1
|
Xu Y, Zhong J, Liu Z, Li D. The role of monoglyceride lipase gene in promoting proliferation, metastasis, and free fatty acid accumulation in uveal melanoma cells. Hum Cell 2024; 37:1719-1733. [PMID: 39181971 DOI: 10.1007/s13577-024-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Uveal melanoma is a malignant tumor originating from melanocytes in the eye's uvea, often detected during routine ophthalmic examinations due to its typically asymptomatic nature. Despite effective local treatments, up to 50% of patients develop hematogenous metastases, highlighting the need for better prognostic markers and therapeutic targets. In this study, we developed an innovative Metastasis-Related Gene Signature (MERGS) score to classify patients from various cohorts. By establishing this scoring method, we discovered underlying mechanisms responsible for significant differences between samples with high and low MERGS scores. We identified a set of ten genes to construct MERGS, which showed a high predictive accuracy for patient survival. Further, Monoglyceride Lipase (MGLL) emerged as the most important gene in distinguishing uveal melanoma metastasis. Functional studies demonstrated that knocking down MGLL significantly inhibited proliferation, invasion, and migration of uveal melanoma cells in vitro and in vivo, while overexpression of MGLL enhanced these malignant behaviors. Additionally, MGLL modulated free fatty acid (FFA) levels within these cells. Our findings reveal MGLL as a crucial player in uveal melanoma progression and propose it as a novel therapeutic target, potentially leading to improved management and outcomes for patients with this disease.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jiangming Zhong
- Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital,Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhenhua Liu
- Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital,Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Deyu Li
- Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital,Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Yang L, Wang G, Tian H, Jia S, Wang S, Cui R, Zhuang A. RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma. Exp Eye Res 2024; 246:109990. [PMID: 38969283 DOI: 10.1016/j.exer.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common ocular cancer among adults with a high rate of recurrence and poor prognosis. Loss of epigenetic homeostasis disturbed gene expression patterns, resulting in oncogenesis. Herein, we comprehensively analyzed the DNA methylation, transcriptome profiles, and corresponding clinical information of UM patients through multiple machine-learning algorithms, finding that a methylation-driven gene RBMS1 was correlated with poor clinical outcomes of UM patients. RNA-seq and single-cell RNA-seq analyses revealed that RBMS1 reflected diverse tumor microenvironments, where high RBMS1 expression marked an immune active TME. Furthermore, we found that tumor cells were identified to have the higher communication probability in RBMS1+ state. The functional enrichment analysis revealed that RBMS1 was associated with pigment granule and melanosome, participating in cell proliferation as well as apoptotic signaling pathway. Biological experiments were performed and demonstrated that the silencing of RBMS1 inhibited ocular melanoma proliferation and promoted apoptosis. Our study highlighted that RBMS1 reflects a distinct microenvironment and promotes tumor progression in ocular melanoma, contributing to the therapeutic customization and clinical decision-making.
Collapse
Affiliation(s)
- Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Gaoming Wang
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Shichong Jia
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin, 300020, PR China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| | - Ran Cui
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, PR China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| |
Collapse
|
3
|
Wu P, Zhang Q, Zhong P, Chai L, Luo Q, Jia C. Development of a prognostic risk model of uveal melanoma based on N7-methylguanosine-related regulators. Hereditas 2024; 161:22. [PMID: 38987843 PMCID: PMC11234703 DOI: 10.1186/s41065-024-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Uveal melanoma (UVM) stands as the predominant type of primary intraocular malignancy among adults. The clinical significance of N7-methylguanosine (m7G), a prevalent RNA modifications, in UVM remains unclear. METHODS Primary information from 80 UVM patients were analyzed as the training set, incorporating clinical information, mutation annotations and mRNA expression obtained from The Cancer Genome Atlas (TCGA) website. The validation set was carried out using Gene Expression Omnibus (GEO) database GSE22138 and GSE84976. Kaplan-Meier and Cox regression of univariate analyses were subjected to identify m7G-related regulators as prognostic genes. RESULT A prognostic risk model comprising EIF4E2, NUDT16, SNUPN and WDR4 was established through Cox regression of LASSO. Evaluation of the model's predictability for UVM patients' prognosis by Receiver Operating Characteristic (ROC) curves in the training set, demonstrated excellent performance Area Under the Curve (AUC) > 0.75. The high-risk prognosis within the TCGA cohort exhibit a notable worse outcome. Additionally, an independent correlation between the risk score and overall survival (OS) among UVM patients were identified. External validation of this model was carried out using the validation sets (GSE22138 and GSE84976). Immune-related analysis revealed that patients with high score of m7G-related risk model exhibited elevated level of immune infiltration and immune checkpoint gene expression. CONCLUSION We have developed a risk prediction model based on four m7G-related regulators, facilitating effective estimate UVM patients' survival by clinicians. Our findings shed novel light on essential role of m7G-related regulators in UVM and suggest potential novel targets for the diagnosis, prognosis and therapy of UVM.
Collapse
Affiliation(s)
- Pingfan Wu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Plastic and Aesthetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qian Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Peng Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Li Chai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
4
|
Liu H, Tsimpaki T, Anastasova R, Bechrakis NE, Fiorentzis M, Berchner-Pfannschmidt U. The Chick Chorioallantoic Membrane as a Xenograft Model for the Quantitative Analysis of Uveal Melanoma Metastasis in Multiple Organs. Cells 2024; 13:1169. [PMID: 39056751 PMCID: PMC11275209 DOI: 10.3390/cells13141169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults, and nearly 50% of patients develop metastatic disease with a high mortality rate. Therefore, the development of relevant preclinical in vivo models that accurately recapitulate the metastatic cascade is crucial. We exploited the chick embryo chorioallantoic membrane (CAM) xenograft model to quantify both experimental and spontaneous metastasis by qPCR analysis. Our study found that the transplanted UM cells spread predominantly and early in the liver, reflecting the primary site of metastasis in patients. Visible signs of pigmented metastasis were observed in the eyes, liver, and distal CAM. Lung metastases occurred rarely and brain metastases progressed more slowly. However, UM cell types of different origins and genetic profiles caused an individual spectrum of organ metastases. Metastasis to multiple organs, including the liver, was often associated with risk factors such as high proliferation rate, hyperpigmentation, and epithelioid cell type. The severity of liver metastasis was related to the hepatic metastatic origin and chromosome 8 abnormalities rather than monosomy 3 and BAP1 deficiency. The presented CAM xenograft model may prove useful to study the metastatic potential of patients or to test individualized therapeutic options for metastasis in different organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany; (H.L.); (T.T.); (R.A.); (N.E.B.); (M.F.)
| |
Collapse
|
5
|
Chen H, Zhang W, Shi J, Tang Y, Chen X, Li J, Yao X. Study on the mechanism of S100A4-mediated cancer oncogenesis in uveal melanoma cells through the integration of bioinformatics and in vitro experiments. Gene 2024; 911:148333. [PMID: 38431233 DOI: 10.1016/j.gene.2024.148333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The elevated metastasis rate of uveal melanoma (UM) is intricately correlated with patient prognosis, significantly affecting the quality of life. S100 calcium-binding protein A4 (S100A4) has tumorigenic properties; therefore, the present study investigated the impact of S100A4 on UM cell proliferation, apoptosis, migration, and invasion using bioinformatics and in vitro experiments. METHODS Bioinformatic analysis was used to screen S100A4 as a hub gene and predict its possible mechanism in UM cells, and the S100A4 silencing cell line was constructed. The impact of S100A4 silencing on the proliferative ability of UM cells was detected using the Cell Counting Kit-8 and colony formation assays. Annexin V-FITC/PI double fluorescence and Hoechst 33342 staining were used to observe the effects of apoptosis on UM cells. The effect of S100A4 silencing on the migratory and invasive capabilities of UM cells was assessed using wound healing and Transwell assays. Western blotting was used to detect the expression of related proteins. RESULTS The present study found that S100A4 is a biomarker of UM, and its high expression is related to poor prognosis. After constructing the S100A4 silencing cell line, cell viability, clone number, proliferating cell nuclear antigen, X-linked inhibitor of apoptosis protein, and survivin expression were decreased in UM cells. The cell apoptosis rate and relative fluorescence intensity increased, accompanied by increased levels of Bax and caspase-3 and decreased levels of Bcl-2. Additionally, a decrease in the cell migration index and relative invasion rate was observed with increased E-cadherin expression and decreased N-cadherin and vimentin protein expression. CONCLUSION S100A4 silencing can inhibit the proliferation, migration, and invasion and synchronously induces apoptosis in UM cells.
Collapse
Affiliation(s)
- Huimei Chen
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenqing Zhang
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Jian Shi
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Yu Tang
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Chen
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiangwei Li
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaolei Yao
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
6
|
Zhan Z, Lin K, Wang T. Construction of oxidative phosphorylation-related prognostic risk score model in uveal melanoma. BMC Ophthalmol 2024; 24:204. [PMID: 38698303 PMCID: PMC11067154 DOI: 10.1186/s12886-024-03441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Uveal melanoma (UVM) is a malignant intraocular tumor in adults. Targeting genes related to oxidative phosphorylation (OXPHOS) may play a role in anti-tumor therapy. However, the clinical significance of oxidative phosphorylation in UVM is unclear. METHOD The 134 OXPHOS-related genes were obtained from the KEGG pathway, the TCGA UVM dataset contained 80 samples, served as the training set, while GSE22138 and GSE39717 was used as the validation set. LASSO regression was carried out to identify OXPHOS-related prognostic genes. The coefficients obtained from Cox multivariate regression analysis were used to calculate a risk score, which facilitated the construction of a prognostic model. Kaplan-Meier survival analysis, logrank test and ROC curve using the time "timeROC" package were conducted. The immune cell frequency in low- and high-risk group was analyzed through Cibersort tool. The specific genomic alterations were analyzed by "maftools" R package. The differential expressed genes between low- or high-risk group were analyzed and performed Gene Ontology (GO) and GSEA. Finally, we verified the function of CYC1 in UVM by gene silencing in vitro. RESULTS A total of 9 OXPHOS-related prognostic genes were identified, including NDUFB1, NDUFB8, ATP12A, NDUFA3, CYC1, COX6B1, ATP6V1G2, ATP4B and NDUFB4. The UVM prognostic risk model was constructed based on the 9 OXPHOS-related prognostic genes. The prognosis of patients in the high-risk group was poorer than low-risk group. Besides, the ROC curve demonstrated that the area under the curve of the model for predicting the 1 to 5-year survival rate of UVM patients were all more than 0.88. External validation in GSE22138 and GSE39717 dataset revealed that these 9 genes could also be utilized to evaluate and predict the overall survival of patients with UVM. The risk score levels related to immune cell frequency and specific genomic alterations. The DEGs between the low- and high- risk group were enriched in tumor OXPHOS and immune related pathway. In vitro experiments, CYC1 silencing significantly inhibited UVM cell proliferation and invasion, induced cell apoptosis. CONCLUSION In sum, a prognostic risk score model based on oxidative phosphorylation-related genes in UVM was developed to enhance understanding of the disease. This prognostic risk score model may help to find potential therapeutic targets for UVM patients. CYC1 acts as an oncogene role in UVM.
Collapse
Affiliation(s)
- Zhiyun Zhan
- Ophthalmology Department, First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, 350004, Fuzhou, Fujian, China
| | - Kun Lin
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University, 516 Jinrong South Road, 350001, Fuzhou, China
| | - Tingting Wang
- Ophthalmology Department, First Affiliated Hospital of Fujian Medical University, No. 20, Chazhong Road, Taijiang District, 350004, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Zhang Y, Zheng J, Chen M, Zhao S, Ma R, Chen W, Liu J. Modulating DNA damage response in uveal melanoma through embryonic stem cell microenvironment. BMC Cancer 2024; 24:519. [PMID: 38654216 DOI: 10.1186/s12885-024-12290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.
