1
|
Li L, Hu X, Nkwocha J, Kmieciak M, Meads MB, Shain KH, Alugubelli RR, Silva AS, Mann H, Sudalagunta PR, Canevarolo RR, Zhou L, Grant S. Combined MEK1/2 and ATR inhibition promotes myeloma cell death through a STAT3-dependent mechanism in vitro and in vivo. Br J Haematol 2024; 205:2338-2348. [PMID: 39379134 DOI: 10.1111/bjh.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mechanisms underlying potentiation of the anti-myeloma (MM) activity of ataxia telangiectasia Rad3 (ATR) antagonists by MAPK (Mitogen-activated protein kinases)-related extracellular kinase 1/2 (MEK1/2) inhibitors were investigated. Co-administration of the ATR inhibitor (ATRi) BAY1895344 (BAY) and MEK1/2 inhibitors, for example, cobimetinib, synergistically increased cell death in diverse MM cell lines. Mechanistically, BAY and cobimetinib blocked STAT3 Tyr705 and Ser727 phosphorylation, respectively, and dual dephosphorylation triggered marked STAT3 inactivation and downregulation of STAT3 (Signal transducer and activator of transcription 3) downstream targets (c-Myc and BCL-XL). Similar events occurred in highly bortezomib-resistant (PS-R) cells, in the presence of patient-derived conditioned medium, and with alternative ATR (e.g. M1774) and MEK1/2 (trametinib) inhibitors. Notably, constitutively active STAT3 c-MYC or BCL-XL ectopic expression significantly protected cells from BAY/cobimetinib. In contrast, transfection of cells with a dominant-negative form of STAT3 (Y705F) sensitized cells to cobimetinib, as did ATR shRNA knockdown. Conversely, MEK1/2 knockdown markedly increased ATRi sensitivity. The BAY/cobimetinib regimen was also active against primary CD138+ MM cells, but not normal CD34+ cells. Finally, the ATR inhibitor/cobimetinib regimen significantly improved survival in MM xenografts, including bortezomib-resistant models, with minimal toxicity. Collectively, these findings suggest that combined ATR/MEK1/2 inhibition triggers dual STAT3 Tyr705 and Ser727 dephosphorylation, pronounced downregulation of cytoprotective targets and MM cell death, warranting attention as a novel therapeutic strategy in MM.
Collapse
Affiliation(s)
- Lin Li
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Ariosto S Silva
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Hashim Mann
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Praneeth R Sudalagunta
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Rafael R Canevarolo
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, North Carolina, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Szewczyk S, Buckley B, Chernov M, Wang X, Pathak S, Yeger H, Attwood KM, Holtz R, Ambrosone CB, Higgins MJ. Cell-based assay to detect small molecules restoring levels of let-7 miRNAs. Am J Cancer Res 2024; 14:4772-4787. [PMID: 39553217 PMCID: PMC11560832 DOI: 10.62347/mbld9480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 11/19/2024] Open
Abstract
Blockage of let-7 miRNA biogenesis by LIN28, or other mechanisms, results in derepression of let-7 target genes, some of which are oncogenic (e.g., MYCN) potentially contributing to tumor progression and drug resistance. We have developed a cell-based assay to identify small molecules that increase levels of mature functional let-7 miRNAs by inhibiting the function of Lin28B protein or by other means. This system consists of a reporter gene (GFP) regulated by the tTR-KRAB repressor protein which in turn is regulated by processed let-7 miRNAs. Using this system, we screened approximately 4000 small molecules and identified more than a dozen compounds capable of augmenting levels of mature let-7 miRNAs. Among those compounds, Kenpaullone and BIO were shown to increase let-7 miRNA levels with consequent suppression of MYCN protein in neuroblastoma cell lines. This novel strategy provides an additional cell-based assay for candidate cancer drug screening in a high throughput setting and will facilitate the identification of anti-cancer drugs. Moreover, this assay could be used to screen shRNA and CRISPR libraries to identify novel components of the LIN28-let-7 axis which may provide new therapeutic targets.
Collapse
Affiliation(s)
- Sirinapa Szewczyk
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Brian Buckley
- Drug Discovery Core Shared Resource, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Mikhail Chernov
- Drug Discovery Core Shared Resource, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | | | - Herman Yeger
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, Ontario M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, SickKids555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Kristopher M Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Renae Holtz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
3
|
Li Y, Tian M, Pires Sanches JG, Zhang Q, Hou L, Zhang J. Sorcin Inhibits Mitochondrial Apoptosis by Interacting with STAT3 via NF-κB Pathway. Int J Mol Sci 2024; 25:7206. [PMID: 39000312 PMCID: PMC11241191 DOI: 10.3390/ijms25137206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Our group has previously reported that sorcin (SRI) plays an important role in the progression and prognosis of HCC. This study aims to explore the mechanism of SRI inhibiting the mitochondrial apoptosis. Bioinformatics analysis, co-IP and immunofluorescence were used to analyze the relationship between SRI and STAT3. MMP and Hoechst staining were performed to detect the effect of SRI on cell apoptosis. The expression of apoptosis-related proteins and NF-κB signaling pathway were examined by Western blot and immunohistochemistry when SRI overexpression or underexpression in vivo and in vitro were found. Moreover, inhibitors were used to further explore the molecular mechanism. Overexpression of SRI inhibited cell apoptosis, which was attenuated by SRI knockdown in vitro and in vivo. Moreover, we identified that STAT3 is an SRI-interacting protein. Mechanistically, SRI interacts with STAT3 and then activates the NF-κB signaling pathway in vitro and in vivo. SRI interacting with STAT3 inhibits apoptosis by the NF-κB pathway and further contributes to the proliferation in HCC, which offers a novel clue and a new potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yizi Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Manlin Tian
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jaceline Gislaine Pires Sanches
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Bozali K, Koc S, Beyaztas H, Ozdemir M, Ozkan BN, Dumlu FS, Yalcin B, Guler EM. Thymoquinone oxime synthesis and its effects on melanoma cells: cytotoxic, genotoxic, and apoptotic evaluation. Nat Prod Res 2024:1-9. [PMID: 38742473 DOI: 10.1080/14786419.2024.2353913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Strong evidence supports the anticancer properties of natural plant product isolates. The cytotoxic, genotoxic, and apoptotic properties of an oxime derivative of thymoquinone (TQ) in melanoma cancer cells were investigated. The structure of TQ-Oxime was elucidated through nuclear magnetic resonance, and its effect on B16F10 and L929 cell lines was assessed using a luminometric adenosine triphosphate assay. Intracellular reactive oxygen species (iROS) were quantified via fluorometry, mitochondrial membrane potential (MMP) was assessed using flow cytometry, glutathione (GSH) levels were measured using a luminometric GSH/oxidized glutathione assay, DNA damage via comet assay, and apoptosis was detected using acridine orange/ethidium bromide staining. Concentrations (0.5-20 μM) of TQ-Oxime significantly increased cytotoxicity, DNA damage, apoptosis, and iROS, in a concentration-dependent manner compared (p < 0.001). In addition, MMP and GSH levels decreased significantly with increasing concentrations compared with the control (p < 0.001). Overall, these findings contribute to our understanding of the therapeutic potential of TQ and its derivatives in cancer treatment.
Collapse
Affiliation(s)
- Kubra Bozali
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Sumeyye Koc
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Hakan Beyaztas
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Mucahit Ozdemir
- Department of Chemistry, Marmara University, Istanbul, Türkiye
| | - Beyza Nur Ozkan
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Fatma Sena Dumlu
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Bahattin Yalcin
- Department of Chemistry, Marmara University, Istanbul, Türkiye
| | - Eray Metin Guler
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Istanbul, Türkiye
| |
Collapse
|
5
|
Sharma V, Sharma P, Singh TG. Wnt signalling pathways as mediators of neuroprotective mechanisms: therapeutic implications in stroke. Mol Biol Rep 2024; 51:247. [PMID: 38300425 DOI: 10.1007/s11033-023-09202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
A stroke is a complicated neurological illness that occurs when there is a disruption in the blood flow to the brain. This disruption results in the damage of neurons, which then leads to functional abnormalities. The Wnt signalling pathway, which is already well-known for its important function in development and tissue homeostasis, has recently been recognised as a critical factor in the pathophysiology of stroke. Recent studies have shown the Wnt pathway's roles in stroke-related events. The complex-interactions between the Wnt pathway and stroke emphasising the pathway's contributions to neuro-protection and synaptic plasticity. The Wnt pathway's influence on neuro-genesis and synaptic plasticity underscores its potential for driving stroke recovery and rehabilitation strategies. The current review discusses about the Wnt signalling pathway in brain pathophysiology and stroke with special emphasis on the various pathways involved in the positive and negative modulation of Wnt pathway namely Phosphoinositide 3-kinase (PI3-K), Glycogen synthase kinase-3β (GSK-3β), Mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
6
|
6-Bromoindirubin-3′-Oxime Regulates Colony Formation, Apoptosis, and Odonto/Osteogenic Differentiation in Human Dental Pulp Stem Cells. Int J Mol Sci 2022; 23:ijms23158676. [PMID: 35955809 PMCID: PMC9368902 DOI: 10.3390/ijms23158676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
6-bromoindirubin-3′-oxime (BIO) is a candidate small molecule that effectively modulates Wnt signalling owing to its stable property. The present study investigated the influence of BIO on the odonto/osteogenic differentiation of human dental pulp stem cells (hDPSCs). hDPSCs were treated with 200, 400, or 800 nM BIO, and the effects on hDPSC responses and osteogenic differentiation were assessed. BIO-mediated Wnt activation was confirmed by β-catenin nuclear translocation detected by immunofluorescence staining. BIO attenuated colony formation and cell migration determined by in vitro wound-healing assay. BIO increased early apoptotic cell population evaluated using flow cytometry. For osteogenic induction, BIO promoted alkaline phosphatase (ALP) activity and mineralisation in a dose-dependent manner. ALP, RUNX2, OCN, OSX, ANKH, DMP1, and DSPP mRNA expression were significantly upregulated. The OPG/RANKL expression ratio was also increased. Further, BIO attenuated adipogenic differentiation as demonstrated by decreased lipid accumulation and adipogenic-related gene expression. Bioinformatic analysis of RNA sequencing data from the BIO-treated hDPSCs revealed that BIO modulated pathways related to autophagy and actin cytoskeleton regulation. These findings demonstrated that BIO treatment promoted hDPSC osteogenic differentiation. Therefore, this small molecule is a strong candidate as a bioactive molecule to enhance dentin repair.
