1
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2025; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
2
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Lundstrom K. Self-amplifying RNA virus vectors for drug delivery. Expert Opin Drug Deliv 2025:1-15. [PMID: 39757959 DOI: 10.1080/17425247.2024.2445675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Viral vectors have proven useful for delivering genetic information, such as drugs and vaccines, for therapeutic and prophylactic interventions. Self-amplifying RNA viruses possess the special feature of high-level RNA amplification in the host cell cytoplasm providing high antigen production against infectious pathogens and various types of cancers, and expression of anti-tumor genes, toxic genes, and immunostimulatory genes. AREAS COVERED Self-amplifying RNA viral vectors have been evaluated in animal models and clinical trials for immune responses and protection against challenges with pathogenic infectious agents and tumor cells. Likewise, immune responses, tumor regression, and tumor eradication have been monitored in preclinical and clinical settings. The literature search used in the review is based on PubMed and clinical trial/biotechnology company websites up until September 2024. EXPERT OPINION Self-amplifying RNA viruses have elicited strong immune responses and vaccine efficacy in animal models and humans leading to the approval of the vesicular stomatitis virus-based vaccine against Ebola virus disease in both the US and Europe. Moreover, therapeutic and prophylactic efficacy has been demonstrated in animal tumor models and cancer patients. Self-amplifying RNA viruses have also been evaluated in mouse models for neurological disorders.
Collapse
|
4
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Zhao T, Ye W, Zhang R, Zhu X, Shi Q, Xu X, Chen W, Xu L, Meng Y. Dual‑regulated oncolytic adenovirus carrying ERCC1‑siRNA gene possesses potent antitumor effect on ovarian cancer cells. Mol Med Rep 2024; 30:120. [PMID: 38757346 PMCID: PMC11129538 DOI: 10.3892/mmr.2024.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer is a multifactorial and deadly disease. Despite significant advancements in ovarian cancer therapy, its incidence is on the rise and the molecular mechanisms underlying ovarian cancer invasiveness, metastasis and drug resistance remain largely elusive, resulting in poor prognosis. Oncolytic viruses armed with therapeutic transgenes of interest offer an attractive alternative to chemical drugs, which often face innate and acquired drug resistance. The present study constructed a novel oncolytic adenovirus carrying ERCC1 short interfering (si)RNA, regulated by hTERT and HIF promoters, termed Ad‑siERCC1. The findings demonstrated that this oncolytic adenovirus effectively inhibits the proliferation, migration and invasion of ovarian cancer cells. Furthermore, the downregulation of ERCC1 expression by siRNA ameliorates drug resistance to cisplatin (DDP) chemotherapy. It was found that Ad‑siERCC1 blocks the cell cycle in the G1 phase and enhances apoptosis through the PI3K/AKT‑caspase‑3 signaling pathways in SKOV3 cells. The results of the present study highlighted the critical effect of oncolytic virus Ad‑siERCC1 in inhibiting the survival of ovarian cancer cells and increasing chemotherapy sensitivity to DDP. These findings underscore the potent antitumor effect of Ad‑siERCC1 on ovarian cancers in vivo.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Wei Ye
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Rui Zhang
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Xiaoyan Zhu
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Qin Shi
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Weifeng Chen
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Ling Xu
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Yaping Meng
- Department of Obstetrics and Gynecology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| |
Collapse
|
7
|
Tabuchi M, Kikuchi S, Tazawa H, Okura T, Ogawa T, Mitsui E, Une Y, Kuroda S, Sato H, Noma K, Kagawa S, Ohara T, Ohtsuka J, Ohki R, Urata Y, Fujiwara T. Functional remodeling of intraperitoneal macrophages by oncolytic adenovirus restores anti-tumor immunity for peritoneal metastasis of gastric cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200806. [PMID: 38745748 PMCID: PMC11090911 DOI: 10.1016/j.omton.2024.200806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Intraperitoneal tumor-associated macrophages (TAMs) are involved in evading anti-tumor immunity and promoting the peritoneal metastasis (PM) of gastric cancer (GC). Oncolytic viruses are known to induce the activation of host anti-tumor immunity in addition to tumor lysis. This study investigated whether a wild-type p53-loading telomerase-specific oncolytic adenovirus (OBP-702) could elicit the remodeling of intraperitoneal macrophages and enhance the efficacy of immune therapy. Increased numbers of CD163 TAMs and few CD8+ lymphocytes were immunohistochemically observed in clinical samples with PM, which suggested that TAMs were associated with the suppression of anti-tumor immunity. OBP-702 induced immunogenic cell death and upregulated PD-L1 expression in human and murine GC cell lines. Intraperitoneal administration of OBP-702 increased recruitment of CD8+ lymphocytes into the PM via the functional remodeling of intraperitoneal macrophages from TAM toward a pro-inflammatory phenotype, resulting in significantly suppressed tumor growth for the in vivo model. Furthermore, the combination of intraperitoneal OBP-702 with anti-programmed cell death-1 antibody enhanced anti-tumor immunity and prolonged the survival of mice bearing PM. Intraperitoneal immunotherapy using OBP-702 restores anti-tumor immunity via the remodeling of intraperitoneal macrophages in addition to direct tumor lysis and cooperates with immune checkpoint inhibitors to suppress PM in GC.
Collapse
Affiliation(s)
- Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Tomohiro Okura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ema Mitsui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yuta Une
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroki Sato
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Junko Ohtsuka
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
8
|
Satora M, Kułak K, Zaremba B, Grunwald A, Świechowska-Starek P, Tarkowski R. New hopes and promises in the treatment of ovarian cancer focusing on targeted treatment-a narrative review. Front Pharmacol 2024; 15:1416555. [PMID: 38948462 PMCID: PMC11212463 DOI: 10.3389/fphar.2024.1416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.
Collapse
Affiliation(s)
- Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kułak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Zaremba
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Grunwald
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | | | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Kocabiyik O, Amlashi P, Vo AL, Suh H, Rodriguez-Aponte SA, Dalvie NC, Love JC, Andrabi R, Irvine DJ. Vaccine targeting to mucosal lymphoid tissues promotes humoral immunity in the gastrointestinal tract. SCIENCE ADVANCES 2024; 10:eadn7786. [PMID: 38809992 PMCID: PMC11135404 DOI: 10.1126/sciadv.adn7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.