Collapse
Affiliation(s)
- Yingxu Zhang
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China
| | - Jinbiao Zheng
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China
| | - Minyu Chen
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China
| | - Shulun Zhao
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China
| | - Ruiqian Ma
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China
| | - Wenwei Chen
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China
| | - Jiahui Liu
- Ophthalmology Department, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), 78 Wandao Road, Dongguan, 523000, China.
| |
Collapse
|
8
|
Zhao M, Yu Y, Song Z. Identification and validation of a costimulatory molecule-related signature to predict the prognosis for uveal melanoma patients. Sci Rep 2024; 14:9146. [PMID: 38644411 PMCID: PMC11033288 DOI: 10.1038/s41598-024-59827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
Uveal melanoma (UVM) is the most common primary tumor in adult human eyes. Costimulatory molecules (CMs) are important in maintaining T cell biological functions and regulating immune responses. To investigate the role of CMs in UVM and exploit prognostic signature by bioinformatics analysis. This study aimed to identify and validate a CMs associated signature and investigate its role in the progression and prognosis of UVM. The expression profile data of training cohort and validation cohort were downloaded from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) dataset. 60 CM genes were identified, and 34 genes were associated with prognosis by univariate Cox regression. A prognostic signature was established with six CM genes. Further, high- and low-risk groups were divided by the median, and Kaplan-Meier (K-M) curves indicated that high-risk patients presented a poorer prognosis. We analyzed the correlation of gender, age, stage, and risk score on prognosis by univariate and multivariate regression analysis. We found that risk score was the only risk factor for prognosis. Through the integration of the tumor immune microenvironment (TIME), it was found that the high-risk group presented more immune cell infiltration and expression of immune checkpoints and obtained higher immune scores. Enrichment analysis of the biological functions of the two groups revealed that the differential parts were mainly related to cell-cell adhesion, regulation of T-cell activation, and cytokine-cytokine receptor interaction. No differences in tumor mutation burden (TMB) were found between the two groups. GNA11 and BAP1 have higher mutation frequencies in high-risk patients. Finally, based on the Genomics of Drug Sensitivity in Cancer 2 (GDSC2) dataset, drug sensitivity analysis found that high-risk patients may be potential beneficiaries of the treatment of crizotinib or temozolomide. Taken together, our CM-related prognostic signature is a reliable biomarker that may provide ideas for future treatments for the disease.
Collapse
Affiliation(s)
- Minyao Zhao
- Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Yu
- Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengyu Song
- Department of Ophthalmology, Shanghai Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A Key Player in Cancer Signaling. Biomolecules 2024; 14:342. [PMID: 38540761 PMCID: PMC10967961 DOI: 10.3390/biom14030342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 07/02/2024] Open
Abstract
Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
Collapse
Affiliation(s)
- Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou 310022, China;
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
10
|
Tonelotto V, Costa-Garcia M, O'Reilly E, Smith KF, Slater K, Dillon ET, Pendino M, Higgins C, Sist P, Bosch R, Passamonti S, Piulats JM, Villanueva A, Tramer F, Vanella L, Carey M, Kennedy BN. 1,4-dihydroxy quininib activates ferroptosis pathways in metastatic uveal melanoma and reveals a novel prognostic biomarker signature. Cell Death Discov 2024; 10:70. [PMID: 38341410 DOI: 10.1038/s41420-023-01773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024] Open
Abstract
Uveal melanoma (UM) is an ocular cancer, with propensity for lethal liver metastases. When metastatic UM (MUM) occurs, as few as 8% of patients survive beyond two years. Efficacious treatments for MUM are urgently needed. 1,4-dihydroxy quininib, a cysteinyl leukotriene receptor 1 (CysLT1) antagonist, alters UM cancer hallmarks in vitro, ex vivo and in vivo. Here, we investigated the 1,4-dihydroxy quininib mechanism of action and its translational potential in MUM. Proteomic profiling of OMM2.5 cells identified proteins differentially expressed after 1,4-dihydroxy quininib treatment. Glutathione peroxidase 4 (GPX4), glutamate-cysteine ligase modifier subunit (GCLM), heme oxygenase 1 (HO-1) and 4 hydroxynonenal (4-HNE) expression were assessed by immunoblots. Biliverdin, glutathione and lipid hydroperoxide were measured biochemically. Association between the expression of a specific ferroptosis signature and UM patient survival was performed using public databases. Our data revealed that 1,4-dihydroxy quininib modulates the expression of ferroptosis markers in OMM2.5 cells. Biochemical assays validated that GPX4, biliverdin, GCLM, glutathione and lipid hydroperoxide were significantly altered. HO-1 and 4-HNE levels were significantly increased in MUM tumor explants from orthotopic patient-derived xenografts (OPDX). Expression of genes inhibiting ferroptosis is significantly increased in UM patients with chromosome 3 monosomy. We identified IFerr, a novel ferroptosis signature correlating with UM patient survival. Altogether, we demontrated that in MUM cells and tissues, 1,4-dihydroxy quininib modulates key markers that induce ferroptosis, a relatively new type of cell death driven by iron-dependent peroxidation of phospholipids. Furthermore, we showed that high expression of specific genes inhibiting ferroptosis is associated with a worse UM prognosis, thus, the IFerr signature is a potential prognosticator for which patients develop MUM. All in all, ferroptosis has potential as a clinical biomarker and therapeutic target for MUM.
Collapse
Affiliation(s)
- Valentina Tonelotto
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Marcel Costa-Garcia
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Eve O'Reilly
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Kaelin Francis Smith
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Kayleigh Slater
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Eugene T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Marzia Pendino
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Catherine Higgins
- UCD School of Mathematics & Statistics, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Paola Sist
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Rosa Bosch
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Cancer (ICO), IDIBELL-OncoBell, Barcelona, Spain
| | - Alberto Villanueva
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), ICO, IDIBELL, Barcelona, Spain
| | - Federica Tramer
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Michelle Carey
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Breandán N Kennedy
- UCD Conway Institute, University College Dublin, D04 V1W8, Dublin, Ireland.
- UCD School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8, Dublin, Ireland.
| |
Collapse
|
11
|
Proteau S, Krossa I, Husser C, Guéguinou M, Sella F, Bille K, Irondelle M, Dalmasso M, Barouillet T, Cheli Y, Pisibon C, Arrighi N, Nahon‐Estève S, Martel A, Gastaud L, Lassalle S, Mignen O, Brest P, Mazure NM, Bost F, Baillif S, Landreville S, Turcotte S, Hasson D, Carcamo S, Vandier C, Bernstein E, Yvan‐Charvet L, Levesque MP, Ballotti R, Bertolotto C, Strub T. LKB1-SIK2 loss drives uveal melanoma proliferation and hypersensitivity to SLC8A1 and ROS inhibition. EMBO Mol Med 2023; 15:e17719. [PMID: 37966164 PMCID: PMC10701601 DOI: 10.15252/emmm.202317719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.
Collapse
Affiliation(s)
- Sarah Proteau
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Imène Krossa
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Chrystel Husser
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | | | - Federica Sella
- Department of Dermatology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Karine Bille
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | | | - Mélanie Dalmasso
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Thibault Barouillet
- Inserm, Hematometabolism and metainflammation, team 13, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Yann Cheli
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Céline Pisibon
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Nicole Arrighi
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Sacha Nahon‐Estève
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | - Arnaud Martel
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | | | - Sandra Lassalle
- University Côte d'AzurNiceFrance
- Laboratory of Clinical and Experimental Pathology, University Hospital of Nice, FHU OncoAge, Cote d'Azur University, Biobank BB‐0033‐00025, IRCAN team 4, OncoAge FHUNiceFrance
| | | | - Patrick Brest
- University Côte d'AzurNiceFrance
- IRCAN team 4, Inserm, CNRS, FHU‐oncoAge, IHU‐RESPIRera NiceNiceFrance
| | - Nathalie M Mazure
- University Côte d'AzurNiceFrance
- Inserm, Cancer, Metabolism and environment, team, Equipe labellisée Ligue 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Frédéric Bost
- University Côte d'AzurNiceFrance
- Inserm, Cancer, Metabolism and environment, team, Equipe labellisée Ligue 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Stéphanie Baillif
- University Côte d'AzurNiceFrance
- Department of OphthalmologyCentre Hospitalier Universitaire of NiceNiceFrance
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL‐CCF, Faculté de médecineUniversité LavalQuebec CityQCCanada
- CUO‐Recherche and Axe médecine régénératriceCentre de recherche du CHU de Québec‐Université LavalQuebec CityQCCanada
- Centre de recherche sur le cancer de l'Université LavalQuebec CityQCCanada
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEXQuebec CityQCCanada
| | - Simon Turcotte
- Cancer AxisCentre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de MontréalMontréalQCCanada
- Hepato‐Pancreato‐Biliary Surgery and Liver Transplantation ServiceCentre hospitalier de l'Université de MontréalMontréalQCCanada
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) FacilityIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Saul Carcamo
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) FacilityIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Laurent Yvan‐Charvet
- University Côte d'AzurNiceFrance
- Inserm, Hematometabolism and metainflammation, team 13, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Robert Ballotti
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Corine Bertolotto
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| | - Thomas Strub
- University Côte d'AzurNiceFrance
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020, and Equipe labellisée ARC 2022, Mediterranean Centre for Molecular MedicineNiceFrance
| |
Collapse
|
12
|
Gelmi MC, Gezgin G, van der Velden PA, Luyten GPM, Luk SJ, Heemskerk MHM, Jager MJ. PRAME Expression: A Target for Cancer Immunotherapy and a Prognostic Factor in Uveal Melanoma. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 38149971 PMCID: PMC10755595 DOI: 10.1167/iovs.64.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose Uveal melanoma (UM) is a rare disease with a high mortality, and new therapeutic options are being investigated. Preferentially Expressed Antigen in Melanoma (PRAME) is a cancer testis antigen, expressed in the testis, but also in cancers, including uveal melanoma. PRAME is considered a target for immune therapy in several cancers, and PRAME-specific T cell clones have been shown to kill UM cells. Methods We studied the literature on PRAME expression in hematological and solid malignancies, including UM, and its role as a target for immunotherapy. The distribution of tumor features was compared between PRAME-high and PRAME-low UM in a 64-patient cohort from the Leiden University Medical Center (LUMC) and in the Cancer Genome Atlas (TCGA) cohort of 80 cases and differential gene expression analysis was performed in the LUMC cohort. Results PRAME is expressed in many malignancies, it is frequently associated with a negative prognosis, and can be the target of T cell receptor (TCR)-transduced T cells, a promising treatment option with high avidity and safety. In UM, PRAME is expressed in 26% to 45% of cases and is correlated with a worse prognosis. In the LUMC and the TCGA cohorts, high PRAME expression was associated with larger diameter, higher Tumor-Node-Metastasis (TNM) stage, more frequent gain of chromosome 8q, and an inflammatory phenotype. Conclusions We confirm that PRAME is associated with poor prognosis in UM and has a strong connection with extra copies of 8q. We show that PRAME-specific immunotherapy in an adjuvant setting is promising in treatment of malignancies, including UM.
Collapse
Affiliation(s)
- Maria Chiara Gelmi
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gulçin Gezgin
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Sietse J. Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Sun X, Li Q, Xu G. Identification and validation of an immune-relevant risk signature predicting survival outcome and immune infiltration in uveal melanoma. Int Ophthalmol 2023; 43:4689-4700. [PMID: 37688652 DOI: 10.1007/s10792-023-02869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
PURPOSE The current study aimed to reveal a novel immune-related signature to evaluate immune infiltration status and the survival outcome for patients with uveal melanoma (UM). METHODS Based on 80 UM samples from the Cancer Genome Atlas, the transcriptome gene expression and clinical characteristics were analyzed to identify immune-related genes that contributed most to prognosis based on LASSO Cox regression. By combining the gene expression level with the corresponding regression coefficient, a risk score was calculated and all patients were divided into high- and low-risk groups. Survival, tumor-infiltrating immune cell abundance, dysregulated signaling pathways, immunophenoscore and tumor mutation burden were compared between two groups. Validation of the risk signature was performed in GSE22138 and GSE44295 cohort. For evaluating the immunotherapy efficacy, 348 advanced urothelial cancer patients treated with immune checkpoint inhibitor (ICI) were used for external validation. RESULTS Nine immune-related prognostic genes were identified under the LASSO Cox regression in the TCGA cohort; they are ACKR2, AREG, CCL5, CLEC11A, IGKV1-33, IL36B, NROB1, TRAV8-4 and TRBV28. Better prognosis, elevated immune cell infiltration, decreased immune-suppressive cell infiltration, immune response-related pathways and higher immunophenoscore were found in low-risk patients, with better ICI treatment response rate. CONCLUSION The identified immune risk signature was demonstrated to be associated with the favorable immune infiltration, prognosis and immunotherapeutic efficacy, which may provide clues for survival evaluation and immune treatment.