Collapse
|
7
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
8
|
Jo A, Kwak JH, Woo SY, Kim BY, Son Y, Choi HS, Kim J, Kwon M, Cho HR, Eo SK, Nam JH, Kim HS, Baryawno N, Lee D, Kim K. Oxime derivative TFOBO promotes cell death by modulating reactive oxygen species and regulating NADPH oxidase activity in myeloid leukemia. Sci Rep 2022; 12:7519. [PMID: 35525902 PMCID: PMC9079095 DOI: 10.1038/s41598-022-11543-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Several derivatives derived from the oxime structure have been reported as potential anticancer agents in various cancers. Here, we first tested a novel oxime-containing derivative of 2-((2,4,5-trifluorobenzyl)oxy)benzaldehyde oxime (TFOBO) to evaluate its anticancer effect in myeloid leukemic cells. Compared to (2-((2,4,5-trifluorobenzyl)oxy)phenyl)methanol (TFOPM), the oxime derivative TFOBO suppresses leukemic cell growth by significantly increasing reactive oxygen species (ROS) levels and cell death. Leukemic cells treated with TFOBO displayed apoptotic cell death, as indicated by nuclear condensation, DNA fragmentation, and annexin V staining. TFOBO increases Bax/Bcl2 levels, caspase9, and caspase3/7 activity and decreases mitochondrial membrane potential. ROS production was reduced by N-acetyl-L-cysteine, a ROS scavenger, diphenyleneiodonium chloride, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, after exogenous TFOBO treatment. ROS inhibitors protect leukemic cells from TFOBO-induced cell death. Thus, our study findings suggest that TFOBO promotes apoptosis by modulating ROS and regulating NADPH oxidase activity. Collectively, the oxime-containing derivative TFOBO is a novel therapeutic drug for myeloid leukemia.
Collapse
Affiliation(s)
- Ahyoung Jo
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Soo-Yeon Woo
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Bo-Young Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yonghae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hyok-Rae Cho
- Department of Neurosurgery, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Ji Ho Nam
- Department of Radiation Oncology, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
9
|
Barbian HJ, Seaton MS, Narasipura SD, Wallace J, Rajan R, Sha BE, Al-Harthi L. β-catenin regulates HIV latency and modulates HIV reactivation. PLoS Pathog 2022; 18:e1010354. [PMID: 35255110 PMCID: PMC8939789 DOI: 10.1371/journal.ppat.1010354] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/22/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Latency is the main obstacle towards an HIV cure, with cure strategies aiming to either elicit or prevent viral reactivation. While these strategies have shown promise, they have only succeeded in modulating latency in a fraction of the latent HIV reservoir, suggesting that the mechanisms controlling HIV latency are not completely understood, and that comprehensive latency modulation will require targeting of multiple latency maintenance pathways. We show here that the transcriptional co-activator and the central mediator of canonical Wnt signaling, β-catenin, inhibits HIV transcription in CD4+ T cells via TCF-4 LTR binding sites. Further, we show that inhibiting the β-catenin pathway reactivates HIV in a primary TCM cell model of HIV latency, primary cells from cART-controlled HIV donors, and in CD4+ latent cell lines. β-catenin inhibition or activation also enhanced or inhibited the activity of several classes of HIV latency reversing agents, respectively, in these models, with significant synergy of β-catenin and each LRA class tested. In sum, we identify β-catenin as a novel regulator of HIV latency in vitro and ex vivo, adding new therapeutic targets that may be combined for comprehensive HIV latency modulation in HIV cure efforts.
Collapse
Affiliation(s)
- Hannah J. Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Melanie S. Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Reshma Rajan
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Beverly E. Sha
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinios United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zhao R, Yin W, Yu Q, Mao Y, Deng Q, Zhang K, Ma S. AZD3759 enhances radiation effects in non-small-cell lung cancer by a synergistic blockade of epidermal growth factor receptor and Janus kinase-1. Bioengineered 2021; 13:331-344. [PMID: 34738874 PMCID: PMC8805903 DOI: 10.1080/21655979.2021.2001238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
AZD3759 is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) on the basis of gefitinib and has been proven to enter the central nervous system. Although the promising antitumor effects of AZD3759 on non-small cell lung cancer (NSCLC) have been demonstrated in clinical trials, the regulatory effects of this inhibitor on the antitumor efficacy of radiation (RA) are unclear. The present study aimed to compare the effects of AZD3759 and osimertinib on RA efficacy in NSCLC and explore the potential mechanism of action of AZD3759. We found that the survival in RA-treated NSCLC cells was significantly decreased by treatment with 500 nM AZD3759 and osimertinib at the RA dosage of 8 Gy. The apoptotic rate, cell cycle arrest, and DNA damage in RA-treated NSCLC cells and brain metastasis in RA-treated xenograft nude mice were significantly enhanced by the co-administration of AZD3759 and osimertinib, respectively. In addition, AZD3759 showed a significantly stronger efficacy than osimertinib did. Mechanistically, the receptor tyrosine kinase signaling antibody array revealed that Janus kinase-1 (JAK1) was specifically inhibited by AZD3759, but not by osimertinib. The effects of AZD3759 on RA efficacy in PC-9 cells and in a brain metastasis animal model were significantly abolished by the overexpression of JAK1. Collectively, our results suggested that AZD3759 promoted RA antitumor effects in NSCLC by synergistic blockade of EGFR and JAK1.
Collapse
Affiliation(s)
- Ruing Zhao
- Department of Radiation Oncology, Jiahui International Hospital, No. 689 Guiping Road, Xuhui District, Shanghai
| | - Wei Yin
- Department of Radiation Oncology, Hangzhou Cancer Hospital, No. 34 Yan Guan Lane, Hangzhou, Zhejiang, China
| | - Qingqing Yu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, No. 34 Yan Guan Lane, Hangzhou, Zhejiang, China
| | - Yanjiao Mao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, No. 34 Yan Guan Lane, Hangzhou, Zhejiang, China
| | - Qinghua Deng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, No. 34 Yan Guan Lane, Hangzhou, Zhejiang, China
| | - Ke Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, No. 34 Yan Guan Lane, Hangzhou, Zhejiang, China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou Cancer Hospital, No. 34 Yan Guan Lane, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Yin W, Zhang K, Deng Q, Yu Q, Mao Y, Zhao R, Ma S. AZD3759 inhibits glioma through the blockade of the epidermal growth factor receptor and Janus kinase pathways. Bioengineered 2021; 12:8679-8689. [PMID: 34635007 PMCID: PMC8806996 DOI: 10.1080/21655979.2021.1991160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glioma is an intracranial malignant tumor with high morbidity in China. Limited efficacy has been achieved in the treatment of glioma through the application of epidermal growth factor receptor (EGFR) inhibitors, which is reported to be related to the poor permeability of the brain–blood barrier (BBB) to EGFR inhibitors. AZD3759 and osimertinib are both BBB-penetrating EGFR inhibitors. The present study aimed to investigate the inhibitory effects of AZD3759 and osimertinib on glioma and compare their efficacy and the underlying mechanisms. C6 and U87 cells were incubated with different concentrations of AZD3759 (1, 2, and 4 μM) and 4 μM osimertinib, respectively. C6-LUC xenograft animals were administered different doses of AZD3759 (15, 30, and 60 mg/kg) and 60 mg/kg osimertinib. We found that proliferation was significantly suppressed and that apoptosis and cell cycle arrest were dramatically induced in both C6 and U87 cells by AZD3759 in a dose-dependent manner. Compared to AZD3759, osimertinib had inferior effects on proliferation, apoptosis, and cell cycle. In vivo experiments verified that the anti-tumor efficacy of AZD3759 against C6 xenograft tumors was dose dependent and superior to that of osimertinib. The inhibitory effects of AZD3759 on the Janus kinase (JAK)/STAT pathway were observed in both glioma cells and tumor tissues, which were more significant than those of osimertinib. In conclusion, AZD3759 may inhibit the progression of glioma via a synergistic blockade of the EGFR and JAK/STAT signaling pathways.
Collapse
Affiliation(s)
- Wei Yin
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ke Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qinghua Deng
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qingqing Yu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Yanjiao Mao
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ruping Zhao
- Department of Radiation Oncology, Jiahui International Hospital, Shanghai, China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Pan M, Yin X, Huang YC. Pseudopodium enriched atypical kinase 1(PEAK1) promotes invasion and of melanoma cells by activating JAK/STAT3 signals. Bioengineered 2021; 12:5045-5055. [PMID: 34365903 PMCID: PMC8806756 DOI: 10.1080/21655979.2021.1961661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudopodium enriched atypical kinase 1(PEAK1) is a non-receptor tyrosine kinase, which is enriched in the pseudopodia of migrating cells and plays an important role in regulating cell migration and proliferation. In the study, we investigate the therapeutic effect of PEAK1 on melanoma cells in vitro and in vivo. We used a lentiviral vector to express short hairpin RNAs (Lv-PEAK1 shRNA) for inhibiting PEAK1 expression in the melanoma SKMEL28 cells. A full-length PEAK1 gene was cloned into the pcDNA 3.1 (+) plasmid and used to infect the melanoma SKMEL19 cells. P6 (also known as Pyridines 6, EMD Chemicals), the Pan-JAK inhibitor, was used to inhibit the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway. The cell counting kit-8 (CCK-8), colony formation assay and transwell assay were used to detect cell proliferation, growth and invasion in vitro. The effect of PEAK1 on melanoma progression in vivo was also evaluated. Protein expression of PEAK1, E-cadherin, vimentin and JAK/STAT3 was measured using western blot assay or immunohistochemistry. The results showed that enforced PEAK1 expression facilitated melanoma cell growth, invasion and metastasis via activating JAK/STAT3 signals, and PEAK1 knockdown inhibited melanoma cell growth, invasion and metastasis via inactivating JAK/STAT3 signals. Further work demonstrated that P6 (500 nM) treatment reversed PEAK1-induced effect in melanoma cells. PEAK1 promotes tumorigenesis and metastasis via activating JAK/STAT3 signals, and PEAK1 knockdown reduced tumorigenesis and metastasis in melanoma via inactivating JAK/STAT3 signals, providing a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Min Pan
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaohui Yin
- Department of Dermatology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Yi-Chuan Huang
- Department of Otolaryngology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Establishment of live-cell-based coupled assay system for identification of compounds to modulate metabolic activities of cells. Cell Rep 2021; 36:109311. [PMID: 34233188 DOI: 10.1016/j.celrep.2021.109311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, we present a live-cell-based fluorometric coupled assay system to identify the compounds that can regulate the targeted metabolic pathways in live cells. The assay is established through targeting specific metabolic pathways and using "input" and "output" metabolite pairs. The changes in the extracellular output that are generated and released into the extracellular media from the input are assessed as the activity of the pathway. The screening for the glycolytic pathway and amino acid metabolism reveals the activities of the present drugs, 6-BIO and regorafenib, that regulate the metabolic fate of tumor cells.
