1
|
Le Y, Gao H, Le J, Hornick JL, Bleday R, Wee J, Zhu Z. VentX promotes tumor specific immunity and efficacy of immune checkpoint inhibitors. iScience 2024; 27:108731. [PMID: 38299030 PMCID: PMC10829883 DOI: 10.1016/j.isci.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 02/02/2024] Open
Abstract
Immune suppression within tumor microenvironments (TME) have been implicated in limited efficacy of immune check point inhibitors (ICIs) against solid tumors. Down-regulated VentX expression in tumor associated macrophages (TAMs) underlies phagocytotic anergic phenotype of TAMs, which govern immunological state of TME. In this study, using a tumor immune microenvironment enabling model system (TIME-EMS) of non-small cell lung cancer (NSCLC), we found that PD-1 antibody modestly activates cytotoxic T lymphocytes (CTLs) within the NSCLC-TME but not the status of TIME. We showed that the restoration of VentX expression in TAMs reignites the phagocytotic function of TAMs, which in turn, transforms TIME, activates CTLs in a tumor-specific manner and promotes efficacy of PD-1 antibody against NSCLC but not toxicity on normal lung epithelial cells. Supported by in vivo data on NSG-PDX models of primary human NSCLC, our study revealed potential venues to promote the efficacy of ICI against solid tumors through VentX-based mechanisms.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Joanna Le
- Department of Obstetrics and Gynecology, University of Massachusetts Medical Center
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ronald Bleday
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jon Wee
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Zhang Y, Lyu Y, Chen L, Cao K, Chen J, He C, Lyu X, Jiang Y, Xiang J, Liu B, Wu C. Exploring the Prognosis-Related Genetic Variation in Gastric Cancer Based on mGWAS. Int J Mol Sci 2023; 24:15259. [PMID: 37894938 PMCID: PMC10607287 DOI: 10.3390/ijms242015259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The use of metabolome genome-wide association studies (mGWAS) has been shown to be effective in identifying functional genes in complex diseases. While mGWAS has been applied to biomedical and pharmaceutical studies, its potential in predicting gastric cancer prognosis has yet to be explored. This study aims to address this gap and provide insights into the genetic basis of GC survival, as well as identify vital regulatory pathways in GC cell progression. Genome-wide association analysis of plasma metabolites related to gastric cancer prognosis was performed based on the Generalized Linear Model (GLM). We used a log-rank test, LASSO regression, multivariate Cox regression, GO enrichment analysis, and the Cytoscape software to visualize the complex regulatory network of genes and metabolites and explored in-depth genetic variation in gastric cancer prognosis based on mGWAS. We found 32 genetic variation loci significantly associated with GC survival-related metabolites, corresponding to seven genes, VENTX, PCDH 7, JAKMIP1, MIR202HG, MIR378D1, LINC02472, and LINC02310. Furthermore, this study identified 722 Single nucleotide polymorphism (SNP) sites, suggesting an association with GC prognosis-related metabolites, corresponding to 206 genes. These 206 possible functional genes for gastric cancer prognosis were mainly involved in cellular signaling molecules related to cellular components, which are mainly involved in the growth and development of the body and neurological regulatory functions related to the body. The expression of 23 of these genes was shown to be associated with survival outcome in gastric cancer patients in The Cancer Genome Atlas (TCGA) database. Based on the genome-wide association analysis of prognosis-related metabolites in gastric cancer, we suggest that gastric cancer survival-related genes may influence the proliferation and infiltration of gastric cancer cells, which provides a new idea to resolve the complex regulatory network of gastric cancer prognosis.