Collapse
Affiliation(s)
- Xiao Sun
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Gansu Road 4, Heping District, Tianjin, 300020, China.
| | - Qingmin Li
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guijun Xu
- Tianjin Hospital, Tianjin, 300211, China
| |
Collapse
|
14
|
Li K, Sun L, Wang Y, Cen Y, Zhao J, Liao Q, Wu W, Sun J, Zhou M. Single-cell characterization of macrophages in uveal melanoma uncovers transcriptionally heterogeneous subsets conferring poor prognosis and aggressive behavior. Exp Mol Med 2023; 55:2433-2444. [PMID: 37907747 PMCID: PMC10689813 DOI: 10.1038/s12276-023-01115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular malignancy with high metastatic potential and poor prognosis. Macrophages represent one of the most abundant infiltrating immune cells with diverse functions in cancers. However, the cellular heterogeneity and functional diversity of macrophages in UM remain largely unexplored. In this study, we analyzed 63,264 single-cell transcriptomes from 11 UM patients and identified four transcriptionally distinct macrophage subsets (termed MΦ-C1 to MΦ-C4). Among them, we found that MΦ-C4 exhibited relatively low expression of both M1 and M2 signature genes, loss of inflammatory pathways and antigen presentation, instead demonstrating enhanced signaling for proliferation, mitochondrial functions and metabolism. We quantified the infiltration abundance of MΦ-C4 from single-cell and bulk transcriptomes across five cohorts and found that increased MΦ-C4 infiltration was relevant to aggressive behaviors and may serve as an independent prognostic indicator for poor outcomes. We propose a novel subtyping scheme based on macrophages by integrating the transcriptional signatures of MΦ-C4 and machine learning to stratify patients into MΦ-C4-enriched or MΦ-C4-depleted subtypes. These two subtypes showed significantly different clinical outcomes and were validated through bulk RNA sequencing and immunofluorescence assays in both public multicenter cohorts and our in-house cohort. Following further translational investigation, our findings highlight a potential therapeutic strategy of targeting macrophage subsets to control metastatic disease and consistently improve the outcome of patients with UM.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Lanfang Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Yanan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Yixin Cen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Jingting Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Qianling Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| | - Jie Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 325027, Wenzhou, China.
| |
Collapse
|
15
|
Deliktas O, Gedik ME, Koc I, Gunaydin G, Kiratli H. Modulation of AMPK Significantly Alters Uveal Melanoma Tumor Cell Viability. Ophthalmic Res 2023; 66:1230-1244. [PMID: 37647867 PMCID: PMC10614466 DOI: 10.1159/000533806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Uveal melanoma (UM) responds poorly to targeted therapies or immune checkpoint inhibitors. Adenosine monophosphate-activated protein kinase (AMPK) is a pivotal serine/threonine protein kinase that coordinates vital processes such as cell growth. Targeting AMPK pathway, which represents a critical mechanism mediating the survival of UM cells, may prove to be a novel treatment strategy for UM. We aimed to demonstrate the effects of AMPK modulation on UM cells. METHODS In silico analyses were performed to compare UM and normal melanocyte cells via Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA). The effects of AMPK modulation on cell viability and proliferation in UM cell lines with different molecular profiles (i.e., 92-1, MP46, OMM2.5, and Mel270) were investigated via XTT cell viability and proliferation assays after treating the cells with varying concentrations of A-769662 (AMPK activator) or dorsomorphin (AMPK inhibitor). RESULTS KEGG/GSEA studies demonstrated that genes implicated in the AMPK signaling pathway were differentially regulated in UM. Gene sets comprising genes involved in AMPK signaling and genes involved in energy-dependent regulation of mammalian target of rapamycin by liver kinase B1-AMPK were downregulated in UM. We observed gradual decreases in the numbers of viable UM cells as the concentration of A-769662 treatment increased. All UM cells demonstrated statistically significant decreases in cell viability when treated with 200 µm A-769662. Moreover, the effects of AMPK inhibition on UM cells were potent, since low doses of dorsomorphin treatment resulted in significant decreases in viabilities of UM cells. The half maximal inhibitory concentration (IC50) values confirmed the potency of dorsomorphin treatment against UM in vitro. CONCLUSION AMPK may act like a friend or a foe in cancer depending on the context. As such, the current study contributes to the literature in determining the effects of therapeutic strategies targeting AMPK in several UM cells. We propose a new perspective in the treatment of UM. Targeting AMPK pathway may open up new avenues in developing novel therapeutic approaches to improve overall survival in UM.
Collapse
Affiliation(s)
- Ozge Deliktas
- Department of Ophthalmology, Hacettepe University Medical School, Ankara, Turkey
- Department of Ophthalmology, Bursa City Hospital, Nilufer, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Irem Koc
- Department of Ophthalmology, Hacettepe University Medical School, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hayyam Kiratli
- Department of Ophthalmology, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
16
|
Richards JR, Shin D, Pryor R, Sorensen LK, Sun Z, So WM, Park G, Wolff R, Truong A, McMahon M, Grossmann AH, Harbour JW, Zhu W, Odelberg SJ, Yoo JH. Activation of NFAT by HGF and IGF-1 via ARF6 and its effector ASAP1 promotes uveal melanoma metastasis. Oncogene 2023; 42:2629-2640. [PMID: 37500798 PMCID: PMC11008337 DOI: 10.1038/s41388-023-02792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.
Collapse
Affiliation(s)
- Jackson R Richards
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Donghan Shin
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Rob Pryor
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Zhonglou Sun
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Won Mi So
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Garam Park
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Roger Wolff
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Amanda Truong
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Martin McMahon
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- ARUP Laboratories, University of Utah, 500 Chipeta Way, Salt Lake City, UT, 84112, USA
| | - J William Harbour
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT, 84112, USA.
| | - Jae Hyuk Yoo
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Wang Y, Xie M, Lin F, Sheng X, Zhao X, Zhu X, Wang Y, Lu B, Chen J, Zhang T, Wan X, Liu W, Sun X. Nomogram of uveal melanoma as prediction model of metastasis risk. Heliyon 2023; 9:e18956. [PMID: 37609406 PMCID: PMC10440531 DOI: 10.1016/j.heliyon.2023.e18956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Background Since the poor prognosis of uveal melanoma with distant metastasis, we intended to screen out possible biomarkers for uveal melanoma metastasis risk and establish a nomogram model for predicting the risk of uveal melanoma (UVM) metastasis. Methods Two datasets of UVM (GSE84976, GSE22138) were selected. Data was analyzed by R language, CTD database and GEPIA. Results The co-upregulated genes of two datasets, HTR2B, CHAC1, AHNAK2, and PTP4A3 were identified using a Venn diagram. These biomarkers are combined with clinical characteristics, and Lasso regression was conducted to filter the metastasis-related biomarkers. HTR2B, CHAC1, AHNAK2, PTP4A3, tumor thickness, and retinal detachment (RD) were selected to establish the nomogram. Conclusion Our study provides a comprehensive predictive model and personalized risk estimation tool for assessment of 3-year metastasis risk of UVM with a better accuracy.
Collapse
Affiliation(s)
- Yimin Wang
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minyue Xie
- Beijing Tongren Hospital, Capital Medical University, China
| | - Feng Lin
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaohuan Zhao
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Xinyue Zhu
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Yuwei Wang
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Bing Lu
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Jieqiong Chen
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Ting Zhang
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
| | - Xiaoling Wan
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
| | - Wenjia Liu
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| | - Xiaodong Sun
- Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine, China
- National Clinical Research Center for Eye Disease, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, China
- Shanghai Engineering Center for Visual Science and Photomedicine, China
| |
Collapse
|
18
|
Orozco CA, Mejía-García A, Ramírez M, González J, Castro-Vega L, Kreider RB, Serrano S, Combita AL, Bonilla DA. Validation of an Ultraviolet Light Response Gene Signature for Predicting Prognosis in Patients with Uveal Melanoma. Biomolecules 2023; 13:1148. [PMID: 37509183 PMCID: PMC10377706 DOI: 10.3390/biom13071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Uveal melanoma (UVM) is a highly aggressive ocular cancer with limited therapeutic options and poor prognosis particularly for patients with liver metastasis. As such, the identification of new prognostic biomarkers is critical for developing effective treatment strategies. In this study, we aimed to investigate the potential of an ultraviolet light response gene signature to predict the prognosis of UVM patients. Our approach involved the development of a prognostic model based on genes associated with the cellular response to UV light. By employing this model, we generated risk scores to stratify patients into high- and low-risk groups. Furthermore, we conducted differential expression analysis between these two groups and explored the estimation of immune infiltration. To validate our findings, we applied our methodology to an independent UVM cohort. Through our study, we introduced a novel survival prediction tool and shed light on the underlying cellular processes within UVM tumors, emphasizing the involvement of immune subsets in tumor progression.
Collapse
Affiliation(s)
- Carlos A Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
- Professional Program in Surgical Instrumentation, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
- Professional Program in Optometry, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
- Technical Program in Radiology and Diagnostic Imaging, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
| | - Alejandro Mejía-García
- Grupo de Investigación Genética Molecular (GENMOL), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia
| | - Marcela Ramírez
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
- Professional Program in Surgical Instrumentation, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
| | - Johanna González
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
- Professional Program in Optometry, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia
| | - Luis Castro-Vega
- Genetics and Development of Brain Tumors Team, Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA
| | - Silvia Serrano
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá 111511, Colombia
| | - Alba Lucia Combita
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología de Colombia, Bogotá 111511, Colombia
- School of Medicine, Microbiology Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Diego A Bonilla
- Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| |
Collapse
|
19
|
Jin B, Yang L, Ye Q, Pan J. Ferroptosis induced by DCPS depletion diminishes hepatic metastasis in uveal melanoma. Biochem Pharmacol 2023; 213:115625. [PMID: 37245534 DOI: 10.1016/j.bcp.2023.115625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Hepatic metastasis develops in ∼50% of uveal melanoma (UM) patients with scarcely effective treatment resulting in lethality. The underlying mechanism of liver metastasis remains elusive. Ferroptosis, a cell death form characterized by lipid peroxide, in cancer cells may decrease metastatic colonization. In the present study, we hypothesized that decapping scavenger enzymes (DCPS) impact ferroptosis by regulating mRNA decay during the metastatic colonization of UM cells to liver. We found that inhibition of DCPS by shRNA or RG3039 induced gene transcript alteration and ferroptosis through reducing the mRNA turnover of GLRX. Ferroptosis induced by DCPS inhibition eliminates cancer stem-like cells in UM. Inhibition of DCPS hampered the growth and proliferation both in vitro and in vivo. Furthermore, targeting DCPS diminished hepatic metastasis of UM cells. These findings may shed light on the understanding of DCPS-mediated pre-mRNA metabolic pathway in UM by which disseminated cells gain enhanced malignant features to promote hepatic metastasis, providing a rational target for metastatic colonization in UM.
