1
|
Paoletti N, Supuran CT. Benzothiazole derivatives in the design of antitumor agents. Arch Pharm (Weinheim) 2024; 357:e2400259. [PMID: 38873921 DOI: 10.1002/ardp.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.
Collapse
Affiliation(s)
- Niccolò Paoletti
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
2
|
Su Y, Li C, Liu W, Liu Y, Li L, Chen Q. Comprehensive analysis of differentially expressed miRNAs in mice with kidney injury induced by chronic intermittent hypoxia. Front Genet 2022; 13:918728. [DOI: 10.3389/fgene.2022.918728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Background: miRNAs have been reported to participate in various diseases. Nevertheless, the expression patterns of miRNA in obstructive sleep apnea (OSA)-induced kidney injury remain poorly characterized. In the current study, miRNA sequencing (miRNA-seq) was conducted to investigate miRNA expression profiles in a chronic intermittent hypoxia (CIH)-induced renal injury mouse model.Methods: The mouse model of chronic intermittent hypoxia was established. Differentially expressed miRNAs (DEmiRs) were detected using miRNA-seq technology. The sequencing data were subjected to Gene Ontology (GO) functional enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using a bioinformatics approach. RT-qPCR was further used to evaluate the sequencing results. Finally, we created a network for clarifying the relationship between the miRNAs and target genes.Results: In total, nine miRNAs were identified to be upregulated and nine to be downregulated in a mouse model of renal injury induced by chronic intermittent hypoxia. The Kyoto Encyclopedia of Genes and Genomes analyses revealed that the Wnt signaling pathway was involved in the development of chronic intermittent hypoxia-induced renal injury. Subsequently, eight DEmiRs, namely, mmu-miR-486b–3p, mmu-miR-215–5p, mmu-miR-212–3p, mmu-miR-344–3p, mmu-miR-181b-1-3p, mmu-miR-467a–3p, mmu-miR-467 d-3p, and mmu-miR-96–5p, showed a similar trend of expression when verified using RT-qPCR. Finally, five selected DEmiRs were used to construct a miRNA–mRNA network.Conclusion: In conclusion, a total of 18 DEmiRs were identified in the mouse model of chronic intermittent hypoxia-induced renal injury. These findings advance our understanding of the molecular regulatory mechanisms underlying the pathophysiology of obstructive sleep apnea-associated chronic kidney disease.
Collapse
|
3
|
Hypoxia Enhances HIF1α Transcription Activity by Upregulating KDM4A and Mediating H3K9me3, Thus Inducing Ferroptosis Resistance in Cervical Cancer Cells. Stem Cells Int 2022; 2022:1608806. [PMID: 35287356 PMCID: PMC8917951 DOI: 10.1155/2022/1608806] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Objective Cervical cancer (CC) is a prevalent cancer in women. Hypoxia plays a critical role in CC cell ferroptosis resistance. This study explored the mechanism of hypoxia in CC cell ferroptosis resistance by regulating HIF1α/KDM4A/H3K9me3. Methods Cultured SiHa and Hela cells were exposed to CoCl2 and treated with Erastin. Cell viability was detected by MTT assay, and concentrations of iron ion, MDA and GSH were determined using corresponding kits. Expressions of KDM4A, HIF1α, TfR1, DMT1, and H3k9me3 were detected by RT-qPCR, Western blot, and ChIP assay. The correlation of KDM4A and HIF1α was analyzed on Oncomine, UALCAN, and Starbase. CC cells were co-transfected with shKDM4A or/and pcDNA3.1-HIF1α. Iron uptake and release were assessed using the isotopic tracer method. The binding relationship between HIF1α and HRE sequence was verified by dual-luciferase assay. Results Cell viability and GSH were decreased while iron concentration, MDA, KDM4A, and HIF1α levels were increased in hypoxia conditions. The 2-h hypoxia induced ferroptosis resistance. KDM4A and HIF1α were highly-expressed in CC tissues and positively correlated with each other. KDM4A knockdown attenuated cell resistance to Erastin, increased H3K9me3 level in the HIF1α promoter region, and downregulated HIF1α transcription and translation. H3K9me3 level was increased in the HIF1α promoter after hypoxia. HIF1α overexpression abrogated the function of KDM4A knockdown on ferroptosis in hypoxia conditions. Iron uptake/release and TfR1/DMT1 levels were increased after hypoxia. Hypoxia activated HRE sequence in TfR1 and DMT1 promoters. Conclusion Hypoxia upregulated KDM4A, enhanced HIF1α transcription, and activated HRE sequence in TfR1 and DMT1 promoters via H3K9me3, thus inducing ferroptosis resistance in CC cells.