Collapse
Affiliation(s)
- Yuling Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yanping Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Liangping Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Kang Cao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jingwen Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Chenzhou He
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Xuejie Lyu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yu Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Baoying Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Chuancheng Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (Y.Z.); (Y.L.); (L.C.); (K.C.); (J.C.); (C.H.); (X.L.); (Y.J.); (J.X.); (B.L.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
3
|
Li J, Lan Z, Liao W, Horner JW, Xu X, Liu J, Yoshihama Y, Jiang S, Shim HS, Slotnik M, LaBella KA, Wu CJ, Dunner K, Hsu WH, Lee R, Khanduri I, Terranova C, Akdemir K, Chakravarti D, Shang X, Spring DJ, Wang YA, DePinho RA. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature 2023; 619:632-639. [PMID: 37344599 PMCID: PMC10529424 DOI: 10.1038/s41586-023-06254-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - James W Horner
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xueping Xu
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yohei Yoshihama
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Slotnik
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Dunner
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isha Khanduri
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kadir Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Indiana University, Indianapolis, IN, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Le Y, Gao H, Zhu A, Felt K, Rodig S, Bleday R, Zhu Z. NF-κB-regulated VentX expression mediates tumoricidal effects of chemotherapeutics at noncytotoxic concentrations. iScience 2022; 25:105426. [DOI: 10.1016/j.isci.2022.105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
|
5
|
Rankin SA, Zorn AM. The homeodomain transcription factor Ventx2 regulates respiratory progenitor cell number and differentiation timing during
Xenopus
lung development. Dev Growth Differ 2022; 64:347-361. [PMID: 36053777 PMCID: PMC10088502 DOI: 10.1111/dgd.12807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Ventx2 is an Antennapedia superfamily/NK-like subclass homeodomain transcription factor best known for its roles in the regulation of early dorsoventral patterning during Xenopus gastrulation and in the maintenance of neural crest multipotency. In this work we characterize the spatiotemporal expression pattern of ventx2 in progenitor cells of the Xenopus respiratory system epithelium. We find that ventx2 is directly induced by BMP signaling in the ventral foregut prior to nkx2-1, the earliest epithelial marker of the respiratory lineage. Functional studies demonstrate that Ventx2 regulates the number of Nkx2-1/Sox9+ respiratory progenitor cells induced during foregut development, the timing and level of surfactant protein gene expression, and proper tracheal-esophageal separation. Our data suggest that Ventx2 regulates the balance of respiratory progenitor cell expansion and differentiation. While the ventx gene family has been lost from the mouse genome during evolution, humans have retained a ventx2-like gene (VENTX). Finally, we discuss how our findings might suggest a possible function of VENTX in human respiratory progenitor cells.
Collapse
Affiliation(s)
- Scott A. Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center Cincinnati OH
- University of Cincinnati, College of Medicine, Department of Pediatrics Cincinnati OH
| |
Collapse
|
6
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
7
|
Li QS, Shen BN, Zhang Z, Luo S, Ruan BF. Discovery of Anticancer Agents from 2-Pyrazoline-Based Compounds. Curr Med Chem 2021; 28:940-962. [PMID: 32141413 DOI: 10.2174/0929867327666200306120151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022]
Abstract
As nitrogen-containing five-membered heterocyclic structural units, the substituted pyrazole derivatives have a broad spectrum of pharmacological activities, especially 4,5-dihydro-1H-pyrazoles that also commonly known as 2-pyrazolines. Since 2010, considerable studies have been found that the 2-pyrazoline derivatives possess potent anticancer activities. In the present review, it covers the pyrazoline derivatives reported by literature from 2010 till date (2010-2019). This review aims to establish the relationship between the anticancer activities variation and different substituents introduced into a 2-pyrazoline core, which could provide important pharmacophore clues for the discovery of new anticancer agents containing 2-pyrazoline scaffold.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Bang-Nian Shen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Zhen Zhang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Shuying Luo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
8
|