Collapse
Affiliation(s)
- Bei Jin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Luo Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qianyun Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Qi M, Pang J, Mitsiades I, Lane AA, Rheinbay E. Loss of chromosome Y in primary tumors. Cell 2023; 186:S0092-8674(23)00646-3. [PMID: 37385248 DOI: 10.1016/j.cell.2023.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Certain cancer types afflict female and male patients disproportionately. The reasons include differences in male/female physiology, effect of sex hormones, risk behavior, environmental exposures, and genetics of the sex chromosomes X and Y. Loss of Y (LOY) is common in peripheral blood cells in aging men, and this phenomenon is associated with several diseases. However, the frequency and role of LOY in tumors is little understood. Here, we present a comprehensive catalog of LOY in >5,000 primary tumors from male patients in the TCGA. We show that LOY rates vary by tumor type and provide evidence for LOY being either a passenger or driver event depending on context. LOY in uveal melanoma specifically is associated with age and survival and is an independent predictor of poor outcome. LOY creates common dependencies on DDX3X and EIF1AX in male cell lines, suggesting that LOY generates unique vulnerabilities that could be therapeutically exploited.
Collapse
Affiliation(s)
- Meifang Qi
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Pang
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Irene Mitsiades
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A Lane
- Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Esther Rheinbay
- Massachusetts General Hospital Center for Cancer Research, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Massachusetts General Hospital Department of Pathology, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Li Y, Xiong C, Wu LL, Zhang BY, Wu S, Chen YF, Xu QH, Liao HF. Tumor subtypes and signature model construction based on chromatin regulators for better prediction of prognosis in uveal melanoma. Pathol Oncol Res 2023; 29:1610980. [PMID: 37362244 PMCID: PMC10287976 DOI: 10.3389/pore.2023.1610980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Background: Uveal Melanoma (UM) is the most prevalent primary intraocular malignancy in adults. This study assessed the importance of chromatin regulators (CRs) in UM and developed a model to predict UM prognosis. Methods: Gene expression data and clinical information for UM were obtained from public databases. Samples were typed according to the gene expression of CRs associated with UM prognosis. The prognostic key genes were further screened by the protein interaction network, and the risk model was to predict UM prognosis using the least absolute shrinkage and selection operator (LASSO) regression analysis and performed a test of the risk mode. In addition, we performed gene set variation analysis, tumor microenvironment, and tumor immune analysis between subtypes and risk groups to explore the mechanisms influencing the development of UM. Results: We constructed a signature model consisting of three CRs (RUVBL1, SIRT3, and SMARCD3), which was shown to be accurate, and valid for predicting prognostic outcomes in UM. Higher immune cell infiltration in poor prognostic subtypes and risk groups. The Tumor immune analysis and Tumor Immune Dysfunction and Exclusion (TIDE) score provided a basis for clinical immunotherapy in UM. Conclusion: The risk model has prognostic value for UM survival and provides new insights into the treatment of UM.
Collapse
Affiliation(s)
- Yue Li
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Chao Xiong
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Li Li Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Bo Yuan Zhang
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Sha Wu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Yu Fen Chen
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Qi Hua Xu
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| | - Hong Fei Liao
- School of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi, China
- Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- National Clinical Research Center for Ocular Diseases Jiangxi Province Division, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Guo X, Yu X, Zhang Y, Luo H, Huang R, Zeng Y, Duan C, Chen C. A Novel Glycolysis-Related Signature for Predicting the Prognosis and Immune Infiltration of Uveal Melanoma. Ophthalmic Res 2023; 66:692-705. [PMID: 36858025 DOI: 10.1159/000529818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION As the most common aggressive intraocular cancer in adults, uveal melanoma (UVM) threatens the survival and vision of many people. Glycolysis is a novel hallmark of cancer, but the role of glycolysis-related genes in UVM prognosis remains unknown. The purpose of the study was to establish a glycolysis-related gene signature (GRGS) to predict UVM prognosis. METHODS Raw data were obtained from TCGA-UVM and GSE22138 datasets. The GRGS was established by univariate, LASSO, and multivariate Cox regression analyses. Kaplan-Meier survival and time-dependent receiver operating characteristic curves were used to evaluate the predictive ability of the GRGS. The relationships of the GRGS with infiltrating immune cell levels and mutations were analyzed with CIBERSORT and maftools. RESULTS A novel GRGS (risk score = 0.690861*ISG20 + 0.070991*MET - 0.227520*SDC2 + 0.690223*FBP1 + 0.048008*CLN6 - 0.128520*SDC3) was developed for predicting UVM prognosis. The GRGS had robust predictive stability in UVM. Enrichment annotation suggested that the high-risk group had stronger adaptive immune responses and that the low-risk group had more innate immune cell infiltration. Moreover, BAP1 mutation was related to high risk, and SF3B1 mutation was related to low risk. CONCLUSIONS This study developed and validated a novel GRGS to predict UVM prognosis and immune infiltration. The signature revealed an association between glycolysis-related genes and the tumor microenvironment, providing new insights into the role of glycolysis in UVM.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China,
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuying Zhang
- Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huijuan Luo
- Department of Ophthalmology, The People's Hospital of Yidu, Yichang, China
| | - Rong Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuyang Zeng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoye Duan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changzheng Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Yan C, Hu X, Liu X, Zhao J, Le Z, Feng J, Zhou M, Ma X, Zheng Q, Sun J. Upregulation of SLC12A3 and SLC12A9 Mediated by the HCP5/miR-140-5p Axis Confers Aggressiveness and Unfavorable Prognosis in Uveal Melanoma. J Transl Med 2023; 103:100022. [PMID: 36925204 DOI: 10.1016/j.labinv.2022.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023] Open
Abstract
Perturbation of solute carriers (SLCs) has been implicated in metabolic disorders and cancer, highlighting the potential for drug discovery and therapeutic opportunities. However, there is relatively little exploration of the clinical relevance and potential molecular mechanisms underlying the role of the SLC12 family in uveal melanoma (UVM). Here, we performed an integrative multiomics analysis of the SLC12 family in multicenter UVM datasets and found that high expression of SLC12A3 and SLC12A9 was associated with unfavorable prognosis. Moreover, SLC12A3 and SLC12A9 were highly expressed in UVM in vivo. We experimentally characterized the roles of these proteins in tumorigenesis in vitro and explored their association with the prognosis of UVM. Lastly, we identified the HCP5-miR-140-5p axis as a potential noncoding RNA pathway upstream of SLC12A3 and SLC12A9, which was associated with immunomodulation and may represent a novel predictor for clinical prognosis and responsiveness to checkpoint blockade immunotherapy. These findings may facilitate a better understanding of the SLCome and guide future rationalized development of SLC-targeted therapy and drug discovery for UVM.
Collapse
Affiliation(s)
- Congcong Yan
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaojuan Hu
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Liu
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jingting Zhao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhenmin Le
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiayao Feng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China; Institute of PSI Genomics, Wenzhou, China
| | - Xiaoyin Ma
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Qingxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China.
| | - Jie Sun
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
24
|
Zhu R, Chen YT, Wang BW, You YY, Wang XH, Xie HT, Jiang FG, Zhang MC. TAP1, a potential immune-related prognosis biomarker with functional significance in uveal melanoma. BMC Cancer 2023; 23:146. [PMID: 36774490 PMCID: PMC9921415 DOI: 10.1186/s12885-023-10527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND TAP1 is an immunomodulation-related protein that plays different roles in various malignancies. This study investigated the transcriptional expression profile of TAP1 in uveal melanoma (UVM), revealed its potential biological interaction network, and determined its prognostic value. METHODS CIBERSORT and ESTIMATE bioinformatic methods were used on data sourced from The Cancer Genome Atlas database (TCGA) to determine the correlation between TAP1 expression, UVM prognosis, biological characteristics, and immune infiltration. Gene set enrichment analysis (GSEA) was used to discover the signaling pathways associated with TAP1, while STRING database and CytoHubba were used to construct protein-protein interaction (PPI) and competing endogenous RNA (ceRNA) networks, respectively. An overall survival (OS) prognostic model was constructed to test the predictive efficacy of TAP1, and its effect on the in vitro proliferation activity and metastatic potential of UVM cell line C918 cells was verified by RNA interference. RESULTS There was a clear association between TAP1 expression and UVM patient prognosis. Upregulated TAP1 was strongly associated with a shorter survival time, higher likelihood of metastasis, and higher mortality outcomes. According to GSEA analysis, various immunity-related signaling pathways such as primary immunodeficiency were enriched in the presence of elevated TAP1 expression. A PPI network and a ceRNA network were constructed to show the interactions among mRNAs, miRNAs, and lncRNAs. Furthermore, TAP1 expression showed a significant positive correlation with immunoscore, stromal score, CD8+ T cells, and dendritic cells, whereas the correlation with B cells and neutrophils was negative. The Cox regression model and calibration plots confirmed a strong agreement between the estimated OS and actual observed patient values. In vitro silencing of TAP1 expression in C918 cells significantly inhibited cell proliferation and metastasis. CONCLUSIONS This study is the first to demonstrate that TAP1 expression is positively correlated with clinicopathological factors and poor prognosis in UVM. In vitro experiments also verified that TAP1 is associated with C918 cell proliferation, apoptosis, and metastasis. These results suggest that TAP1 may function as an oncogene, prognostic marker, and importantly, as a novel therapeutic target in patients with UVM.
Collapse
Affiliation(s)
- Ru Zhu
- grid.33199.310000 0004 0368 7223Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yu-Ting Chen
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Bo-Wen Wang
- grid.33199.310000 0004 0368 7223Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Ya-Yan You
- grid.33199.310000 0004 0368 7223Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xing-Hua Wang
- grid.33199.310000 0004 0368 7223Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hua-Tao Xie
- grid.33199.310000 0004 0368 7223Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Fa-Gang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Li CJ, Tsai HW, Chen YL, Wang CI, Lin YH, Chu PM, Chi HC, Huang YC, Chen CY. Cisplatin or Doxorubicin Reduces Cell Viability via the PTPIVA3-JAK2-STAT3 Cascade in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:123-138. [PMID: 36741246 PMCID: PMC9896975 DOI: 10.2147/jhc.s385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) accounts for 80% of all liver cancers and is the 2nd leading cause of cancer-related death in Taiwan. Various factors, including rapid cell growth, a high recurrence rate and drug resistance, make HCC difficult to cure. Moreover, the survival rate of advanced HCC patients treated with systemic chemotherapy remains unsatisfactory. Hence, the identification of novel molecular targets and the underlying mechanisms of chemoresistance in HCC and the development more effective therapeutic regimens are desperately needed. Methods An MTT assay was used to determine the cell viability after cisplatin or doxorubicin treatment. Western blotting, qRT‒PCR and immunohistochemistry were utilized to examine the protein tyrosine phosphatase IVA3 (PTP4A3) level and associated signaling pathways. ELISA was utilized to analyze the levels of the inflammatory cytokine IL-6 influenced by cisplatin, doxorubicin and PTP4A3 silencing. Results In this study, we found that PTP4A3 in the cisplatin/doxorubicin-resistant microarray was closely associated with the overall and recurrence-free survival rates of HCC patients. Cisplatin or doxorubicin significantly reduced cell viability and decreased PTP4A3 expression in hepatoma cells. IL-6 secretion increased with cisplatin or doxorubicin treatment and after PTP4A3 silencing. Furthermore, PTP4A3 was highly expressed in tumor tissues versus adjacent normal tissues from HCC patients. In addition, we evaluated the IL-6-associated signaling pathway involving STAT3 and JAK2, and the levels of p-STAT3, p-JAK2, STAT3 and JAK2 were obviously reduced with cisplatin or doxorubicin treatment in HCC cells using Western blotting and were also decreased after silencing PTP4A3. Collectively, we suggest that cisplatin or doxorubicin decreases HCC cell viability via downregulation of PTP4A3 expression through the IL-6R-JAK2-STAT3 cascade. Discussion Therefore, emerging evidence provides a deep understanding of the roles of PTP4A3 in HCC cisplatin/doxorubicin chemoresistance, which can be applied to develop early diagnosis strategies and reveal prognostic factors to establish novel targeted therapeutics to specifically treat HCC.
