1
|
Shanmugam R, Majee P, Shi W, Ozturk MB, Vaiyapuri TS, Idzham K, Raju A, Shin SH, Fidan K, Low JL, Chua JY, Kong YC, Qi OY, Tan E, Chok AY, Seow-En I, Wee I, Macalinao DC, Chong DQ, Chang HY, Lee F, Leow WQ, Murata-Hori M, Xiaoqian Z, Shumei C, Tan CS, Dasgupta R, Tan IB, Tergaonkar V. Iron-(Fe3+)-Dependent Reactivation of Telomerase Drives Colorectal Cancers. Cancer Discov 2024; 14:1940-1963. [PMID: 38885349 PMCID: PMC11450372 DOI: 10.1158/2159-8290.cd-23-1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with an increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by reactivating the dormant human telomerase reverse transcriptase (hTERT) subunit of the telomerase holoenzyme in an iron-(Fe3+)-dependent manner and thereby drives colorectal cancers. Chemical genetic screens combined with isothermal dose-response fingerprinting and mass spectrometry identified a small molecule SP2509 that specifically inhibits Pirin-mediated hTERT reactivation in colorectal cancers by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat and increased incidence of colorectal cancers. Small molecules like SP2509 represent a novel modality to target telomerase that acts as a driver of 90% of human cancers and is yet to be targeted in clinic. Significance: We show how iron-(Fe3+) in collusion with genetic factors reactivates telomerase, providing a molecular mechanism for the association between iron overload and increased incidence of colorectal cancers. Although no enzymatic inhibitors of telomerase have entered the clinic, we identify SP2509, a small molecule that targets telomerase reactivation and function in colorectal cancers.
Collapse
Affiliation(s)
- Raghuvaran Shanmugam
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Prativa Majee
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Wei Shi
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Mert B. Ozturk
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Thamil S. Vaiyapuri
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Khaireen Idzham
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Anandhkumar Raju
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Seung H. Shin
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Kerem Fidan
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Joo-Leng Low
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Joelle Y.H. Chua
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Yap C. Kong
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Ong Y. Qi
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| | - Emile Tan
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Aik Y. Chok
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Isaac Seow-En
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Ian Wee
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Dominique C. Macalinao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Dawn Q. Chong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| | - Hong Y. Chang
- Experimental Drug Development Center, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Fiona Lee
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Wei Q. Leow
- Department of Colorectal Surgery, Singapore General Hospital, Singapore, Republic of Singapore.
| | - Maki Murata-Hori
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Zhang Xiaoqian
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chia Shumei
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Chris S.H. Tan
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.
| | - Ramanuj Dasgupta
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
| | - Iain B. Tan
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Republic of Singapore.
- Cancer and Stem Cell Biology, Duke-National University of Singapore, Singapore, Republic of Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Sun P, Gu KJ, Zheng G, Sikora AG, Li C, Zafereo M, Wei P, Wu J, Shete S, Liu J, Li G. Genetic variations associated with telomere length predict the risk of recurrence of non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1722-1737. [PMID: 38837510 DOI: 10.1002/mc.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle J Gu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chao Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Pangrácová M, Křivánek J, Vrchotová M, Sehadová H, Hadravová R, Hanus R, Lukšan O. Extended longevity of termite kings and queens is accompanied by extranuclear localization of telomerase in somatic organs and caste-specific expression of its isoforms. INSECT SCIENCE 2024. [PMID: 39034424 DOI: 10.1111/1744-7917.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Kings and queens of termites are endowed with an extraordinary longevity coupled with lifelong fecundity. We recently reported that termite kings and queens display a dramatically increased enzymatic activity and abundance of telomerase in their somatic organs when compared to short-lived workers and soldiers. We hypothesized that this telomerase activation may represent a noncanonical pro-longevity function, independent of its canonical role in telomere maintenance. Here, we explore this avenue and investigate whether the presumed noncanonical role of telomerase may be due to alternative splicing of the catalytic telomerase subunit TERT and whether the subcellular localization of TERT isoforms differs among organs and castes in the termite Prorhinotermes simplex. We empirically confirm the expression of four in silico predicted splice variants (psTERT1-A, psTERT1-B, psTERT2-A, psTERT2-B), defined by N-terminal splicing implicating differential localizations, and C-terminal splicing giving rise to full-length and truncated isoforms. We show that the transcript proportions of the psTERT are caste- and tissue-specific and that the extranuclear full-length isoform TERT1-A is relatively enriched in the soma of neotenic kings and queens compared to their gonads and to the soma of workers. We also show that extranuclear TERT protein quantities are significantly higher in the soma of kings and queens compared to workers, namely due to the cytosolic TERT. Independently, we confirm by microscopy the extranuclear TERT localization in somatic organs. We conclude that the presumed pleiotropic action of telomerase combining the canonical nuclear role in telomere maintenance with extranuclear functions is driven by complex TERT splicing.
Collapse
Affiliation(s)
- Marie Pangrácová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Křivánek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Vrchotová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hana Sehadová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Zhang Y, Tian K, Wei W, Mi W, Lu F, Liu Z, Zhu Q, Zhang X, Geng P, Qiu J, Song Y, Zha D. Translocation of telomerase reverse transcriptase coincided with ATP release in postnatal cochlear supporting cells. Neural Regen Res 2024; 19:1119-1125. [PMID: 37862217 PMCID: PMC10749606 DOI: 10.4103/1673-5374.382862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 10/22/2023] Open
Abstract
The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate (ATP) by supporting cells in the Kölliker's organ. However, the mechanisms responsible for initiating spontaneous ATP release have not been determined. Our previous study revealed that telomerase reverse transcriptase (TERT) is expressed in the basilar membrane during the first postnatal week. Its role in cochlear development remains unclear. In this study, we investigated the expression and role of TERT in postnatal cochlea supporting cells. Our results revealed that in postnatal cochlear Kölliker's organ supporting cells, TERT shifts from the nucleus into the cytoplasm over time. We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo. Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis, suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions. We observed increased ATP synthesis, release and activation of purine signaling systems in supporting cells during the first 10 postnatal days. The phenomenon that TERT translocation coincided with changes in ATP synthesis, release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system. Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
Collapse
Affiliation(s)
- Yukai Zhang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Keyong Tian
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wei Wei
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wenjuan Mi
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Fei Lu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhenzhen Liu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Qingwen Zhu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xinyu Zhang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Panling Geng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jianhua Qiu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yongli Song
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
6
|
Fernández-Varas B, Manguan-García C, Rodriguez-Centeno J, Mendoza-Lupiáñez L, Calatayud J, Perona R, Martín-Martínez M, Gutierrez-Rodriguez M, Benítez-Buelga C, Sastre L. Clinical mutations in the TERT and TERC genes coding for telomerase components induced oxidative stress, DNA damage at telomeres and cell apoptosis besides decreased telomerase activity. Hum Mol Genet 2024; 33:818-834. [PMID: 38641551 PMCID: PMC11031360 DOI: 10.1093/hmg/ddae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/21/2024] Open
Abstract
Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.
Collapse
Affiliation(s)
- Beatriz Fernández-Varas
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
| | - Javier Rodriguez-Centeno
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Lucía Mendoza-Lupiáñez
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Joaquin Calatayud
- Departamento de Biología y Geología, Física y Química inorgánica. ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, C.P. 28933 Madrid, Spain
| | - Rosario Perona
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
- Instituto de Salud Carlos III. Calle Monforte de Lemos 5, 28029 Madrid, Spain
| | | | | | - Carlos Benítez-Buelga
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomedicas Sols/Morreale CSIC/UAM, Arturo Duperier 4, 28029 Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III. C. Melchor Fernandez de Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
7
|
Jayaprasad AG, Chandrasekharan A, Arun Jyothi SP, John Sam SM, Santhoshkumar TR, Pillai MR. Telomerase inhibitors induce mitochondrial oxidation and DNA damage-dependent cell death rescued by Bcl-2/Bcl-xL. Int J Biol Macromol 2024; 264:130151. [PMID: 38403227 DOI: 10.1016/j.ijbiomac.2024.130151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Reactivation of telomerase is a hallmark of cancer and the majority of cancers over-express telomerase. Telomerase-dependent telomere length maintenance confers immortality to cancer cells. However, telomere length-independent cell survival functions of telomerase also play a critical role in tumorigenesis. Multiple telomerase inhibitors have been developed as therapeutics and include anti-sense oligonucleotides, telomerase RNA component targeting agents, chemical inhibitors of telomerase, small molecule inhibitors of hTERT, and telomerase vaccine. In general, telomerase inhibitors affect cell proliferation and survival of cells depending on the telomere length reduction, culminating in replicative senescence or cell death by crisis. However, most telomerase inhibitors kill cancer cells prior to significant reduction in telomere length, suggesting telomere length independent role of telomerase in early telomere dysfunction-dependent cell death. METHODS In this study, we explored the mechanism of cell death induced by three prominent telomerase inhibitors utilizing a series of genetically encoded sensor cells including redox and DNA damage sensor cells. RESULTS We report that telomerase inhibitors induce early cell cycle inhibition, followed by redox alterations at cytosol and mitochondria. Massive mitochondrial oxidation and DNA damage induce classical cell death involving mitochondrial transmembrane potential loss and mitochondrial permeabilization. Real-time imaging of the progression of mitochondrial oxidation revealed that treated cells undergo a biphasic mitochondrial redox alteration during telomerase inhibition, emphasizing the potential role of telomerase in the redox regulation at mitochondria. Additionally, silencing of hTERT confirmed its predominant role in maintaining mitochondrial redox homeostasis. Interestingly, the study also demonstrated that anti-apoptotic Bcl-2 family proteins still confer protection against cell death induced by telomerase inhibitors. CONCLUSION The study demonstrates that redox alterations and DNA damage contribute to early cell death by telomerase inhibitors and anti-apoptotic Bcl-2 family proteins confer protection from cell death by their ability to safeguard mitochondria from oxidation damage.