Collapse
|
14
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
15
|
Patel A, Shah H, Shah U, Bambharoliya T, Patel M, Panchal I, Parikh V, Nagani A, Patel H, Vaghasiya J, Solanki N, Patel S, Shah A, Parmar G. A Review on the Synthetic Approach of Marinopyrroles: A Natural Antitumor Agent from the Ocean. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200718004012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural products play an important role in various drug discovery and development approaches.
They are known to be the rich resources for the identification of new chemical entities
(NCEs) intended to treat various diseases. Many drugs have been discovered and developed from natural
sources. Indeed, collaborative efforts involving biologists as well as organic, medicinal, and phytochemists
usually facilitate the identification of potent NCEs derived from natural sources. Over the past
20 years, more than 50% of NCEs have been derived either from marine sources or synthetic/
semisynthetic derivatives of natural products. Indeed, many drug molecules have been designed by
considering natural products as the starting scaffold. The first bis-pyrrole alkaloid derivative of
marinopyrroles was obtained from the marine-derived streptomycete species. In the laboratory, it can
be synthesized via Clauson-Kaas and Friedel-Crafts arylation as well as copper-mediated N-arylation
process under microwave irradiation. The marinopyrrole A (±)-28 was discovered to overcome resistance
against human cancer cells by antagonizing B-cell lymphoma extra-large (Bcl-xL) and induced
myeloid leukaemia cell (Mcl-1). In this review, we elaborated on various synthetic pathways of
marinopyrroles possessing anti-cancer potential, which could encourage researchers to discover promising
anti-tumor agents.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Hirak Shah
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | | | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Ishan Panchal
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Vruti Parikh
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Afzal Nagani
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | - Harnisha Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat,India
| | | | - Nilay Solanki
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Swayamprakash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Ta. Petlad, Dist. Anand, Gujarat,India
| | - Ashish Shah
- Department of Pharmacy, Sumandeep Vidhyapeeth, Vadodara, Gujarat,India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidhyapeeth, Vadodara, Gujarat,India
| |
Collapse
|
16
|
Singhal SS, Mohanty A, Kulkarni P, Horne D, Awasthi S, Salgia R. RLIP depletion induces apoptosis associated with inhibition of JAK2/STAT3 signaling in melanoma cells. Carcinogenesis 2021; 42:742-752. [PMID: 33623991 DOI: 10.1093/carcin/bgab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
The incidence of malignant melanoma, a neoplasm of melanocytic cells, is increasing rapidly. The lymph nodes are often the first site of metastasis and can herald systemic dissemination, which is almost uniformly fatal. RLIP, a multi-specific ATP-dependent transporter that is over-expressed in several types of cancers, plays a central role in cancer cell resistance to radiation and chemotherapy. RLIP appears to be necessary for cancer cell survival because both in vitro cell culture and in vivo animal tumor studies show that the depletion or inhibition of RLIP causes selective toxicity to malignant cells. RLIP depletion/inhibition triggers apoptosis in cancer cells by inducing the accumulation of endogenously formed glutathione-conjugates. In our in vivo studies, we administered RLIP antibodies or antisense oligonucleotides to mice bearing subcutaneous xenografts of SKMEL2 and SKMEL5 melanoma cells and demonstrated that both treatments caused significant xenograft regression with no apparent toxic effects. Anti-RLIP antibodies and antisense, which respectively inhibit RLIP-mediated transport and deplete RLIP expression, showed similar tumor regressing activities, indicating that the inhibition of RLIP transport activity at the cell surface is sufficient to achieve anti-tumor activity. Furthermore, RLIP antisense treatment reduced levels of RLIP, pSTAT3, pJAK2, pSrc, Mcl-1 and Bcl2, as well as CDK4 and cyclin B1, and increased levels of Bax and phospho 5' AMP-activated protein kinase (pAMPK). These studies indicate that RLIP serves as a key effector in the survival of melanoma cells and is a valid target for cancer therapy. Overall, compounds that inhibit, deplete or downregulate RLIP will function as wide-spectrum agents to treat melanoma, independent of common signaling pathway mutations.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology and Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| |
Collapse
|
17
|
Glibo M, Serman A, Karin-Kujundzic V, Bekavac Vlatkovic I, Miskovic B, Vranic S, Serman L. The role of glycogen synthase kinase 3 (GSK3) in cancer with emphasis on ovarian cancer development and progression: A comprehensive review. Bosn J Basic Med Sci 2021; 21:5-18. [PMID: 32767962 PMCID: PMC7861620 DOI: 10.17305/bjbms.2020.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a monomeric serine-threonine kinase discovered in 1980 in a rat skeletal muscle. It has been involved in various cellular processes including embryogenesis, immune response, inflammation, apoptosis, autophagy, wound healing, neurodegeneration, and carcinogenesis. GSK3 exists in two different isoforms, GSK3α and GSK3β, both containing seven antiparallel beta-plates, a short linking part and an alpha helix, but coded by different genes and variously expressed in human tissues. In the current review, we comprehensively appraise the current literature on the role of GSK3 in various cancers with emphasis on ovarian carcinoma. Our findings indicate that the role of GSK3 in ovarian cancer development cannot be decisively determined as the currently available data support both prooncogenic and tumor-suppressive effects. Likewise, the clinical impact of GSK3 expression on ovarian cancer patients and its potential therapeutic implications are also limited. Further studies are needed to fully elucidate the pathophysiological and clinical implications of GSK3 activity in ovarian cancer.
Collapse
Affiliation(s)
- Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Bekavac Vlatkovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Berivoj Miskovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
18
|
lncRNA RHPN1-AS1 Serves as a Sponge for miR-3133 Modulating the Cell Proliferation of Retinoblastoma through JAK2. BIOMED RESEARCH INTERNATIONAL 2021; 2020:3502981. [PMID: 33426053 PMCID: PMC7773464 DOI: 10.1155/2020/3502981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/07/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Purpose To investigate the effects of lncRNA RHPN1-AS1 on retinoblastoma (RB) and further explore its underlying molecular mechanisms. Methods The expression of RHPN1-AS1, miR-3133, (JAK2), and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR. CCK-8, EDU, and flow cytometry assays were conducted to assess the proliferation activity and apoptosis of RB cells. Double fluorescein and RNA immunoprecipitation assays were performed to detect the interaction between RHPN1-AS1 and miR-3133 or miR-3133 and JAK2. Western blotting was performed to detect the expression of apoptosis-related proteins. Results In RB cells, RHPN1-AS1 was upregulated. Silencing RHPN1-AS1 inhibited the activity of RB cells and promoted apoptosis. The expressions of proapoptotic factors (Bax and p53) were increased, while antiapoptotic factors (Bcl-2 and Survivin) were suppressed in siRHPN1-AS1 groups. Furthermore, we predicted and verified that RHPN1-AS1 regulated RB progression by targeting miR-3133/JAK2. In addition, siRHPN1-AS1 also inhibited oncogene STAT3 protein expression. Conclusion lncRNA RHPN1-AS1 served as a sponge for miR-3133 to counteract miR-3133-mediated JAK2/STAT3 suppression, indicating that the lncRNA RHPN1-AS1 may be a potential therapeutic target for the treatment of RB.
Collapse
|
19
|
Summer K, Browne J, Liu L, Benkendorff K. Molluscan Compounds Provide Drug Leads for the Treatment and Prevention of Respiratory Disease. Mar Drugs 2020; 18:md18110570. [PMID: 33228163 PMCID: PMC7699502 DOI: 10.3390/md18110570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Respiratory diseases place an immense burden on global health and there is a compelling need for the discovery of new compounds for therapeutic development. Here, we identify research priorities by critically reviewing pre-clinical and clinical studies using extracts and compounds derived from molluscs, as well as traditional molluscan medicines, used in the treatment of respiratory diseases. We reviewed 97 biomedical articles demonstrating the anti-inflammatory, antimicrobial, anticancer, and immunomodulatory properties of >320 molluscan extracts/compounds with direct relevance to respiratory disease, in addition to others with promising bioactivities yet to be tested in the respiratory context. Of pertinent interest are compounds demonstrating biofilm inhibition/disruption and antiviral activity, as well as synergism with approved antimicrobial and chemotherapeutic agents. At least 100 traditional medicines, incorporating over 300 different mollusc species, have been used to treat respiratory-related illness in cultures worldwide for thousands of years. These medicines provide useful clues for the discovery of bioactive components that likely underpin their continued use. There is particular incentive for investigations into anti-inflammatory compounds, given the extensive application of molluscan traditional medicines for symptoms of inflammation, and shells, which are the principal molluscan product used in these preparations. Overall, there is a need to target research toward specific respiratory disease-related hypotheses, purify bioactive compounds and elucidate their chemical structures, and develop an evidence base for the integration of quality-controlled traditional medicines.