Collapse
Affiliation(s)
- Chao-Jen Li
- Department of General & Gastroenterological Surgery, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Ching Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Correspondence: Cheng-Yi Chen, Tel/Fax +886-6-2353535#5329, Email
| |
Collapse
|
26
|
Barbagallo C, Stella M, Broggi G, Russo A, Caltabiano R, Ragusa M. Genetics and RNA Regulation of Uveal Melanoma. Cancers (Basel) 2023; 15:775. [PMID: 36765733 PMCID: PMC9913768 DOI: 10.3390/cancers15030775] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor and the most frequent melanoma not affecting the skin. While the rate of UM occurrence is relatively low, about 50% of patients develop metastasis, primarily to the liver, with lethal outcome despite medical treatment. Notwithstanding that UM etiopathogenesis is still under investigation, a set of known mutations and chromosomal aberrations are associated with its pathogenesis and have a relevant prognostic value. The most frequently mutated genes are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1, with mutually exclusive mutations occurring in GNAQ and GNA11, and almost mutually exclusive ones in BAP1 and SF3B1, and BAP1 and EIF1AX. Among chromosomal aberrations, monosomy of chromosome 3 is the most frequent, followed by gain of chromosome 8q, and full or partial loss of chromosomes 1 and 6. In addition, epigenetic mechanisms regulated by non-coding RNAs (ncRNA), namely microRNAs and long non-coding RNAs, have also been investigated. Several papers investigating the role of ncRNAs in UM have reported that their dysregulated expression affects cancer-related processes in both in vitro and in vivo models. This review will summarize current findings about genetic mutations, chromosomal aberrations, and ncRNA dysregulation establishing UM biology.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia—Section of Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences—Section of Biology and Genetics, University of Catania, 95123 Catania, Italy
| |
Collapse
|
27
|
Aughton K, Sabat-Pośpiech D, Barlow S, Coupland SE, Kalirai H. Investigating the Role of DUSP4 in Uveal Melanoma. Transl Vis Sci Technol 2022; 11:13. [PMID: 36576731 PMCID: PMC9804032 DOI: 10.1167/tvst.11.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Dual-specificity phosphatase 4 (DUSP4) inactivates factors in the mitogen-activated protein kinase (MAPK) signaling cascade, activated in uveal melanoma (UM) by mutations in upstream G-protein α subunits GNAQ/11 in >90% cases. This study examined whether DUSP4 (1) protein expression in primary UM (pUM) was a biomarker of metastatic risk and (2) knockdown sensitized UM cells to therapeutic agents, selumetinib or doxorubicin. Methods DUSP4 mRNA data from The Cancer Genome Atlas and DUSP4 protein expression examined using immunohistochemistry in 28 cases of pUM were evaluated for association with clinical, genetic, and histological features. In vitro cytotoxic drug assays tested the efficacy of selumetinib and doxorubicin in UM cell lines with/without small interfering RNA DUSP4 gene silencing. Results DUSP4 protein expression was observed in 93% of cases, with strong nuclear positivity in 79%. Despite higher DUSP4 messenger RNA levels in disomy 3/wild-type BAP1 UM, there was no significant association of nDUSP4 protein with these metastatic risk predictors or outcome. DUSP4 expression in UM cell lines varied. DUSP4 silencing in Mel202, MP46, and MP41 cells did not affect ERK1/2 or phospho-ERK levels. Despite increased phospho-ERK levels in Mel285, no cell line showed enhanced sensitivity to selumetinib/doxorubicin. Conclusions DUSP4 protein expression is not a biomarker of UM metastatic risk. DUSP4 plays a complex role in oncogenesis, as reported in other cancers, and further work is required to fully understand its functional role in the MAPK pathway. Translational Relevance Understanding the role of phosphatases, such as DUSP4, in the control of intracellular signaling cascades will facilitate our ability to identify successful treatment options.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Barlow
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
28
|
Wang T, Wang Z, Yang J, Chen Y, Min H. Screening and Identification of Key Biomarkers in Metastatic Uveal Melanoma: Evidence from a Bioinformatic Analysis. J Clin Med 2022; 11:jcm11237224. [PMID: 36498797 PMCID: PMC9739237 DOI: 10.3390/jcm11237224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: To identify key biomarkers in the metastasis of uveal melanoma (UM). Methods: The microarray datasets GSE27831 and GSE22138 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified, and functional enrichment analyses were performed. A protein−protein interaction network was constructed, and four algorithms were performed to increase the reliability of hub genes. Biomarker analysis and metastasis-free survival analysis were performed to screen and verify prognostic hub genes. Results: A total of 138 DEGs were identified, consisting of 71 downregulated genes and 67 upregulated genes. Four genes (ROBO1, FMN1, FYN and FXR1) were selected as hub genes. Biomarker analysis and metastasis-free survival analysis showed that ROBO1, FMN1, FYN and FXR1 were factors affecting the metastasis and metastasis-free survival of UM (all p < 0.05). High expression of ROBO1 and low expression of FMN1 were associated with longer metastasis-free survival. Multivariable logistic regression and Cox analyses in GSE 27831 indicated that ROBO1 was an independent factor affecting metastasis and metastasis-free survival of UM (p = 0.010 and p = 0.009), while ROBO1 and FMN1 were independent factors affecting metastasis and metastasis-free survival of UM in GSE22138 (all p < 0.05). Conclusions: ROBO1, FMN1, FYN and FXR1 should be regarded as diagnostic biomarkers for the metastasis of UM, especially ROBO1 and FMN1. High expression of ROBO1 and low expression of FMN1 were associated with longer metastasis-free survival. This study may facilitate the understanding of the molecular mechanisms underlying the metastasis of UM.
Collapse
Affiliation(s)
- Tan Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zixing Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing 100730, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hanyi Min
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: ; Tel.: +86-186-0136-7871; Fax: +86-010-6915-6815
| |
Collapse
|
29
|
Cheng Y, Liu J, Fan H, Liu K, Zou H, You Z. Integrative analyses of a mitophagy-related gene signature for predicting prognosis in patients with uveal melanoma. Front Genet 2022; 13:1050341. [PMID: 36544483 PMCID: PMC9760814 DOI: 10.3389/fgene.2022.1050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
We aimed to create a mitophagy-related risk model via data mining of gene expression profiles to predict prognosis in uveal melanoma (UM) and develop a novel method for improving the prediction of clinical outcomes. Together with clinical information, RNA-seq and microarray data were gathered from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. ConsensusClusterPlus was used to detect mitophagy-related subgroups. The genes involved with mitophagy, and the UM prognosis were discovered using univariate Cox regression analysis. In an outside population, a mitophagy risk sign was constructed and verified using least absolute shrinkage and selection operator (LASSO) regression. Data from both survival studies and receiver operating characteristic (ROC) curve analyses were used to evaluate model performance, a bootstrap method was used test the model. Functional enrichment and immune infiltration were examined. A risk model was developed using six mitophagy-related genes (ATG12, CSNK2B, MTERF3, TOMM5, TOMM40, and TOMM70), and patients with UM were divided into low- and high-risk subgroups. Patients in the high-risk group had a lower chance of living longer than those in the low-risk group (p < 0.001). The ROC test indicated the accuracy of the signature. Moreover, prognostic nomograms and calibration plots, which included mitophagy signals, were produced with high predictive performance, and the risk model was strongly associated with the control of immune infiltration. Furthermore, functional enrichment analysis demonstrated that several mitophagy subtypes may be implicated in cancer, mitochondrial metabolism, and immunological control signaling pathways. The mitophagy-related risk model we developed may be used to anticipate the clinical outcomes of UM and highlight the involvement of mitophagy-related genes as prospective therapeutic options in UM. Furthermore, our study emphasizes the essential role of mitophagy in UM.
Collapse
|
30
|
Quéméner AM, Bachelot L, Aubry M, Avner S, Leclerc D, Salbert G, Cabillic F, Decaudin D, Mari B, Mouriaux F, Galibert MD, Gilot D. Non-canonical miRNA-RNA base-pairing impedes tumor suppressor activity of miR-16. Life Sci Alliance 2022; 5:5/12/e202201643. [PMID: 36202613 PMCID: PMC9553902 DOI: 10.26508/lsa.202201643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
In uveal melanoma tumors, the RNA decay activity of the tumor suppressor miR-16 is impaired by sponge RNAs. These RNAs defined a powerful signature to predict overall survival. Uveal melanoma (UM), the most common primary intraocular tumor in adults, has been extensively characterized by omics technologies during the last 5 yr. Despite the discovery of gene signatures, the molecular actors driving cancer aggressiveness are not fully understood, and UM is still associated with very poor overall survival (OS) at the metastatic stage. By defining the miR-16 interactome, we revealed that miR-16 mainly interacts via non-canonical base-pairing to a subset of RNAs, promoting their expression levels. Consequently, the canonical miR-16 activity, involved in the RNA decay of oncogenes, such as cyclin D3, is impaired. This non-canonical base-pairing can explain both the derepression of miR-16 targets and the promotion of oncogene expression observed in patients with poor OS in two cohorts. miR-16 activity, assessment using our RNA signature, discriminates the patient’s OS as effectively as current methods. To the best of our knowledge, this is the first time that a predictive signature has been composed of genes belonging to the same mechanism (miR-16) in UM. Altogether, our results strongly suggest that UM is a miR-16 disease.