Collapse
Affiliation(s)
- Aparna Geetha Jayaprasad
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram 695014, Kerala, India; PhD Program, Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal, Karnataka 576104, India
| | - Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram 695014, Kerala, India
| | - S P Arun Jyothi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram 695014, Kerala, India
| | - S M John Sam
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram 695014, Kerala, India
| | - T R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram 695014, Kerala, India.
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
8
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2024:10.1007/s11010-024-04978-2. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Udutha S, Taglang C, Batsios G, Gillespie AM, Tran M, Ronen SM, Ten Hoeve J, Graeber TG, Viswanath P. Telomerase reverse transcriptase induces targetable alterations in glutathione and nucleotide biosynthesis in glioblastomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566937. [PMID: 38014170 PMCID: PMC10680720 DOI: 10.1101/2023.11.14.566937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Telomerase reverse transcriptase (TERT) is essential for glioblastoma (GBM) proliferation. Delineating metabolic vulnerabilities induced by TERT can lead to novel GBM therapies. We previously showed that TERT upregulates glutathione (GSH) pool size in GBMs. Here, we show that TERT acts via the FOXO1 transcription factor to upregulate expression of the catalytic subunit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme of de novo GSH synthesis. Inhibiting GCLC using siRNA or buthionine sulfoximine (BSO) reduces synthesis of 13 C-GSH from [U- 13 C]-glutamine and inhibits clonogenicity. However, GCLC inhibition does not induce cell death, an effect that is associated with elevated [U- 13 C]-glutamine metabolism to glutamate and pyrimidine nucleotide biosynthesis. Mechanistically, GCLC inhibition activates MYC and leads to compensatory upregulation of two key glutamine-utilizing enzymes i.e., glutaminase (GLS), which generates glutamate from glutamine, and CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotatase), the enzyme that converts glutamine to the pyrimidine nucleotide precursor dihydroorotate. We then examined the therapeutic potential of inhibiting GLS and CAD in combination with GCLC. 6-diazo-5-oxy-L-norleucin (DON) is a potent inhibitor of glutamine-utilizing enzymes including GLS and CAD. The combination of BSO and DON suppresses GSH and pyrimidine nucleotide biosynthesis and is synergistically lethal in GBM cells. Importantly, in vivo stable isotope tracing indicates that combined treatment with JHU-083 (a brain-penetrant prodrug of DON) and BSO abrogates synthesis of GSH and pyrimidine nucleotides from [U- 13 C]-glutamine and induces tumor shrinkage in mice bearing intracranial GBM xenografts. Collectively, our studies exploit a mechanistic understanding of TERT biology to identify synthetically lethal metabolic vulnerabilities in GBMs. SIGNIFICANCE Using in vivo stable isotope tracing, metabolomics, and loss-of-function studies, we demonstrate that TERT expression is associated with metabolic alterations that can be synergistically targeted for therapy in glioblastomas.
Collapse
|
11
|
Wang X, Guo Y, Cui T, Zhang T, Hu W, Liu R, Yin C. Telomerase reverse transcriptase restores pancreatic microcirculation profiles and attenuates endothelial dysfunction by inhibiting mitochondrial superoxide production: A potential target for acute pancreatitis therapy. Biomed Pharmacother 2023; 167:115576. [PMID: 37776643 DOI: 10.1016/j.biopha.2023.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a potentially lethal disease related to prominent microcirculation dysfunction. Pancreatic microvascular endothelial dysfunction enhances oxidative stress with tissue damage. Increased superoxide production disrupts endothelial junction integrity and increases endothelial permeability. Endothelial mitochondrial ROS (mtROS) represent a major intracellular source of superoxide anions. The non-canonical function of telomerase reverse transcriptase (TERT) involves the maintenance of cellular redox homeostasis in somatic tissues. METHODS We investigated whether TERT restores microcirculation dysfunction and attenuates the endothelium injury by inhibiting superoxide production during AP progression. We established TERT transgenic and TERT knock-down mice and used cerulein (CER) and lipopolysaccharide (LPS) injections to induce AP models. In addition, we exposed HUVECs to LPS following TERT overexpression or silencing to explore the role of TERT in endothelial dysfunction. We also performed flow cytometry and confocal microscopy assays by using HUVECs. And a mtROS inhibitor, MitoTempo, was used to scavenge mitochondria superoxide and alkyl. RESULTS TERT transgenic mice were found to have restored pancreatic microcirculation profiles and microvascular endothelial morphology compared with wild-type mice under cerulein injection. In contrast, TERT silencing displayed the opposite effect in response to cerulein. Subsequently, we showed that TERT overexpression attenuates mtROS production and mitochondrial dysfunction during LPS-stimulated endothelial dysfunction. Furthermore, we found that TERT overexpression maintains the balance between mitochondrial contents and ATP level during endothelial dysfunction. In addition, the protective trend of MitoTempo is impeded after TERT silencing. CONCLUSION TERT restores pancreatic microcirculation dysfunction and attenuates microvascular endothelium lesions by inhibiting the increase of superoxide production and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xueyan Wang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Peking University People's Hospital, Beijing 100044, China
| | - Yinan Guo
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tianyu Cui
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tingting Zhang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Weikai Hu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Yu T, Sun S. Role and mechanism of ferroptosis in acute lung injury. Cell Cycle 2023; 22:2119-2129. [PMID: 37946318 PMCID: PMC10732650 DOI: 10.1080/15384101.2023.2278328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a new non-apoptotic cell death caused by the accumulation of dysregulated metabolism of ferric iron, amino acids or lipid peroxidation. Increasing studies suggest that ferroptosis is involved in the acute lung injury (ALI). This article aims to review the role of ferroptosis in ALI. ALI is a common respiratory disease and presents a high mortality rate. Inhibiting cell ferroptosis of lung improves the ALI. In addition, several signaling pathways are related to ferroptosis in ALI, involving in iron homeostasis, lipid peroxidation, and amino acid metabolism. Moreover, there are various key factors to regulate the occurrence of ferroptosis in ALI, such as ACSL4, NRF2, and P53. The ACSL4 promotes the ferroptosis, while the NRF2 alleviates the ferroptosis in ALI. The main effect of P53 is to promote ferroptosis. Accordingly, ferroptosis is involved in ALI and may be an important therapeutic target for ALI.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatrics Class 1, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Cui H, Yang W, He S, Chai Z, Wang L, Zhang G, Zou P, Sun L, Yang H, Chen Q, Liu J, Cao J, Ling X, Ao L. TERT transcription and translocation into mitochondria regulate benzo[a]pyrene/BPDE-induced senescence and mitochondrial damage in mouse spermatocytes. Toxicol Appl Pharmacol 2023; 475:116656. [PMID: 37579952 DOI: 10.1016/j.taap.2023.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Telomere and mitochondria may be the targets of Benzo[a]pyrene (BaP) -induced male reproductive damage, and further elucidation of the toxic molecular mechanisms is necessary. In this study, we used in vivo and in vitro exposure models to explore the molecular mechanisms of TERT regulation in BaP-induced telomere and mitochondrial damage in spermatocytes. The results showed that the treatment of benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the active metabolite of BaP, caused telomere dysfunction in mouse spermatocyte-derived GC-2 cells, resulting in S-phase arrest and increased senescence-associated secretory phenotype (SASP). These effects were significantly alleviated by telomerase agonist (ABG) pretreatment in GC-2 cells. SIRT1, FOXO3a, or c-MYC overexpressing GC-2 cell models were established to demonstrate that BPDE inhibited TERT transcriptional expression through the SIRT1/FOXO3a/c-MYC pathway, leading to telomere dysfunction. We also observed that BPDE induced mitochondrial compromise, including complex I damage, accompanied by reduced mitochondrial TERT expression. Based on this, we constructed wild-type TERT-overexpressing (OE-TERTwt) and mitochondria targeting TERT-overexpressing (OE-TERTmst) GC-2 cell models and found that OE-TERTmst GC-2 cells improved mitochondrial function better than OE-TERTwt GC-2 cells. Finally, ICR mice were given BaP by intragastric administration for 35 days, which verified the results of the in vitro study. The results shown that BaP exposure can lead to spermatogenesis disturbance, which is related to the telomere and mitochondrial damage in spermatocytes. In conclusion, our results suggest that BPDE causes telomere and mitochondrial damage in spermatocytes by inhibiting TERT transcription and mitochondrial TERT expression. This study elucidates the molecular mechanism of male reproductive toxicity due to environmental pollutant BaP, and also provides a new perspective for the exploration of interventions and protective measures against male reproductive damage by BaP.