Le Y, Gao H, Richards W, Zhao L, Bleday R, Clancy T, Zhu Z. VentX expression in tumor-associated macrophages promotes phagocytosis and immunity against pancreatic cancers. JCI Insight 2020; 5:137088. [PMID: 32573491 DOI: 10.1172/jci.insight.137088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy that has no effective treatment. The tumor microenvironment (TME) of PDA employs a multitude of immune derangement strategies to protect PDA from immune elimination. Tumor-associated macrophages (TAMs) have been implicated in the pathogenesis of immune suppression of the PDA TME; however, its underlying mechanisms remained largely unknown. Using primary patient samples, our studies showed that, in comparison with macrophages isolated from normal pancreatic tissues, the phagocytosis activity of the PDA TAMs was significantly reduced. We found that the expression of homeobox protein VentX, a master regulator of macrophage plasticity, was significantly decreased in the PDA TAMs. We demonstrated that VentX was required for phagocytosis and that restoration of VentX expression in PDA TAMs promoted phagocytosis through the regulation of the signaling cascades involved in the process. Using an ex vivo culture model of primary human PDA, we showed that VentX-modulated TAMs transformed the PDA TME from a protumor milieu to an antitumor microenvironment by rectifying differentiation, proliferation, and activation of PDA-infiltrating immune cells. Using NSG-PDX models of primary human PDAs, we showed that VentX-modulated TAMs exerted strong inhibition on PDA tumorigenesis in vivo. Taken together, our data revealed a central mechanism underlying immune evasion of PDA and a potential novel venue to improve PDA prognosis.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Genome-wide CRISPR knockout screens identify ADAMTSL3 and PTEN genes as suppressors of HCC proliferation and metastasis, respectively. J Cancer Res Clin Oncol 2020; 146:1509-1521. [PMID: 32266537 DOI: 10.1007/s00432-020-03207-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE It is important for hepatocellular carcinoma (HCC) treatment that the targets related to its progression are identified. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated nuclease 9 (Cas9)-based genetic screening is a powerful tool for identifying genes with loss-of-function mutations that are critical for tumour growth and metastasis. METHODS We transduced the human SMMC7721 HCC cell line expressing Cas9 with a human genome-scale CRISPR-Cas9 knockout (GeCKO) lentiviral library A (hGeCKOa) of 65,383 single-guide RNAs (sgRNAs) targeting 19,050 human genes; we then subcutaneously transplanted the transduced cells into nude mice. RESULTS The transduced cells were found to proliferate and metastasize faster than the untransduced cells. Through next-generation sequencing, the genes potentially related to HCC proliferation and metastasis were identified. The sgRNAs targeting the ADAMTSL3 and PTEN genes appeared twice on the list of genes related to HCC proliferation and metastasis, respectively. Analysis based on the data mining of Oncomine revealed that the ADAMTSL3 and PTEN genes were expressed at lower levels in HCC cells than they were in normal liver cells, indicating their tumour-suppressive roles. Downregulation of ADAMTSL3 and PTEN displayed poor overall survival (OS) and predicted poor relapse-free survival (RFS), further supporting their tumour-suppressive roles. Moreover, knocking out either the ADAMTSL3 or PTEN genes promoted either the proliferation or metastasis of HCC cells, respectively. CONCLUSIONS Using both in vitro and in vivo approaches, we described the profound role of the ADAMTSL3 and PTEN genes. This study indicates novel candidate targets for use in HCC treatment and therapy.
Collapse
|
10
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Lee SS, Chakraborty C. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. J Cell Biochem 2020; 121:4654-4666. [PMID: 32100920 DOI: 10.1002/jcb.29683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea.,Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Le Y, Gao H, Bleday R, Zhu Z. The homeobox protein VentX reverts immune suppression in the tumor microenvironment. Nat Commun 2018; 9:2175. [PMID: 29872044 PMCID: PMC5988690 DOI: 10.1038/s41467-018-04567-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Immune suppression in the tumor microenvironment (TME) is a central obstacle to effective immunotherapy. Tumor-associated macrophages (TAMs) are key components of the TME. Although TAMs have been viewed as an ideal target of intervention to steer immunity in cancer treatment, the approach has been hampered by the lack of knowledge of how TAM plasticity is controlled by cell intrinsic factors. VentX is a homeobox protein implicated in proliferation and differentiation of human hematopoietic and immune cells. Using clinical samples obtained from cancer patients, we find that VentX expression is drastically reduced in TAMs. We show here that VentX promotes M1 differentiation of TAMs, and that VentX-regulated TAMs, in turn, revert immune suppression at the TME. Using a NSG mouse model of human colon cancers, we demonstrate that VentX regulates TAM function in tumorigenesis in vivo. Our findings suggest a mechanism underlying immune suppression at TME and potential applications of VentX-regulated TAMs in cancer immunotherapy. Tumour associated macrophages (TAMs) polarize into either pro-tumor or anti-tumor phenotypes. Here the authors show that the homeobox protein VentX is downregulated in clinical samples of colorectal cancer and regulates TAMs plasticity with its forced re-expression converting TAMs into an anti-tumor phenotype.
