USA
| | - Ashish Ranjan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
23
|
Erman A, Kamenšek U, Dragin Jerman U, Pavlin M, Čemažar M, Veranič P, Romih R. How Cancer Cells Invade Bladder Epithelium and Form Tumors: The Mouse Bladder Tumor Model as a Model of Tumor Recurrence in Patients. Int J Mol Sci 2021; 22:6328. [PMID: 34199232 PMCID: PMC8232005 DOI: 10.3390/ijms22126328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
Non-muscle-invasive bladder cancer is the most common form of bladder cancer. The main problem in managing bladder tumors is the high recurrence after the transurethral resection of bladder tumors (TURBT). Our study aimed to examine the fate of intravesically applied cancer cells as the implantation of cancer cells after TURBT is thought to be a cause of tumor recurrence. We established an orthotopic mouse bladder tumor model with MB49-GFP cancer cells and traced them during the first three days to define their location and contacts with normal urothelial cells. Data were obtained by Western blot, immunolabeling, and light and electron microscopy. We showed that within the first two hours, applied cancer cells adhered to the traumatized epithelium by cell projections containing α3β1 integrin on their tips. Cancer cells then migrated through the epithelium and on day 3, they reached the basal lamina or even penetrated it. In established bladder tumors, E-cadherin and desmoplakin 1/2 were shown as feasible immunohistochemical markers of tumor margins based on the immunolabeling of various junctional proteins. Altogether, these results for the first time illustrate cancer cell implantation in vivo mimicking cellular events of tumor recurrence in bladder cancer patients.
Collapse
Affiliation(s)
- Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.E.); (U.D.J.); (P.V.)
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology, SI-1000 Ljubljana, Slovenia; (U.K.); (M.Č.)
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.E.); (U.D.J.); (P.V.)
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology, SI-1000 Ljubljana, Slovenia; (U.K.); (M.Č.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.E.); (U.D.J.); (P.V.)
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.E.); (U.D.J.); (P.V.)
| |
Collapse
|
24
|
Greiner JW, Morillon YM, Schlom J. NHS-IL12, a Tumor-Targeting Immunocytokine. Immunotargets Ther 2021; 10:155-169. [PMID: 34079772 PMCID: PMC8166332 DOI: 10.2147/itt.s306150] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
NHS-IL12 is a novel immunocytokine designed for delivery of IL-12 to the tumor microenvironment (TME). NHS-IL12 consists of two molecules of IL-12 fused to a human IgG1 (NHS76) recognizing DNA/histone complexes, which are often exposed in the necrotic portions of tumors. Preclinical studies demonstrated the tumor-targeting ability and longer plasma half-life for NHS-IL12 when compared with recombinant IL-12 (rIL-12). NHS-IL12 outperformed rIL-12 in enhancing the proliferation and activation of immune as well as antigen-presenting cells, resulting in a more robust primary immune response. NHS-IL12 also reduced the number and function of suppressive myeloid cells (myeloid derived suppressor cells/macrophages) within the TME. In a murine bladder tumor model, NHS-IL12 administration led to a coordinated increase in host immunity with a reduction of immunosuppressive myeloid cells in the TME resulting in substantial reduction in tumor growth. Several preclinical studies have demonstrated increased overall anti-tumor efficacy when NHS-IL12 was combined with either immune-based therapeutics or chemotherapeutic approaches.
Collapse
Affiliation(s)
- John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Y Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Lima BV, Oliveira MJ, Barbosa MA, Gonçalves RM, Castro F. Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of in vitro, in vivo and clinical studies. Biomater Sci 2021; 9:3209-3227. [PMID: 33949372 DOI: 10.1039/d0bm01984d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chitosan (Ch) has recently been used in different studies as a vaccine adjuvant with an ability to modulate the tumor microenvironment (TME). This systematic review aims to elucidate the added value of using Ch-based therapies for immunotherapeutic strategies in cancer treatment, through the exploration of different Ch-based formulations, their capacity to modulate immune cells in vitro and in vivo, and their translational potential for clinical settings. A systematic review was conducted on PubMed, following both inclusion and exclusion steps. Original articles which focused on the immunomodulatory role of Ch-based formulations in the TME were included, as well as its usage as a delivery vehicle for other immunomodulatory molecules. This review illustrates the added value of Ch-based systems to reshape the TME, through the modulation of immune cells using different Ch formulations, namely solutions, films, gels, microneedles and nanoparticles. Generally, Ch-based formulations increase the recruitment and proliferation of cells associated with pro-inflammatory abilities and decrease cells which exert anti-inflammatory activities. These effects correlated with a decreased tumor weight, reduced metastases, reversion of the immunosuppressive TME and increased survival in vivo. Overall, Ch-based formulations present the potential for immunotherapy in cancer. Nevertheless, clinical translation remains challenging, since the majority of the studies use Ch in formulations with other components, implicating that some of the observed effects could result from the combination of the individual effects. More studies on the use of different Ch-based formulations, complementary to standardization and disclosure of the Ch properties used are required to improve the immunomodulatory effects of Ch-based formulations in cancer.