Collapse
Affiliation(s)
- Ozgun Kocabiyik
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A. Lina Vo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergio A. Rodriguez-Aponte
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C. Dalvie
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| |
Collapse
|
11
|
Iyer M, Ravichandran N, Karuppusamy PA, Gnanarajan R, Yadav MK, Narayanasamy A, Vellingiri B. Molecular insights and promise of oncolytic virus based immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:419-492. [PMID: 38762277 DOI: 10.1016/bs.apcsb.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Discovering a therapeutic that can counteract the aggressiveness of this disease's mechanism is crucial for improving survival rates for cancer patients and for better understanding the most different types of cancer. In recent years, using these viruses as an anticancer therapy has been thought to be successful. They mostly work by directly destroying cancer cells, activating the immune system to fight cancer, and expressing exogenous effector genes. For the treatment of tumors, oncolytic viruses (OVs), which can be modified to reproduce only in tumor tissues and lyse them while preserving the healthy non-neoplastic host cells and reinstating antitumor immunity which present a novel immunotherapeutic strategy. OVs can exist naturally or be created in a lab by altering existing viruses. These changes heralded the beginning of a new era of less harmful virus-based cancer therapy. We discuss three different types of oncolytic viruses that have already received regulatory approval to treat cancer as well as clinical research using oncolytic adenoviruses. The primary therapeutic applications, mechanism of action of oncolytic virus updates, future views of this therapy will be covered in this chapter.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Roselin Gnanarajan
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
12
|
Kurokawa C, Agrawal S, Mitra A, Galvani E, Burke S, Varshine A, Rothstein R, Schifferli K, Monks NR, Foloppe J, Silvestre N, Quemeneur E, Demeusoit C, Kleinpeter P, Sapra P, Barrett C, Hammond SA, Kelly EJ, Laliberte J, Durham NM, Oberst M, Broggi MA. Mediation of antitumor activity by AZD4820 oncolytic vaccinia virus encoding IL-12. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200758. [PMID: 38596304 PMCID: PMC10869731 DOI: 10.1016/j.omton.2023.200758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Oncolytic viruses are engineered to selectively kill tumor cells and have demonstrated promising results in early-phase clinical trials. To further modulate the innate and adaptive immune system, we generated AZD4820, a vaccinia virus engineered to express interleukin-12 (IL-12), a potent cytokine involved in the activation of natural killer (NK) and T cells and the reprogramming of the tumor immune microenvironment. Testing in cultured human tumor cell lines demonstrated broad in vitro oncolytic activity and IL-12 transgene expression. A surrogate virus expressing murine IL-12 demonstrated antitumor activity in both MC38 and CT26 mouse syngeneic tumor models that responded poorly to immune checkpoint inhibition. In both models, AZD4820 significantly upregulated interferon-gamma (IFN-γ) relative to control mice treated with oncolytic vaccinia virus (VACV)-luciferase. In the CT26 study, 6 of 10 mice had a complete response after treatment with AZD4820 murine surrogate, whereas control VACV-luciferase-treated mice had 0 of 10 complete responders. AZD4820 treatment combined with anti-PD-L1 blocking antibody augmented tumor-specific T cell immunity relative to monotherapies. These findings suggest that vaccinia virus delivery of IL-12, combined with immune checkpoint blockade, elicits antitumor immunity in tumors that respond poorly to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Cheyne Kurokawa
- Virology and Vaccine Discovery, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sonia Agrawal
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Abhisek Mitra
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Elena Galvani
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Shannon Burke
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ankita Varshine
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Raymond Rothstein
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kevin Schifferli
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Noel R. Monks
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Johann Foloppe
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | | | - Eric Quemeneur
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | | | | | - Puja Sapra
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Scott A. Hammond
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Elizabeth J. Kelly
- Clinical Virology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jason Laliberte
- Virology and Vaccine Discovery, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nicholas M. Durham
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Oberst
- Biologics Engineering and Targeted Delivery, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Maria A.S. Broggi
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
13
|
Yurttas C, Beil J, Berchtold S, Smirnow I, Kloker LD, Sipos B, Löffler MW, Königsrainer A, Mihaljevic AL, Lauer UM, Thiel K. Efficacy of Different Oncolytic Vaccinia Virus Strains for the Treatment of Murine Peritoneal Mesothelioma. Cancers (Basel) 2024; 16:368. [PMID: 38254857 PMCID: PMC10814383 DOI: 10.3390/cancers16020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Effective treatment options for peritoneal surface malignancies (PSMs) are scarce. Oncolytic virotherapy with recombinant vaccinia viruses might constitute a novel treatment option for PSM. We aimed to identify the most effective oncolytic vaccinia virus strain in two murine mesothelioma cell lines and the oncolytic potential in a murine model of peritoneal mesothelioma. Cell lines AB12 and AC29 were infected in vitro with vaccinia virus strains Lister (GLV-1h254), Western Reserve (GLV-0b347), and Copenhagen (GLV-4h463). The virus strain GLV-0b347 was shown most effective in vitro and was further investigated by intraperitoneal (i.p.) application to AB12 and AC29 mesothelioma-bearing mice. Feasibility, safety, and effectiveness of virotherapy were assessed by evaluating the peritoneal cancer index (PCI), virus detection in tumor tissues and ascites, virus growth curves, and comparison of overall survival. After i.p. injection of GLV-0b347, virus was detected in both tumor cells and ascites. In comparison to mock-treated mice, overall survival was significantly prolonged, ascites was less frequent and PCI values declined. However, effective treatment was only observed in animals with limited tumor burden at the time point of virus application. Nonetheless, intraperitoneal virotherapy with GLV-0b347 might constitute a novel therapeutic option for the treatment of peritoneal mesothelioma. Additional treatment modifications and combinational regimes will be investigated to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Julia Beil
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Susanne Berchtold
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
| | - Irina Smirnow
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
| | - Linus D. Kloker
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
| | - Bence Sipos
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- BAG für Pathologie und Molekularpathologie, Rosenbergstraße 12, 70176 Stuttgart, Germany
| | - Markus W. Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - André L. Mihaljevic
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
| | - Ulrich M. Lauer
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Karolin Thiel
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- Department of General, Visceral, and Thoracic Surgery, Oberschwaben Hospital Group, St Elisabethen-Klinikum, Elisabethenstr. 15, 88212 Ravensburg, Germany
| |
Collapse
|
14
|
Galanis E, Dooley KE, Keith Anderson S, Kurokawa CB, Carrero XW, Uhm JH, Federspiel MJ, Leontovich AA, Aderca I, Viker KB, Hammack JE, Marks RS, Robinson SI, Johnson DR, Kaufmann TJ, Buckner JC, Lachance DH, Burns TC, Giannini C, Raghunathan A, Iankov ID, Parney IF. Carcinoembryonic antigen-expressing oncolytic measles virus derivative in recurrent glioblastoma: a phase 1 trial. Nat Commun 2024; 15:493. [PMID: 38216554 PMCID: PMC10786937 DOI: 10.1038/s41467-023-43076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/31/2023] [Indexed: 01/14/2024] Open
Abstract
Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×107 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization.