Collapse
Affiliation(s)
- Yi Le
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Gao
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ronald Bleday
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Gentner E, Vegi NM, Mulaw MA, Mandal T, Bamezai S, Claus R, Tasdogan A, Quintanilla-Martinez L, Grunenberg A, Döhner K, Döhner H, Bullinger L, Haferlach T, Buske C, Rawat VPS, Feuring-Buske M. VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice. Oncotarget 2018; 7:86889-86901. [PMID: 27888632 PMCID: PMC5349961 DOI: 10.18632/oncotarget.13563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Eva Gentner
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Naidu M Vegi
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Tamoghna Mandal
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Rainer Claus
- Department of Internal Medicine I, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | | | - Alexander Grunenberg
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Christian Buske
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | | |
Collapse
|
13
|
Xie Y, Liu C. Xom, a ventralizing factor, regulates beta-catenin levels and cell fate. FEBS Lett 2018; 592:297-298. [PMID: 29368438 DOI: 10.1002/1873-3468.12967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanqi Xie
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Gao H, Wu B, Le Y, Zhu Z. Homeobox protein VentX induces p53-independent apoptosis in cancer cells. Oncotarget 2018; 7:39719-39729. [PMID: 27175592 PMCID: PMC5129965 DOI: 10.18632/oncotarget.9238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 01/24/2023] Open
Abstract
Identifying novel tumor suppressors holds promise for improving cancer treatment. Our recent studies identified VentX, a homeobox transcriptional factor, as a putative tumor suppressor. Here we demonstrate that VentX exerts strong inhibitory effects on the proliferation and survival of cancer cells, but not primary transformed cells, such as 293T cells. Mechanistically, both in vitro and in vivo data showed that VentX induces apoptosis of cancer cells in a p53-independent manner. We found that VentX expression can be induced by chemotherapeutic agents. Taken together, our findings suggest that VentX may function as a novel therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Hong Gao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA.,Current address: Department of Medicine, Tufts Medical Center, Boston, 02115, Massachusetts, USA
| | - Bin Wu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA.,Current address: Department of Gastroenterology, Third Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yi Le
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, Massachusetts, USA
| |
Collapse
|
15
|
Wu B, Gao H, Le Y, Wu X, Zhu Z. Xom induces proteolysis of β-catenin through GSK3β-mediated pathway. FEBS Lett 2017; 592:299-309. [PMID: 29251764 DOI: 10.1002/1873-3468.12949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Abstract
The dorsal cell fate determination factor β-catenin and its antagonist, the ventral cell fate determination factor Xom, are expressed and distributed in a polarized fashion during early vertebrate embryogenesis. Ubiquitin-mediated proteolysis has been shown to control the abundance of both β-catenin and Xom. However, the mechanism of ubiquitin-mediated proteolysis in regulating dorsoventral patterning remains largely unclear. Our current study shows that Xom induces proteolysis of β-catenin through GSK3-mediated phosphorylation of Ser33/37 of β-catenin. Our findings reveal a novel pathway that regulates β-catenin stability, and suggest, for the first time, a critical function of ubiquitin-mediated proteolysis in balancing the integration of dorsal-ventral signals and the polarized distribution of β-catenin and Xom during dorsoventral axis formation.
Collapse
Affiliation(s)
- Bin Wu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong Gao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Yi Le
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Wu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenglun Zhu
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Ohyama K, Yoshimi H, Aibara N, Nakamura Y, Miyata Y, Sakai H, Fujita F, Imaizumi Y, Chauhan AK, Kishikawa N, Kuroda N. Immune complexome analysis reveals the specific and frequent presence of immune complex antigens in lung cancer patients: A pilot study. Int J Cancer 2016; 140:370-380. [DOI: 10.1002/ijc.30455] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Kaname Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC); Nagasaki Japan
| | - Haruka Yoshimi
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Nozomi Aibara
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Yoichi Nakamura
- Second Department of Internal Medicine; Nagasaki University Hospital, Nagasaki University; Nagasaki Japan
| | - Yasuyoshi Miyata
- Department of Urology, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Fumihiko Fujita
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit; Bomb Disease Institute, Nagasaki University; Nagasaki Japan
| | - Anil K Chauhan
- Division of Adult and Pediatric Rheumatology; Saint Louis University School of Medicine; St. Louis MO
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| |
Collapse
|
17
|
Wu X, Gao H, Bleday R, Zhu Z. Homeobox transcription factor VentX regulates differentiation and maturation of human dendritic cells. J Biol Chem 2014; 289:14633-43. [PMID: 24706756 DOI: 10.1074/jbc.m113.509158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DCs) are specialized antigen presentation cells that play critical roles in the initiation and regulation of immune responses. The molecular determinants of DC differentiation and maturation are target of extensive investigation. VentX is a human homeobox transcriptional factor that regulates proliferation and differentiation of hematopoietic cells. In the current study, we report that ablation of VentX expression in monocytes significantly impaired their differentiation into DCs. Conversely, overexpression of VentX in monocytic THP1 cells accelerated their differentiation toward DCs. We showed that VentX regulates DC differentiation, in part, through modulating IL6 expression. Clinically, we found that VentX expression was elevated in intestinal lamina propria DCs (LPDCs) of inflamed mucosa from inflammatory bowel disease patients. Knockdown experiments suggested that VentX is essential for the maturation of LPDCs. In addition, corticosteroid treatment markedly decreased VentX expression in LPDCs and enforced expression of VentX counteracted the effects of corticosteroid on DCs maturation. Our data suggest that VentX is a critical transcriptional regulator of DC differentiation and maturation, and a potential target of immune regulation and therapy.