Collapse
Affiliation(s)
- Kate Summer
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Jessica Browne
- School of Health and Human Sciences, Southern Cross University, Terminal Drive, Bilinga, QLD 4225, Australia;
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, GPO Box 157, Lismore, NSW 2480, Australia;
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
- Correspondence: ; Tel.: +61-429-520-589
| |
Collapse
|
20
|
Kwa YC, Tan YF, Foo YY, Leo BF, Chung I, Kiew LV, Imae T, Yusa SI, Chung LY. Improved delivery and antimetastatic effects of Stattic by self-assembled amphiphilic pendant-dendron copolymer micelles in breast cancer cell lines. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer 2020; 19:145. [PMID: 32972405 PMCID: PMC7513516 DOI: 10.1186/s12943-020-01258-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
As a point of convergence for numerous oncogenic signaling pathways, signal transducer and activator of transcription 3 (STAT3) is central in regulating the anti-tumor immune response. STAT3 is broadly hyperactivated both in cancer and non-cancerous cells within the tumor ecosystem and plays important roles in inhibiting the expression of crucial immune activation regulators and promoting the production of immunosuppressive factors. Therefore, targeting the STAT3 signaling pathway has emerged as a promising therapeutic strategy for numerous cancers. In this review, we outline the importance of STAT3 signaling pathway in tumorigenesis and its immune regulation, and highlight the current status for the development of STAT3-targeting therapeutic approaches. We also summarize and discuss recent advances in STAT3-based combination immunotherapy in detail. These endeavors provide new insights into the translational application of STAT3 in cancer and may contribute to the promotion of more effective treatments toward malignancies.
Collapse
Affiliation(s)
- Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Qiyu Tong
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Bowen Liu
- College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Wang W, Liu Y, You L, Sun M, Qu C, Dong X, Yin X, Ni J. Inhibitory effects of Paris saponin I, II, Ⅵ and Ⅶ on HUVEC cells through regulation of VEGFR2, PI3K/AKT/mTOR, Src/eNOS, PLCγ/ERK/MERK, and JAK2-STAT3 pathways. Biomed Pharmacother 2020; 131:110750. [PMID: 32942160 DOI: 10.1016/j.biopha.2020.110750] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Rhizoma Paris is a popular Chinese medicine in clinics. It contains four main saponins which are its major bioactive compounds. These saponins are Paris saponin I, II, VI and VII (PSI, PSII, PSVI and PSVII, respectively). Up to now, the research using HUVEC cells to evaluate the anti-angiogenic activity of four saponins is blank. The purpose of this study was to evaluate the anti-angiogenic properties (also known as angiotoxicity) of the four saponins in Rhizoma Paris on vascular endothelial cells-HUVEC cells, and to investigate the underlying mechanism, which has not been studied before. In this study, MTT assay, Lactate dehydrogenase (LDH) assay, wound healing experiments, transwell cell invasion assay, tubule formation experiment, DAPI staining, AV-PI double staining, and cell cycle analysis were used to determine the effects of Paris saponins. The results showed that, with increases in concentrations of PSI, PSII, PSVI and PSVII, the viability of HUVEC cells decreased significantly. In addition, four saponins dose-dependent enhanced LDH release and inhibited HUVEC cell migration, invasion, and angiogenesis. In terms of mechanism, PSI significantly inhibited protein expression in multiple signaling pathways. In particular, with the VEGF2 as the target, it activate the downstream PI3K / AKT / mTOR, SRC / eNOS, P38, PLCγ / ERK / MERK and JAK2/STAT3 signaling pathways. In conclusion, PSI, PSII, PSVI and PSVII can inhibit endothelial cell proliferation, migration and invasion, block endothelial cell cycle, induce endothelial cell apoptosis, act on protein expression in several anti-angiogenic signaling pathways, and finally inhibit angiogenesis in vitro. This study provides further data support for the clinical application of Paris saponins as antiangiogenic drugs.
Collapse
Affiliation(s)
- Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - XiaoXv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
23
|
Li H, Yao Q, Min L, Huang S, Wu H, Yang H, Fan L, Wang J, Zheng N. The Combination of Two Bioactive Constituents, Lactoferrin and Linolenic Acid, Inhibits Mouse Xenograft Esophageal Tumor Growth by Downregulating Lithocholyltaurine and Inhibiting the JAK2/STAT3-Related Pathway. ACS OMEGA 2020; 5:20755-20764. [PMID: 32875209 PMCID: PMC7450510 DOI: 10.1021/acsomega.0c01132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
The addition of lactoferrin and three unsaturated fatty acids, oleic acid, docosahexaenoic acid (DHA), and linolenic acid, to dairy products was approved in recent years. Research into the biological activities of lactoferrin and these three unsaturated fatty acids has revealed anti-inflammatory, antiviral, antioxidant, antitumor, antiparasitic, and antibiotic effects. However, investigations and comparisons of lactoferrin + oleic acid/DHA/linolenic acid combinations in an esophageal cancer cell model and in xenograft tumor models have not been extensively reported, and the related mechanism of these combinations remains elusive. In the present study, the effects of lactoferrin and the three fatty acids on KYSE450 cell viability, migration, and invasion were investigated to choose the proper doses and effective combination in vitro. A tumor-bearing nude mouse model was established to investigate the role of selected combinations in inhibiting esophageal tumor formation in vivo. Metabonomics detection and data analysis were performed to screen special metabolites and related pathways, which were validated by western blotting. The results demonstrated that lactoferrin, the three unsaturated fatty acids, and their combinations inhibited the viability, migration, and invasion of KYSE450 cells and induced apoptosis and the lactoferrin + linolenic acid combination exhibited the strongest activity in suppressing KYSE450 tumor formation in vivo. The lactoferrin + linolenic acid combination inhibited phosphorylation in the JAK2/STAT3-related pathway by downregulating the special metabolite lithocholyltaurine, thereby suppressing formation of KYSE450 tumors.
Collapse
Affiliation(s)
- Huiying Li
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qianqian Yao
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Li Min
- State
Key Laboratory of Livestock and Poultry Breeding, Institute of Animal
Science, Guangdong Academy of Agricultural
Sciences, Guangzhou 510640, P. R. China
| | - Shengnan Huang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Haoming Wu
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huaigu Yang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Linlin Fan
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jiaqi Wang
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Nan Zheng
- Laboratory
of Quality and Safety Risk Assessment for Dairy Products of Ministry
of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Key
Laboratory of Quality & Safety Control for Milk and Dairy Products
of Ministry of Agriculture and Rural Affairs, Institute of Animal
Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100193, P. R. China
- State
Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
24
|
Naumovska E, Aalderink G, Wong Valencia C, Kosim K, Nicolas A, Brown S, Vulto P, Erdmann KS, Kurek D. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21144964. [PMID: 32674311 PMCID: PMC7404294 DOI: 10.3390/ijms21144964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel in microfluidic chips of the OrganoPlate, in which they undergo stepwise differentiation. Cells form a tubular structure, lose their stem cell markers and start expressing mature intestinal markers, including markers for Paneth cells, enterocytes and neuroendocrine cells. Tubes develop barrier properties as confirmed by transepithelial electrical resistance (TEER). Lastly, we show that tubules respond to pro-inflammatory cytokine triggers. The whole procedure for differentiation lasts 14 days, making it an efficient process to make patient-specific organoid tubules. We anticipate the usage of the platform for disease modelling and drug candidate screening.
Collapse
Affiliation(s)
- Elena Naumovska
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Germaine Aalderink
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Christian Wong Valencia
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Kinga Kosim
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Arnaud Nicolas
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Stephen Brown
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Paul Vulto
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Kai S. Erdmann
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
- Correspondence: (K.S.E.); (D.K.)
| | - Dorota Kurek
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Correspondence: (K.S.E.); (D.K.)
| |
Collapse
|
25
|
El Haouari M, Quintero JE, Rosado JA. Anticancer molecular mechanisms of oleocanthal. Phytother Res 2020; 34:2820-2834. [PMID: 32449241 DOI: 10.1002/ptr.6722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
Cancer is among the leading causes of mortality worldwide. Current cancer therapies are associated with serious side effects, which further damage patients' health. Therefore, the search for new anticancer agents with no toxic effects on normal and healthy cells is of great interest. Recently, we and other groups have demonstrated that oleocanthal (OLC), a phenolic compound from extra virgin olive oil, exhibits antitumor activity in various tumor models. However, the underlying mechanisms and intracellular targets of OLC remain to be completely elucidated. This review summarizes the current advancers concerning the anticancer activity of OLC, with particular emphasis on the molecular signaling pathways modulated by this compound in different tumor cell types. The major mechanisms of action of OLC include modulation of the apoptotic pathway, the HGF/c-Met pathway, and the signal transducer and activator of transcription 3 signaling pathway, among others. Furthermore, OLC has synergistic effects with anticancer drugs in vitro. Also discussed are OLC bioavailability and its concentration in olive oil. Data summarized here will represent a database for more extensive studies aimed at providing information on molecular mechanisms against cancer induced by OLC.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Laboratoire d'Ingénierie Pédagogique et Didactique des Sciences (IPDSM), Centre Régional des Métiers de l'Education et de la Formation (CRMEF Fès-Meknès), Taza, Morocco.,Laboratoire Substances Naturelles, Pharmacologie, Environnement, Modélisation, Santé & Qualité de vie (SNAMOPEQ), Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdellah, Taza, Morocco
| | - Juan E Quintero
- Department of Physiology (Cell Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| |
Collapse
|
26
|
Zhu Q, Shen Y, Chen X, He J, Liu J, Zu X. Self-Renewal Signalling Pathway Inhibitors: Perspectives on Therapeutic Approaches for Cancer Stem Cells. Onco Targets Ther 2020; 13:525-540. [PMID: 32021295 PMCID: PMC6970631 DOI: 10.2147/ott.s224465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The poor survival and prognosis of individuals with cancer are often attributed to tumour relapse and metastasis, which may be due to the presence of cancer stem cells (CSCs). CSCs have the characteristics of self-renewal, differentiation potential, high carcinogenicity, and drug resistance. In addition, CSCs exhibit many characteristics similar to those of embryonic or tissue stem cells while displaying persistent abnormal activation of self-renewal pathways associated with development and tissue homeostasis, including the Wnt, Notch, Hedgehog (Hh), TGF-β, JAK/STAT3, and NF-κB pathways. Therefore, we can eliminate CSCs by targeting these self-renewal pathways to constrain stem cell replication, survival and differentiation. At the same time, we cannot neglect the ping-pong effect of the tumour microenvironment, which releases cytokines and promotes self-renewal pathways in CSCs. Recently, meaningful progress has been made in the study of inhibitors of self-renewal pathways in tumours. This review primarily summarizes several representative and novel agents targeting these self-renewal signalling pathways and the tumour microenvironment and that represent a promising strategy for treating refractory and recurrent cancer.