Collapse
Affiliation(s)
- Beatriz V Lima
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mário A Barbosa
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal and ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Flávia Castro
- i3S - Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. and INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Zhang D, Reyes RM, Osta E, Kari S, Gupta HB, Padron AS, Kornepati AVR, Kancharla A, Sun X, Deng Y, Wu B, Vadlamudi R, Li R, Svatek RS, Curiel TJ. Bladder cancer cell-intrinsic PD-L1 signals promote mTOR and autophagy activation that can be inhibited to improve cytotoxic chemotherapy. Cancer Med 2021; 10:2137-2152. [PMID: 33626233 PMCID: PMC7957205 DOI: 10.1002/cam4.3739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Tumor cell-intrinsic programmed death-ligand 1 (PD-L1) signals mediate immunopathologic effects in breast, colon, and ovarian cancers and in melanomas, but bladder cancer (BC) effects are unreported. We show here that BC cell-intrinsic PD-L1 signals in mouse MB49 and human RT4, UM-UC3, and UM-UC-14 BC cells regulate important pathologic pathways and processes, including effects not reported in other cancers. α-PD-L1 antibodies reduced BC cell proliferation in vitro, demonstrating direct signaling effects. BC cell-intrinsic PD-L1 promoted mammalian target of rapamycin complex 1 (mTORC1) signals in vitro and augmented in vivo immune-independent cell growth and metastatic cancer spread, similar to effects we reported in melanoma and ovarian cancer. BC cell-intrinsic PD-L1 signals also promoted basal and stress-induced autophagy, whereas these signals inhibited autophagy in melanoma and ovarian cancer cells. BC cell-intrinsic PD-L1 also mediated chemotherapy resistance to the commonly used BC chemotherapy agents cis-platinum and gemcitabine and to the mTORC1 inhibitor, rapamycin. Thus, BC cell-intrinsic PD-L1 signals regulate important virulence and treatment resistance pathways that suggest novel, actionable treatment targets meriting additional studies. As a proof-of-concept, we showed that the autophagy inhibitor chloroquine improved cis-platinum treatment efficacy in vivo, with greater efficacy in PD-L1 null versus PD-L1-replete BC.
Collapse
Affiliation(s)
- Deyi Zhang
- Department of MedicineUniversity of Texas HealthSan AntonioTXUSA
- Present address:
National Institutes of HealthBethesdaMDUSA
| | - Ryan M. Reyes
- Graduate School of Biomedical SciencesUniversity of Texas HealthSan AntonioTXUSA
- Department of Microbiology, Immunology and Molecular GeneticsUniversity Texas HealthSan AntonioTXUSA
- Mays Cancer Center, University of Texas HealthSan AntonioTXUSA
| | - Erica Osta
- Graduate School of Biomedical SciencesUniversity of Texas HealthSan AntonioTXUSA
- Department of Microbiology, Immunology and Molecular GeneticsUniversity Texas HealthSan AntonioTXUSA
| | - Suresh Kari
- Department of MedicineUniversity of Texas HealthSan AntonioTXUSA
| | | | - Alvaro S. Padron
- Department of MedicineUniversity of Texas HealthSan AntonioTXUSA
| | - Anand V. R. Kornepati
- Graduate School of Biomedical SciencesUniversity of Texas HealthSan AntonioTXUSA
- Department of Microbiology, Immunology and Molecular GeneticsUniversity Texas HealthSan AntonioTXUSA
| | | | - Xiujie Sun
- Department of MedicineUniversity of Texas HealthSan AntonioTXUSA
- Present address:
Department of Biochemistry & Molecular MedicineSchool of Medicine & Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Yilun Deng
- Department of MedicineUniversity of Texas HealthSan AntonioTXUSA
| | - Bogang Wu
- Department of Molecular MedicineUniversity of Texas HealthSan AntonioTXUSA
- Present address:
Department of Biochemistry & Molecular MedicineSchool of Medicine & Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Ratna Vadlamudi
- Mays Cancer Center, University of Texas HealthSan AntonioTXUSA
- Department of Obstetrics and GynecologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - Rong Li
- Mays Cancer Center, University of Texas HealthSan AntonioTXUSA
- Department of Molecular MedicineUniversity of Texas HealthSan AntonioTXUSA
- Present address:
Department of Biochemistry & Molecular MedicineSchool of Medicine & Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Robert S. Svatek
- Mays Cancer Center, University of Texas HealthSan AntonioTXUSA
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTXUSA
| | - Tyler J. Curiel
- Department of MedicineUniversity of Texas HealthSan AntonioTXUSA
- Graduate School of Biomedical SciencesUniversity of Texas HealthSan AntonioTXUSA
- Department of Microbiology, Immunology and Molecular GeneticsUniversity Texas HealthSan AntonioTXUSA
- Mays Cancer Center, University of Texas HealthSan AntonioTXUSA
| |
Collapse
|
27
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
28
|
Guo H, Li F, Qiu H, Xu W, Li P, Hou Y, Ding J, Chen X. Synergistically Enhanced Mucoadhesive and Penetrable Polypeptide Nanogel for Efficient Drug Delivery to Orthotopic Bladder Cancer. RESEARCH 2020; 2020:8970135. [PMID: 32832909 PMCID: PMC7420878 DOI: 10.34133/2020/8970135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 03/26/2020] [Indexed: 11/06/2022]
Abstract