Collapse
Affiliation(s)
- Xiaoming Wu
- From the Departments of Medicine, Gastroenterology Division and
| | - Hong Gao
- the Department of Medicine, Tufts Medical Center, Boston, Massachusetts 02111
| | - Ronald Bleday
- Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Zhenglun Zhu
- From the Departments of Medicine, Gastroenterology Division and
| |
Collapse
|
18
|
Yan Z, Zhu Z, Wang J, Sun J, Chen Y, Yang G, Chen W, Deng Y. Synthesis, characterization, and evaluation of a novel inhibitor of WNT/β-catenin signaling pathway. Mol Cancer 2013; 12:116. [PMID: 24098916 PMCID: PMC3852836 DOI: 10.1186/1476-4598-12-116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/18/2013] [Indexed: 01/15/2023] Open
Abstract
Background Wnt/β-catenin signaling is a highly conserved pathway in organism evolution and is important in many biological processes. Overactivation of Wnt/β-catenin signaling is closely related to tumor development and progression. To identify potent small molecules that can fight aberrant Wnt/β-catenin-mediated cancer, we synthesized a novel pyrazoline derivative (N-(4-hydroxybenzyl)-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carboxamide, BHX) to block Wnt signaling, and determined the absolute configuration of its precursor (ethyl 1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carboxylate). We then evaluated the inhibitory effect of BHX in vitro and in vivo. Results Cell proliferation was assessed in three human cancer cell lines (A549, HT29, and MGC803) in the presence and absence of BHX using MTS assays. BHX effectively inhibited A549, HT29, and MGC803 cell proliferation with IC50 of 5.43 ± 1.99, 6.95 ± 0.24, and 7.62 ± 1.31 μM, respectively. BHX significantly induced apoptosis and G1 phase arrest in A549 and MGC803 cells. The β-catenin protein level was markedly reduced in A549 and MGC803 cells under BHX treatment. The inhibitory effect of BHX in vivo was investigated using a mouse xenograft model. A549 xenograft growth was suppressed by 50.96% in nude mice treated continuously with 100 mg/kg BHX for 21 d. Weight remained almost unchanged, which indicates the low toxicity of the compound. Conclusions Our data suggest that BHX is a new drug candidate for cancer treatment because of its potent effect on the Wnt/β-catenin pathway and low toxicity.
Collapse
Affiliation(s)
- Zhao Yan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, P, R, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hu Q, Tanasa B, Trabucchi M, Li W, Zhang J, Ohgi KA, Rose DW, Glass CK, Rosenfeld MG. DICER- and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol 2012; 19:1168-75. [PMID: 23064648 PMCID: PMC3743530 DOI: 10.1038/nsmb.2400] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022]
Abstract
Although liganded nuclear receptors have been established to regulate RNA polymerase II (Pol II)-dependent transcription units, their role in regulating Pol III-transcribed DNA repeats remains largely unknown. Here we report that ~2-3% of the ~100,000-200,000 total human DR2 Alu repeats located in proximity to activated Pol II transcription units are activated by the retinoic acid receptor (RAR) in human embryonic stem cells to generate Pol III-dependent RNAs. These transcripts are processed, initially in a DICER-dependent fashion, into small RNAs (~28-65 nt) referred to as repeat-induced RNAs that cause the degradation of a subset of crucial stem-cell mRNAs, including Nanog mRNA, which modulate exit from the proliferative stem-cell state. This regulation requires AGO3-dependent accumulation of processed DR2 Alu transcripts and the subsequent recruitment of AGO3-associated decapping complexes to the target mRNA. In this way, the RAR-dependent and Pol III-dependent DR2 Alu transcriptional events in stem cells functionally complement the Pol II-dependent neuronal transcriptional program.