Collapse
Affiliation(s)
- Qingyun Zhu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xiguang Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jun He
- Department of Spine Surgery, The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jianghua Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
27
|
Su T, Wang YP, Wang XN, Li CY, Zhu PL, Huang YM, Yang ZY, Chen SB, Yu ZL. The JAK2/STAT3 pathway is involved in the anti-melanoma effects of brevilin A. Life Sci 2019; 241:117169. [PMID: 31843524 DOI: 10.1016/j.lfs.2019.117169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 01/14/2023]
Abstract
AIMS Melanoma is lethal. Constitutively active signal transducer and activator of transcription 3 (STAT3) has been proposed as a pathogenic factor and a therapeutic target of melanoma. Brevilin A, a sesquiterpene lactone isolated from Centipeda minima (L.) A. Br. et Aschers., has been shown to exert antineoplastic effects and inhibit the STAT3 pathway in nasopharyngeal, lung, prostate and breast cancer cells. This study aimed to determine whether brevilin A has anti-melanoma effects, and whether STAT3 signaling is involved in the effects. MAIN METHODS A mouse A375 xenograft model, as well as A375 and A2058 cell models were employed to assess the in vivo and in vitro anti-melanoma effects of brevilin A. A375 cells stably expressing STAT3C, a constitutively active STAT3 mutant, were used to determine the role of STAT3 signaling in brevilin A's anti-melanoma effects. KEY FINDINGS Intraperitoneal injection of brevilin A dose-dependently inhibited melanoma growth in mice and suppressed STAT3 phosphorylation in the tumors. In cultured cells, brevilin A reduced cell viability, induced apoptosis, suppressed migration and invasion, decreased protein levels of phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), and restrained STAT3 nuclear localization. STAT3 over-activation diminished brevilin A's effects on cell viability and migration. Collectively, brevilin A exerts anti-melanoma effects and these effects are at least in part attributed to the inhibition of the JAK2/STAT3 pathway. SIGNIFICANCE Our findings provide a pharmacological basis for developing brevilin A as a new phytotherapeutic agent against melanoma.
Collapse
Affiliation(s)
- Tao Su
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xin-Ning Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chun-Yu Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei-Li Zhu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Yu-Mei Huang
- Guangzhou Caizhilin Pharmaceutical Co., Ltd., Guangzhou, Guangdong, China
| | - Zhi-Ye Yang
- Guangdong Institute For Drug Control, Guangzhou, Guangdong, China
| | - Si-Bao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
28
|
Kaoud TS, Mohassab AM, Hassan HA, Yan C, Van Ravenstein SX, Abdelhamid D, Dalby KN, Abdel-Aziz M. NO-releasing STAT3 inhibitors suppress BRAF-mutant melanoma growth. Eur J Med Chem 2019; 186:111885. [PMID: 31784187 DOI: 10.1016/j.ejmech.2019.111885] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Constitutive activation of STAT3 can play a vital role in the development of melanoma. STAT3-targeted therapeutics are reported to show efficacy in melanomas harboring the BRAFV600E mutant and also in vemurafenib-resistant melanomas. We designed and synthesized a series of substituted nitric oxide (NO)-releasing quinolone-1,2,4-triazole/oxime hybrids, hypothesizing that the introduction of a STAT3 binding scaffold would augment their cytotoxicity. All the hybrids tested showed a comparable level of in vitro NO production. 7b and 7c exhibited direct binding to the STAT3-SH domain with IC50 of ∼ 0.5 μM. Also, they abrogated STAT3 tyrosine phosphorylation in several cancer cell lines, including the A375 melanoma cell line that carries the BRAFV600E mutation. At the same time, they did not affect the phosphorylation of upstream kinases or other STAT isoforms. 7c inhibited STAT3 nuclear translocation in mouse embryonic fibroblast while 7b and 7c inhibited STAT3 DNA-binding activity in the A375 cell line. Their anti-proliferating activity is attributed to their ability to trigger the production of reactive oxygen species and induce G1 cell cycle arrest in the A375 cell line. Interestingly, 7b and 7c showed robust cell growth suppression and apoptosis induction in two pairs of BRAF inhibitor-naïve (-S) and resistant (-R) melanoma cell lines containing a BRAF V600E mutation. Surprisingly, MEL1617-R cells that are known to be more resistance to MEK inhibition by GSK1120212 than MEL1617-S cells exhibit a similar response to 7b and 7c.
Collapse
Affiliation(s)
- Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aliaa M Mohassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Sabrina X Van Ravenstein
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| |
Collapse
|
29
|
Search for novel STAT3-dependent genes reveals SERPINA3 as a new STAT3 target that regulates invasion of human melanoma cells. J Transl Med 2019; 99:1607-1621. [PMID: 31278347 DOI: 10.1038/s41374-019-0288-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/19/2019] [Accepted: 06/05/2019] [Indexed: 02/04/2023] Open
Abstract
Transcription factor signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers and promotes uncontrolled tumor growth and progression through multiple mechanisms. Compelling evidence shows tissue and cell-specific sets of STAT3 targets. Transcriptional targets of STAT3 in melanoma cells are largely unknown. Malignant melanoma is a deadly disease with highly aggressive and drug-resistant behavior. Less than 10% of patients with advanced melanomas reach the 5-year survival, partly due to the aggressive character of the tumor and ineffectiveness of current therapeutics for treating metastatic melanoma. STAT3 is constitutively activated in melanoma cells and plays important roles in its growth and angiogenesis in tumor xenograft studies. Moreover, highly metastatic melanoma cells have higher levels of active STAT3 than poorly metastatic ones. To identify genes that are driven by STAT3 in human melanoma cells, we performed JAK/STAT signaling specific and global gene expression profiling of human melanoma cells with silenced STAT3 expression. For selected genes, we performed computational identification of putative STAT3-binding sites and validated direct interactions STAT3 with defined promoters by using chromatin immunoprecipitation followed by qPCR. We found that STAT3 knockdown does not affect human melanoma cell viability, proliferation, or response to chemotherapeutics. We show that STAT3 regulates a discrete set of genes in melanoma cells, including SERPINA3, a novel STAT3 target gene, which is functionally involved in regulation of melanoma migration and invasion. Knockdown of STAT3 impaired cell migration and invasion, in part via regulation of its transcriptional target SERPINA3. Our results present novel targets and functions of STAT3 in melanoma cells.
Collapse
|
30
|
Jang H, Ko H, Song K, Kim YS. A Sesquiterpenoid from Farfarae Flos Induces Apoptosis of MDA-MB-231 Human Breast Cancer Cells through Inhibition of JAK-STAT3 Signaling. Biomolecules 2019; 9:biom9070278. [PMID: 31337063 PMCID: PMC6681226 DOI: 10.3390/biom9070278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are hard-to-treat breast tumors with poor prognosis, which need to be treated by chemotherapy. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor involved in proliferation, metastasis, and invasion of cancer cells. Therefore, research on searching for promising compounds with metabolism that suppress phosphorylation or transcription of STAT3 in TNBC cells is important. Farfarae Flos is well known as a traditional medicine for treating inflammation. However, few studies have shown that sesquiterpenoids from Farfarae Flos have an anticancer effect. In this study, efficient separation methods and an MTT assay were conducted to isolate an anticancer compound from Farfarae Flos against TNBC MDA-MB-231 cells. Here, 7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a compound isolated from Farfarae Flos showed a potent cytotoxic effect on MDA-MB-231 cells. ECN inhibited JAK–STAT3 signaling and suppressed the expression of STAT3 target genes. In addition, ECN induced apoptosis through both extrinsic and intrinsic pathways. Furthermore, we investigated that ECN inhibited the growth of tumors by intraperitoneal administration in mice injected with MDA-MB-231 cells. Therefore, ECN can be an effective chemotherapeutic agent for breast cancer treatment.
Collapse
Affiliation(s)
- Hyeri Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Hyejin Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Kwangho Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
31
|
Yoon KB, Lee HJ, Chung HJ, Lee J, Choi J, Heo JD, Kim YC, Han SY. Discovery of LDD-1075 as a potent FLT3 inhibitor. Oncol Lett 2019; 17:4735-4741. [PMID: 30944659 DOI: 10.3892/ol.2019.10096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a valuable pharmacological target in the treatment of acute myeloid leukemia (AML). LDD-1075 and LDD-1076 are indirubin derivatives, and LDD-1075 is the ester form of LDD-1076. LDD-1076 exhibited a potent in vitro FLT3 kinase activity inhibition with an IC50 of 7.89 nM, whereas, LDD-1075 demonstrated a relatively weak activity against FLT3 (IC50 of 3.19 µM). In contrast with the results of the FLT3 kinase activity inhibition assay, the LDD-1076 did not affect the growth of the MV4-11 cell line, which harbors the constitutively activated form of the FLT3 mutation. Notably, LDD-1075 exhibited a strong cytotoxic effect against the MV4-11 cells. When LDD-1075 was incubated with the MV4-11 cell lysate, the formation of LDD-1076 was observed. Treatment with LDD-1075 inhibited the FLT3 phosphorylation along with the phosphorylation of the signal transducer and activator of transcription 5 protein, which is a downstream signal transducer of FLT3. Treatment with LDD-1075 induced apoptosis and cell cycle arrest at the G1 phase. The present study demonstrated that the LDD-1076 formed by the bioconversion of LDD-1075 is a potent FLT3 inhibitor with anti-leukemic activity.