Intravesical chemotherapy has been recommended after the gold standard of transurethral resection of the bladder tumor to prevent bladder cancer (BC) from local recurrence in the clinic. However, due to rapid urine excretion and barrier protection of the bladder wall, the clinical performances of chemotherapeutic drugs are severely compromised. In the present work, a smart positively charged disulfide-crosslinked nanogel of oligoarginine-poly(ethylene glycol)–poly(L-phenylalanine-co-L-cystine) (R9-PEG–P(LP-co-LC)) was prepared to prolong the retention period and enhance the penetration capability of chemotherapeutic agent toward the bladder wall. PEG significantly improved the aqueous dispersibility of the 10-hydroxycamptothecin (HCPT)-loaded R9-PEG–P(LP-co-LC) (i.e., R9NG/HCPT) and enhanced the mucoadhesive capability by the nonspecific interaction between PEG chain and the bladder mucosa accompanied with the electrostatic interaction between the cationic R9 and negatively charged bladder mucosa. Besides, R9, as a cell-penetrating peptide, efficiently penetrated through the cell membrane and delivered carried cargo. The disulfide bond endowed the selective release behavior of HCPT triggered by the intracellular reductive microenvironment. As an advanced chemotherapeutic nanoformulation, the smart R9NG/HCPT demonstrated superior cytotoxicity against human BC 5637 cells in vitro and remarkably enhanced tumor suppression activity toward orthotopic BC models of mouse and rat in vivo, indicating its great potential in the clinical intravesical BC chemotherapy.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,Department of Urinary Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Faping Li
- Department of Urinary Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Heping Qiu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,Department of Urinary Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Pengqiang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yuchuan Hou
- Department of Urinary Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
29
|
Gasparri AM, Sacchi A, Basso V, Cortesi F, Freschi M, Rrapaj E, Bellone M, Casorati G, Dellabona P, Mondino A, Corti A, Curnis F. Boosting Interleukin-12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGR-Tagged Nanogold. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903462. [PMID: 31523920 DOI: 10.1002/smll.201903462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The clinical use of interleukin-12 (IL12), a cytokine endowed with potent immunotherapeutic anticancer activity, is limited by systemic toxicity. The hypothesis is addressed that gold nanoparticles tagged with a tumor-homing peptide containing isoDGR, an αvβ3-integrin binding motif, can be exploited for delivering IL12 to tumors and improving its therapeutic index. To this aim, gold nanospheres are functionalized with the head-to-tail cyclized-peptide CGisoDGRG (Iso1) and murine IL12. The resulting nanodrug (Iso1/Au/IL12) is monodispersed, stable, and bifunctional in terms of αvβ3 and IL12-receptor recognition. Low-dose Iso1/Au/IL12, equivalent to 18-75 pg of IL12, induces antitumor effects in murine models of fibrosarcomas and mammary adenocarcinomas, with no evidence of toxicity. Equivalent doses of Au/IL12 (a nanodrug lacking Iso1) fail to delay tumor growth, whereas 15 000 pg of free IL12 is necessary to achieve similar effects. Iso1/Au/IL12 significantly increases tumor infiltration by innate immune cells, such as NK and iNKT cells, monocytes, and neutrophils. NK cell depletion completely inhibits its antitumor effects. Low-dose Iso1/Au/IL12 can also increase the therapeutic efficacy of adoptive T-cell therapy in mice with autochthonous prostate cancer. These findings indicate that coupling IL12 to isoDGR-tagged nanogold is a valid strategy for enhancing its therapeutic index and sustaining adoptive T-cell therapy.
Collapse
Affiliation(s)
- Anna Maria Gasparri
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angelina Sacchi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Filippo Cortesi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Massimo Freschi
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Eltjona Rrapaj
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Giulia Casorati
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Angelo Corti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
30
|
Dunn ZS, Mac J, Wang P. T cell immunotherapy enhanced by designer biomaterials. Biomaterials 2019; 217:119265. [PMID: 31271861 PMCID: PMC6689323 DOI: 10.1016/j.biomaterials.2019.119265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Abstract
Cancer immunotherapy has recently burst onto the center stage of cancer treatment and research. T lymphocyte adoptive cellular transfer (ACT), a form of cancer immunotherapy, has spawned unprecedented complete remissions for terminal patients with certain leukemias and lymphomas. Unfortunately, the successes have been overshadowed by the disappointing clinical results of ACT administered to treat solid tumors, in addition to the toxicities associated with the treatment, a lack of efficacy in a significant proportion of the patient population, and cancer relapse following the treatment. Biomaterials hold the promise of addressing these shortcomings. ACT consists of two main stages - T lymphocyte ex vivo expansion followed by reinfusion into the patient - and biomaterials can improve the efficacy of ACT at both stages. In this review, we highlight recent advances in the use of biomaterials for T lymphocyte adoptive cellular cancer immunotherapy and discuss the challenges at each stage.