Collapse
Affiliation(s)
- Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shijun He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zili Chai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lihong Wang
- West China School of Public Health, Sichuan University, Chengdu 610041, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
Ebata H, Shima T, Iizuka R, Uemura S. Accumulation of TERT in mitochondria exerts two opposing effects on apoptosis. FEBS Open Bio 2023; 13:1667-1682. [PMID: 37525387 PMCID: PMC10476567 DOI: 10.1002/2211-5463.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a protein that catalyzes the reverse transcription of telomere elongation. TERT is also expected to play a non-canonical role beyond telomere lengthening since it localizes not only in the nucleus but also in mitochondria, where telomeres do not exist. Several studies have reported that mitochondrial TERT regulates apoptosis induced by oxidative stress. However, there is still some controversy as to whether mitochondrial TERT promotes or inhibits apoptosis, mainly due to the lack of information on changes in TERT distribution in individual cells over time. Here, we simultaneously detected apoptosis and TERT localization after oxidative stress in individual HeLa cells by live-cell tracking. Single-cell tracking revealed that the stress-induced accumulation of TERT in mitochondria caused apoptosis, but that accumulation increased over time until cell death. The results suggest a new model in which mitochondrial TERT has two opposing effects at different stages of apoptosis: it predetermines apoptosis at the first stage of cell-fate determination, but also delays apoptosis at the second stage. As such, our data support a model that integrates the two opposing hypotheses on mitochondrial TERT's effect on apoptosis. Furthermore, detailed statistical analysis of TERT mutations, which have been predicted to inhibit TERT transport to mitochondria, revealed that these mutations suppress apoptosis independent of mitochondrial localization of TERT. Together, these results imply that the non-canonical functions of TERT affect a wide range of mitochondria-dependent and mitochondria-independent apoptosis pathways.
Collapse
Affiliation(s)
- Hiroshi Ebata
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
- Present address:
Buck Institute for Research on AgingNovatoCAUSA
| | - Tomohiro Shima
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
| | - Ryo Iizuka
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoJapan
| |
Collapse
|
15
|
Tarazi D, Maynes JT. Impact of Opioids on Cellular Metabolism: Implications for Metabolic Pathways Involved in Cancer. Pharmaceutics 2023; 15:2225. [PMID: 37765194 PMCID: PMC10534826 DOI: 10.3390/pharmaceutics15092225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid utilization for pain management is prevalent among cancer patients. There is significant evidence describing the many effects of opioids on cancer development. Despite the pivotal role of metabolic reprogramming in facilitating cancer growth and metastasis, the specific impact of opioids on crucial oncogenic metabolic pathways remains inadequately investigated. This review provides an understanding of the current research on opioid-mediated changes to cellular metabolic pathways crucial for oncogenesis, including glycolysis, the tricarboxylic acid cycle, glutaminolysis, and oxidative phosphorylation (OXPHOS). The existing literature suggests that opioids affect energy production pathways via increasing intracellular glucose levels, increasing the production of lactic acid, and reducing ATP levels through impediment of OXPHOS. Opioids modulate pathways involved in redox balance which may allow cancer cells to overcome ROS-mediated apoptotic signaling. The majority of studies have been conducted in healthy tissue with a predominant focus on neuronal cells. To comprehensively understand the impact of opioids on metabolic pathways critical to cancer progression, research must extend beyond healthy tissue and encompass patient-derived cancer tissue, allowing for a better understanding in the context of the metabolic reprogramming already undergone by cancer cells. The current literature is limited by a lack of direct experimentation exploring opioid-induced changes to cancer metabolism as they relate to tumor growth and patient outcome.
Collapse
Affiliation(s)
- Doorsa Tarazi
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason T. Maynes
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1A8, Canada;
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
16
|
Kuhn CK, Meister J, Kreft S, Stiller M, Puppel SH, Zaremba A, Scheffler B, Ullrich V, Schöneberg T, Schadendorf D, Horn S. TERT expression is associated with metastasis from thin primaries, exhausted CD4+ T cells in melanoma and with DNA repair across cancer entities. PLoS One 2023; 18:e0281487. [PMID: 37418389 PMCID: PMC10328343 DOI: 10.1371/journal.pone.0281487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Jaroslawna Meister
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Mathias Stiller
- Institute of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sven-Holger Puppel
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the West German Cancer Center, University Hospital Essen/University of Duisburg-Essen, Essen, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, and German Cancer Consortium Partner Site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
17
|
Wu X, Hu JJ, Chen L, Chen Z, Wang T, Wu F, Dai J, Xia F, Lou X. Targeting Proteins in Nucleus through Dual-Regulatory Pathways Acting in Cytoplasm. NANO LETTERS 2023. [PMID: 37289977 DOI: 10.1021/acs.nanolett.3c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nuclear proteins have been regarded as attractive targets for exploiting therapeutic agents. However, those agents cannot efficiently pass through nuclear pores and it is also difficult to overcome the crowded nuclear environment to react with proteins. Herein, we propose a novel strategy acting in the cytoplasm to regulate nuclear proteins based on their signaling pathways, instead of directly entering into nuclei. A multifunctional complex PKK-TTP/hs carries human telomerase reverse transcriptase (hTERT) small interfering RNA (defined as hs) for gene silencing in the cytoplasm, which reduced the import of nuclear protein. At the same time, it could generate reactive oxygen species (ROS) under light irradiation, which raised the export of nuclear proteins by promoting proteins translocation. Through this dual-regulatory pathway, we successfully reduced nuclear protein (hTERT proteins) in vivo (42.3%). This work bypasses the challenge of directly entering into the nucleus and provides an effective strategy for regulating nuclear proteins.