Collapse
Affiliation(s)
- QiDong Hu
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gao H, Wu X, Sun Y, Zhou S, Silberstein LE, Zhu Z. Suppression of homeobox transcription factor VentX promotes expansion of human hematopoietic stem/multipotent progenitor cells. J Biol Chem 2012; 287:29979-87. [PMID: 22791709 DOI: 10.1074/jbc.m112.383018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms that regulate proliferation and expansion of human hematopoietic stem/multipotent progenitor cells (HSC/MPPs) are targets of intensive investigations. Several cell intrinsic factors and signaling pathways have been implicated in the proliferation and differentiation of human HSC/MPPs. Nevertheless, expansion of human HSC/MPPs for clinical application remains a critical challenge. VentX is a human homeobox transcription factor that was recently identified as an anti-proliferation and pro-differentiation factor in human hematopoietic cells. Here, we report that VentX expression is up-regulated during ontogenesis of human hematopoietic cells. Strikingly, suppression of VentX expression led to significant expansion of HSC/MPPs ex vivo and a 20-fold increase in engraftment potential in the NOD/SCID/IL2Rγ2(null) mouse model. VentX suppression helped preserve the HSC/MPP pools and promote clonogenicity of hematopoietic progenitor cells. Mechanistically, we show that VentX regulates critical cell cycle regulators and Wnt downstream genes previously implicated in HSC/MPP proliferation and expansion.
Collapse
Affiliation(s)
- Hong Gao
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
21
|
Ventx factors function as Nanog-like guardians of developmental potential in Xenopus. PLoS One 2012; 7:e36855. [PMID: 22606298 PMCID: PMC3351468 DOI: 10.1371/journal.pone.0036855] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/10/2012] [Indexed: 11/23/2022] Open
Abstract
Vertebrate development requires progressive commitment of embryonic cells into specific lineages through a continuum of signals that play off differentiation versus multipotency. In mammals, Nanog is a key transcription factor that maintains cellular pluripotency by controlling competence to respond to differentiation cues. Nanog orthologs are known in most vertebrates examined to date, but absent from the Anuran amphibian Xenopus. Interestingly, in silico analyses and literature scanning reveal that basal vertebrate ventral homeobox (ventxs) and mammalian Nanog factors share extensive structural, evolutionary and functional properties. Here, we reassess the role of ventx activity in Xenopus laevis embryos and demonstrate that they play an unanticipated role as guardians of high developmental potential during early development. Joint over-expression of Xenopus ventx1.2 and ventx2.1-b (ventx1/2) counteracts lineage commitment towards both dorsal and ventral fates and prevents msx1-induced ventralization. Furthermore, ventx1/2 inactivation leads to down-regulation of the multipotency marker oct91 and to premature differentiation of blastula cells. Finally, supporting the key role of ventx1/2 in the control of developmental potential during development, mouse Nanog (mNanog) expression specifically rescues embryonic axis formation in ventx1/2 deficient embryos. We conclude that during Xenopus development ventx1/2 activity, reminiscent of that of Nanog in mammalian embryos, controls the switch of early embryonic cells from uncommitted to committed states.
Collapse
|
22
|
Abstract
NK-like (NKL) homeobox genes code for transcription factors, which can act as key regulators in fundamental cellular processes. NKL genes have been implicated in divergent types of cancer. In this review, we summarize the involvement of NKL genes in cancer and leukemia in particular. NKL genes can act as tumor-suppressor genes and as oncogenes, depending on tissue type. Aberrant expression of NKL genes is especially common in T-cell acute lymphoblastic leukemia (T-ALL). In T-ALL, 8 NKL genes have been reported to be highly expressed in specific T-ALL subgroups, and in ~30% of cases, high expression is caused by chromosomal rearrangement of 1 of 5 NKL genes. Most of these NKL genes are normally not expressed in T-cell development. We hypothesize that the NKL genes might share a similar downstream effect that promotes leukemogenesis, possibly due to mimicking a NKL gene that has a physiological role in early hematopoietic development, such as HHEX. All eight NKL genes posses a conserved Eh1 repressor motif, which has an important role in regulating downstream targets in hematopoiesis and possibly in leukemogenesis as well. Identification of a potential common leukemogenic NKL downstream pathway will provide a promising subject for future studies.