Collapse
Affiliation(s)
- Anaïs M Quéméner
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, Rennes, France
| | - Laura Bachelot
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, Rennes, France
| | - Marc Aubry
- INSERM U1242, University of Rennes, Rennes, France
| | - Stéphane Avner
- SPARTE, University of Rennes, CNRS, IGDR - UMR 6290, Rennes, France
| | - Delphine Leclerc
- INSERM U1242, University of Rennes, Rennes, France.,Service d'Ophtalmologie, CHU de Rennes, Rennes, France
| | - Gilles Salbert
- SPARTE, University of Rennes, CNRS, IGDR - UMR 6290, Rennes, France
| | - Florian Cabillic
- NSERM U1241, Université Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France.,Laboratoire de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France.,Curie, Department of Medical Oncology, PSL Research University, Paris, France
| | - Bernard Mari
- Fédération Hospitalo Universitaire-OncoAge, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Frédéric Mouriaux
- INSERM U1242, University of Rennes, Rennes, France.,Service d'Ophtalmologie, CHU de Rennes, Rennes, France
| | - Marie-Dominique Galibert
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - David Gilot
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et Développement de Rennes (IGDR) - UMR 6290, Rennes, France .,INSERM U1242, University of Rennes, Rennes, France
| |
Collapse
|
31
|
Yang P, Liu H, Li Y, Gao Q, Chen X, Chang J, Li Y, Chen S, Dong R, Wu H, Liu C, Liu G. Overexpression of TCERG1 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis. Front Genet 2022; 13:959832. [PMID: 36299588 PMCID: PMC9589486 DOI: 10.3389/fgene.2022.959832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Transcription elongation factor 1 (TCERG1) is a nuclear protein consisted of multiple protein structural domains that plays an important role in regulating the transcription, extension, and splicing regulation of RNA polymerase II. However, the prognostic and immunological role of TCERG1 in human cancer remains unknown. In this study, we analyzed the expression of TCERG1 gene in hepatocellular carcinoma (HCC) patients, its clinical significance, and its possible prognostic value by bioinformatics. Methods: RNA sequencing data and clinicopathological characteristics of patients with HCC were collected from TCGA and CCLE databases. The Wilcoxon rank-sum test was used to analyze the expression of TCERG1 in HCC tissues and normal tissues. The protein levels of TCERG1 between normal and liver cancer tissues were analyzed by the Human Protein Atlas Database (HPA) (www.proteinatlas.org). Validation was performed using the Gene Expression Omnibus (GEO) dataset of 167 samples. The expression of TCERG1 in HCC cells were verified by qRT-PCR, and CCK-8, scratch assay and Transwell assay were performed to detect cell proliferation, migration and invasion ability. According to the median value of TCERG1 expression, patients were divided into high and low subgroups. Logistic regression, GSEA enrichment, TME, and single-sample set gene enrichment analysis (ssGSEA) were performed to explore the effects of TCERG1 on liver cancer biological function and immune infiltrates. TCERG1 co-expression networks were studied through the CCLE database and the LinkedOmics database to analyze genes that interact with TCERG1. Results: The expression levels of TCERG1 in HCC patient tissues were significantly higher than in normal tissues. Survival analysis showed that high levels of TCERG1 expression were significantly associated with low survival rates in HCC patients. Multifactorial analysis showed that high TCERG1 expression was an independent risk factor affecting tumor prognosis. This result was also verified in the GEO database. Cellular experiments demonstrated that cell proliferation, migration and invasion were inhibited after silencing of TCERG1 gene expression. Co-expression analysis revealed that CPSF6 and MAML1 expression were positively correlated with TCERG1. GSEA showed that in samples with high TCERG1 expression, relevant signaling pathways associated with cell cycle, apoptosis, pathways in cancer and enriched in known tumors included Wnt signaling pathway, Vegf signaling pathway, Notch signaling pathway, MAPK signaling pathway and MTOR pathways. The expression of TCERG1 was positively correlated with tumor immune infiltrating cells (T helper two cells, T helper cells). Conclusion:TCERG1 gene is highly expressed in hepatocellular carcinoma tissues, which is associated with the poor prognosis of liver cancer, and may be one of the markers for the diagnosis and screening of liver cancer and the prediction of prognosis effect. At the same time, TCERG1 may also become a new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Pan Yang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Huaifeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qunwei Gao
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xin Chen
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Junyan Chang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yangyang Li
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Changqing Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Gaofeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
32
|
Xie J, Chen K, Han H, Dong Q, Wang W. Establishment of tumor protein p53 mutation-based prognostic signatures for acute myeloid leukemia. Curr Res Transl Med 2022; 70:103347. [PMID: 35483237 DOI: 10.1016/j.retram.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE The tumor protein p53 gene (TP53) mutations are associated with poor prognosis of patients with acute myeloid leukemia (AML). This study aimed to establish TP53 mutation-based prognostic risk signatures. PATIENTS AND METHODS The transcriptomes and clinical characteristics of AML patients were acquired from The Cancer Genome Atlas database, including 11 TP53-mutant samples and 114 TP53-wildtype samples. Differentially expressed mRNAs and long non-coding RNAs (lncRNA) in TP53-mutant samples were identified. Weighted gene correlation network analysis was performed to generate survival-associated co-expression modules. LASSO regression analysis was conducted to build mRNA- and lncRNA-based prognostic risk signatures. Kaplan-Meier curve analysis and multivariate regression analysis were carried out to assess the prognostic values of the risk signatures. Receiver operating characteristic (ROC) analysis was performed to evaluate the accuracy of the signatures. RESULTS Based on the co-expression modules, a 5-mRNA risk signature and a 13-lncRNA risk signature were constructed to predict the overall survival for AML patients. Kaplan-Meier curves revealed that the high-risk patients had significantly shorter overall survival than the low-risk patients. ROC analysis yielded 1-, 3-, and 5-year AUCs of 0.681, 0.783, and 0.827 for mRNA signature and 0.85, 0.835, and 0.908 for lncRNA signature. Multivariate regression analysis revealed that both mRNA (HR = 1.45, P< 0.001) and lncRNA (HR = 1.19, P< 0.001) risk scores were independent prognostic factors for AML patients. CONCLUSION We provided a potential patients stratification tool for AML prognosis prediction and management, which established by effective TP53 mutation-related gene signatures.
Collapse
Affiliation(s)
- Jinye Xie
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Kang Chen
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Hui Han
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Qian Dong
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China
| | - Weijia Wang
- Department of Clinical Laboratory, Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528403, China.
| |
Collapse
|
33
|
Ren Y, Yan C, Wu L, Zhao J, Chen M, Zhou M, Wang X, Liu T, Yi Q, Sun J. iUMRG: multi-layered network-guided propagation modeling for the inference of susceptibility genes and potential drugs against uveal melanoma. NPJ Syst Biol Appl 2022; 8:18. [PMID: 35610253 PMCID: PMC9130324 DOI: 10.1038/s41540-022-00227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor. The use of precision medicine for UM to enable personalized diagnosis, prognosis, and treatment require the development of computer-aided strategies and predictive tools that can identify novel high-confidence susceptibility genes (HSGs) and potential therapeutic drugs. In the present study, a computational framework via propagation modeling on integrated multi-layered molecular networks (abbreviated as iUMRG) was proposed for the systematic inference of HSGs in UM. Under the leave-one-out cross-validation experiments, the iUMRG achieved superior predictive performance and yielded a higher area under the receiver operating characteristic curve value (0.8825) for experimentally verified SGs. In addition, using the experimentally verified SGs as seeds, genome-wide screening was performed to detect candidate HSGs using the iUMRG. Multi-perspective validation analysis indicated that most of the top 50 candidate HSGs were indeed markedly associated with UM carcinogenesis, progression, and outcome. Finally, drug repositioning experiments performed on the HSGs revealed 17 potential targets and 10 potential drugs, of which six have been approved for UM treatment. In conclusion, the proposed iUMRG is an effective supplementary tool in UM precision medicine, which may assist the development of new medical therapies and discover new SGs.
Collapse
Affiliation(s)
- Yueping Ren
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Congcong Yan
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Lili Wu
- Tibet Medical College, Beijing University of Chinese Medicine, Tibet, 850010, P. R. China
| | - Jingting Zhao
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Mingwei Chen
- Department of Human Anatomy, Harbin Medical University, Harbin, 150081, P. R. China
| | - Meng Zhou
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Xiaoyan Wang
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315042, P. R. China
| | - Tonghua Liu
- Tibet Medical College, Beijing University of Chinese Medicine, Tibet, 850010, P. R. China.
| | - Quanyong Yi
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315042, P. R. China.
| | - Jie Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China.
| |
Collapse
|
34
|
Shi K, Li X, Zhang J, Sun X. Development and Validation of a Novel Metabolic Signature-Based Prognostic Model for Uveal Melanoma. Transl Vis Sci Technol 2022; 11:9. [PMID: 35536719 PMCID: PMC9100464 DOI: 10.1167/tvst.11.5.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Uveal melanoma (UM) is the most common primary malignant tumor with poor prognosis. The role of metabolism-related genes in the prognosis of UM remains unrevealed. This study aimed to establish and validate a prognostic prediction model for UM based on metabolism-related genes. Methods Gene expression profiles and clinicopathological information were downloaded from The Cancer Genome Atlas, and the Gene Expression Omnibus database. Univariable Cox regression, least absolute shrinkage and selection operator Cox regression, and stepwise regression were performed to establish the model. Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curve analysis, and calibration and discrimination analyses were used to evaluate the prognostic model. Results Three metabolism-related genes, carbonic anhydrase 12, acyl-CoA synthetase long-chain family member 3, and synaptojanin 2, and three clinicopathological parameters (i.e., age, gender, and metastasis staging) were identified to establish the model. The risk score was found to be an independent prognostic factor for UM survival. High-risk patients demonstrated significantly poorer prognosis than low-risk patients. ROC analysis suggested the promising prognostic efficiency of the model. The calibration curve manifested satisfactory agreement between the predicted and observed risk. A nomogram and online survival calculator were developed to predict the survival probability. Conclusions The novel metabolism-based prognostic model could accurately predict the prognosis of UM patients, which facilitates the prediction of the survival probability by both ophthalmologists and patients with the online dynamic nomogram. Translational Relevance The dynamic nomogram links gene expression profiles to clinical prognosis of UM and is useful to evaluate the survival probability.
Collapse
Affiliation(s)
- Ke Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xinxin Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
35
|
Gallenga CE, Franco E, Adamo GG, Violanti SS, Tassinari P, Tognon M, Perri P. Genetic Basis and Molecular Mechanisms of Uveal Melanoma Metastasis: A Focus on Prognosis. Front Oncol 2022; 12:828112. [PMID: 35480119 PMCID: PMC9037634 DOI: 10.3389/fonc.2022.828112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Uveal melanoma (UM) is the most frequently found primary intraocular tumor, although it accounts for only 5% of all melanomas. Despite novel systemic therapies, patient survival has remained poor. Indeed, almost half of UM patients develop metastases from micro-metastases which were undetectable at diagnosis. Genetic analysis is crucial for metastatic risk prediction, as well as for patient management and follow-up. Several prognostic parameters have been explored, including tumor location, basal dimension and thickness, histopathologic cell type, vascular mimicry patterns, and infiltrating lymphocytes. Herein, the Authors review the available literature concerning cytogenetic prognostic markers and biochemical pathways correlated to UM metastasis development.
Collapse
Affiliation(s)
| | - Elena Franco
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Ginevra Giovanna Adamo
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, Ferrara, Italy
| | - Sara Silvia Violanti
- Department of Head and Neck, Section of Ophthalmology, San Paolo Hospital, Savona, Italy
| | - Paolo Tassinari
- Department of Specialized Surgery, Section of Ophthalmology, Sant’Anna University Hospital, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Perri
- Department of Neuroscience and Rehabilitation, Section of Ophthalmology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
36
|
Meng Z, Chen Y, Wu W, Yan B, Zhang L, Chen H, Meng Y, Liang Y, Yao X, Luo J. PRRX1 Is a Novel Prognostic Biomarker and Facilitates Tumor Progression Through Epithelial–Mesenchymal Transition in Uveal Melanoma. Front Immunol 2022; 13:754645. [PMID: 35281030 PMCID: PMC8914230 DOI: 10.3389/fimmu.2022.754645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. UM develops and is sustained by inflammation and immunosuppression from the tumor microenvironment (TME). This study sought to identify a reliable TME-related biomarker that could provide survival prediction and new insight into therapy for UM patients. Based on clinical characteristics and the RNA-seq transcriptome data of 80 samples from The Cancer Genome Atlas (TCGA) database, PRRX1 as a TME- and prognosis-related gene was identified using the ESTIMATE algorithm and the LASSO–Cox regression model. A prognostic model based on PRRX1 was constructed and validated with a Gene Expression Omnibus (GEO) dataset of 63 samples. High PRRX1 expression was associated with poorer overall survival (OS) and metastasis-free survival (MFS) in UM patients. Comprehensive results of the prognostic analysis showed that PRRX1 was an independent and reliable predictor of UM. Then the results of immunological characteristics demonstrated that higher expression of PRRX1 was accompanied by higher expression of immune checkpoint genes, lower tumor mutation burden (TMB), and greater tumor cell infiltration into the TME. Gene set enrichment analysis (GSEA) showed that high PRRX1 expression correlated with angiogenesis, epithelial–mesenchymal transition (EMT), and inflammation. Furthermore, downregulation of PRRX1 weakened the process of EMT, reduced cell invasion and migration of human UM cell line MuM-2B in vitro. Taken together, these findings indicated that increased PRRX1 expression is independently a prognostic factor of poorer OS and MFS in patients with UM, and that PRRX1 promotes malignant progression of UM by facilitating EMT, suggesting that PRRX1 may be a potential target for UM therapy.
Collapse
Affiliation(s)
- Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongan Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Youling Liang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Yao
- Shenzhen College of International Education, Shenzhen, China
| | - Jing Luo
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jing Luo,
| |
Collapse
|
37
|
Ge Z, Gu T, Zhang L, Fan Q, Ma L, Fang N. The phosphatase of regenerating liver-3 protein(PRL-3)promotes glioma cell invasiveness by interacting with β3 -tubulin. Bioengineered 2022; 13:4112-4121. [PMID: 35098869 PMCID: PMC8973939 DOI: 10.1080/21655979.2021.2001220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PRL-3 is a tyrosine phosphatase linked with tumor metastasis. It is detected high expression in different kinds of cancers, including colorectal, gastric, ovarian, and liver cancer. Its high expression is positively correlated with the progression of tumors and negatively with survivals of patients. However, the detailed mechanism underlying PRL-3 in tumor metastasis still remains unclear. In the present study, we found that PRL-3 is able to bind to β3-tubulin in pull-down and co-immunoprecipitation assays. Furthermore, overexpression of PRL-3 dephosphorylated β3-tubulin, a component of cytoskeleton, which plays critical role in cell shape formation and migration. Using cell wound healing and matrigel invasion assays, we found that PRL-3 could promote the migration and invasion of glioma cells. Taken together, our study revealed that PRL-3 may be involved in migration and invasion of glioma by dephosphorylating β3-tubulin. It is tempting to speculate that dephosphorylation of β3-tubulin by PRL-3 results in assembly of the cytoskeleton and facilitates cell migration and/or tumor metastasis.