Collapse
Affiliation(s)
- Xia Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lulu Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Feng Wu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
18
|
Bardelčíková A, Šoltys J, Mojžiš J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants (Basel) 2023; 12:antiox12040901. [PMID: 37107276 PMCID: PMC10135609 DOI: 10.3390/antiox12040901] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer-related deaths worldwide. The pathogenesis of CRC is a complex multistep process. Among other factors, inflammation and oxidative stress (OS) have been reported to be involved in the initiation and development of CRC. Although OS plays a vital part in the life of all organisms, its long-term effects on the human body may be involved in the development of different chronic diseases, including cancer diseases. Chronic OS can lead to the oxidation of biomolecules (nucleic acids, lipids and proteins) or the activation of inflammatory signaling pathways, resulting in the activation of several transcription factors or the dysregulation of gene and protein expression followed by tumor initiation or cancer cell survival. In addition, it is well known that chronic intestinal diseases such as inflammatory bowel disease (IBD) are associated with an increased risk of cancer, and a link between OS and IBD initiation and progression has been reported. This review focuses on the role of oxidative stress as a causative agent of inflammation in colorectal cancer.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Jindřich Šoltys
- Institute of Parasitology, Slovak Academy of Science, Hlinkova 3, 040 01 Košice, Slovakia
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
19
|
Palamarchuk AI, Kovalenko EI, Streltsova MA. Multiple Actions of Telomerase Reverse Transcriptase in Cell Death Regulation. Biomedicines 2023; 11:biomedicines11041091. [PMID: 37189709 DOI: 10.3390/biomedicines11041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), a core part of telomerase, has been known for a long time only for its telomere lengthening function by reverse transcription of RNA template. Currently, TERT is considered as an intriguing link between multiple signaling pathways. The diverse intracellular localization of TERT corresponds to a wide range of functional activities. In addition to the canonical function of protecting chromosome ends, TERT by itself or as a part of the telomerase complex participates in cell stress responses, gene regulation and mitochondria functioning. Upregulation of TERT expression and increased telomerase activity in cancer and somatic cells relate to improved survival and persistence of such cells. In this review, we summarize the data for a comprehensive understanding of the role of TERT in cell death regulation, with a focus on the interaction of TERT with signaling pathways involved in cell survival and stress response.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
20
|
Yu X, Liu MM, Zheng CY, Liu YT, Wang Z, Wang ZY. Telomerase reverse transcriptase and neurodegenerative diseases. Front Immunol 2023; 14:1165632. [PMID: 37063844 PMCID: PMC10091515 DOI: 10.3389/fimmu.2023.1165632] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Neurodegenerative diseases (NDs) are chronic conditions that result in progressive damage to the nervous system, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and Amyotrophic lateral sclerosis (ALS). Age is a major risk factor for NDs. Telomere shortening is a biological marker of cellular aging, and telomerase reverse transcriptase (TERT) has been shown to slow down this process by maintaining telomere length. The blood-brain barrier (BBB) makes the brain a unique immune organ, and while the number of T cells present in the central nervous system is limited, they play an important role in NDs. Research suggests that NDs can be influenced by modulating peripheral T cell immune responses, and that TERT may play a significant role in T cell senescence and NDs. This review focuses on the current state of research on TERT in NDs and explores the potential connections between TERT, T cells, and NDs. Further studies on aging and telomeres may provide valuable insights for developing therapeutic strategies for age-related diseases.
Collapse
|
21
|
Davis JA, Reyes AV, Nitika, Saha A, Wolfgeher DJ, Xu SL, Truman AW, Li B, Chakrabarti K. Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei. Front Cell Dev Biol 2023; 11:1110423. [PMID: 37009488 PMCID: PMC10061497 DOI: 10.3389/fcell.2023.1110423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme. These accessory protein interactions are required for telomerase activity and regulation inside cells. The interacting partners of TERT have been well studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa, including clinically relevant human parasites. Here, using the protozoan parasite, Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We identified previously known and unknown interacting factors of TbTERT, highlighting unique features of T. brucei telomerase biology. These unique interactions with TbTERT, suggest mechanistic differences in telomere maintenance between T. brucei and other eukaryotes.
Collapse
Affiliation(s)
- Justin A. Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Andres V. Reyes
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Donald J. Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Shou-Ling Xu
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Andrew W. Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| |
Collapse
|
22
|
The hTERT-p50 homodimer inhibits PLEKHA7 expression to promote gastric cancer invasion and metastasis. Oncogene 2023; 42:1144-1156. [PMID: 36823376 PMCID: PMC10063444 DOI: 10.1038/s41388-023-02630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Although accumulating evidence has highlighted the molecular mechanisms by which hTERT promotes tumour cell invasion and metastasis, the molecular mechanisms of the properties enabling hTERT to contribute to invasion and metastasis have not been clearly illustrated. Here, we report that hTERT promotes gastric cancer invasion and metastasis by recruiting p50 to synergistically inhibit PLEKHA7 expression. We observed that the expression of PLEKHA7 in gastric cancer was significantly negatively associated with the TNM stage and lymphatic metastasis and that decreased PLEKHA7 expression dramatically increased invasion and metastasis in gastric cancer cells. Further mechanistic research showed that hTERT directly regulates PLEKHA7 expression by binding p50 and recruiting the hTERT/p50 complex to the PLEKHA7 promoter. Increased hTERT dramatically decreased PLEKHA7 expression and promoted invasion and metastasis in gastric cancer cells. The hTERT-mediated invasion/metastasis properties at least partially depended on PLEKHA7. Our work uncovers a novel molecular mechanism underlying invasion/metastasis in gastric cancer orchestrated by hTERT and p50.
Collapse
|
23
|
Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, Sgura A. TERT Extra-Telomeric Roles: Antioxidant Activity and Mitochondrial Protection. Int J Mol Sci 2023; 24:ijms24054450. [PMID: 36901881 PMCID: PMC10002448 DOI: 10.3390/ijms24054450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.
Collapse
Affiliation(s)
| | - Emanuela Micheli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- Correspondence:
| | - Ion Udroiu
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Sandra Moreno
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Antonella Sgura
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| |
Collapse
|
24
|
Zhou J, Wang H, Wang W, Ma Z, Chi Z, Liu S. A Cationic Amphiphilic AIE Polymer for Mitochondrial Targeting and Imaging. Pharmaceutics 2022; 15:103. [PMID: 36678732 PMCID: PMC9866158 DOI: 10.3390/pharmaceutics15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are important organelles that play key roles in generating the energy needed for life and in pathways such as apoptosis. Direct targeting of antitumor drugs, such as doxorubicin (DOX), to mitochondria into cells is an effective approach for cancer therapy and inducing cancer cell death. To achieve targeted and effective delivery of antitumor drugs to tumor cells, to enhance the therapeutic effect, and to reduce the side effects during the treatment, we prepared a cationic amphiphilic polymer with aggregation-induced emission (AIE) characteristic. The polymer could be localized to mitochondria with excellent organelle targeting, and it showed good mitochondrial targeting with low toxicity. The polymer could also self-assemble into doxorubicin-loaded micelles in phosphate buffer, with a particle size of about 4.3 nm, an encapsulation rate of 11.03%, and micelle drug loading that reached 0.49%. The results of in vitro cytotoxicity experiments showed that the optimal dosage was 2.0 μg/mL, which had better inhibitory effect on tumor cells and less biological toxicity on heathy cells. Therefore, the cationic amphiphilic polymer can partially replace expensive commercial mitochondrial targeting reagents, and it can be also used as a drug loading tool to directly target mitochondria in cells for corresponding therapeutic research.
Collapse
Affiliation(s)
| | | | | | | | | | - Siwei Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Udroiu I, Marinaccio J, Sgura A. Many Functions of Telomerase Components: Certainties, Doubts, and Inconsistencies. Int J Mol Sci 2022; 23:ijms232315189. [PMID: 36499514 PMCID: PMC9736166 DOI: 10.3390/ijms232315189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies have evidenced non-telomeric functions of "telomerase". Almost all of them, however, investigated the non-canonical effects of the catalytic subunit TERT, and not the telomerase ribonucleoprotein holoenzyme. These functions mainly comprise signal transduction, gene regulation and the increase of anti-oxidative systems. Although less studied, TERC (the RNA component of telomerase) has also been shown to be involved in gene regulation, as well as other functions. All this has led to the publication of many reviews on the subject, which, however, are often disseminating personal interpretations of experimental studies of other researchers as original proofs. Indeed, while some functions such as gene regulation seem ascertained, especially because mechanistic findings have been provided, other ones remain dubious and/or are contradicted by other direct or indirect evidence (e.g., telomerase activity at double-strand break site, RNA polymerase activity of TERT, translation of TERC, mitochondrion-processed TERC). In a critical study of the primary evidence so far obtained, we show those functions for which there is consensus, those showing contradictory results and those needing confirmation. The resulting picture, together with some usually neglected aspects, seems to indicate a link between TERT and TERC functions and cellular stemness and gives possible directions for future research.
Collapse
|
26
|
Judasz E, Lisiak N, Kopczyński P, Taube M, Rubiś B. The Role of Telomerase in Breast Cancer's Response to Therapy. Int J Mol Sci 2022; 23:12844. [PMID: 36361634 PMCID: PMC9654063 DOI: 10.3390/ijms232112844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Currently, breast cancer appears to be the most widespread cancer in the world and the most common cause of cancer deaths. This specific type of cancer affects women in both developed and developing countries. Prevention and early diagnosis are very important factors for good prognosis. A characteristic feature of cancer cells is the ability of unlimited cell division, which makes them immortal. Telomeres, which are shortened with each cell division in normal cells, are rebuilt in cancer cells by the enzyme telomerase, which is expressed in more than 85% of cancers (up to 100% of adenocarcinomas, including breast cancer). Telomerase may have different functions that are related to telomeres or unrelated. It has been shown that high activity of the enzyme in cancer cells is associated with poor cell sensitivity to therapies. Therefore, telomerase has become a potential target for cancer therapies. The low efficacy of therapies has resulted in the search for new combined and more effective therapeutic methods, including the involvement of telomerase inhibitors and telomerase-targeted immunotherapy.