Collapse
|
23
|
Wu X, Gao H, Ke W, Giese RW, Zhu Z. The homeobox transcription factor VentX controls human macrophage terminal differentiation and proinflammatory activation. J Clin Invest 2011; 121:2599-613. [PMID: 21670496 DOI: 10.1172/jci45556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/27/2011] [Indexed: 12/24/2022] Open
Abstract
Macrophages are critical players in both innate and adaptive immunity. While the exogenous signaling events leading to the terminal differentiation of macrophages from monocytes have been studied extensively, the underlying intracellular transcriptional mechanisms remain poorly understood. Here we report that the homeobox transcription factor VentX plays a pivotal role in human macrophage terminal differentiation and proinflammatory function. Our study showed that VentX expression was upregulated upon human primary monocyte-to-macrophage differentiation induced by cytokines such as M-CSF, GM-CSF, and IL-3. Moreover, ablation of VentX expression in primary monocytes profoundly impaired their differentiation to macrophages, and ectopic expression of VentX in a myeloid progenitor cell line triggered its differentiation with prominent macrophage features. Further analysis revealed that VentX was pivotal for the proinflammatory response of terminally differentiated macrophages. Mechanistically, VentX was found to control expression of proteins key to macrophage differentiation and activation, including M-CSF receptor. Importantly, preliminary analysis of gene expression in leukocytes from patients with autoimmune diseases revealed a strong correlation between levels of VentX and those of proinflammatory cytokines. Our results provide mechanistic insight into the crucial roles of VentX in macrophage differentiation and proinflammatory activation and suggest that dysregulation of VentX may play a role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Medicine, Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Wu X, Gao H, Ke W, Hager M, Xiao S, Freeman MR, Zhu Z. VentX trans-activates p53 and p16ink4a to regulate cellular senescence. J Biol Chem 2011; 286:12693-701. [PMID: 21325273 DOI: 10.1074/jbc.m110.206078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell senescence is a process of irreversible arrest of cell proliferation and plays an important role in tumor suppression. Recent studies showed that Wnt inhibition is a trigger of cellular senescence. Using methods of reverse genetics, we recently identified VentX, a human homolog of the vertebrate Xenopus Vent family of homeobox genes, as a novel Wnt repressor and a putative tumor suppressor in lymphocytic leukemia. Here, we show that VentX is a direct transcriptional activator of p53-p21 and p16ink4a-Rb tumor suppression pathways. Ectopic expression of VentX in cancer cells caused an irreversible cell cycle arrest with a typical senescence-like phenotype. Conversely, inhibition of VentX expression by RNA interference ameliorated chemotherapeutic agent-induced senescence in lymphocytic leukemia cells. The results of our study further reveal the mechanisms underlying tumor suppression function of VentX and suggest a role of VentX as a potential target in cancer prevention and treatment.
Collapse
Affiliation(s)
- Xiaoming Wu
- Gastroenterology Division, the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Kozmikova I, Smolikova J, Vlcek C, Kozmik Z. Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. PLoS One 2011; 6:e14650. [PMID: 21304903 PMCID: PMC3033397 DOI: 10.1371/journal.pone.0014650] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/04/2011] [Indexed: 12/24/2022] Open
Abstract
Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps) and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.
Collapse
|
26
|
Rasi S, Spina V, Bruscaggin A, Vaisitti T, Tripodo C, Forconi F, De Paoli L, Fangazio M, Sozzi E, Cencini E, Laurenti L, Marasca R, Visco C, Xu-Monette ZY, Gattei V, Young KH, Malavasi F, Deaglio S, Gaidano G, Rossi D. A variant of the LRP4 gene affects the risk of chronic lymphocytic leukaemia transformation to Richter syndrome. Br J Haematol 2010; 152:284-94. [PMID: 21121903 DOI: 10.1111/j.1365-2141.2010.08482.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Richter syndrome (RS) represents the transformation of chronic lymphocytic leukaemia (CLL) to aggressive lymphoma. Risk factors of CLL transformation to RS are only partly known. We explored the role of the host genetic background as a risk factor for RS occurrence. Forty-five single nucleotide polimorphisms (SNPs) known to be relevant for CLL prognosis were genotyped in a consecutive cohort of 331 CLL, of which 21 had transformed to RS. After correcting for multiple testing and adjusting for previously reported RS risk factors, the LRP4 rs2306029 TT variant genotype was the sole SNP independently associated with a higher risk of RS transformation (Hazard Ratio: 4·17; P = 0·001; q = 0·047). The enrichment of LRP4 TT genotype in RS was confirmed in an independent series (n = 44) used for validation purposes. The LRP4 protein was expressed in CLL (n =66). Bioinformatic analysis scored LRP4 rs2306029 as a variant with possible deleterious and damaging variant of LRP4. LRP4 genotyping may help the recognition of patients with increased risk of RS at the time of CLL diagnosis.