Collapse
Affiliation(s)
- Zachary S Dunn
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - John Mac
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - Pin Wang
- Mork Family Department of of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
31
|
Smith SG, Griffith BE, Zaharoff DA. Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2019; 36:139-156. [PMID: 29659860 DOI: 10.1093/imammb/dqy004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Abstract
Ailments of the bladder are often treated via intravesical delivery-direct application of therapeutic into the bladder through a catheter. This technique is employed hundreds of thousands of times every year, but protocol development has largely been limited to empirical determination. Furthermore, the numerical analyses of intravesical delivery performed to date have been restricted to static geometries and have not accounted for bladder deformation. This study uses a finite element analysis approach with biphasic solute transport to investigate several parameters pertinent to intravesical delivery including solute concentration, solute transport properties and instillation volume. The volume of instillation was found to have a substantial impact on the exposure of solute to the deeper muscle layers of the bladder, which are typically more difficult to reach. Indeed, increasing the instillation volume from 50-100 ml raised the muscle solute exposure as a percentage of overall bladder exposure from 60-70% with higher levels achieved for larger instillation volumes. Similar increases were not seen for changes in solute concentration or solute transport properties. These results indicate the role that instillation volume may play in targeting particular layers of the bladder during an intravesical delivery.
Collapse
Affiliation(s)
- Sean G Smith
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, NC
| | - Boyce E Griffith
- Department of Mathematics, University of North Carolina, Chapel Hill, NC
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, NC
| |
Collapse
|
32
|
Morillon YM, Su Z, Schlom J, Greiner JW. Temporal changes within the (bladder) tumor microenvironment that accompany the therapeutic effects of the immunocytokine NHS-IL12. J Immunother Cancer 2019; 7:150. [PMID: 31186063 PMCID: PMC6558846 DOI: 10.1186/s40425-019-0620-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND While significant strides in the treatment of metastatic bladder cancer have been made with immune checkpoint inhibitors, the treatment of carcinoma in situ and non-muscle invasive, non-metastatic (superficial) human urothelial carcinoma, also termed non-muscle invasive bladder cancer (NMIBC), remains intractable with bacillus Calmette-Guerin (BCG) employed as the standard of care. In this study, an immunocytokine, NHS-muIL12, which consists of two molecules of murine IL-12 fused to NHS76, a tumor necrosis-targeting human IgG1, was examined as an immunotherapeutic in an orthotopic MB49luc bladder tumor model. METHODS The antitumor activity of systemic administration of NHS-muIL12 was investigated on MB49luc tumors, an aggressive, bioluminescent orthotopic bladder cancer model. Temporal studies were carried out on MB49luc bladder tumors harvested during various time points during NHS-muIL12 treatment and cellular changes associated with the reduction in tumor burden following NHS-muIL12 were determined by flow cytometry. Effects of those changes on the proliferation/activation of lymphoid cells were also determined. RESULTS Studies revealed a significant reduction in MB49luc bladder tumor burden occurring between days 3 and 6 after the third and final systemic administration of NHS-muIL12. Temporal analyses of the MB49luc bladder tumor microenvironment (TME) initially revealed a large accumulation of myeloid-derived suppressor cells (MDSCs) and macrophages that elicited potent immunosuppression. Immunosuppression was characterized by the inability of CD4+ and CD8+ T cells to respond to broad-based immune stimulants. NHS-muIL12 administration resulted in temporal-dependent reductions in the number of MDSCs, macrophages and tumor-associated TGF-β, which culminated in a re-ignition of CD4+ and CD8+ T cells to elicit potent antitumor responses against MB49luc bladder tumors. CONCLUSIONS These findings provide strong evidence that the systemic administration of an immunocytokine consisting of a tumor-targeting Ig through recognition of DNA and DNA-histone complexes coupled to muIL-12 can effectively target the bladder TME; this significantly reduces the myeloid cellular compartment and reverts an immunosuppressive to an immunopermissive TME, ultimately resulting in antitumor effects. These studies provide further rationale for the employment of NHS-IL12 as an immunomodulator and clinical immunotherapeutic for NMIBC.