Collapse
Affiliation(s)
- Eliza Judasz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Magdalena Taube
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
27
|
Chang GA, Robinson E, Wiggins JM, Zhang Y, Tadepalli JS, Schafer CN, Darvishian F, Berman RS, Shapiro R, Shao Y, Osman I, Polsky D. Associations between TERT Promoter Mutations and Survival in Superficial Spreading and Nodular Melanomas in a Large Prospective Patient Cohort. J Invest Dermatol 2022; 142:2733-2743.e9. [PMID: 35469904 PMCID: PMC9509439 DOI: 10.1016/j.jid.2022.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 01/19/2023]
Abstract
Survival outcomes in melanoma and their association with mutations in the telomerase reverse transcriptase gene TERT promoter remain uncertain. In addition, few studies have examined whether these associations are affected by a nearby common germline polymorphism or vary on the basis of melanoma histopathological subtype. We analyzed 408 primary tumors from a prospective melanoma cohort for somatic TERT-124[C>T] and TERT-146[C>T] mutations, the germline polymorphism rs2853669, and BRAFV600 and NRASQ61 mutations. We tested the associations between these variants and clinicopathologic factors and survival outcomes. TERT-124[C>T] was associated with thicker tumors, ulceration, mitoses (>0/mm2), nodular histotype, and CNS involvement. In a multivariable model controlling for the American Joint Committee on Cancer stage, TERT-124[C>T] was an independent predictor of shorter recurrence-free survival (hazard ratio = 2.58, P = 0.001) and overall survival (hazard ratio = 2.47, P = 0.029). Patients with the germline variant and TERT-124[C>T]-mutant melanomas had significantly shorter recurrence-free survival than those lacking either or both sequence variants (P < 0.04). The impact of the germline variant appeared to be more pronounced in superficial spreading than in nodular melanoma. No associations were found between survival and TERT-146[C>T], BRAF, or NRAS mutations. These findings strongly suggest that TERT-124[C>T] mutation is a biomarker of aggressive primary melanomas, an effect that may be modulated by rs2853669.
Collapse
Affiliation(s)
- Gregory A Chang
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Eric Robinson
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jennifer M Wiggins
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Yilong Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Merck, Kenilworth, New Jersey, USA
| | - Jyothirmayee S Tadepalli
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Christine N Schafer
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Farbod Darvishian
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Russell S Berman
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Richard Shapiro
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Division of Surgical Oncology, Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Yongzhao Shao
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Population Health, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York, USA.
| |
Collapse
|
28
|
Qin H, Guo Y. Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer Cells. ACS OMEGA 2022; 7:30565-30570. [PMID: 36061682 PMCID: PMC9435028 DOI: 10.1021/acsomega.2c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Salinomycin exhibits significant systemic adverse reactions such as tachycardia and myoglobinuria in mammals, which hinders its application as a drug for human cancers. Although many strategies aimed at increasing salinomycin's toxicity to cancer cells have been identified to allow a lower dose of salinomycin to be used, they often cause normal cell damage by themselves. Thus, it is urgent to find more effective methods to increase salinomycin's toxicity to cancer cells with little influences on normal cells. Telomerase, which is expressed highly in most cancer cells rather than normal somatic cells, plays central roles in cancer cell fate regulation. Targeting telomerase represents a potential method for enhancing salinomycin's cytotoxicity to cancer cells with little effects on normal cells. Herein, we improve the toxicity of salinomycin against cancer cells by telomerase inhibition BIBR1532 (BIBR), which binds to the active site of telomerase reverse transcriptase. We find that a non-toxic dose of BIBR can enhance cytotoxicity of salinomycin in MCF-7 and MDA-MB-231 cells. Moreover, BIBR enhances mammosphere formation inhibition mediated by salinomycin in MCF-7 and MDA-MB-231 cells. Further studies show that BIBR enhances tumor growth inhibition induced by salinomycin in vivo. To our knowledge, this is the first example that targeting telomerase improves anti-cancer effects of salinomycin.
Collapse
|
29
|
Fan Y, Wang Z, Ren W, Liu G, Xing J, Xiao T, Li W, Li Y, Yu P, Ning C, Song Z. Space-Confined Synthesis of Thin Polypyrrole Nanosheets in Layered Bismuth Oxychloride for a Photoresponse Antibacterial within the Near-Infrared Window and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36966-36979. [PMID: 35921222 DOI: 10.1021/acsami.2c11503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial infection greatly affects the rate of wound healing. Both photothermal and photodynamic antibacterial therapies activated by near-infrared (NIR) light with semiconductor nanomedicine are two effective approaches to address bacterial infections, but they cannot coexist synergistically to kill bacteria more efficiently because of the limitation of the band structure. Here, inspired by the natural core-shell structure and photosynthesis simultaneously, polypyrrole (PPy) is synthesized in the two-dimensional restricted area of the layered bismuth oxychloride (BiOCl) nanosheets through the in situ ultrasonic recombination method. The atomic-level interface contact and bonding formed in the PPy-BiOCl intercalated nanosheets not only improve the light-to-heat conversion capabilities of PPy but also promote the transmission of PPy photogenerated charge carriers to the BiOCl semiconductor. The nanocomposites take advantage of the deeper tissue penetration under NIR light irradiation and exhibit excellent photothermal and photodynamic synergistic antibacterial activity. In addition, PPy-BiOCl intercalated nanosheets have good biocompatibility and accelerate wound healing through their antimicrobial activity and skin repair function. The space-confined synthesis of thin PPy nanosheets in layered structures offers an efficient NIR photoresponsive nanomedicine for the treatment of pathogen infection, with promising applications in infected wound healing.
Collapse
Affiliation(s)
- Youzhun Fan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhengao Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Weizhou Ren
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Guangyu Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Jun Xing
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Taizhong Xiao
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wei Li
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Yongjin Li
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou 510641, China
- China-Singapore International Joint Research Institute, Guangzhou 510000, China
| | - Zhiguo Song
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
30
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
31
|
Batsios G, Taglang C, Tran M, Stevers N, Barger C, Gillespie AM, Ronen SM, Costello JF, Viswanath P. Deuterium Metabolic Imaging Reports on TERT Expression and Early Response to Therapy in Cancer. Clin Cancer Res 2022; 28:3526-3536. [PMID: 35679032 PMCID: PMC9378519 DOI: 10.1158/1078-0432.ccr-21-4418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Telomere maintenance is a hallmark of cancer. Most tumors maintain telomere length via reactivation of telomerase reverse transcriptase (TERT) expression. Identifying clinically translatable imaging biomarkers of TERT can enable noninvasive assessment of tumor proliferation and response to therapy. EXPERIMENTAL DESIGN We used RNAi, doxycycline-inducible expression systems, and pharmacologic inhibitors to mechanistically delineate the association between TERT and metabolism in preclinical patient-derived tumor models. Deuterium magnetic resonance spectroscopy (2H-MRS), which is a novel, translational metabolic imaging modality, was used for imaging TERT in cells and tumor-bearing mice in vivo. RESULTS Our results indicate that TERT expression is associated with elevated NADH in multiple cancers, including glioblastoma, oligodendroglioma, melanoma, neuroblastoma, and hepatocellular carcinoma. Mechanistically, TERT acts via the metabolic regulator FOXO1 to upregulate nicotinamide phosphoribosyl transferase, which is the key enzyme for NAD+ biosynthesis, and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, which converts NAD+ to NADH. Because NADH is essential for pyruvate flux to lactate, we show that 2H-MRS-based assessment of lactate production from [U-2H]-pyruvate reports on TERT expression in preclinical tumor models in vivo, including at clinical field strength (3T). Importantly, [U-2H]-pyruvate reports on early response to therapy in mice bearing orthotopic patient-derived gliomas at early timepoints before radiographic alterations can be visualized by MRI. CONCLUSIONS Elevated NADH is a metabolic consequence of TERT expression in cancer. Importantly, [U-2H]-pyruvate reports on early response to therapy, prior to anatomic alterations, thereby providing clinicians with a novel tool for assessment of tumor burden and treatment response in cancer.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Céline Taglang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Meryssa Tran
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Nicholas Stevers
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Carter Barger
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
32
|
Ebata H, Loo TM, Takahashi A. Telomere Maintenance and the cGAS-STING Pathway in Cancer. Cells 2022; 11:1958. [PMID: 35741087 PMCID: PMC9221635 DOI: 10.3390/cells11121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cells exhibit the unique characteristics of high proliferation and aberrant DNA damage response, which prevents cancer therapy from effectively eliminating them. The machinery required for telomere maintenance, such as telomerase and the alternative lengthening of telomeres (ALT), enables cancer cells to proliferate indefinitely. In addition, the molecules in this system are involved in noncanonical pro-tumorigenic functions. Of these, the function of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which contains telomere-related molecules, is a well-known contributor to the tumor microenvironment (TME). This review summarizes the current knowledge of the role of telomerase and ALT in cancer regulation, with emphasis on their noncanonical roles beyond telomere maintenance. The components of the cGAS-STING pathway are summarized with respect to intercell communication in the TME. Elucidating the underlying functional connection between telomere-related molecules and TME regulation is important for the development of cancer therapeutics that target cancer-specific pathways in different contexts. Finally, strategies for designing new cancer therapies that target cancer cells and the TME are discussed.