Collapse
Affiliation(s)
- Silvia Rasi
- Division of Haematology, Department of Clinical and Experimental Medicine & IRCAD, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang K, Zhang JX, Han L, You YP, Jiang T, Pu PY, Kang CS. MicroRNA roles in beta-catenin pathway. Mol Cancer 2010; 9:252. [PMID: 20858269 PMCID: PMC2955614 DOI: 10.1186/1476-4598-9-252] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/21/2010] [Indexed: 02/06/2023] Open
Abstract
β-catenin, a key factor in the Wnt signaling pathway, has essential functions in the regulation of cell growth and differentiation. Aberrant β-catenin signaling has been linked to various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of the Wnt signaling pathway as it relates to β-catenin signaling in tumorigenesis, with particular focus on the role of microRNAs. Finally, we discuss the potential of β-catenin targeted therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Kai Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Jun-Xia Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lei Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Yong-Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Jiang
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Pei-Yu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| | - Chun-Sheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
- Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin 300052, China
| |
Collapse
|
28
|
The vent-like homeobox gene VENTX promotes human myeloid differentiation and is highly expressed in acute myeloid leukemia. Proc Natl Acad Sci U S A 2010; 107:16946-51. [PMID: 20833819 DOI: 10.1073/pnas.1001878107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent data indicate that a variety of regulatory molecules active in embryonic development may also play a role in the regulation of early hematopoiesis. Here we report that the human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus xvent2 gene, is a unique regulatory hematopoietic gene that is aberrantly expressed in CD34(+) leukemic stem-cell candidates in human acute myeloid leukemia (AML). Quantitative RT-PCR documented expression of the gene in lineage positive hematopoietic subpopulations, with the highest expression in CD33(+) myeloid cells. Notably, expression levels of VENTX were negligible in normal CD34(+)/CD38(-) or CD34(+) human progenitor cells. In contrast to this, leukemic CD34(+)/CD38(-) cells from AML patients with translocation t(8,21) and normal karyotype displayed aberrantly high expression of VENTX. Gene expression and pathway analysis demonstrated that in normal CD34(+) cells enforced expression of VENTX initiates genes associated with myeloid development and down-regulates genes involved in early lymphoid development. Functional analyses confirmed that aberrant expression of VENTX in normal CD34(+) human progenitor cells perturbs normal hematopoietic development, promoting generation of myeloid cells and impairing generation of lymphoid cells in vitro and in vivo. Stable knockdown of VENTX expression inhibited the proliferation of human AML cell lines. Taken together, these data extend our insights into the function of embryonic mesodermal factors in human postnatal hematopoiesis and indicate a role for VENTX in normal and malignant myelopoiesis.
Collapse
|
29
|
LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 2010; 116:2975-83. [PMID: 20595513 DOI: 10.1182/blood-2010-02-269878] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The canonical Wnt signaling pathway is pathogenic in a variety of cancers. We previously identified aberrant expression of the Wnt pathway transcription factor and target gene lymphoid enhancer binding factor-1 (LEF1) in chronic lymphocytic leukemia (CLL). This suggested that the Wnt signaling pathway has a role in the biology of CLL. In this study, we performed a Wnt pathway analysis using gene expression profiling and identified aberrant regulation of Wnt pathway target genes, ligands, and signaling members in CLL cells. Furthermore, we identified aberrant protein expression of LEF-1 specifically in CLL but not in normal mature B-cell subsets or after B-cell activation. Using the T cell-specific transcription factor/LEF (TCF/LEF) dual luciferase reporter assay, we demonstrated constitutive Wnt pathway activation in CLL, although the pathway was inactive in normal peripheral B cells. Importantly, LEF-1 knockdown decreased CLL B-cell survival. We also identified LEF-1 expression in CD19(+)/CD5(+) cells obtained from patients with monoclonal B-cell lymphocytosis, suggesting a role for LEF-1 early in CLL leukemogenesis. This study has identified the constitutive activation and prosurvival function of LEF-1 and the Wnt pathway in CLL and uncovered a possible role for these factors in the preleukemic state of monoclonal B-cell lymphocytosis.
Collapse
|