Collapse
Affiliation(s)
- Y Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhen Su
- EMD Serono, Rockland, MA, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
33
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
34
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
35
|
Zhang J, Jiang H, Zhang H. In situ administration of cytokine combinations induces tumor regression in mice. EBioMedicine 2018; 37:38-46. [PMID: 30297145 PMCID: PMC6284351 DOI: 10.1016/j.ebiom.2018.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Background Recent advances in cancer immunotherapy suggest a possibility of harnessing the immune system to defeat malignant tumors, but the complex immunosuppressive microenvironment confines the therapeutic benefits to a minority of patients with solid tumors. Methods A lentivector-based inducible system was established to evaluate the therapeutic effect of cytokines in established tumors. Intratumoral injection of certain cytokine combination in syngeneic tumor models was conducted to assess the therapeutic potentials. Findings Doxycycline (Dox)-induced local expression of cytokine combinations exhibites a strong synergistic effect, leading to complete regression of tumors. Notably, IL12 + GMCSF+IL2 expression induces eradication of tumors in all mice tolerated with this treatment, including those bearing large tumors of ~15 mm in diameter, and generates intensive systemic antitumor immunity. Other combinations with similar immune regulatory roles also induce tumor elimination in most of mice. Moreover, intratumoral injection of chitosan/IL12 + GMCSF+IL2 solution induces a complete response in all the tested syngeneic tumor models, regardless of various tumor immunograms. Interpretation Administration of certain cytokine combinations in tumor microenvironment induces a strong synergistic antitumor response, including the recruitment of large amount of immune cells and the generation of systemic antitumor immunity. It provides a versatile method for the immunotherapy of intractable malignant neoplasms. Fund There is no external funding supporting this study.
Collapse
Affiliation(s)
- Jinyu Zhang
- Mianyi Biotech Corporation, Chongqing 401332, China.
| | - Haochen Jiang
- Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiyun Zhang
- Beijing Chaoyang District Animal Disease Control Center, Beijing 100018, China
| |
Collapse
|
36
|
Interleukin-12p35 Knock Out Aggravates Doxorubicin-Induced Cardiac Injury and Dysfunction by Aggravating the Inflammatory Response, Oxidative Stress, Apoptosis and Autophagy in Mice. EBioMedicine 2018; 35:29-39. [PMID: 30228093 PMCID: PMC6154773 DOI: 10.1016/j.ebiom.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Recent evidence has demonstrated that interleukin 12p35 knockout (IL-12p35 KO) is involved in cardiac diseases by regulating the inflammatory response. The involvement of inflammatory cells has also been observed in doxorubicin (DOX)-induced cardiac injury. This study aimed to investigate whether IL-12p35 KO affects DOX-induced cardiac injury and the underlying mechanisms. Methods First, the effect of DOX treatment on cardiac IL-12p35 expression was assessed. In addition, to investigate the effect of IL-12p35 KO on DOX-induced cardiac injury, IL-12p35 KO mice were treated with DOX. Because IL-12p35 is the mutual subunit of IL-12 and IL-35, to determine the cytokine that mediates the effect of IL-12p35 KO on DOX-induced cardiac injury, mice were given phosphate-buffered saline (PBS), mouse recombinant IL-12 (rIL-12) or rIL-35 before treatment with DOX. Results DOX treatment significantly increased the level of cardiac IL-12p35 expression. In addition, IL-12p35 KO mice exhibited higher serum and heart lactate dehydrogenase levels, higher serum and heart creatine kinase myocardial bound levels, and greater cardiac dysfunction than DOX-treated mice. Furthermore, IL-12p35 KO further increased M1 macrophage and decreased M2 macrophage differentiation, aggravated the imbalance of oxidants and antioxidants, and further activated the mitochondrial apoptotic pathway and endoplasmic reticulum stress autophagy pathway. Both rIL-12 and rIL-35 protected against DOX-induced cardiac injury by alleviating the inflammatory response, oxidative stress, apoptosis and autophagy. Conclusions IL-12p35 KO aggravated DOX-induced cardiac injury by amplifying the levels of inflammation, oxidative stress, apoptosis and autophagy. (234 words). IL-12p35 KO aggravates DOX-induced cardiac injury and dysfunction. IL-12p35 further increases the DOX-induced imbalance in inflammation, oxidative stress, apoptosis and autophagy. Both exogenous rIL-12 and rIL-35 relieved cardiac injury mediated by DOX.
CD4+ T helper (Th) cells are closely related to cardiac injury; regulatory T cells (Tregs) are a new subset of Th cells, and IL-35 is the functional cytokine of Tregs. Cardiac injury mediated by DOX is the most serious complication during chemotherapy, and there are no good preventive measures. This study aimed to investigate whether IL-35 can reduce cardiac injury induced by DOX during chemotherapy. In addition to IL-35, IL-12p35 KO can cancel the biological effect of IL-12; therefore, we also determined whether IL-12 participates in DOX-induced cardiac injury and the underlying mechanisms.
Collapse
|
37
|
Gammon JM, Dold NM, Jewell CM. Improving the clinical impact of biomaterials in cancer immunotherapy. Oncotarget 2017; 7:15421-43. [PMID: 26871948 PMCID: PMC4941251 DOI: 10.18632/oncotarget.7304] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials–such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices–offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.
Collapse
Affiliation(s)
- Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Neil M Dold
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| |
Collapse
|
38
|
Fallon JK, Vandeveer AJ, Schlom J, Greiner JW. Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 2017; 8:20558-20571. [PMID: 28423552 PMCID: PMC5400526 DOI: 10.18632/oncotarget.16137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.