Collapse
Affiliation(s)
- Hiroshi Ebata
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-0033, Japan;
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Tze Mun Loo
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| | - Akiko Takahashi
- Project for Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan;
| |
Collapse
|
33
|
Hu W, Guo Y, Wang X, Cui T, Li C, Liu R, Yin C. Angiotensin-(1–7) promotes mitochondrial translocation of human telomerase reverse transcriptase in HUVECs through the TOM20 complex. Arch Biochem Biophys 2022; 722:109218. [DOI: 10.1016/j.abb.2022.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
|
34
|
Xie X, Zhou J, Hu L, Shu R, Zhang M, Sun L, Wu F, Fu Z, Li Z. Oral exposure to a hexafluoropropylene oxide trimer acid (HFPO-TA) disrupts mitochondrial function and biogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128376. [PMID: 35158245 DOI: 10.1016/j.jhazmat.2022.128376] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA) is reported to have hepatotoxicity, lipotoxicity, and cytotoxicity. In this study, the toxicological effects of HFPO-TA on mitochondrial function and biogenesis were studied. Mice were exposed to drinking water which contained either 2, 20, or 200 μg/L HFPO-TA. Results showed exposure to HFPO-TA induced disadvantageous physiological changes in mice, including increases in liver weight, altered cell morphology, and inflammatory responses. Specifically, exposure to 200 μg/L HFPO-TA increased mitochondria number, relative mitochondrial DNA (mtDNA) content, and mRNA levels of mitochondrial genes encoded by mtDNA. Significant increases in TFAM mRNA and protein levels were also observed. Liver metabolome analysis also showed exposure to 200 μg/L HFPO-TA further enhanced increases in metabolites and altered metabolic pathways that correlated with mitochondrial function, especially the production of ATP. HFPO-TA exposure increased protein expression of mitochondrial complex I-V, and the activities of key enzymes involved in TCA cycle (α-ketoglutarate dehydrogenase, citrate synthase, and succinate dehydrogenase). Furthermore, exposure to 200 μg/L HFPO-TA significantly up-regulating mRNA and protein levels of Opa1, Mfn1, Mfn2, Fis1, and Mff, but did not change Drp1. These findings suggest HFPO-TA could have detrimental effects on health of animals, particularly it was associated with disrupted mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
35
|
Effect of oxidative stress on telomere maintenance in aortic smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166397. [PMID: 35346819 DOI: 10.1016/j.bbadis.2022.166397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/-) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/-) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/- mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.
Collapse
|
36
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Talebi M, Shanehbandi D, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase inhibition on acute myeloid leukemia stem cell induced apoptosis with both intrinsic and extrinsic pathways. Life Sci 2022; 295:120402. [PMID: 35176279 DOI: 10.1016/j.lfs.2022.120402] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
AIMS Acute Myeloid Leukemia (AML) is an invasive and lethal blood cancer caused by a rare population of Leukemia Stem Cells (LSCs). Telomerase activation is a limitless self-renewal process in LSCs. Apart from telomerase role in telomere lengthening, telomerase (especially hTERT subunit) inhibits intrinsic-, extrinsic-, and p53- mediated apoptosis pathways. In this study, the effect of Telomerase Inhibition (TI) on intrinsic-, extrinsic-, p53-mediated apoptosis, and DNMT3a and TET epigenetic markers in stem (CD34+) and differentiated (CD34-) AML cells is evaluated. MAIN METHODS High-purity CD34+ (primary AML and KG-1a) cells were enriched using the Magnetic-Activated Cell Sorting (MACS) system. CD34+ and CD34- (primary AML and KG-1a) cells were treated with BIBR1532 and then, MTT assay, Annexin V/7AAD, Ki-67 assay, Telomere Length (TL) measurement, and transcriptional alterations of p53, hTERT, TET2, DNMT3a were analyzed. Finally, apoptosis-related genes and proteins were studied. KEY FINDINGS TI with the IC50 values of 83.5, 33.2, 54.3, and 24.6 μM in CD34+ and CD34- (primary AML and KG-1a) cells significantly inhibited cell proliferation and induced apoptosis. However, TI had no significant effect on TL. The results also suggested TI induced intrinsic-, extrinsic-, and p53-mediated apoptosis. It was shown that the expression levels of DNMT3a and TET2 epigenetic markers were highly increased following TI. SIGNIFICANCE In total, it was revealed that TI induced apoptosis through intrinsic, extrinsic, and p53 pathways and increased the expression of DNMT3a and TET2 epigenetic markers.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Talebi
- Department of Applied Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
37
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
38
|
GRPEL2 Knockdown Exerts Redox Regulation in Glioblastoma. Int J Mol Sci 2021; 22:ijms222312705. [PMID: 34884508 PMCID: PMC8657957 DOI: 10.3390/ijms222312705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are responsible for catastrophic morbidity and mortality globally. Among them, glioblastoma multiforme (GBM) bears the worst prognosis. The GrpE-like 2 homolog (GRPEL2) plays a crucial role in regulating mitochondrial protein import and redox homeostasis. However, the role of GRPEL2 in human glioblastoma has yet to be clarified. In this study, we investigated the function of GRPEL2 in glioma. Based on bioinformatics analyses from the Cancer Gene Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), we inferred that GRPEL2 expression positively correlates with WHO tumor grade (p < 0.001), IDH mutation status (p < 0.001), oligodendroglial differentiation (p < 0.001), and overall survival (p < 0.001) in glioma datasets. Functional validation in LN229 and GBM8401 GBM cells showed that GRPEL2 knockdown efficiently inhibited cellular proliferation. Moreover, GRPEL2 suppression induced cell cycle arrest at the sub-G1 phase. Furthermore, GRPEL2 silencing decreased intracellular reactive oxygen species (ROS) without impending mitochondria membrane potential. The cellular oxidative respiration measured with a Seahorse XFp analyzer exhibited a reduction of the oxygen consumption rate (OCR) in GBM cells by siGRPEL2, which subsequently enhanced autophagy and senescence in glioblastoma cells. Taken together, GRPEL2 is a novel redox regulator of mitochondria bioenergetics and a potential target for treating GBM in the future.
Collapse
|
39
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
40
|
Dong H, Xia Y, Jin S, Xue C, Wang Y, Hu R, Jiang H. Nrf2 attenuates ferroptosis-mediated IIR-ALI by modulating TERT and SLC7A11. Cell Death Dis 2021; 12:1027. [PMID: 34716298 PMCID: PMC8556385 DOI: 10.1038/s41419-021-04307-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) carries a mortality rate of ~50% and is a hot topic in the world of critical illness research. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical modulator of intracellular oxidative homeostasis and serves as an antioxidant. The Nrf2-related anti-oxidative stress is strongly associated with ferroptosis suppression. Meanwhile, telomerase reverse transcriptase (TERT), the catalytic portion of the telomerase protein, is reported to travel to the mitochondria to alleviate ROS. In our study, we found that TERT was significantly reduced in lung tissue of Nrf2-/- mice in the model of intestinal ischemia/reperfusion-induced acute lung injury (IIR-ALI). In addition, MDA levels showed marked increase, whereas GSH and GPX4 levels fell drastically in ALI models. Moreover, typical-related structural changes were observed in the type II alveolar epithelial cells in the IIR model. We further employed the scanning transmission X-ray microscopy (STXM) to examine Fe levels and distribution within cells. Based on our observations, massive aggregates of Fe were found in the MLE-12 cells upon OGD/R (oxygen and glucose deprivation/reperfusion) induction. Additionally, Nrf2 silencing dramatically reduced TERT and SLC7A11 levels, and further exacerbated cellular injuries. In contrast, TERT-overexpressing cells exhibited marked elevation in SLC7A11 levels and thereby inhibited ferroptosis. Collectively, these data suggest that Nrf2 can negatively regulate ferroptosis via modulation of TERT and SLC7A11 levels. The conclusion from this study brings insight into new candidates that can be targeted in future IIR-ALI therapy.