Collapse
Affiliation(s)
- Evanthia Galanis
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | - Joon H Uhm
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ileana Aderca
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kimberly B Viker
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie E Hammack
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Randolph S Marks
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Steven I Robinson
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jan C Buckner
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Daniel H Lachance
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Bhagat A, Lyerly HK, Morse MA, Hartman ZC. CEA vaccines. Hum Vaccin Immunother 2023; 19:2291857. [PMID: 38087989 PMCID: PMC10732609 DOI: 10.1080/21645515.2023.2291857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Carcinoembryonic antigen (CEA) is a glycosylated cell surface oncofetal protein involved in adhesion, proliferation, and migration that is highly upregulated in multiple carcinomas and has long been a promising target for cancer vaccination. This review summarizes the progress to date in the development of CEA vaccines, examining both pre-clinical and clinical studies across a variety of vaccine platforms that in aggregate, begin to reveal some critical insights. These studies demonstrate the ability of CEA vaccines to break immunologic tolerance and elicit CEA-specific immunity, which associates with improved clinical outcomes in select individuals. Approaches that have combined replicating viral vectors, with heterologous boosting and different adjuvant strategies have been particularly promising but, these early clinical trial results will require confirmatory studies. Collectively, these studies suggest that clinical efficacy likely depends upon harnessing a potent vaccine combination in an appropriate clinical setting to fully realize the potential of CEA vaccination.
Collapse
Affiliation(s)
- Anchit Bhagat
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Herbert K. Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Michael A. Morse
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Zachary C. Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Xiao S, Qin D, Hou X, Tian L, Yu Y, Zhang R, Lyu H, Guo D, Chen XZ, Zhou C, Tang J. Cellular senescence: a double-edged sword in cancer therapy. Front Oncol 2023; 13:1189015. [PMID: 37771436 PMCID: PMC10522834 DOI: 10.3389/fonc.2023.1189015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past few decades, cellular senescence has been identified in cancer patients undergoing chemotherapy and radiotherapy. Senescent cells are generally characterized by permanent cell cycle arrest as a response to endogenous and exogenous stresses. In addition to exiting the cell cycle process, cellular senescence also triggers profound phenotypic changes such as senescence-associated secretory phenotype (SASP), autophagy modulation, or metabolic reprograming. Consequently, cellular senescence is often considered as a tumor-suppressive mechanism that permanently arrests cells at risk of malignant transformation. However, accumulating evidence shows that therapy-induced senescence can promote epithelial-mesenchymal transition and tumorigenesis in neighboring cells, as well as re-entry into the cell cycle and activation of cancer stem cells, thereby promoting cancer cell survival. Therefore, it is particularly important to rapidly eliminate therapy-induced senescent cells in patients with cancer. Here we review the hallmarks of cellular senescence and the relationship between cellular senescence and cancer. We also discuss several pathways to induce senescence in tumor therapy, as well as strategies to eliminate senescent cells after cancer treatment. We believe that exploiting the intersection between cellular senescence and tumor cells is an important means to defeat tumors.
Collapse
Affiliation(s)
- Shuai Xiao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dongmin Qin
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Xueyang Hou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Lingli Tian
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yeping Yu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|
17
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
18
|
Khalid Z, Coco S, Ullah N, Pulliero A, Cortese K, Varesano S, Orsi A, Izzotti A. Anticancer Activity of Measles-Mumps-Rubella MMR Vaccine Viruses against Glioblastoma. Cancers (Basel) 2023; 15:4304. [PMID: 37686579 PMCID: PMC10486717 DOI: 10.3390/cancers15174304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.
Collapse
Affiliation(s)
- Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Simona Coco
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Nadir Ullah
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Serena Varesano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Andrea Orsi
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
19
|
Lovatt C, Parker AL. Oncolytic Viruses and Immune Checkpoint Inhibitors: The "Hot" New Power Couple. Cancers (Basel) 2023; 15:4178. [PMID: 37627206 PMCID: PMC10453115 DOI: 10.3390/cancers15164178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer care and shown remarkable efficacy clinically. This efficacy is, however, limited to subsets of patients with significant infiltration of lymphocytes into the tumour microenvironment. To extend their efficacy to patients who fail to respond or achieve durable responses, it is now becoming evident that complex combinations of immunomodulatory agents may be required to extend efficacy to patients with immunologically "cold" tumours. Oncolytic viruses (OVs) have the capacity to selectively replicate within and kill tumour cells, resulting in the induction of immunogenic cell death and the augmentation of anti-tumour immunity, and have emerged as a promising modality for combination therapy to overcome the limitations seen with ICIs. Pre-clinical and clinical data have demonstrated that OVs can increase immune cell infiltration into the tumour and induce anti-tumour immunity, thus changing a "cold" tumour microenvironment that is commonly associated with poor response to ICIs, to a "hot" microenvironment which can render patients more susceptible to ICIs. Here, we review the major viral vector platforms used in OV clinical trials, their success when used as a monotherapy and when combined with adjuvant ICIs, as well as pre-clinical studies looking at the effectiveness of encoding OVs to deliver ICIs locally to the tumour microenvironment through transgene expression.