Collapse
Affiliation(s)
- Jonathan K Fallon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amanda J Vandeveer
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
39
|
In vivo biodistribution and toxicity of intravesical administration of quantum dots for optical molecular imaging of bladder cancer. Sci Rep 2017; 7:9309. [PMID: 28839158 PMCID: PMC5571179 DOI: 10.1038/s41598-017-08591-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Optical molecular imaging holds the potential to improve cancer diagnosis. Fluorescent nanoparticles such as quantum dots (QD) offer superior optical characteristics compared to organic dyes, but their in vivo application is limited by potential toxicity from systemic administration. Topical administration provides an attractive route for targeted nanoparticles with the possibility of minimizing exposure and reduced dose. Previously, we demonstrated successful ex vivo endoscopic imaging of human bladder cancer by topical (i.e. intravesical) administration of QD-conjugated anti-CD47. Herein we investigate in vivo biodistribution and toxicity of intravesically instilled free QD and anti-CD47-QD in mice. In vivo biodistribution of anti-CD47-QD was assessed with inductively coupled plasma mass spectrometry. Local and systemic toxicity was assessed using blood tests, organ weights, and histology. On average, there was no significant accumulation of QD outside of the bladder, although in some mice we detected extravesical biodistribution of QD suggesting a route for systemic exposure under some conditions. There were no indications of acute toxicity up to 7 days after instillation. Intravesical administration of targeted nanoparticles can reduce systemic exposure, but for clinical use, nanoparticles with established biosafety profiles should be used to decrease long-term toxicity in cases where systemic exposure occurs.
Collapse
|
40
|
Abstract
Background Immunotherapy consists of activating the patient’s immune system to fight cancer and has the great potential of preventing future relapses thanks to immunological memory. A great variety of strategies have emerged to harness the immune system against tumors, from the administration of immunomodulatory agents that activate immune cells, to therapeutic vaccines or infusion of previously activated cancer-specific T cells. However, despite great recent progress many difficulties still remain, which prevent the widespread use of immunotherapy. Some of these limitations include: systemic toxicity, weak immune cellular responses or persistence over time and most ultimately costly and time-consuming procedures. Main body Synthetic and natural biomaterials hold great potential to address these hurdles providing biocompatible systems capable of targeted local delivery, co-delivery, and controlled and/or sustained release. In this review we discuss some of the bioengineered solutions and approaches developed so far and how biomaterials can be further implemented to help and shape the future of cancer immunotherapy. Conclusion The bioengineering strategies here presented constitute a powerful toolkit to develop safe and successful novel cancer immunotherapies.
Collapse
|
41
|
Babu A, Ramesh R. Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy. Mar Drugs 2017; 15:E96. [PMID: 28346381 PMCID: PMC5408242 DOI: 10.3390/md15040096] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chitosan is a versatile polysaccharide of biological origin. Due to the biocompatible and biodegradable nature of chitosan, it is intensively utilized in biomedical applications in scaffold engineering as an absorption enhancer, and for bioactive and controlled drug release. In cancer therapy, chitosan has multifaceted applications, such as assisting in gene delivery and chemotherapeutic delivery, and as an immunoadjuvant for vaccines. The present review highlights the recent applications of chitosan and chitosan derivatives in cancer therapy.
Collapse
Affiliation(s)
- Anish Babu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
42
|
Smith SG, Baltz JL, Koppolu BP, Ravindranathan S, Nguyen K, Zaharoff DA. Immunological mechanisms of intravesical chitosan/interleukin-12 immunotherapy against murine bladder cancer. Oncoimmunology 2016; 6:e1259050. [PMID: 28197381 PMCID: PMC5283638 DOI: 10.1080/2162402x.2016.1259050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
There is a critical unmet clinical need for bladder cancer immunotherapies capable of inducing durable antitumor immunity. We have shown that four intravesical treatments with a simple co-formulation of interleukin-12 and the biopolymer chitosan not only destroy orthotopic bladder tumors, but also promote a potent long-lasting systemic immune response as evidenced through tumor-specific in vitro killing assays, complete protection from rechallenge, and abscopal antitumor responses at distant non-treated tumors. This study investigates the immunological kinetics underlying these results. We show through depletion studies that CD8+ T cells are required for initial tumor rejection, but CD4+ T cells protect against rechallenge. We also show that even a single intravesical treatment can eliminate tumors in 50% of mice with 6/9 and 7/8 mice eliminating tumors after three or four treatments respectively. We then performed immunophenotyping studies to analyze shifts in immune cell populations after each treatment within the tumor itself as well as in secondary lymphoid organs. These studies demonstrated an initial infiltration of macrophages and granulocytes followed by increased CD4+ and CD8+ effector-memory cells. This was coupled with a decreased level of regulatory T cells in peripheral lymph nodes as well as decreased myeloid-derived suppressor cell infiltration in the bladder. Taken together, these data demonstrate the ability of properly delivered interleukin-12-based therapies to engage adaptive immunity within the tumor itself as well as throughout the body and strengthen the case for clinical translation of chitosan/interleukin-12 as an intravesical treatment for bladder cancer.