Collapse
Affiliation(s)
- Hui Dong
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Yangyang Xia
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Shanliang Jin
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Chaofan Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China
| | - Rong Hu
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China.
| | - Hong Jiang
- Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai, China.
| |
Collapse
|
41
|
Ghaffarnia R, Nasrollahzadeh A, Bashash D, Nasrollahzadeh N, Mousavi SA, Ghaffari SH. Inhibition of c-Myc using 10058-F4 induces anti-tumor effects in ovarian cancer cells via regulation of FOXO target genes. Eur J Pharmacol 2021; 908:174345. [PMID: 34270986 DOI: 10.1016/j.ejphar.2021.174345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Ovarian cancer, characterized by rapid growth and asymptomatic development in the early stage, is the fifth common cancer in women. The deregulated expression of c-Myc in more than 50% of human tumors including ovarian cancer makes this oncogenic master transcription factor a potential therapeutic target for cancer treatment. In the present study, we evaluated the anti-tumor effects of 10058-F4, a small molecule c-Myc inhibitor, on ovarian cancer cells. We found that 10058-F4 not only inhibited the proliferation and clonal growth of ovarian cancer cells but also enhanced the cytotoxic effects of chemotherapeutic drugs. Our results also revealed that c-Myc inhibition using 10058-F4 increased the intracellular reactive oxygen species production coupled with suppressed expression of hTERT. RT-qPCR analysis indicated that 10058-F4 enhanced the mRNA levels of the forkhead box O (FOXO) family of transcription factors, including FOXO1, 3, and 4. Moreover, 10058-F4 induced G1 cell cycle arrest in 2008C13 ovarian cancer cells, along with increased expression of some key targets of FOXOs involved in the regulation of cell cycle such as p15, p21, p27, and GADD45A. The results of our study also showed that the 10058-F4-induced apoptosis in 2008C13 cell line was associated with the upregulation of FOXO downstream genes, including PUMA, Bim, and FasL. In conclusion, our results, for the first time, suggest that the anti-tumor effects of 10058-F4 in ovarian cancer cells might be mediated through upregulation of FOXO transcription factors and their key target genes involved in G1 cell cycle arrest, apoptosis, and autophagic cell death.
Collapse
Affiliation(s)
- Roya Ghaffarnia
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nasrollahzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed A Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
The Tardigrade Damage Suppressor Protein Modulates Transcription Factor and DNA Repair Genes in Human Cells Treated with Hydroxyl Radicals and UV-C. BIOLOGY 2021; 10:biology10100970. [PMID: 34681069 PMCID: PMC8533384 DOI: 10.3390/biology10100970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary The Ramazzottius varieornatus is known to be the most resilient invertebrate on Earth. Belonging to the phylum of Tardigrada, it can live in any habitat, from the deep sea to various terrestrial environments, surviving in extreme temperatures, severe dryness or air deprivation. This exceptional tolerance to extreme conditions is attributable to the Dsup protein, which is able to bind and “protect” the DNA of this micro-animal, allowing it to survive where most other forms of life would quickly die. By introducing Dsup in human cell cultures, we investigated how this protein operates in response to two different extreme conditions: oxidative stress and ultraviolet (UV) irradiation. We learned that Dsup increases cell survival by triggering significantly different cellular mechanisms. In cells treated with hydrogen peroxide, Dsup “physically” protects DNA and activates several detoxification pathways aimed to remove intracellular free radicals. In contrast to this, a direct protection of DNA is not exerted by Dsup after UV irradiation, but the protein seems to activate mechanisms of DNA damage repair more efficiently, promoting faster cell recovery and survival. Even though further studies are required, understanding the mechanisms associated with Dsup resistance to cell damage may represent an important benefit for humans and plants. Abstract The Ramazzottius varieornatus tardigrade is an extremotolerant terrestrial invertebrate with a length of 0.1–1.0 mm. These small animals show an extraordinary tolerance to extreme conditions such as high pressure, irradiation, chemicals and dehydration. These abilities are linked to a recently discovered damage suppressor protein (Dsup). Dsup is a nucleosome-binding protein that avoids DNA damage after X-ray and oxidative stress exposure without impairing cell life in Dsup-transfected animal and plant cells. The exact “protective” role of this protein is still under study. In human cells, we confirmed that Dsup confers resistance to UV-C and H2O2 exposure compared to untransfected cells. A different transcription factor activation was also observed. In addition, a different expression of endogenous genes involved in apoptosis, cell survival and DNA repair was found in Dsup+ cells after H2O2 and UV-C. In UV-C exposed cells, Dsup efficiently upregulates DNA damage repair genes, while H2O2 treatment only marginally involves the activation of pathways responsible for DNA repair in Dsup+ cells. These data are in agreement with the idea of a direct protective effect of the protein on DNA after oxidative stress. In conclusion, our data may help to outline the different mechanisms by which the Dsup protein works in response to different insults.
Collapse
|
43
|
Xie X, Li M, Zhou M, Chow SF, Tsang CK. Pharmacological preconditioning by TERT inhibitor BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming. J Neurochem 2021; 159:690-709. [PMID: 34532857 DOI: 10.1111/jnc.15515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
After a sublethal ischemic preconditioning (IPC) stimulus, the brain has a remarkable capability of acquiring tolerance to subsequent ischemic insult by establishing precautionary self-protective mechanism. Understanding this endogenous mechanism would reveal novel and effective neuroprotective targets for ischemic brain injury. Our previous study has implied that telomerase reverse transcriptase (TERT) is associated with IPC-induced tolerance. Here, we investigated the mechanism of TERT-mediated ischemic tolerance. Preconditioning was modeled by oxygen-glucose deprivation (OGD) and by TERT inhibitor BIBR1532 in primary neurons. We found that ischemic tolerance was conferred by BIBR1532 preconditioning. We used the Cleavage-Under-Targets-And-Tagmentation approach, a recently developed method with superior signal-to-noise ratio, to comprehensively map the genomic binding sites of TERT in primary neurons, and showed that more than 50% of TERT-binding sites were located at the promoter regions. Mechanistically, we demonstrated that under normal conditions TERT physically bound to many previously unknown genomic loci in neurons, whereas BIBR1532 preconditioning significantly altered TERT-chromatin-binding profile. Intriguingly, we found that BIBR1532-preconditioned neurons showed significant up-regulation of promoter binding of TERT to the mitochondrial anti-oxidant genes, which were correlated with their elevated expression. Functional analysis further indicated that BIBR1532-preconditioning significantly reduced ROS levels and enhanced tolerance to severe ischemia-induced mitochondrial oxidative stress in neurons in a TERT-dependent manner. Together, these results demonstrate that BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming for up-regulation of mitochondrial anti-oxidation gene expression, suggesting the translational potential of BIBR1532 as a therapeutic agent for the treatment of cerebral ischemic injury and oxidative stress-induced neurological disorders.
Collapse
Affiliation(s)
- Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Mingxi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Mengyao Zhou
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Core Research Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
44
|
Zhang G, Zhang C, Leng D, Yan P, Wang Z, Zhang M, Wu Z. The non-canonical functions of telomerase reverse transcriptase gene GlTert on regulating fungal growth, oxidative stress, and ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2021; 105:7353-7365. [PMID: 34515845 DOI: 10.1007/s00253-021-11564-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
The telomerase reverse transcriptase (TERT) is the core catalytic subunit of telomerase. Its canonical function is synthesizing telomeric repeats to maintain telomere length and chromosomal stability. Accumulating evidence suggests that TERT has other important fundamental functions in addition to its catalytic telomere repeat synthesis activity. However, the non-canonical roles of TERT independent of its enzymatic activity are not clear in filamentous fungi. In the present study, we characterized the GlTert gene in Ganoderma lucidum. The non-canonical roles of GlTert were explored using GlTert-silenced strains (Terti8 and Terti25) obtained by RNA interference. Silencing GlTert delayed the fungal growth, decreased the length between hyphal branches, and induced fungal resistance to oxidative stress in G. ludicum. Further examination revealed that the intracellular ROS (reactive oxygen species) levels were increased while the enzyme activities of the antioxidant systems (superoxide dismutase, catalase, glutathione peroxidase, and ascorbate peroxidase) were decreased in GlTert-silenced strains. In addition, silencing GlTert decreased the ganoderic acid (GA) biosynthesis of G. lucidum. Taken together, our results indicate that GlTert plays a fundamental function on fungal growth, oxidative stress, and GA biosynthesis in G. lucidum, providing new insights for the canonical functions of TERT in filamentous fungi. KEY POINTS: • GlTert affected fungal growth and hyphal branching of G. lucidum. • Silencing GlTert increased the intracellular ROS levels of G. lucidum. • GlTert regulated GA biosynthesis of G. lucidum.