Collapse
Affiliation(s)
- Charlotte Lovatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
- Systems Immunity University Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
20
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Kalafati E, Drakopoulou E, Anagnou NP, Pappa KI. Developing Oncolytic Viruses for the Treatment of Cervical Cancer. Cells 2023; 12:1838. [PMID: 37508503 PMCID: PMC10377776 DOI: 10.3390/cells12141838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer represents one of the most important malignancies among women worldwide. Current therapeutic approaches for cervical cancer are reported not only to be inadequate for metastatic cervical cancer, but are also considered as cytotoxic for several patients leading to serious side effects, which can have negative implications on the quality of life of women. Therefore, there is an urgent need for the development of innovative and effective treatment options. Oncolytic viruses can eventually become effective biological agents, since they preferentially infect and kill cancer cells, while leaving the normal tissue unaffected. Moreover, they are also able to leverage the host immune system response to limit tumor growth. This review aims to systematically describe and discuss the different types of oncolytic viruses generated for targeting cervical cancer cells, as well as the outcome of the combination of virotherapy with conventional therapies. Although many preclinical studies have evaluated the therapeutic efficacy of oncolytic viruses in cervical cancer, the number of clinical trials so far is limited, while their oncolytic properties are currently being tested in clinical trials for the treatment of other malignancies.
Collapse
Affiliation(s)
- Eleni Kalafati
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Nicholas P Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Kalliopi I Pappa
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
22
|
Lundstrom K. Viral vectors engineered for gene therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:1-41. [PMID: 37541721 DOI: 10.1016/bs.ircmb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Gene therapy has seen major progress in recent years. Viral vectors have made a significant contribution through efficient engineering for improved delivery and safety. A large variety of indications such as cancer, cardiovascular, metabolic, hematological, neurological, muscular, ophthalmological, infectious diseases, and immunodeficiency have been targeted. Viral vectors based on adenoviruses, adeno-associated viruses, herpes simplex viruses, retroviruses including lentiviruses, alphaviruses, flaviviruses, measles viruses, rhabdoviruses, Newcastle disease virus, poxviruses, picornaviruses, reoviruses, and polyomaviruses have been used. Proof-of-concept has been demonstrated for different indications in animal models. Therapeutic efficacy has also been achieved in clinical trials. Several viral vector-based drugs have been approved for the treatment of cancer, and hematological, metabolic, and neurological diseases. Moreover, viral vector-based vaccines have been approved against COVID-19 and Ebola virus disease.
Collapse
|
23
|
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol 2023; 14:1188526. [PMID: 37440883 PMCID: PMC10335770 DOI: 10.3389/fmicb.2023.1188526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.
Collapse
Affiliation(s)
- Xiao Zhu
- Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- Department of Biological and Chemical Sciences, New York Institute of Technology—Manhattan Campus, New York, NY, United States
| | - Chenyang Fan
- Department of Clinical Medicine, Medicine and Technology, School of Zunyi Medical University, Zunyi, China
| | - Zhuolong Xiong
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Mingwei Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital(Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiuqing Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
24
|
Alfano A, Cafferata EGA, Gangemi M, Nicola Candia A, Malnero CM, Bermudez I, Lopez MV, Ríos GD, Rotondaro C, Cuneo N, Curiel DT, Podhajcer OL, Lopez MV. In Vitro and In Vivo Efficacy of a Stroma-Targeted, Tumor Microenvironment Responsive Oncolytic Adenovirus in Different Preclinical Models of Cancer. Int J Mol Sci 2023; 24:9992. [PMID: 37373140 PMCID: PMC10297998 DOI: 10.3390/ijms24129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
More than one million women are diagnosed annually worldwide with a gynecological cancer. Most gynecological cancers are diagnosed at a late stage, either because a lack of symptoms, such as in ovarian cancer or limited accessibility to primary prevention in low-resource countries, such as in cervical cancer. Here, we extend the studies of AR2011, a stroma-targeted and tumor microenvironment responsive oncolytic adenovirus (OAdV), whose replication is driven by a triple hybrid promoter. We show that AR2011 was able to replicate and lyse in vitro fresh explants obtained from human ovarian cancer, uterine cancer, and cervical cancer. AR2011 was also able to strongly inhibit the in vitro growth of ovarian malignant cells obtained from human ascites fluid. The virus could synergize in vitro with cisplatin even on ascites-derived cells obtained from patients heavily pretreated with neoadjuvant chemotherapy. AR2011(h404), a dual transcriptionally targeted derived virus armed with hCD40L and h41BBL under the regulation of the hTERT promoter, showed a strong efficacy in vivo both on subcutaneous and intraperitoneally established human ovarian cancer in nude mice. Preliminary studies in an immunocompetent murine tumor model showed that AR2011(m404) expressing the murine cytokines was able to induce an abscopal effect. The present studies suggest that AR2011(h404) is a likely candidate as a novel medicine for intraperitoneal disseminated ovarian cancer.
Collapse
Affiliation(s)
- Ana Alfano
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Eduardo G. A. Cafferata
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Mariela Gangemi
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Alejandro Nicola Candia
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Cristian M. Malnero
- Facultad de Ingeniería, Universidad Argentina de la Empresa, Lima 775, Ciudad Autónoma de Buenos Aires C1073AAO, Argentina; (C.M.M.); (I.B.)
| | - Ismael Bermudez
- Facultad de Ingeniería, Universidad Argentina de la Empresa, Lima 775, Ciudad Autónoma de Buenos Aires C1073AAO, Argentina; (C.M.M.); (I.B.)
| | - Mauricio Vargas Lopez
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Gregorio David Ríos
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Cecilia Rotondaro
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Nicasio Cuneo
- Servicio de Ginecología, Departamento de Cirugía, Hospital Municipal de Oncología Maria Curie, Avenida Patricias Argentinas 750, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina;
| | - David T. Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Osvaldo L. Podhajcer
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| | - Maria Veronica Lopez
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Avenida Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE, Argentina; (A.A.); (E.G.A.C.); (M.G.); (A.N.C.); (M.V.L.); (G.D.R.); (C.R.)
| |
Collapse
|
25
|
Nistal-Villan E, Rius-Rocabert S, Llinares-Pinel F. Oncolytic virotherapy in lung cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:221-239. [PMID: 37541725 DOI: 10.1016/bs.ircmb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Lung tumors are one of the most aggressive threats affecting humans. Current therapeutic approaches have improved patients' survival; however, further efforts are required to increase effectiveness and protection against tumor relapse and metastasis. Immunotherapy presents an alternative to previous treatments that focuses on stimulating of the patient's immune system to destroy tumor cells. Viruses can be used as part of the immune therapeutic approach as agents that could selectively infect tumor cells, triggering an immune response against the infection and against the tumor cells. Some viruses have been selected for specifically infecting and destroying cancer cells, activating the immune response, enhancing access, amplifying the cytotoxicity against the tumor cells, and improving the long-term memory that can prevent tumor relapse. Oncolytic virotherapy can then be used as a strategy to target the destruction of transformed cells at the tumor site and act in locations distant from the primary targeted tumor site. Some of the current challenges in lung cancer treatment can be addressed using traditional therapies combined with oncolytic virotherapy. Defining the best combination, including the choice of the right settings will be at the next frontier in lung cancer treatment.