Collapse
Affiliation(s)
- Zhenying Ge
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science & Technology Bureau, Kaifeng, China
| | - Tingxuan Gu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, China
| | - Lingge Zhang
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science & Technology Bureau, Kaifeng, China
| | - Qingfang Fan
- Xinxiang Central Hospital, No.56, Jinsui Road, Xinxiang, China
| | - Li Ma
- Department of Infectious Diseases, Henan Provincial People's Hospital, Henan University, Zhengzhou China
| | - Na Fang
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng Science & Technology Bureau, Kaifeng, China
| |
Collapse
|
38
|
Zhao J, Yi Q, Li K, Chen L, Dai L, Feng J, Li Y, Zhou M, Sun J. A multi-omics deep learning model for hypoxia phenotype to predict tumor aggressiveness and prognosis in uveal melanoma for rationalized hypoxia-targeted therapy. Comput Struct Biotechnol J 2022; 20:3182-3194. [PMID: 35782742 PMCID: PMC9232399 DOI: 10.1016/j.csbj.2022.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Uveal melanoma (UM) represents the most common primary intraocular malignancy in adults and is characterized by aggressive behaviors and a lack of targeted therapies. Hypoxia-targeted therapy has become a promising new therapeutic strategy in tumors. Therefore, a better understanding of the tumor hypoxia microenvironment is critical to improve the treatment efficacy of UM. In this study, we conducted an extensive multi-omics analysis to explore the heterogeneity and prognostic significance of the hypoxia microenvironment. We found that UM revealed the most significant degree of intertumoral heterogeneity in hypoxia by quantifying tumor hypoxia compared with other solid tumor types. Then we systematically correlated the hypoxia phenotypes with clinicopathological features and found that hypoxic UM tumors were associated with an increased risk of metastasis, more aggressive phenotypes, and unfavorable clinical outcomes. Integrative multi-omics analyses identified multidimensional molecular alterations related to hypoxia phenotypes, including elevated genome instability, co-occurring of 8q arm gains and loss of chromosome 3, and BAP1 mutations. Furthermore, hypoxic UM tumors could be characterized by increased CD8+ T cell infiltration and decreased naïve B cell and dysregulated metabolic pathways. Finally, we introduced DNN2HM, an interpretable deep neural network model to decode hypoxia phenotypes from multi-omics data. We showed that the DNN2HM improves hypoxia phenotype prediction and robustly predicts tumor aggressiveness and prognosis in different multi-center datasets. In conclusion, our study provides novel insight into UM tumor microenvironment, which may have clinical implications for future rationalized hypoxia-targeted therapy.
Collapse
|
39
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
40
|
Mo Q, Wan L, Schell MJ, Jim H, Tworoger SS, Peng G. Integrative Analysis Identifies Multi-Omics Signatures That Drive Molecular Classification of Uveal Melanoma. Cancers (Basel) 2021; 13:6168. [PMID: 34944787 PMCID: PMC8699355 DOI: 10.3390/cancers13246168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 01/21/2023] Open
Abstract
By iCluster analysis, we found that the integrative molecular classification of the UM was primarily driven by DNA copy number variation on chromosomes 3, 6 and 8, differential methylation and expression of genes involved in the immune system, cell morphogenesis, movement and migration, and differential mutation of genes including GNA11, BAP1, EIF1AX, SF3B1 and GNAQ. Integrative analysis revealed that pathways including IL6/JAK/STAT3 signaling, angiogenesis, allograft rejection, inflammatory response and interferon gamma response were hypomethylated and up-regulated in the M3 iSubtype, which was associated with a worse overall survival, compared to the D3 iSubtype. Using two independent gene expression datasets, we demonstrated that the subtype-driving genes had an excellent prognostic power in classifying UM into high- or low-risk groups for metastasis. Integrative analysis of UM multi-omics data provided a comprehensive view of UM biology for understanding the underlying mechanism leading to UM metastasis. The concordant molecular alterations at multi-omics levels revealed by our integrative analysis could be used for patient stratification towards personalized management and surveillance.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Michael J. Schell
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Heather Jim
- Department of Health Outcomes & Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
41
|
Chai P, Jia R, Li Y, Zhou C, Gu X, Yang L, Shi H, Tian H, Lin H, Yu J, Zhuang A, Ge S, Jia R, Fan X. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma. Prog Retin Eye Res 2021; 89:101030. [PMID: 34861419 DOI: 10.1016/j.preteyeres.2021.101030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ruobing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hanhan Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, PR China.
| |
Collapse
|
42
|
Yang F, Sun S, Yang F. Prognostic and Predicted Significance of FENDRR in Colon and Rectum Adenocarcinoma. Front Oncol 2021; 11:668595. [PMID: 34621665 PMCID: PMC8490734 DOI: 10.3389/fonc.2021.668595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background The role of fetal-lethal non-coding developmental regulatory RNA (FENDRR) has been explored in various cancers; however, its relationship with colon adenocarcinoma/rectum adenocarcinoma (COAD/READ) remains unclear. The objectives of this study were to identify and assess any associations between FENDRR and COAD/READ using The Cancer Genome Atlas (TCGA) database and the Genetic Data Commons (GDC) Data Portal. Methods The records of patients with COAD/READ were collected from the GDC Data Portal. After comparing the expression level of FENDRR in COAD/READ and healthy tissues, we evaluated the association of FENDRR with clinicopathological characters and the survival rate, the impact of FENDRR on prognosis, the biological function of FENDRR, and the relative abundance of tumor-infiltrating immune cells in patients with COAD/READ. Moreover, we aimed to construct a protein-protein interaction (PPI) network for selecting genes and a ceRNA network for presenting mRNA-miRNA-lncRNA interactions. Results In patients with COAD/READ, FENDRR expression could differentiate tumor tissues from the adjacent healthy tissues since it was significantly lower in the former than in the latter. High FENDRR expression was correlated with poorer survival and higher tumor stage, current tumor stage, and metastasis stage, and also exhibited high scores for apoptosis, autophagy, and senescence. Immune cell infiltration analysis showed that the high expression group had significantly lower immune and stromal scores. Low FENDRR expression was correlated with poor overall survival (OS), and thus, it could serve as an independent risk factor. The prognostic models constructed in the study performed well for the prediction of OS and disease-specific survival (DFS) using FENDRR expression. Gene set enrichment analysis revealed that vascular smooth muscle contraction, melanogenesis, basal cell carcinoma, and Hedgehog signaling pathways were significantly enriched in patients with high FENDRR expression. Eight hub genes, namely, PKM, ALDOA, PFKP, ALDOC, PYGL, CTNNB1, PSMA5, and WNT5A, were selected from the PPI network, and a ceRNA network was constructed based on the differentially expressed mRNAs, miRNAs, and lncRNAs to illustrate their regulatory relationships. Conclusion FENDRR may serve as a potential biomarker for the diagnosis and prognosis of COAD/READ.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Fei Yang
- Department of Gastroenterology, Sheng Jing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Shi X, Xia S, Chu Y, Yang N, Zheng J, Chen Q, Fen Z, Jiang Y, Fang S, Lin J. CARD11 is a prognostic biomarker and correlated with immune infiltrates in uveal melanoma. PLoS One 2021; 16:e0255293. [PMID: 34370778 PMCID: PMC8351993 DOI: 10.1371/journal.pone.0255293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Uveal melanoma (UVM), the most common primary intraocular malignancy, has a high mortality because of a high propensity to metastasize. Our study analyzed prognostic value and immune-related characteristics of CARD11 in UVM, hoping to provide a potential management and research direction. The RNA-sequence data of 80 UVM patients were downloaded from The Cancer Genome Atlas database and divided them into high- and low-expression groups. We analyzed the differentially expressed genes, enrichment analyses and the infiltration of immune cells using the R package and Gene-Set Enrichment Analysis. A clinical prediction nomogram and protein-protein interaction network were constructed and the first 8 genes were considered as the hub-genes. Finally, we constructed a competing endogenous RNA (ceRNA) network by Cytoscape and analyzed the statistical data via the R software. Here we found that CARD11 expression had notable correlation with UVM clinicopathological features, which was also an independent predictor for overall survival (OS). Intriguingly, CARD11 had a positively correlation to autophagy, cellular senescence and apoptosis. Infiltration of monocytes was significantly higher in low CARD11 expression group, and infiltration of T cells regulatory was lower in the same group. Functional enrichment analyses revealed that CARD11 was positively related to T cell activation pathways and cell adhesion molecules. The expressions of hub-genes were all increased in the high CARD11 expression group and the ceRNA network showed the interaction among mRNA, miRNA and lncRNA. These findings show that high CARD11 expression in UVM is associated with poor OS, indicating that CARD11 may serve as a potential biomarker for the diagnosis and prognosis of the UVM.
Collapse
Affiliation(s)
- Xueying Shi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yingming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing, China
| | - Nan Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyuan Zheng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Qianyi Chen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Zeng Fen
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Yuankuan Jiang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shifeng Fang
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingrong Lin
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
44
|
Kaluz S, Zhang Q, Kuranaga Y, Yang H, Osuka S, Bhattacharya D, Devi NS, Mun J, Wang W, Zhang R, Goodman MM, Grossniklaus HE, Van Meir EG. Targeting HIF-activated collagen prolyl 4-hydroxylase expression disrupts collagen deposition and blocks primary and metastatic uveal melanoma growth. Oncogene 2021; 40:5182-5191. [PMID: 34218269 PMCID: PMC8887959 DOI: 10.1038/s41388-021-01919-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy in adults, and patients that develop metastases (~50%) survive <1 year, highlighting the urgent need for new therapies. TCGA has recently revealed that a hypoxia gene signature is associated with poor UM patient prognosis. Here we show that expression of hypoxia-regulated collagen prolyl-4-hydroxylase genes P4HA1 and P4HA2 is significantly upregulated in UM patients with metastatic disease and correlates with poor prognosis, suggesting these enzymes might be key tumor drivers. We targeted hypoxia-induced expression of P4HA1/2 in UM with KCN1, a hypoxia inducible factor-1 (HIF-1) pathway inhibitor and found potent inhibition of primary and metastatic disease and extension of animal survival, without overt side effects. At the molecular level, KCN1 antagonized hypoxia-induced expression of P4HA1 and P4HA2, which regulate collagen maturation and deposition in the extracellular matrix. The treatment decreased prolyl hydroxylation, induced proteolytic cleavage and rendered a disordered structure to collagen VI, the main collagen produced by UM, and reduced UM cell invasion. Together, these data demonstrate that extracellular collagen matrix formation can be targeted in UM by inhibiting hypoxia-induced P4HA1 and P4HA2 expression, warranting further development of this strategy in patients with uveal melanoma.