Collapse
Affiliation(s)
- Sean G Smith
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - John L Baltz
- Department of Biomedical Engineering, University of Arkansas , Fayetteville, AR, USA
| | - Bhanu Prasanth Koppolu
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sruthi Ravindranathan
- Department of Biomedical Engineering, University of Arkansas , Fayetteville, AR, USA
| | - Khue Nguyen
- Department of Cell and Molecular Biology, University of Arkansas , Fayetteville, AR, USA
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA; Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
43
|
Douglass L, Schoenberg M. The Future of Intravesical Drug Delivery for Non-Muscle Invasive Bladder Cancer. Bladder Cancer 2016; 2:285-292. [PMID: 27500196 PMCID: PMC4969694 DOI: 10.3233/blc-160056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite being the fifth most common cancer in the United States, minimal progress has been made in the treatment of bladder cancer in over a decade. Intravesical instillation of Bacillus Calmette-Guerin (BCG) for the treatment of non-muscle invasive bladder cancer (NMIBC) has been in use for over 30 years and remains the standard treatment in cases of intermediate and high risk disease. Despite the relative success of intravesical BCG, unmet needs in the treatment of NMIBC persist. These challenges include disease recurrence and progression even with treatment with BCG, as well as issues regarding its availability and patient tolerability. The inherent properties of the bladder pose the biggest obstacle to developing effective intravesical treatments for NMIBC. Current research is now focusing on methods to improve the delivery of intravesical therapies. The objective of this review is to discuss novel intravesical drug delivery systems and how they are addressing these challenges in the treatment of NMIBC.
Collapse
Affiliation(s)
- Laura Douglass
- Department of Urology, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Mark Schoenberg
- Department of Urology, Albert Einstein College of Medicine , Bronx, NY, USA
| |
Collapse
|
44
|
Younes I, Frachet V, Rinaudo M, Jellouli K, Nasri M. Cytotoxicity of chitosans with different acetylation degrees and molecular weights on bladder carcinoma cells. Int J Biol Macromol 2016; 84:200-7. [DOI: 10.1016/j.ijbiomac.2015.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/05/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022]
|
45
|
Vandeveer AJ, Fallon JK, Tighe R, Sabzevari H, Schlom J, Greiner JW. Systemic Immunotherapy of Non-Muscle Invasive Mouse Bladder Cancer with Avelumab, an Anti-PD-L1 Immune Checkpoint Inhibitor. Cancer Immunol Res 2016; 4:452-62. [PMID: 26921031 DOI: 10.1158/2326-6066.cir-15-0176] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/19/2016] [Indexed: 12/28/2022]
Abstract
Bacillus Calmette-Guerin (BCG) is the standard of care for intravesical therapy for carcinoma in situ and non-muscle invasive, nonmetastatic human urothelial carcinoma. Although the responsiveness to this immunotherapeutic is believed to be linked with (i) a high number of somatic mutations and (ii) a large number of tumor-infiltrating lymphocytes, recent findings of the roles that inhibitory immune receptors and their ligands play in tumor evasion may provide insights into the limitations of the effectiveness of BCG and offer new targets for immune-based therapy. In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49(luc)), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49(luc) murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non-muscle invasive, nonmetastatic urothelial carcinomas. MB49(luc) bladder tumors are highly positive for the expression of PD-L1, and avelumab administration induced significant (P < 0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune-suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non-muscle invasive, nonmetastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. Cancer Immunol Res; 4(5); 452-62. ©2016 AACR.
Collapse
Affiliation(s)
- Amanda J Vandeveer
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jonathan K Fallon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Robert Tighe
- EMD Serono Research and Development Institute, Billerica, Massachusetts
| | - Helen Sabzevari
- EMD Serono Research and Development Institute, Billerica, Massachusetts
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
46
|
Smith SG, Zaharoff DA. Future directions in bladder cancer immunotherapy: towards adaptive immunity. Immunotherapy 2016; 8:351-65. [PMID: 26860539 DOI: 10.2217/imt.15.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed.
Collapse
Affiliation(s)
- Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
47
|
Liu J, Pradhan P, Roy K. Synthetic Polymeric Nanoparticles for Immunomodulation. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
48
|
Noguera-Ortega E, Rabanal RM, Secanella-Fandos S, Torrents E, Luquin M, Julián E. γ Irradiated Mycobacteria Enhance Survival in Bladder Tumor Bearing Mice Although Less Efficaciously than Live Mycobacteria. J Urol 2015; 195:198-205. [PMID: 26165584 DOI: 10.1016/j.juro.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE γ Irradiated Mycobacterium bovis bacillus Calmette-Guérin has shown in vitro and ex vivo antitumor activity. However, to our knowledge the potential antitumor capacity has not been demonstrated in vivo. We studied the in vivo potential of γ irradiated bacillus Calmette-Guérin and γ irradiated M. brumae, a saprophytic mycobacterium that was recently described as an immunotherapeutic agent. MATERIALS AND METHODS The antitumor capacity of γ irradiated M. brumae was first investigated by analyzing the in vitro inhibition of bladder tumor cell proliferation and the ex vivo cytotoxic effect of M. brumae activated peripheral blood cells. The effect of γ irradiated M. brumae or bacillus Calmette-Guérin intravesical treatment was then compared to treatment with live mycobacteria in the orthotopic murine model of bladder cancer. RESULTS Nonviable M. brumae showed a capacity to inhibit in vitro bladder cancer cell lines similar to that of live mycobacteria. However, its capacity to induce cytokine production was decreased compared to that of live M. brumae. γ Irradiated M. brumae could activate immune cells to inhibit tumor cell growth, although to a lesser extent than live mycobacteria. Finally, intravesical treatment with γ irradiated M. brumae or bacillus Calmette-Guérin significantly increased survival with respect to that of nontreated tumor bearing mice. Both γ irradiated mycobacteria showed lower survival rates than those of live mycobacteria but the minor efficacy of γ irradiated vs live mycobacteria was only significant for bacillus Calmette-Guérin. CONCLUSIONS Our results show that although γ irradiated mycobacteria is less efficacious than live mycobacteria, it induces an antitumor effect in vivo, avoiding the possibility of further mycobacterial infections.