Collapse
Affiliation(s)
- Estanislao Nistal-Villan
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain; Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain.
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain; Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Francisco Llinares-Pinel
- Microbiology Section, Departamento CC, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
26
|
Schrauf S, Tomberger Y, Nambulli S, Duprex WP, Tschismarov R, Tauber E, Ramsauer K. Biodistribution and toxicology evaluation of a recombinant measles Schwarz-based Lassa vaccine in cynomolgus macaques. J Appl Toxicol 2023; 43:719-733. [PMID: 36480160 DOI: 10.1002/jat.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
MV-LASV is an investigational measles Schwarz-based vaccine for the prevention of Lassa fever. A repeated-dose toxicity study in cynomolgus macaques was performed to assess the biodistribution and local and systemic toxicological effects. Monkeys received three immunizations of MV-LASV or saline intramuscularly with a 2-week interval. An increase in anti-measles antibodies confirmed the reaction of the immune system to the vaccine backbone. Clinical observations, body weight, body temperature, local tolerance, electrocardiogram parameters, various clinical pathology parameters (hematology, coagulation urinalysis, serum chemistry, and C-reactive protein) were monitored. Gross pathology and histopathology of various tissues were evaluated. MV-LASV induced a mild increase in fibrinogen and C-reactive protein concentrations. This coincided with microscopic inflammation at the injection sites which partially or fully resolved following a 3-week recovery period. Viral RNA was found in secondary lymphoid organs and injection sites and gall bladder. No viral shedding to the environment was observed. Overall, the vaccine was locally and systemically well tolerated, supporting a first-in-human study.
Collapse
Affiliation(s)
- Sabrina Schrauf
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Yvonne Tomberger
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Roland Tschismarov
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Erich Tauber
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| | - Katrin Ramsauer
- Themis Bioscience GmbH, Vienna, Austria, a subsidiary of Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
27
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
28
|
Floerchinger A, Klein JE, Finkbeiner MSC, Schäfer TE, Fuchs G, Doerner J, Zirngibl H, Ackermann M, Kvasnicka HM, Chester KA, Jäger D, Ball CR, Ungerechts G, Engeland CE. A vector-encoded bispecific killer engager to harness virus-activated NK cells as anti-tumor effectors. Cell Death Dis 2023; 14:104. [PMID: 36765035 PMCID: PMC9918448 DOI: 10.1038/s41419-023-05624-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023]
Abstract
Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.
Collapse
Affiliation(s)
- Alessia Floerchinger
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Jessica E Klein
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maximiliane S C Finkbeiner
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Theresa E Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Gwendolin Fuchs
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Francis Crick Institute, London, UK
| | - Johannes Doerner
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Hubert Zirngibl
- Department of Surgery, Helios University Hospital Wuppertal, Wuppertal, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | - Hans M Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, Witten/Herdecke University, Witten, Germany
| | | | - Dirk Jäger
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Technische Universität Dresden, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Center for Biomedical Education and Research (ZBAF), Institute of Virology and Microbiology, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Extracellular Vesicles: a Trojan Horse Delivery Method for Systemic Administration of Oncolytic Viruses. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1007/s40883-023-00295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
30
|
Groeneveldt C, van den Ende J, van Montfoort N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev 2023; 70:1-12. [PMID: 36732155 DOI: 10.1016/j.cytogfr.2023.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Oncolytic viruses (OVs) represent a highly promising treatment strategy for a wide range of cancers, by mediating both the direct killing of tumor cells as well as mobilization of antitumor immune responses. As many OVs circulate in the human population, preexisting OV-specific immune responses are prevalent. Indeed, neutralizing antibodies (NAbs) are abundantly present in the human population for commonly used OVs, such as Adenovirus type 5 (Ad5), Herpes Simplex Virus-1 (HSV-1), Vaccinia virus, Measles virus, and Reovirus. This review discusses (pre)clinical evidence regarding the effect of preexisting immunity against OVs on two distinct aspects of OV therapy; OV infection and spread, as well as the immune response induced upon OV therapy. Combined, this review provides evidence that consideration of preexisting immunity is crucial in realizing the full potential of the highly promising therapeutic implementation of OVs. Future investigation of current gaps in knowledge highlighted in this review should yield a more complete understanding of this topic, ultimately allowing for better and more personalized OV therapies.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jasper van den Ende
- Master Infection & Immunity, Utrecht University, 3584 CS Utrecht, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| |
Collapse
|
31
|
Lee SM, Lee S, Cho HW, Min KJ, Hong JH, Song JY, Lee JK, Lee NW. Application of Immune Checkpoint Inhibitors in Gynecological Cancers: What Do Gynecologists Need to Know before Using Immune Checkpoint Inhibitors? Int J Mol Sci 2023; 24:974. [PMID: 36674491 PMCID: PMC9865129 DOI: 10.3390/ijms24020974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Standard treatments for gynecological cancers include surgery, chemotherapy, and radiation therapy. However, there are limitations associated with the chemotherapeutic drugs used to treat advanced and recurrent gynecological cancers, and it is difficult to identify additional treatments. Therefore, immune checkpoint inhibitor (ICI) therapy products, including PD-1/PD-L1 inhibitors and CTLA-4 inhibitors, are in the spotlight as alternatives for the treatment of advanced gynecological cancers. Although the ICI monotherapy response rate in gynecological cancers is lower than that in melanoma or non-small cell lung cancer, the response rates are approximately 13-52%, 7-22%, and 4-17% for endometrial, ovarian, and cervical cancers, respectively. Several studies are being conducted to compare the outcomes of combining ICI therapy with chemotherapy, radiation therapy, and antiangiogenesis agents. Therefore, it is critical to determine the mechanism underlying ICI therapy-mediated anti-tumor activity and its application in gynecological cancers. Additionally, understanding the possible immune-related adverse events induced post-immunotherapy, as well as the appropriate management of diagnosis and treatment, are necessary to create a quality environment for immunotherapy in patients with gynecological cancers. Therefore, in this review, we summarize the ICI mechanisms, ICIs applied to gynecological cancers, and appropriate diagnosis and treatment of immune-related side effects to help gynecologists treat gynecological cancers using immunotherapy.