Collapse
Affiliation(s)
- Stefan Kaluz
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Qing Zhang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuki Kuranaga
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Satoru Osuka
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Narra S Devi
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
- Drug Discovery Institute, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
- Drug Discovery Institute, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Mark M Goodman
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Hans E Grossniklaus
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
- Department of Pathology, Emory University, Atlanta, GA, USA.
| | - Erwin G Van Meir
- Department of Neurosurgery, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
45
|
Proteomics of Primary Uveal Melanoma: Insights into Metastasis and Protein Biomarkers. Cancers (Basel) 2021; 13:cancers13143520. [PMID: 34298739 PMCID: PMC8307952 DOI: 10.3390/cancers13143520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Uveal melanoma metastases are lethal and remain incurable. A quantitative proteomic analysis of 53 metastasizing and 47 non-metastasizing primary uveal melanoma (pUM) was pursued for insights into UM metastasis and protein biomarkers. The metastatic status of the pUM specimens was defined based on clinical data, survival histories, prognostic analyses, and liver histopathology. LC MS/MS iTRAQ technology, the Mascot search engine, and the UniProt human database were used to identify and quantify pUM proteins relative to the normal choroid excised from UM donor eyes. The determined proteomes of all 100 tumors were very similar, encompassing a total of 3935 pUM proteins. Proteins differentially expressed (DE) between metastasizing and non-metastasizing pUM (n = 402) were employed in bioinformatic analyses that predicted significant differences in the immune system between metastasizing and non-metastasizing pUM. The immune proteins (n = 778) identified in this study support the immune-suppressive nature and low abundance of immune checkpoint regulators in pUM, and suggest CDH1, HLA-DPA1, and several DE immune kinases and phosphatases as possible candidates for immune therapy checkpoint blockade. Prediction modeling identified 32 proteins capable of predicting metastasizing versus non-metastasizing pUM with 93% discriminatory accuracy, supporting the potential for protein-based prognostic methods for detecting UM metastasis.
Collapse
|
46
|
Bioinformatic Analysis Reveals Central Role for Tumor-Infiltrating Immune Cells in Uveal Melanoma Progression. J Immunol Res 2021; 2021:9920234. [PMID: 34195299 PMCID: PMC8214507 DOI: 10.1155/2021/9920234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating immune cells are capable of effective cancer surveillance, and their abundance is linked to better prognosis in numerous tumor types. However, in uveal melanoma (UM), extensive immune infiltrate is associated with poor survival. This study aims to decipher the role of different tumor-infiltrating cell subsets in UM in order to identify potential targets for future immunotherapeutic treatment. We have chosen the TCGA-UVM cohort as a training dataset and GSE22138 as a testing dataset by mining publicly available databases. The abundance of 22 immune cell types was estimated using CIBERSORTx. Then, to determine the significance of tumor-infiltrating cell subsets in UM, we built a multicell type prognostic signature, which was validated in the testing cohort. The created signature was built upon the negative prognostic role of CD8+ T cells and M0 macrophages and the positive role of neutrophils. Based on the created signature score, we divided the patients into low- and high-risk groups. Kaplan-Meier, Cox, and ROC analyses demonstrated superior performance of our risk score compared to either clinical or pathologic characteristics of both cohorts. Further, we found the molecular pathways associated with cancer immunoevasion and metastasis to be enriched in the high-risk group, explaining both the lack of adequate immune surveillance despite increased infiltration of CD8+ T cells as well as the higher metastatic potential. Genes associated with tryptophan metabolism (IDO1 and KYNU) and metalloproteinases were among the most differentially expressed between the high- and low-risk groups. Our correlation analyses interpreted in context of published in vitro data strongly suggest the central role of CD8+ T cells in shifting the UM tumor microenvironment towards suppressive and metastasis-promoting. Therefore, we propose further investigations of IDO1 and metalloproteinases as novel targets for immunotherapy in lymphocyte-rich metastatic UM patients.
Collapse
|
47
|
Sun Y, Wu J, Yuan Y, Lu Y, Luo M, Lin L, Ma S. Construction of a Promising Tumor-Infiltrating CD8+ T Cells Gene Signature to Improve Prediction of the Prognosis and Immune Response of Uveal Melanoma. Front Cell Dev Biol 2021; 9:673838. [PMID: 34124058 PMCID: PMC8194278 DOI: 10.3389/fcell.2021.673838] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
Background CD8+ T cells work as a key effector of adaptive immunity and are closely associated with immune response for killing tumor cells. It is crucial to understand the role of tumor-infiltrating CD8+ T cells in uveal melanoma (UM) to predict the prognosis and response to immunotherapy. Materials and Methods Single-cell transcriptomes of UM with immune-related genes were combined to screen the CD8+ T-cell-associated immune-related genes (CDIRGs) for subsequent analysis. Next, a prognostic gene signature referred to tumor-infiltrating CD8+ T cells was constructed and validated in several UM bulk RNA sequencing datasets. The risk score of UM patients was calculated and classified into high- or low-risk subgroup. The prognostic value of risk score was estimated by using multivariate Cox analysis and Kaplan–Meier survival analysis. Moreover, the potential ability of gene signature for predicting immunotherapy response was further explored. Results In total, 202 CDIRGs were screened out from the single-cell RNA sequencing of GSE139829. Next, a gene signature containing three CDIRGs (IFNGR1, ANXA6, and TANK) was identified, which was considered as an independent prognostic indicator to robustly predict overall survival (OS) and metastasis-free survival (MFS) of UM. In addition, the UM patients were classified into high- and low-risk subgroups with different clinical characteristics, distinct CD8+ T-cell immune infiltration, and immunotherapy response. Gene set enrichment analysis (GSEA) showed that immune pathways such as allograft rejection, inflammatory response, interferon alpha and gamma response, and antigen processing and presentation were all positively activated in low-risk phenotype. Conclusion Our work gives an inspiration to explain the limited response for the current immune checkpoint inhibitors to UM. Besides, we constructed a novel gene signature to predict prognosis and immunotherapy responses, which may be regarded as a promising therapeutic target.
Collapse
Affiliation(s)
- Yifang Sun
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jian Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yonggang Yuan
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yumin Lu
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ming Luo
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ling Lin
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Shengsheng Ma
- Department of Ophthalmology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Zhang Z, Su J, Li L, Du W. Identification of Precise Therapeutic Targets and Characteristic Prognostic Genes Based on Immune Gene Characteristics in Uveal Melanoma. Front Cell Dev Biol 2021; 9:666462. [PMID: 34124047 PMCID: PMC8187912 DOI: 10.3389/fcell.2021.666462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment is an important factor for the immunotherapy of tumor patients. The sequenced transcriptome data can be used to describe the tumor microenvironment and various immune subtypes. We exploited published data on patients with uveal melanoma (UVM) to identify immune subtypes. Based on the immune-related gene sets of 80 patients with UVM in the TCGA database, we used consensus clustering to identify two immune subgroups. In the two immune subtypes, we analyzed clinical characteristics and immune infiltration. Class1 has low immune infiltration, contains memory B cells, Th2 cells, Th17 cells, eosinophils, natural killer cells, and has a better prognosis. Class2 has higher immune infiltration. CD8+ T cells, Th1 cells, MDSCs, and Dendritic cells are enriched in class2, which has strong cytolytic activity, high expression of immune checkpoint genes, and poor outcome. Moreover, we have developed and verified an immune characteristic model that can predict the prognosis of patients well. Through this model, we screened prostaglandin-endoperoxide synthase 2 (PTGS2) as the therapeutic target of UVM. Treatment of choroidal melanoma cell line (OCM1) cells with celecoxib (an inhibitor of PTGS2) effectively inhibits cell growth, proliferation, and promotes apoptosis. Our results show the immunological heterogeneity of UVM patients and also provide an ideal therapeutic target for the future treatment design of patients.
Collapse
Affiliation(s)
| | | | - Li Li
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Zhu R, Tu Y, Chang J, Xu H, Li JC, Liu W, Do AD, Zhang Y, Wang J, Li B. The Orphan Nuclear Receptor Gene NR0B2 Is a Favorite Prognosis Factor Modulated by Multiple Cellular Signal Pathways in Human Liver Cancers. Front Oncol 2021; 11:691199. [PMID: 34055653 PMCID: PMC8162207 DOI: 10.3389/fonc.2021.691199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liver cancer is a leading cause of cancer death worldwide, and novel prognostic factor is needed for early detection and therapeutic responsiveness monitoring. The orphan nuclear receptor NR0B2 was reported to suppress liver cancer development in a mouse model, and its expression levels were reduced in liver cancer tissues and cell lines due to hypermethylation within its promoter region. However, it is not clear if NR0B2 expression is associated with cancer survival or disease progression and how NR0B2 gene expression is regulated at the molecular level. METHODS Multiple cancer databases were utilized to explore NR0B2 gene expression profiles crossing a variety of human cancers, including liver cancers, on several publicly assessable bioinformatics platforms. NR0B2 gene expression with or without kinase inhibitor treatment was analyzed using the qPCR technique, and NR0B2 protein expression was assessed in western blot assays. Two human hepatocellular carcinoma cell lines HepG2 and Huh7, were used in these experiments. NR0B2 gene activation was evaluated using NR0B2 promoter-driven luciferase reporter assays. RESULTS NR0B2 gene is predominantly expressed in liver tissue crossing human major organs or tissues, but it is significantly downregulated in liver cancers. NR0B2 expression is mostly downregulated in most common cancers but also upregulated in a few intestinal cancers. NR0B2 gene expression significantly correlated with patient overall survival status in multiple human malignancies, including lung, kidney, breast, urinary bladder, thyroid, colon, and head-neck cancers, as well as liposarcoma and B-cell lymphoma. In liver cancer patients, higher NR0B2 expression is associated with favorite relapse-free and progression-free survival, especially in Asian male patients with viral infection history. In addition, NR0B2 expression negatively correlated with immune infiltration and PIK3CA and PIK3CG gene expression in liver cancer tissues. In HepG2 and Huh7 cells, NR0B2 expression at the transcription level was drastically reduced after MAPK inhibition but was significantly enhanced after PI3K inhibition. CONCLUSION NR0B2 gene expression is altered mainly in most human malignancies and significantly reduced in liver cancers. NR0B2 is a prognosis factor for patient survival in liver cancers. MAPK and PI3K oppositely modulate NR0B2 expression, and NR0B2 gene upregulation might serve as a therapeutic responsiveness factor in anti-PI3K therapy for liver cancer.
Collapse
Affiliation(s)
- Runzhi Zhu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China,Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| | - Yanjie Tu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jingxia Chang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Haixia Xu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jean C. Li
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Ahn-Dao Do
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Jinhu Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,Zhejiang University Cancer Center, Hangzhou, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Runzhi Zhu, ; Benyi Li,
| |
Collapse
|
50
|
Cui Y, Zheng M, Chen J, Xu N. Autophagy-Related Long Non-coding RNA Signature as Indicators for the Prognosis of Uveal Melanoma. Front Genet 2021; 12:625583. [PMID: 33868366 PMCID: PMC8047156 DOI: 10.3389/fgene.2021.625583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop an autophagy-associated long non-coding RNA (lncRNA) signature to predict the prognostic outcomes of uveal melanoma (UM). The data of UM from The Cancer Genome Atlas (TCGA) were enrolled to obtain differentially expressed genes (DEGs) between metastasizing and non-metastasizing UM patients. A total of 13 differentially expressed autophagy genes were identified and validated in Gene Expression Omnibus, and 11 autophagy-related lncRNAs were found to be associated with overall survival. Through performing least absolute shrinkage and selection operator regression analyses, a six-autophagy-related lncRNA signature was built, and its efficacy was confirmed by receiver-operating characteristic, Kaplan–Meier analysis, and univariate and multivariate Cox regression analyses. A comprehensive nomogram was established and its clinical net benefit was validated by decision curve analysis. GSEA revealed that several biological processes and signaling pathways including Toll-like receptor signaling pathway, natural killer cell-mediated cytotoxicity, and B- and T-cell receptor signaling pathway were enriched in the high-risk group. CIBERSORT results showed that the signature was related to the immune response especially HLA expression. This signature could be deployed to assist clinicians to identify high-risk UM patients and help scientists to explore the molecular mechanism of autophagy-related lncRNAs in UM pathogenesis.
Collapse
Affiliation(s)
- Yi Cui
- Department of Ophthalmology, Fujian Medical University Union Hospital, Union Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Mi Zheng
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jing Chen
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Nuo Xu
- Department of Ophthalmology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|