Collapse
Affiliation(s)
- Kyoung Bin Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| | - Jungeun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jungil Choi
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, Gyeongsangnam-do 52834, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52828, Republic of Korea
| |
Collapse
|
32
|
Xu YJ, Chen FP, Chen Y, Fu B, Liu EY, Zou L, Liu LX. A Possible Reason to Induce Acute Graft-vs.-Host Disease After Hematopoietic Stem Cell Transplantation: Lack of Sirtuin-1 in CD4 + T Cells. Front Immunol 2018; 9:3078. [PMID: 30622543 PMCID: PMC6308326 DOI: 10.3389/fimmu.2018.03078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/12/2018] [Indexed: 01/02/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a critical suppressor of T cell immunity. However, whether SIRT1 is involved in the progression of acute graft-vs.-host disease (aGVHD) has still remained unclear. PI3K/Akt/mTOR pathway is a crucial element involved in the activation and functions of T cells. Over-activation of PI3K/Akt/mTOR signaling may be related to the occurrence of aGVHD. STAT3 activation requires phosphorylation and acetylation. A recent study showed that STAT3 hyperphosphorylation in CD4+ T cells may be a trigger of aGVHD. The role of the STAT3 acetylation in aGVHD pathogenesis is still unclear. The present study revealed that SIRT1 deficiency as a critical factor is involved in the excessive activation of mTOR pathway and upregulation of STAT3 acetylation and phosphorylation in CD4+ T cells from patients with aGVHD. Exorbitant activation of IL-1β signaling is the main reason for TAK1-dependent SIRT1 insufficiency. The findings of the present study might provide a new therapeutic target for treating aGVHD.
Collapse
Affiliation(s)
- Ya-Jing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Fu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - En-Yi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lang Zou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin-Xin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Negoro R, Takayama K, Kawai K, Harada K, Sakurai F, Hirata K, Mizuguchi H. Efficient Generation of Small Intestinal Epithelial-like Cells from Human iPSCs for Drug Absorption and Metabolism Studies. Stem Cell Reports 2018; 11:1539-1550. [PMID: 30472010 PMCID: PMC6294172 DOI: 10.1016/j.stemcr.2018.10.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023] Open
Abstract
The small intestine plays an important role in the absorption and metabolism of oral drugs. In the current evaluation system, it is difficult to predict the precise absorption and metabolism of oral drugs. In this study, we generated small intestinal epithelial-like cells from human induced pluripotent stem cells (hiPS-SIECs), which could be applied to drug absorption and metabolism studies. The small intestinal epithelial-like cells were efficiently generated from human induced pluripotent stem cell by treatment with WNT3A, R-spondin 3, Noggin, EGF, IGF-1, SB202190, and dexamethasone. The gene expression levels of small intestinal epithelial cell (SIEC) markers were similar between the hiPS-SIECs and human adult small intestine. Importantly, the gene expression levels of colonic epithelial cell markers in the hiPS-SIECs were much lower than those in human adult colon. The hiPS-SIECs generated by our protocol exerted various SIEC functions. In conclusion, the hiPS-SIECs can be utilized for evaluation of drug absorption and metabolism.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
| | - Kanae Kawai
- Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
34
|
Tchoumtchoua J, Halabalaki M, Gikas E, Tsarbopoulos A, Fotaki N, Liu L, Nam S, Jove R, Skaltsounis LA. Preliminary pharmacokinetic study of the anticancer 6BIO in mice using an UHPLC-MS/MS approach. J Pharm Biomed Anal 2018; 164:317-325. [PMID: 30412805 DOI: 10.1016/j.jpba.2018.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022]
Abstract
Indirubins represent a group of natural and synthetic products with bio-activities against numerous human cancer cell lines acting by inhibiting protein kinases. The natural sources of indirubins are plants of Isatis sp., Indigofera sp., and Polygonum sp., recombinant bacteria, mammalian urine and some marine mollusks. Specifically, the halogenated derivative 6-bromo indirubin-3'-oxime (6BIO) possesses increased selectivity against GSK-3. However, to our knowledge, no analytical method to determine 6BIO in biological fluids has been developed till now. Therefore, a rapid, sensitive and high throughput UHPLC-MS/MS methods were developed and validated to evaluate the concentrations of 6BIO in mice plasma. Plasma samples were pre-treated by protein precipation using cold mixture of methanol: acetonitrile (9:1, v/v) and separations were carried out on a Hypersil Gold C18 column (50 × 2.1 mm i.d.; 1.9 μm p.s.) using 0.1% acetic acid and methanol as mobile phase at a flow rate of 500 mL/min in a gradient mode. For quantitation, a hybrid LTQ-Orbitrap MS equipped with an electro-spray ionization source was used applying a selected reaction monitoring (SRM) option. The monitored transitions were m/z 354.0 → 324.0 for 6BIO and 297.1 → 282.1 for afromorsin (used as the internal standard) in the negative mode. Following the EMA, ICH and FDA guidelines for validation of analytical procedures, the assay method was fully validated in terms of selectivity, linearity, recovery, matrix effect, accuracy, precision, stability, and robustness. The validated methods were successfully applied to the pharmacokinetic studies of 6BIO following an oral administration to mice at the dose of 50 mg/kg. The results indicated that 6BIO possesses a Tmax of 30 min, a half-life of 1 h, and low plasma bioavailability.
Collapse
Affiliation(s)
- Job Tchoumtchoua
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Evangelos Gikas
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down Bath, BA2 7AY, United Kingdom
| | - Lucy Liu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sangkil Nam
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Richard Jove
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece.
| |
Collapse
|
35
|
Teng H, Mao F, Liang J, Xue M, Wei W, Li X, Zhang K, Feng D, Liu B, Sun Z. Transcriptomic signature associated with carcinogenesis and aggressiveness of papillary thyroid carcinoma. Theranostics 2018; 8:4345-4358. [PMID: 30214625 PMCID: PMC6134936 DOI: 10.7150/thno.26862] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 01/27/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the fastest-growing disease caused by numerous molecular alterations in addition to previously reported DNA mutations. There is a compelling need to identify novel transcriptomic alterations that are associated with the pathogenesis of PTC with potential diagnostic and prognostic implications. Methods: We gathered and compared 242 expression profiles between paired PTC and adjacent normal tissues and identified and validated the coding and long non-coding RNAs (lncRNAs) associated with the extrathyroidal extension (ETE) of 655 PTC patients in two independent cohorts, followed by predicting their interactions with drugs. Co-expression, RNA interaction, Kaplan-Meier survival and multivariate Cox proportional regression analyses were performed to identify dysregulated lncRNAs and genes that correlated with clinical outcomes of PTC. Alternative splicing (AS), RNA circularization, and editing were also compared between transcriptomes to expand the repertoire of molecular alterations in PTC. Results: Numerous genes related to cellular microenvironment and steroid hormone response were associated with the ETE of PTC. Drug susceptibility predictions of the expression signature revealed two highly ranked compounds, 6-bromoindirubin-3'-oxime and lovastatin. Co-expression and RNA interaction analysis revealed the essential role of lncRNAs in PTC pathogenesis by modulating extracellular matrix and cell adhesion. Eight genes and two novel lncRNAs were identified that correlated with the aggressive nature and disease-free survival of PTC. Furthermore, this study provided the transcriptome-wide landscape of circRNAs in PTC and uncovered dissimilar expression profiles among circRNAs originating from the same host gene, suggesting the functional complexity of circRNAs in PTC carcinogenesis. The newly identified AS events in the SERPINA1 and FN1 genes may improve the sensitivity and specificity of these diagnostic biomarkers. Conclusions: Our study uncovered a comprehensive transcriptomic signature associated with the carcinogenesis and aggressive behavior of PTC, as well as presents a catalog of 10 potential biomarkers, which would facilitate PTC prognosis and development of new therapeutic strategies for this cancer.
Collapse
Affiliation(s)
- Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Meiying Xue
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqing Wei
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dongdong Feng
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Baoguo Liu
- Department of Head and Neck Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Yang IH, Jung W, Kim LH, Shin JA, Cho NP, Hong SD, Hong KO, Cho SD. Nitidine chloride represses Mcl-1 protein via lysosomal degradation in oral squamous cell carcinoma. J Oral Pathol Med 2018; 47:823-829. [PMID: 29924888 DOI: 10.1111/jop.12755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/15/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND We have shown previously that nitidine chloride (NC) induces apoptosis via inhibition of signal transducer and activator of transcription 3 (STAT3). However, its downstream molecules are not fully understood yet. Here, we report that NC as STAT3 inhibitor downregulates myeloid cell leukemia-1 (Mcl-1) protein in HSC-3 and HSC-4 human oral squamous cell carcinoma (OSCC) cells and a nude mouse tumor xenograft model. METHODS This study investigated the effects of NC on Mcl-1 expression in HSC-3 and HSC-4 cells using Western blotting, RT-PCR, and dual-luciferase assay. Immunohistochemistry was employed to evaluate Mcl-1 expression levels in mouse tumor tissues. Construction of Mcl-1 overexpression vector and transient transfection was done to test the apoptosis of HSC-3 cells. RESULTS Nitidine chloride did not affect either mRNA level or promoter activity of Mcl-1, and the decrease in Mcl-1 protein by NC was caused by lysosome-dependent degradation, but not proteasome-dependent degradation. The overexpression of Mcl-1 protein in OSCC cell lines was sufficient to block the induction of apoptosis. In addition, NC strongly reduced the expression level of Mcl-1 protein compared with other STAT3 inhibitors such as cryptotanshione and S3I-201 in OSCCs. CONCLUSIONS Our findings suggest that NC triggers apoptosis via lysosome-dependent Mcl-1 protein degradation and could be chosen as a promising chemotherapeutic candidate against human OSCCs.