Collapse
Affiliation(s)
- Seon-Mi Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Koreadae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Koreadae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun-Woong Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Kyung-Jin Min
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Jin-Hwa Hong
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Jae-Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Koreadae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jae-Kwan Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea
| | - Nak-Woo Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
33
|
Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci 2022; 23:ijms232415622. [PMID: 36555262 PMCID: PMC9779410 DOI: 10.3390/ijms232415622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Self-replicating RNA viruses have become attractive delivery vehicles for therapeutic applications. They are easy to handle, can be rapidly produced in large quantities, and can be delivered as recombinant viral particles, naked or nanoparticle-encapsulated RNA, or plasmid DNA-based vectors. The self-replication of RNA in infected host cells provides the means for generating much higher transgene expression levels and the possibility to apply substantially reduced amounts of RNA to achieve similar expression levels or immune responses compared to conventional synthetic mRNA. Alphaviruses and flaviviruses, possessing a single-stranded RNA genome of positive polarity, as well as measles viruses and rhabdoviruses with a negative-stranded RNA genome, have frequently been utilized for therapeutic applications. Both naturally and engineered oncolytic self-replicating RNA viruses providing specific replication in tumor cells have been evaluated for cancer therapy. Therapeutic efficacy has been demonstrated in animal models. Furthermore, the safe application of oncolytic viruses has been confirmed in clinical trials. Multiple myeloma patients treated with an oncolytic measles virus (MV-NIS) resulted in increased T-cell responses against the measles virus and several tumor-associated antigen responses and complete remission in one patient. Furthermore, MV-CEA administration to patients with ovarian cancer resulted in a stable disease and more than doubled the median overall survival.
Collapse
|
34
|
Engeland CE. Safety study supports clinical development of immunotherapeutic oncolytic measles vaccine. Mol Ther Methods Clin Dev 2022; 27:90-92. [PMID: 36212907 PMCID: PMC9515431 DOI: 10.1016/j.omtm.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Zhang Y, Gabere M, Taylor MA, Simoes CC, Dumbauld C, Barro O, Tesfay MZ, Graham AL, Ferdous KU, Savenka AV, Chamcheu JC, Washam CL, Alkam D, Gies A, Byrum SD, Conti M, Post SR, Kelly T, Borad MJ, Cannon MJ, Basnakian A, Nagalo BM. Repurposing live attenuated trivalent MMR vaccine as cost-effective cancer immunotherapy. Front Oncol 2022; 12:1042250. [PMID: 36457491 PMCID: PMC9706410 DOI: 10.3389/fonc.2022.1042250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 09/10/2024] Open
Abstract
It has long been known that oncolytic viruses wield their therapeutic capability by priming an inflammatory state within the tumor and activating the tumor immune microenvironment, resulting in a multifaceted antitumor immune response. Vaccine-derived viruses, such as measles and mumps, have demonstrated promising potential for treating human cancer in animal models and clinical trials. However, the extensive cost of manufacturing current oncolytic viral products makes them far out of reach for most patients. Here by analyzing the impact of intratumoral (IT) administrations of the trivalent live attenuated measles, mumps, and rubella viruses (MMR) vaccine, we unveil the cellular and molecular basis of MMR-induced anti-cancer activity. Strikingly, we found that IT delivery of low doses of MMR correlates with tumor control and improved survival in murine hepatocellular cancer and colorectal cancer models via increased tumor infiltration of CD8+ granzyme B+ T-cells and decreased macrophages. Moreover, our data indicate that MMR activates key cellular effectors of the host's innate and adaptive antitumor immunity, culminating in an immunologically coordinated cancer cell death. These findings warrant further work on the potential for MMR to be repurposed as safe and cost-effective cancer immunotherapy to impact cancer patients globally.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Musa Gabere
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mika A. Taylor
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Camila C. Simoes
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chelsae Dumbauld
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Oumar Barro
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alicia L. Graham
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Khandoker Usran Ferdous
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alena V. Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Charity L. Washam
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Duah Alkam
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Allen Gies
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Stephanie D. Byrum
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Matteo Conti
- Public Health Department, AUSL Imola, Imola, Italy
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Mitesh J. Borad
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Martin J. Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Alexei Basnakian
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Bolni M. Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| |
Collapse
|
36
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
37
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
38
|
Abstract
Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.
Collapse
|
39
|
Ogawa T, Kikuchi S, Tabuchi M, Mitsui E, Une Y, Tazawa H, Kuroda S, Noma K, Ohara T, Kagawa S, Urata Y, Fujiwara T. Modulation of p53 expression in cancer-associated fibroblasts prevents peritoneal metastasis of gastric cancer. Mol Ther Oncolytics 2022; 25:249-261. [PMID: 35615263 PMCID: PMC9108396 DOI: 10.1016/j.omto.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are associated with the establishment and progression of peritoneal metastasis. This study investigated the efficacy of replicative oncolytic adenovirus-mediated p53 gene therapy (OBP-702) against CAFs and peritoneal metastasis of gastric cancer (GC). Higher CAF expression in the primary tumor was associated with poor prognosis of GC, and higher CAF expression was also observed with peritoneal metastasis in immunohistochemical analysis of clinical samples. And, we found transcriptional alteration of p53 in CAFs relative to normal gastric fibroblasts (NGFs). CAFs increased the secretion of cancer-promoting cytokines, including interleukin-6, and gained resistance to chemotherapy relative to NGFs. OBP-702 showed cytotoxicity to both GC cells and CAFs but not to NGFs. Overexpression of wild-type p53 by OBP-702 infection caused apoptosis and autophagy of CAFs and decreased the secretion of cancer-promoting cytokines by CAFs. Combination therapy using intraperitoneal administration of OBP-702 and paclitaxel synergistically inhibited the tumor growth of peritoneal metastases and decreased CAFs in peritoneal metastases. OBP-702, a replicative oncolytic adenovirus-mediated p53 gene therapy, offers a promising biological therapeutic strategy for peritoneal metastasis, modulating CAFs in addition to achieving tumor lysis.