Collapse
Affiliation(s)
- Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Secanella-Fandos
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
49
|
Noguera-Ortega E, Secanella-Fandos S, Eraña H, Gasión J, Rabanal RM, Luquin M, Torrents E, Julián E. Nonpathogenic Mycobacterium brumae Inhibits Bladder Cancer Growth In Vitro, Ex Vivo, and In Vivo. Eur Urol Focus 2015; 2:67-76. [PMID: 28723453 DOI: 10.1016/j.euf.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/02/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) prevents tumour recurrence and progression in non-muscle-invasive bladder cancer (BC). However, common adverse events occur, including BCG infections. OBJECTIVE To find a mycobacterium with similar or superior antitumour activity to BCG but with greater safety. DESIGN In vitro, ex vivo, and in vivo comparisons of the antitumour efficacy of nonpathogenic mycobacteria and BCG. INTERVENTION The in vitro antitumour activity of a broad set of mycobacteria was studied in seven different BC cell lines. The most efficacious was selected and its ex vivo capacity to activate immune cells and its in vivo antitumour activity in an orthotopic murine model of BC were investigated. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Growth inhibition of BC cells was the primary outcome measurement. Parametric and nonparametric tests were use to analyse the in vitro results, and a Kaplan-Meier test was applied to measure survival in mycobacteria-treated tumour-bearing mice. RESULTS AND LIMITATIONS Mycobacterium brumae is superior to BCG in inhibiting low-grade BC cell growth, and has similar effects to BCG against high-grade cells. M. brumae triggers an indirect antitumour response by activating macrophages and the cytotoxic activity of peripheral blood cells against BC cells. Although no significant differences were observed between BCG and M. brumae treatments in mice, M. brumae treatment prolonged survival in comparison to BCG treatment in tumour-bearing mice. In contrast to BCG, M. brumae does not persist intracellularly or in tumour-bearing mice, so the risk of infection is lower. CONCLUSIONS Our preclinical data suggest that M. brumae represents a safe and efficacious candidate as a therapeutic agent for non-muscle-invasive BC. PATIENT SUMMARY We investigated the antitumour activity of nonpathogenic mycobacteria in in vitro and in vivo models of non-muscle-invasive bladder cancer. We found that Mycobacterium brumae effectively inhibits bladder cancer growth and helps the host immune system to eradicate cancer cells, and is a promising agent for antitumour immunotherapy.
Collapse
Affiliation(s)
- Estela Noguera-Ortega
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silvia Secanella-Fandos
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Hasier Eraña
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jofre Gasión
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rosa M Rabanal
- Unitat de Patologia Murina i Comparada,, Departament de Medicina Animal i Cirurgia, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
50
|
Brancato SJ, Lewi K, Agarwal PK. Evolving immunotherapy strategies in urothelial cancer. Am Soc Clin Oncol Educ Book 2015:e284-90. [PMID: 25993187 DOI: 10.14694/edbook_am.2015.35.e284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The treatment of nonmuscle-invasive urothelial carcinoma with bacillus Calmette-Guérin (BCG) represents the importance of immunotherapy in the treatment of cancer. Despite its clinical efficacy, up to 30% of patients will ultimately experience progression to muscle-invasive disease. This, along with an improved understanding of the biologic pathways involved, has led to efforts to improve, enhance, or alter the immune response in the treatment of urothelial carcinoma. A number of novel therapeutic approaches currently are being pursued, including recombinant BCG to induce T helper type 1 (Th1) immune responses, nonlive Mycobacterium agents, targeted agents toward cancer-associated antigens, immune-modulating vaccines, and adoptive T-cell therapies. Here, we review the current and future immunotherapy treatment options for patients with urothelial cancer.
Collapse
Affiliation(s)
- Sam J Brancato
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| | - Keidren Lewi
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| | - Piyush K Agarwal
- From the Urologic Oncology Branch, National Cancer Institute at the National Institutes of Health, Bethesda, MD
| |
Collapse
|