Collapse
Affiliation(s)
- In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Won Jung
- Department of Oral medicine, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Huang TT, Lan YW, Ko YF, Chen CM, Lai HC, Ojcius DM, Martel J, Young JD, Chong KY. Antrodia cinnamomea produces anti-angiogenic effects by inhibiting the VEGFR2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:239-249. [PMID: 29609012 DOI: 10.1016/j.jep.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal mushroom Antrodia cinnamomea has been used to treat cancer but its anti-angiogenic effects have not been studied in detail. AIM OF THE STUDY The main objective of this study was to determine the molecular mechanism of activity underlying the anti-angiogenic effects of A. cinnamomea. MATERIALS AND METHODS The effects of an A. cinnamomea ethanol extract (ACEE) on cell migration and microvessel formation were investigated in endothelial cells in vitro and Matrigel plugs implanted into mice in vivo. Activation of intracellular signaling pathways was examined using Western blotting. Protein expression was assessed using immunohistochemistry in a mouse model of lung metastasis. RESULTS We show that treatment with ACEE inhibits cell migration and tube formation in human umbilical vein endothelial cells (HUVECs). ACEE suppresses phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and expression of pro-angiogenic kinases in vascular endothelial growth factor (VEGF)-treated HUVECs, in addition to reducing expression of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3). ACEE treatment inhibits VEGF-induced microvessel formation in Matrigel plugs in vivo. In addition, ACEE significantly reduces VEGFR2 expression in Lewis lung carcinoma cells and downregulates the expression of cluster of differentiation 31 (CD31) and VEGFR2 in murine lung metastases. CONCLUSION These results indicate that A. cinnamomea produces anti-angiogenic effects by inhibiting the VEGFR2 signaling pathway.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ying-Wei Lan
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Fei Ko
- Chang Gung Biotechnology Corporation, Taipei 10508, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Center for Integrative Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Research Center of Bacterial Pathogenesis, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| | - Jan Martel
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan
| | - John D Young
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Chang Gung Biotechnology Corporation, Taipei 10508, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Laboratory of Nanomaterials, Chang Gung University, Taoyuan 33302, Taiwan; Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY 10021, USA.
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| |
Collapse
|
38
|
Hatiboglu MA, Kocyigit A, Guler EM, Akdur K, Nalli A, Karatas E, Tuzgen S. Thymoquinone Induces Apoptosis in B16-F10 Melanoma Cell Through Inhibition of p-STAT3 and Inhibits Tumor Growth in a Murine Intracerebral Melanoma Model. World Neurosurg 2018; 114:e182-e190. [DOI: 10.1016/j.wneu.2018.02.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
|
39
|
Scarpa E, Janeczek AA, Hailes A, de Andrés MC, De Grazia A, Oreffo RO, Newman TA, Evans ND. Polymersome nanoparticles for delivery of Wnt-activating small molecules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1267-1277. [PMID: 29555223 DOI: 10.1016/j.nano.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/05/2018] [Accepted: 02/24/2018] [Indexed: 01/02/2023]
Abstract
Spatiotemporal control of drug delivery is important for a number of medical applications and may be achieved using polymersome nanoparticles (PMs). Wnt signalling is a molecular pathway activated in various physiological processes, including bone repair, that requires precise control of activation. Here, we hypothesise that PMs can be stably loaded with a small molecule Wnt agonist, 6-bromoindirubin-3'-oxime (BIO), and activate Wnt signalling promoting the osteogenic differentiation in human primary bone marrow stromal cells (BMSCs). We showed that BIO-PMs induced a 40% increase in Wnt signaling activation in reporter cell lines without cytotoxicity induced by free BIO. BMSCs incubated with BIO-PMs showed a significant up-regulation of the Wnt target gene AXIN2 (14 ± 4 fold increase, P < 0.001) and a prolonged activation of the osteogenic gene RUNX2. We conclude that BIO-PMs could represent an innovative approach for the controlled activation of Wnt signaling for promoting bone regeneration after fracture.
Collapse
Affiliation(s)
- Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alethia Hailes
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Maria C de Andrés
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Antonio De Grazia
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Richard Oc Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom
| | - Tracey A Newman
- Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Medicine, University of Southampton, Southampton, United Kingdom.
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Bone and Joint Research Group, University of Southampton Faculty of Medicine, Southampton, United Kingdom; Institute for Life Sciences, Centre for Biological Sciences, B85, University Road, University of Southampton, Southampton, United Kingdom; Bioengineering Sciences Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, United Kingdom.
| |
Collapse
|
40
|
A Jak2-selective inhibitor potently reverses the immune suppression by modulating the tumor microenvironment for cancer immunotherapy. Biochem Pharmacol 2017; 145:132-146. [DOI: 10.1016/j.bcp.2017.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
41
|
Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1832494. [PMID: 29226125 PMCID: PMC5684518 DOI: 10.1155/2017/1832494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/16/2017] [Accepted: 09/24/2017] [Indexed: 02/07/2023]
Abstract
Purpose Signal transducer and activator of transcription factor 3 (STAT3) is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3) on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC) cell lines. Methods HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.
Collapse
|
42
|
Liu K, Li J, Wu X, Chen M, Luo F, Li J. GSK-3β inhibitor 6-bromo-indirubin-3'-oxime promotes both adhesive activity and drug resistance in colorectal cancer cells. Int J Oncol 2017; 51:1821-1830. [PMID: 29039496 DOI: 10.3892/ijo.2017.4163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/02/2017] [Indexed: 11/06/2022] Open
Abstract
Multi-targets inhibitor 6-bromo-indirubin-3'-oxime (BIO) has diverse biological effects on cancer cells. The key component of the β-catenin destruction complex glycogen synthase kinase 3β (GSK-3β), one of the major target for BIO, polyubiquitination and degradation of the main oncoprotein β-catenin in colorectal cancer (CRC). In the present study, we evaluated the effect of BIO on drug resistance and biological properties of CRC cells. Whole-genome transcriptional profiling revealed that differentially expressed genes were mainly centered on well-characterized signaling pathways including stem cell, cell adhesion and cell growth in BIO-treated CRC cells. BIO treatment downregulated migration and invasion abilities of CRC cells, accompanying with MMP-9 downregulated and E-cadherin upregulated CRC cells. BIO treatment decreased apoptosis induced by 5-Fu/DDP in CRC SW480 cells. In addition, BIO treatment reversed the 5-Fu-induced CD133+ cell downregulation trend in CRC SW620 cells. After incubation with BIO, the expression levels of EpCAM, TERT and DCAMKL-1 proteins were upregulated in CRC cells. BIO treatment downregulated the activity of GSK-3β, upregulated and transported β-catenin to the nucleus in CRC cells. Our findings reveal that BIO treatment upregulated stemness, adhesive and chemoresistance of CRC cells. GSK-3β inhibition and WNT/β-catenin activation by BIO, may partly result in the biological behavior alterations in CRC cells.
Collapse
Affiliation(s)
- Kunping Liu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jinbang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Xuefang Wu
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Meixiang Chen
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Feng Luo
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
43
|
Methylisoindigo and Its Bromo-Derivatives Are Selective Tyrosine Kinase Inhibitors, Repressing Cellular Stat3 Activity, and Target CD133+ Cancer Stem Cells in PDAC. Molecules 2017; 22:molecules22091546. [PMID: 32961646 PMCID: PMC6151689 DOI: 10.3390/molecules22091546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Indirubin is an active component of the herbal ingredient ‘Danggui Longhui wan’, which was used for the treatment of inflammation and chronic myeloid leukemia in China. The recent study showed its derivative methylisoindigo (also known as meisoindigo) preferentially targeting cancer stem cells (CSCs) in interference with AMPK and LKB1, the cellular metabolic sensors. In this study, we screened the effect of meisoindigo on a panel of 300 protein kinases and found that it selectively inhibited Stat3-associated tyrosine kinases and further confirmed its activity in cell based assays. To gain a deeper insight into the structure–activity relationship we produced 7 bromo-derivatives exhausting the accessible positions on the bisindole backbone except for in the 4-position due to the space limitation. We compared their anti-proliferative effects on tumor cells. We found that 6-bromomeisoindigo showed improved toxicity in company with increased Stat3 inhibition. Moreover, we detected that 6-bromomeisoindigo induced apoptosis of 95% of CD133+ pancreatic cancer cells. Considering that CD133 is a common marker highly expressed in a range of CSCs, our results imply the potential application of 6-bromomeisoindigo for the treatment of CSCs in different types of cancers.
Collapse
|
44
|
Kim LH, Khadka S, Shin JA, Jung JY, Ryu MH, Yu HJ, Lee HN, Jang B, Yang IH, Won DH, Kwon HJ, Jeong JH, Hong SD, Cho NP, Cho SD. Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3. Oncotarget 2017; 8:91306-91315. [PMID: 29207645 PMCID: PMC5710925 DOI: 10.18632/oncotarget.20444] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Nitidine chloride (NC) is a natural alkaloid compound derived from the plant Zanthoxylum nitidum and is known for its therapeutic anticancer potential. In this study, we investigated the effects of NC on growth and signaling pathways in human oral cancer cell lines and a tumor xenograft model. The apoptotic effects and related molecular targets of NC on human oral cancer were investigated using trypan blue exclusion assay, DAPI staining, Live/Dead assay, Western blotting, Immunohistochemistry/Immunofluorescence and a nude mouse tumor xenograft. NC decreased cell viability in both HSC3 and HSC4 cell lines; further analysis demonstrated that cell viability was reduced via apoptosis. STAT3 was hyper-phosphorylated in human oral squamous cell carcinoma (OSCC) compared with normal oral mucosa (NOM) and dephosphorylation of STAT3 by the potent STAT3 inhibitor, cryptotanshinone or NC decreased cell viability and induced apoptosis. NC also suppressed cell viability and induced apoptosis accompanied by dephosphorylating STAT3 in four other oral cancer cell lines. In a tumor xenograft model bearing HSC3 cell tumors, NC suppressed tumor growth and induced apoptosis by regulating STAT3 signaling without liver or kidney toxicity. Our findings suggest that NC is a promising chemotherapeutic candidate against human oral cancer.
Collapse
Affiliation(s)
- Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sachita Khadka
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Mi-Heon Ryu
- Department of Oral Pathology, School of Dentistry, Yangsan Campus of Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hae Nim Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Boonsil Jang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Hoon Won
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Hye-Jeong Kwon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Joseph H Jeong
- Department of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University and Korea Mouse Phenotyping Center, Seoul, 08826, Republic of Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
45
|
Zhao Y, Wei ZZ, Zhang JY, Zhang Y, Won S, Sun J, Yu SP, Li J, Wei L. GSK-3β Inhibition Induced Neuroprotection, Regeneration, and Functional Recovery After Intracerebral Hemorrhagic Stroke. Cell Transplant 2017; 26:395-407. [PMID: 28195036 DOI: 10.3727/096368916x694364] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hemorrhagic stroke is a devastating disease that lacks effective therapies. In the present investigation, we tested 6-bromoindirubin-3'-oxime (BIO) as a selective glycogen synthase kinase-3β (GSK-3β) inhibitor in a mouse model of intracerebral hemorrhage (ICH). ICH was induced by injection of collagenase IV into the striatum of 8- to 10-week-old C57BL/6 mice. BIO (8 μg/kg, IP) was administered following either an acute delivery (0-2 h delay) or a prolonged regimen (every 48 h starting at 3 days post-ICH). At 2 days post-ICH, the acute BIO treatment significantly reduced the hematoma volume. In the perihematoma regions, BIO administration blocked GSK-3β phosphorylation/activation, increased Bcl-2 and β-catenin levels, and significantly increased viability of neurons and other cell types. The prolonged BIO regimen maintained a higher level of β-catenin, upregulated VEGF and BDNF, and promoted neurogenesis and angiogenesis in peri-injury zones at 14 days after ICH. The BIO treatment also promoted proliferation of neural stem cells (NSCs) and migration of nascent DCX+ neuroblasts from the subventricular zone (SVZ) to the lesioned cortex. BIO improved functional outcomes on both the neurological severity score and rotarod tests. The findings of this study corroborate the neuroprotective and regenerative effects of BIO and suggest that the Wnt/GSK-3β/β-catenin pathway may be explored for the treatment of acute or chronic ICH.