Collapse
Affiliation(s)
- Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Corresponding author Satoru Kikuchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ema Mitsui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuta Une
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
40
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
41
|
Dong S, Liu B, Hu S, Guo F, Zhong Y, Cai Q, Zhang S, Qian Y, Wang J, Zhou F. A novel oncolytic virus induces a regional cytokine storm and safely eliminates malignant ascites of colon cancer. Cancer Med 2022; 11:4297-4309. [PMID: 35510373 DOI: 10.1002/cam4.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Given malignant ascites with a terrible prognosis and a unique immune microenvironment, our purpose is to evaluate whether oncolytic herpes simplex virus type 2(OH2) is able to safely eliminate ascites of colon cancer and through which specific mechanism it exerts antitumor immunity. METHODS We established an ascites mice model through intraperitoneal injection of CT26 cells and obtained an appropriate dose range for in vivo tests. Efficacy and safety of OH2 were detected by weight of ascites, blood routine analysis, histopathological examination, and the survival time of mice. The specific mechanism underlying antitumor immunity was analyzed by cytometric bead array, flow cytometry, and single-cell RNA sequencing. Furthermore, anti-interleukin (IL)-6R antibody tocilizumab was synchronously or sequentially delivered with OH2 to explore the role of the regional cytokine storm, mainly IL-6 hypersecretion. RESULTS OH2 was able to eliminate ascites and significantly prolong the survival of mice-bearing CT26 tumor cells by intraperitoneal injection, without obvious systemic damage to the main organs even though a regional cytokine storm. Hypersecretion of pro-inflammatory cytokines, mainly IL-6, and increased infiltration of CD4+ and CD8+ T cells were observed in ascites mice treated by OH2, compared with those treated by 5-fluorouracil or nonresponders. Furthermore, the initial-stage blocking of the IL-6 pathway was able to considerably suppress antitumor immune responses driven by OH2. Surprisingly, we discovered upregulations of the immune checkpoint genes such as Cd274 and Pdcd1 by single-cell RNA sequencing. CONCLUSIONS OH2 could safely eliminate malignant ascites of colon cancer and convert the cold immune microenvironment by inducing a remarkably regional cytokine storm in ascites, mainly IL-6, in the early stage of antitumor immune responses beyond directed oncolytic virotherapy.
Collapse
Affiliation(s)
- Shuang Dong
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, China
| | - Sheng Hu
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Guo
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Cai
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siqi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yu Qian
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wang
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuxiang Zhou
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
42
|
Differential In Vitro Growth and Cell Killing of Cancer versus Benign Prostate Cells by Oncolytic Parainfluenza Virus. Pathogens 2022; 11:pathogens11050493. [PMID: 35631014 PMCID: PMC9147676 DOI: 10.3390/pathogens11050493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development of effective oncolytic viruses will require understanding the differences in virus replication and killing between normal and cancer cells. Here, we have evaluated infections of metastatic cancer (22Rv1) and benign non-tumorigenic (BPH-1) prostate cell lines with a mutant parainfluenza virus 5 (P/V/F) encoding a defective V protein and a hyperfusogenic F protein. Under low multiplicity of infection (MOI), the P/V/F mutant efficiently spread in 22Rv1 cells but was restricted in BPH-1 cells due to type-I interferon (IFN-I) responses. In mixed co-cultures, the P/V/F mutant showed specificity towards and spread within the 22Rv1 cells versus BPH-1 cells. Under high MOI conditions, both BPH-1 and 22Rv1 cells showed efficient infection by the P/V/F mutant. However, compared to BPH-1 cells, the 22Rv1 cancer cells showed increased cytopathic effect, higher induction of caspase-8 and -9, and extensive syncytia formation. In 22Rv1 spheroid cultures, P/V/F infection was less efficient compared to monolayers, but the virus was able to spread through spheroids and induce death. These data indicate that IFN-I sensitivity is a major determinant of specificity of P/V/F spread through populations of cancer versus benign cells, and additionally, differences in activation of apoptotic pathways and syncytia formation can contribute to differential outcomes in cancer versus benign cells.
Collapse
|
43
|
Oncolytic measles vaccines encoding PD-1 and PD-L1 checkpoint blocking antibodies to increase tumor-specific T cell memory. Mol Ther Oncolytics 2022; 24:43-58. [PMID: 34977341 PMCID: PMC8693420 DOI: 10.1016/j.omto.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
PD-1/PD-L1 checkpoint blockade has achieved unprecedented success in cancer immunotherapy. Nevertheless, many immune-excluded tumors are resistant to therapy. Combination with oncolytic virotherapy may overcome resistance by inducing acute inflammation, immune cell recruitment, and remodeling of the tumor immune environment. Here, we assessed the combination of oncolytic measles vaccine (MV) vectors and PD-1/PD-L1 blockade. In the MC38cea model of measles virus oncolysis, MV combined with anti-PD-1 and MV vectors encoding anti-PD-1 or anti-PD-L1 antibodies achieved modest survival benefits compared with control MV or vectors encoding the antibody constant regions only. Analyses of tumor samples and tumor-draining lymph nodes revealed slight increases in intratumoral T cell effector cytokines as well as a shift toward an effector memory phenotype in the T cell compartment. Importantly, increased IFN-γ recall responses were observed in tumor rechallenge experiments with mice in complete tumor remission after treatment with MV encoding anti-PD-1 or anti-PD-L1 compared with control MV. These results prompted us to generate MV encoding the clinically approved agents pembrolizumab and nivolumab. Previously, we have generated MV encoding atezolizumab. We demonstrated the functionality of the novel vectors in vitro. We envision these vectors as therapeutics that induce and support durable anti-tumor immune memory.