Collapse
Affiliation(s)
- Guang Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China.
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, Xinxiang, People's Republic of China.
| | - Chaohui Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Doudou Leng
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Peng Yan
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Zhenhe Wang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Mingxia Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
| | - Zhongwei Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, Xinxiang, People's Republic of China
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, Xinxiang, People's Republic of China
| |
Collapse
|
45
|
Ovarian Telomerase and Female Fertility. Biomedicines 2021; 9:biomedicines9070842. [PMID: 34356906 PMCID: PMC8301802 DOI: 10.3390/biomedicines9070842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Women's fertility is characterized both quantitatively and qualitatively mainly by the pool of ovarian follicles. Monthly, gonadotropins cause an intense multiplication of granulosa cells surrounding the oocyte. This step of follicular development requires a high proliferation ability for these cells. Telomere length plays a crucial role in the mitotic index of human cells. Hence, disrupting telomere homeostasis could directly affect women's fertility. Strongly expressed in ovaries, telomerase is the most effective factor to limit telomeric attrition and preserve ovarian reserve. Considering these facts, two situations of infertility could be correlated with the length of telomeres and ovarian telomerase activity: PolyCystic Ovary Syndrome (PCOS), which is associated with a high density of small antral follicles, and Premature Ovarian Failure (POF), which is associated with a premature decrease in ovarian reserve. Several authors have studied this topic, expecting to find long telomeres and strong telomerase activity in PCOS and short telomeres and low telomerase activity in POF patients. Although the results of these studies are contradictory, telomere length and the ovarian telomerase impact in women's fertility disorders appear obvious. In this context, our research perspectives aimed to explore the stimulation of ovarian telomerase to limit the decrease in the follicular pool while avoiding an increase in cancer risk.
Collapse
|
46
|
Sherman J, Verstandig G, Brumer Y. Application of machine learning to large in-vitro databases to identify cancer cell characteristics: telomerase reverse transcriptase (TERT) expression. Oncogene 2021; 40:5038-5041. [PMID: 34135463 DOI: 10.1038/s41388-021-01894-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023]
Abstract
Advances in biotechnology and machine learning have created an enhanced environment for unearthing and exploiting previously unrecognized relationships between genomic and epigenetic data with potential therapeutic implications. We applied advanced algorithms to data from the Cancer Dependency Map to uncover increasingly complex relationships. Specifically, we investigate characteristics of tumor cell lines with varying levels of telomerase reverse transcriptase (TERT) expression in liver cancer. The findings indicate that the effect of CRISPR knockout of Histone Deacetylase 1 (HDAC1) and numerous individual respiratory complex I genes is strongly related to the level of TERT expression, with knockout being particularly efficacious at killing or inhibiting growth of tumor cells with low levels of TERT expression for HDAC1 and high levels for Complex I genes. These findings suggest key biomarkers for therapeutic efficacy and yield novel potential pathways for drug development and provide further proof of principle for the potential of artificial intelligence in oncology.
Collapse
Affiliation(s)
- Jeff Sherman
- Zephyr AI, Washington, DC, USA. .,Red Cell Partners, Washington, DC, USA.
| | - Grant Verstandig
- Zephyr AI, Washington, DC, USA.,Red Cell Partners, Washington, DC, USA
| | - Yisroel Brumer
- Zephyr AI, Washington, DC, USA.,Red Cell Partners, Washington, DC, USA
| |
Collapse
|
47
|
Jacczak B, Rubiś B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci 2021; 22:6381. [PMID: 34203694 PMCID: PMC8232155 DOI: 10.3390/ijms22126381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Proper functioning of cells-their ability to divide, differentiate, and regenerate-is dictated by genomic stability. The main factors contributing to this stability are the telomeric ends that cap chromosomes. Telomere biology and telomerase activity have been of interest to scientists in various medical science fields for years, including the study of both cancer and of senescence and aging. All these processes are accompanied by telomere-length modulation. Maintaining the key levels of telomerase component (hTERT) expression and telomerase activity that provide optimal telomere length as well as some nontelomeric functions represents a promising step in advanced anti-aging strategies, especially in dermocosmetics. Some known naturally derived compounds contribute significantly to telomere and telomerase metabolism. However, before they can be safely used, it is necessary to assess their mechanisms of action and potential side effects. This paper focuses on the metabolic potential of natural compounds to modulate telomerase and telomere biology and thus prevent senescence and skin aging.
Collapse
Affiliation(s)
| | | | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (B.J.); (B.R.)
| |
Collapse
|
48
|
Streltsova MA, Ustiuzhanina MO, Barsov EV, Kust SA, Velichinskii RA, Kovalenko EI. Telomerase Reverse Transcriptase Increases Proliferation and Lifespan of Human NK Cells without Immortalization. Biomedicines 2021; 9:biomedicines9060662. [PMID: 34207853 PMCID: PMC8229856 DOI: 10.3390/biomedicines9060662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022] Open
Abstract
NK cells are the first line of defense against viruses and malignant cells, and their natural functionality makes these cells a promising candidate for cancer cell therapy. The genetic modifications of NK cells, allowing them to overcome some of their inherent limitations, such as low proliferative potential, can enable their use as a therapeutic product. We demonstrate that hTERT-engineered NK cell cultures maintain a high percentage of cells in the S/G2 phase for an extended time after transduction, while the life span of NK cells is measurably extended. Bulk and clonal NK cell cultures pre-activated in vitro with IL-2 and K562-mbIL21 feeder cells can be transduced with hTERT more efficiently compared with the cells activated with IL-2 alone. Overexpressed hTERT was functionally active in transduced NK cells, which displayed upregulated expression of the activation marker HLA-DR, and decreased expression of the maturation marker CD57 and activating receptor NKp46. Larger numbers of KIR2DL2/3+ cells in hTERT-engineered populations may indicate that NK cells with this phenotype are more susceptible to transduction. The hTERT-modified NK cells demonstrated a high natural cytotoxic response towards K562 cells and stably expressed Ki67, a proliferation marker. Overall, our data show that ectopic hTERT expression in NK cells enhances their activation and proliferation, extends in vitro life span, and can be a useful tool in developing NK-based cancer cell therapies.
Collapse
Affiliation(s)
- Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | - Maria O. Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | | | - Sofya A. Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | - Rodion A. Velichinskii
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
- Correspondence:
| |
Collapse
|
49
|
Gong C, Yang H, Wang S, Liu J, Li Z, Hu Y, Chen Y, Huang Y, Luo Q, Wu Y, Liu E, Xiao Y. hTERT Promotes CRC Proliferation and Migration by Recruiting YBX1 to Increase NRF2 Expression. Front Cell Dev Biol 2021; 9:658101. [PMID: 34079797 PMCID: PMC8165255 DOI: 10.3389/fcell.2021.658101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
High human telomerase reverse transcriptase (hTERT) expression is related to severe Colorectal Cancer (CRC) progression and negatively related to CRC patient survival. Previous studies have revealed that hTERT can reduce cancer cellular reactive oxygen species (ROS) levels and accelerate cancer progression; however, the mechanism remains poorly understood. NFE2-related factor 2 (NRF2) is a molecule that plays a significant role in regulating cellular ROS homeostasis, but whether there is a correlation between hTERT and NRF2 remains unclear. Here, we showed that hTERT increases CRC proliferation and migration by inducing NRF2 upregulation. We further found that hTERT increases NRF2 expression at both the mRNA and protein levels. Our data also revealed that hTERT primarily upregulates NRF2 by increasing NRF2 promoter activity rather than by regulating NRF2 mRNA or protein stability. Using DNA pull-down/MS analysis, we found that hTERT can recruit YBX1 to upregulate NRF2 promoter activity. We also found that hTERT/YBX1 may localize to the P2 region of the NRF2 promoter. Taken together, our results demonstrate that hTERT facilitates CRC proliferation and migration by upregulating NRF2 expression through the recruitment of the transcription factor YBX1 to activate the NRF2 promoter. These results provide a new theoretical basis for CRC treatment.
Collapse
Affiliation(s)
- Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, General Hospital of Shenyang Military Region, Shenyang, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
50
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|