Collapse
|
46
|
Wang Y, Wang S, Wu Y, Ren Y, Li Z, Yao X, Zhang C, Ye N, Jing C, Dong J, Zhang K, Sun S, Zhao M, Guo W, Qu X, Qiao Y, Chen H, Kong L, Jin R, Wang X, Zhang L, Zhou J, Shen Q, Zhou X. Suppression of the Growth and Invasion of Human Head and Neck Squamous Cell Carcinomas via Regulating STAT3 Signaling and the miR-21/β-catenin Axis with HJC0152. Mol Cancer Ther 2017; 16:578-590. [PMID: 28138036 DOI: 10.1158/1535-7163.mct-16-0606] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is involved in the tumor growth and metastasis of human head and neck squamous cell carcinoma (HNSCC) and is therefore a target with therapeutic potential. In this study, we show that HJC0152, a recently developed anticancer agent and a STAT3 signaling inhibitor, exhibits promising antitumor effects against HNSCC both in vitro and in vivo via inactivating STAT3 and downstream miR-21/β-catenin axis. HJC0152 treatment efficiently suppressed HNSCC cell proliferation, arrested the cell cycle at the G0-G1 phase, induced apoptosis, and reduced cell invasion in both SCC25 and CAL27 cell lines. Moreover, HJC0152 inhibited nuclear translocation of phosphorylated STAT3 at Tyr705 and decreased VHL/β-catenin signaling activity via regulation of miR-21. Loss of function of VHL remarkably compromised the antitumor effect of HJC0152 in both cell lines. In our SCC25-derived orthotopic mouse models, HJC0152 treatment significantly abrogated STAT3/β-catenin expression in vivo, leading to a global decrease of tumor growth and invasion. With its favorable aqueous solubility and oral bioavailability, HJC0152 holds the potential to be translated into the clinic as a promising therapeutic strategy for patients with HNSCC. Mol Cancer Ther; 16(4); 578-90. ©2017 AACR.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital; Tianjin Gastroenterology and Hepatology Institute, Tianjin 300052, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Zhaoqing Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Chao Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Jiabin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Brain Science Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Minghui Zhao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xin Qu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yu Qiao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Lingping Kong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Rui Jin
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Qiang Shen
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060, China
| |
Collapse
|
47
|
Zhang X, Castanotto D, Nam S, Horne D, Stein C. 6BIO Enhances Oligonucleotide Activity in Cells: A Potential Combinatorial Anti-androgen Receptor Therapy in Prostate Cancer Cells. Mol Ther 2017; 25:79-91. [PMID: 28129131 DOI: 10.1016/j.ymthe.2016.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022] Open
Abstract
Approximately 15%-25% of men diagnosed with prostate cancer do not survive their disease. The American Cancer Society estimated that for the year 2016 the number of prostate cancer deaths will be 26,120. Thus, there is a critical need for novel approaches to treat this deadly disease. Using high-throughput small-molecule screening, we found that the small molecule 6-bromo-indirubin-3'-oxime (6BIO) significantly improves the targeting of antisense oligonucleotides (ASOs) delivered by gymnosis (i.e., in the absence of any transfection reagents) in both the cell cytoplasm and the nucleus. Furthermore, as a single agent, 6BIO had the unexpected ability to simultaneously downregulate androgen receptor (AR) expression and AR signaling in prostate cancer cells. This includes downregulating levels of the AR-V7, a drug-resistance-related AR splice variant that is important in the progression of prostate cancer. Combining 6BIO and an anti-AR oligonucleotide (AR-ASO) can augment the downregulation of AR expression. We also demonstrated that 6BIO enhances ASO function and represses AR expression through the inhibition of the two main glycogen synthase kinase 3 (GSK-3) isoforms: GSK-3α and GSK-3β activity. Our findings provide a rationale for the use of 6BIO as a single agent or as part of a combinatorial ASO-based therapy in the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Departments of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Daniela Castanotto
- Departments of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, Duarte, CA 91010, USA; Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Sangkil Nam
- Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Cy Stein
- Departments of Medical Oncology and Experimental Therapeutics and Molecular and Cellular Biology, City of Hope Medical Center, Duarte, CA 91010, USA; Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
48
|
Yuan J, Ji H, Xiao F, Lin Z, Zhao X, Wang Z, Zhao J, Lu J. MicroRNA-340 inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting JAK1. Biochem Biophys Res Commun 2016; 483:578-584. [PMID: 27998770 DOI: 10.1016/j.bbrc.2016.12.102] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/05/2023]
Abstract
Increasing evidence indicates that dysregulation of microRNAs (miRNAs) contributes to tumorigenesis. MicroRNA-340 (miR-340) is downregulated in several types of cancer. However, the functional mechanism of miR-340 in hepatocellular carcinoma (HCC) remains unclear. Here, we showed that miR-340 was significantly downregulated in HCC tissues and cell lines. Gain-of-function experiments demonstrated that miR-340 overexpression inhibited HCC cell proliferation, migration, and invasion in vitro, and suppressed tumor growth in vivo. Janus kinase 1 (JAK1) was identified as a direct target of miR-340 in HCC cells. Ectopic expression of JAK1 reversed the inhibitory effects of miR-340. Further investigations showed that miR-340 dramatically inhibited the expression of signal transducer and activator of transcription (STAT)3 downstream molecules including Bcl-2, cyclin D1, and matrix metalloprotease (MMP)-2. The present findings indicated that miR-340 suppressed HCC cell proliferation and invasion by regulating the JAK1/STAT3 pathway, suggesting its potential as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Jianyong Yuan
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Hongxiang Ji
- The 2nd Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Feng Xiao
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhipeng Lin
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Xijun Zhao
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhouchong Wang
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Jun Zhao
- The 2nd Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| | - Junhua Lu
- The 5th Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
49
|
Gu Y, Wang J, Peng L. (-)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway. Oncol Rep 2016; 37:483-491. [PMID: 27878290 DOI: 10.3892/or.2016.5270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022] Open
Abstract
Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore explored the effects of (-)-oleocanthal (OC) on the three processes in melanoma and investigated underlying mechanisms. In vitro, OC suppressed proliferation, migration, invasion and induced apoptosis in melanoma cells. In addition, OC inhibited proliferation, migration, invasion and tube formation in human umbilical vascular endothelial cells. In vivo, it exhibited potent activity in suppressing tumor growth in a subcutaneous xenograft model. Furthermore, OC suppressed proliferation and angiogenesis as measured by immunohistochemical staining of Ki-67 and CD31. In addition, OC was found to inhibit metastasis of melanoma in a lung metastasis model. Mechanistically, OC significantly suppressed signal transducer and activator of transcription 3 (STAT3) phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. OC also downregulated STAT3 target genes, including Mcl-1, Bcl-xL, MMP-2, MMP-9, VEGF, which are involved in apoptosis, invasion and angiogenesis of melanoma. These results support further investigation of OC as a potential anti-melanoma drug.
Collapse
Affiliation(s)
- Yanli Gu
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| | - Jing Wang
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| | - Lixin Peng
- Department of Dermatology, Daqing Oilfield General Hospital, Saertu, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
50
|
Gaboriaud-Kolar N, Myrianthopoulos V, Vougogiannopoulou K, Gerolymatos P, Horne DA, Jove R, Mikros E, Nam S, Skaltsounis AL. Natural-Based Indirubins Display Potent Cytotoxicity toward Wild-Type and T315I-Resistant Leukemia Cell Lines. JOURNAL OF NATURAL PRODUCTS 2016; 79:2464-2471. [PMID: 27726390 PMCID: PMC9132125 DOI: 10.1021/acs.jnatprod.6b00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Drug resistance in chronic myelogenous leukemia (CML) requires the development of new CML chemotherapeutic drugs. Indirubin, a well-known mutikinase inhibitor, is the major active component of "Danggui Longhui Wan", a Chinese traditional medicine used for the treatment of CML symptoms. An in-house collection of indirubin derivatives was screened at 1 μM on wild-type and imatinib-resistant T315I mutant CML cells. Herein are reported that only 15 analogues of the natural 6-bromoindirubin displayed potent cytotoxicity in the submicromolar range. Kinase assays in vitro show that eight out of the 15 active molecules strongly inhibited both c-Src and Abl oncogenic kinases in the nanomolar range. Most importantly, these eight molecules blocked the activity of T315I mutant Abl kinase at the submicromolar level and with analogue 22 exhibiting inhibitory activity at the low nanomolar range. Docking calculations suggested that active indirubins might inhibit T315I Abl kinase through an unprecedented binding to both active and Src-like inactive conformations. Analogue 22 is the first derivative of a natural product identified as an inhibitor of wild-type and imatinib-resistant T315I mutant Abl kinases.
Collapse
Affiliation(s)
- Nicolas Gaboriaud-Kolar
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Vasillios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Panagiotis Gerolymatos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - David A. Horne
- Molecular Medicine; Beckman Research Institute; City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, United States
| | - Richard Jove
- Cell Therapy Institute, 3301 College Avenue, Fort Lauderdale, Nova Southeastern University, Florida 33314, USA
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Sangkil Nam
- Molecular Medicine; Beckman Research Institute; City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA, 91010, United States
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| |
Collapse
|