Collapse
|
44
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
45
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
46
|
Carter ME, Hartkopf AD, Wagner A, Volmer LL, Brucker SY, Berchtold S, Lauer UM, Koch A. A Three-Dimensional Organoid Model of Primary Breast Cancer to Investigate the Effects of Oncolytic Virotherapy. Front Mol Biosci 2022; 9:826302. [PMID: 35223990 PMCID: PMC8874275 DOI: 10.3389/fmolb.2022.826302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Although several oncolytic viruses have already been tested in early-stage clinical studies of breast cancer, there is still an urgent need to develop patient-derived experimental systems that mimic the response of breast cancer to oncolytic agents in preparation of testing different oncolytic viruses in clinical trials. We addressed this need by developing a protocol to study the effects of oncolytic viruses in stable organoid cell cultures derived from breast cancer tissue.Methods: We used an established three-dimensional organoid model derived from tissue of 10 patients with primary breast cancer. We developed an experimental protocol for infecting organoid cultures with oncolytic viruses and compared the oncolytic effects of a measles vaccine virus (MeV) and a vaccinia virus (GLV) genetically engineered to express either green fluorescent protein (MeV-GFP) and red fluorescent protein (GLV-0b347), respectively, or a suicide gene encoding a fusion of cytosine deaminase with uracil phosphoribosyltransferase (MeV-SCD and GLV-1h94, respectively), thereby enabling enzymatic conversion of the prodrug 5-fluorocytosine (5-FC) into cytotoxic compounds 5-fluorouracil (5-FU) and 5-fluorouridine monophosphate (5-FUMP).Results: The method demonstrated that all oncolytic viruses significantly inhibited cell viability in organoid cultures derived from breast cancer tissue. The oncolytic effects of the oncolytic viruses expressing suicide genes (MeV-SCD and GLV-1h94) were further enhanced by virus-triggered conversion of the prodrug 5-FC to toxic 5-FU and toxic 5-FUMP.Conclusions: We were able to develop a protocol to assess the effects of two different types of oncolytic viruses in stable organoid cell cultures derived from breast cancer tissue. The greatest oncolytic effects were observed when the oncolytic viruses were engineered to express a suicide gene (MeV-SCD and GLV-1h94) in the presence of the prodrug 5-FC. The model therefore provides a promising in vitro method to help further testing and engineering of new generations of virotherapeutic vectors for in vivo use.
Collapse
Affiliation(s)
- Mary E. Carter
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Anna Wagner
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Léa L. Volmer
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Sara Y. Brucker
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Susanne Berchtold
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
- *Correspondence: André Koch,
| |
Collapse
|
47
|
Vorobyev PO, Babaeva FE, Panova AV, Shakiba J, Kravchenko SK, Soboleva AV, Lipatova AV. Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Mol Biol 2022; 56:684-695. [PMID: 36217339 PMCID: PMC9534467 DOI: 10.1134/s0026893322050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of therapy remain relevant. Oncolytic viruses are able to replicate in tumor cells and destroy them without affecting normal, healthy tissues. By activating antitumor immunity, viruses are effective against malignant neoplasms of various nature. In lymphoproliferative diseases with a drug-resistant phenotype, many cases of remissions have been described after viral therapy. The current level of understanding of viral biology and the discovery of host cell interaction mechanisms made it possible to create unique strains with high oncoselectivity widely used in clinical practice in recent years.
Collapse
Affiliation(s)
- P. O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - J. Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Soboleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
48
|
Lundstrom K. Self-Replicating RNA Viruses for Vaccine Development against Infectious Diseases and Cancer. Vaccines (Basel) 2021; 9:1187. [PMID: 34696295 PMCID: PMC8541504 DOI: 10.3390/vaccines9101187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
Alphaviruses, flaviviruses, measles viruses and rhabdoviruses are enveloped single-stranded RNA viruses, which have been engineered for recombinant protein expression and vaccine development. Due to the presence of RNA-dependent RNA polymerase activity, subgenomic RNA can replicate close to 106 copies per cell for translation in the cytoplasm providing extreme transgene expression levels, which is why they are named self-replicating RNA viruses. Expression of surface proteins of pathogens causing infectious disease and tumor antigens provide the basis for vaccine development against infectious diseases and cancer. Self-replicating RNA viral vectors can be administered as replicon RNA at significantly lower doses than conventional mRNA, recombinant particles, or DNA plasmids. Self-replicating RNA viral vectors have been applied for vaccine development against influenza virus, HIV, hepatitis B virus, human papilloma virus, Ebola virus, etc., showing robust immune response and protection in animal models. Recently, paramyxovirus and rhabdovirus vector-based SARS-CoV-2 vaccines as well as RNA vaccines based on self-amplifying alphaviruses have been evaluated in clinical settings. Vaccines against various cancers such as brain, breast, lung, ovarian, prostate cancer and melanoma have also been developed. Clinical trials have shown good safety and target-specific immune responses. Ervebo, the VSV-based vaccine against Ebola virus disease has been approved for human use.
Collapse
|
49
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
50
|
Chiang CLL, Rovelli R, Sarivalasis A, Kandalaft LE. Integrating Cancer Vaccines in the Standard-of-Care of Ovarian Cancer: Translating Preclinical Models to Human. Cancers (Basel) 2021; 13:cancers13184553. [PMID: 34572778 PMCID: PMC8469371 DOI: 10.3390/cancers13184553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The overall survival of ovarian cancer (OC) remains poor for most patients. Despite incorporation of novel therapeutic agents such as bevacizumab and PARP inhibitors to OC standard-of-care, efficacy is only observed in a subset of patients. Cancer vaccination has demonstrated effectiveness in OC patients and could be considered for potential incorporation into OC standard-of-care. This review provides an overview of the different types of cancer vaccination strategies and discusses the use of murine OC tumor models to evaluate combinatorial regimens comprising cancer vaccines and OC standard-of-care. Abstract As the majority of ovarian cancer (OC) patients are diagnosed with metastatic disease, less than 40% will survive past 5 years after diagnosis. OC is characterized by a succession of remissions and recurrences. The most promising time point for immunotherapeutic interventions in OC is following debulking surgery. Accumulating evidence shows that T cells are important in OC; thus, cancer vaccines capable of eliciting antitumor T cells will be effective in OC treatment. In this review, we discuss different cancer vaccines and propose strategies for their incorporation into the OC standard-of-care regimens. Using the murine ID8 ovarian tumor model, we provide evidence that a cancer vaccine can be effectively combined with OC standard-of-care to achieve greater overall efficacy. We demonstrate several important similarities between the ID8 model and OC patients, in terms of response to immunotherapies, and the ID8 model can be an important tool for evaluating combinatorial regimens and clinical trial designs in OC. Other emerging models, including patient-derived xenograft and genetically engineered mouse models, are continuing to improve and can be useful for evaluating cancer vaccination therapies in the near future. Here, we provide a comprehensive review of the completed and current clinical trials evaluating cancer vaccines in OC.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
- Correspondence: (C.L.-L.C.); (L.E.K.)
| | - Raphaël Rovelli
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
| | - Lana E. Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
- Correspondence: (C.L.-L.C.); (L.E.K.)
| |
Collapse
|