Collapse
|
4
|
Borowczak J, Szczerbowski K, Ahmadi N, Szylberg Ł. CDK9 inhibitors in multiple myeloma: a review of progress and perspectives. Med Oncol 2022; 39:39. [PMID: 35092513 PMCID: PMC8800928 DOI: 10.1007/s12032-021-01636-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022]
Abstract
Currently, multiple myeloma is not yet considered a curable disease. Despite the recent advances in therapy, the average patient lifespan is still unsatisfactory. Recently, CDK9 inhibitors emerged as a suitable agent to overcome resistance and prolong survival in patients with poor diagnoses. Downregulation of c-MYC, XIAP, Mcl-1 and restoration of p53 tumor-suppressive functions seems to play a key role in achieving clinical response. The applicability of the first generation of CDK9 inhibitors was limited due to relatively high toxicity, but the introduction of novel, highly selective drugs, seems to reduce the effects of off-target inhibition. CDK9 inhibitors were able to induce dose-dependent cytotoxicity in Doxorubicin-resistant, Lenalidomide-resistant and Bortezomib-resistant cell lines. They seem to be effective in cell lines with unfavorable prognostic factors, such as p53 deletion, t(4; 14) and t(14; 16). In preclinical trials, the application of CDK9 inhibitors led to tumor cells apoptosis, tumor growth inhibition and tumor mass reduction. Synergistic effects between CDK9 inhibitors and either Venetoclax, Bortezomib, Lenalidomide or Erlotinib have been proven and are awaiting verification in clinical trials. Although conclusions should be drawn with due care, obtained reports suggest that including CDK9 inhibitors into the current drug regimen may turn out to be beneficial, especially in poor prognosis patients.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge, UK
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
5
|
Zhao S, Zhou L, Dicker DT, Lev A, Zhang S, Ross E, El-Deiry WS. Anti-cancer efficacy including Rb-deficient tumors and VHL-independent HIF1α proteasomal destabilization by dual targeting of CDK1 or CDK4/6 and HSP90. Sci Rep 2021; 11:20871. [PMID: 34686682 PMCID: PMC8536770 DOI: 10.1038/s41598-021-00150-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
A prevalent characteristic of solid tumors is intra-tumoral hypoxia. Hypoxia-inducible factor 1α (HIF1α) predominantly mediates the adaptive response to O2 oscillation and is linked to multiple malignant hallmarks. Here we describe a strategy to robustly target HIF1α by dual inhibition of CDK(s) and heat shock protein 90 (HSP90). We show that CDK1 may contribute to HSP90-mediated HIF1α stabilization. CDK1 knockdown enhances the decrease of HIF1α by HSP90 inhibition. Dual inhibition of CDK1 and HSP90 significantly increases apoptosis and synergistically inhibits cancer cell viability. Similarly, targeting CDK4/6 using FDA-approved inhibitors in combination with HSP90 inhibition shows a class effect on HIF1α inhibition and cancer cell viability suppression not only in colorectal but also in various other cancer types, including Rb-deficient cancer cells. Dual inhibition of CDK4/6 and HSP90 suppresses tumor growth in vivo. In summary, combined targeting of CDK(s) (CDK1 or CDK4/6) and HSP90 remarkably inhibits the expression level of HIF1α and shows promising anti-cancer efficacy with therapeutic potential.
Collapse
Affiliation(s)
- Shuai Zhao
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Pathobiology Graduate Program, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - David T Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA
| | - Avital Lev
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA.,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Eric Ross
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, USA. .,Pathobiology Graduate Program, Brown University, Providence, RI, USA. .,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA. .,Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, USA. .,Cancer Center at Brown University, Warren Alpert Medical School, Brown University, Providence, RI, USA. .,Fox Chase Cancer Center, Philadelphia, PA, USA. .,Hematology/Oncology Division, Lifespan Cancer Institute, Providence, RI, USA.
| |
Collapse
|
6
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
7
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
8
|
Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020; 9:cells9061388. [PMID: 32503133 PMCID: PMC7349761 DOI: 10.3390/cells9061388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase (GSK)3β is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3β is normally active in cells and negative regulation of GSK3β activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3β contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial–mesenchymal transition, deregulated GSK3β also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3β inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3β inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3β as a hallmark property of cancer and highlight the beneficial effects of GSK3β inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3β in the treatment of cancer is also discussed at length.
Collapse
|
9
|
Hickman KA, Hariharan S, De Melo J, Ylanko J, Lustig LC, Penn LZ, Andrews DW. Image-Based Analysis of Protein Stability. Cytometry A 2020; 97:363-377. [PMID: 31774248 PMCID: PMC7187295 DOI: 10.1002/cyto.a.23928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Short half-life proteins regulate many essential processes, including cell cycle, transcription, and apoptosis. However, few well-characterized protein-turnover pathways have been identified because traditional methods to measure protein half-life are time and labor intensive. To overcome this barrier, we developed a protein stability probe and high-content screening pipeline for novel regulators of short half-life proteins using automated image analysis. Our pilot probe consists of the short half-life protein c-MYC (MYC) fused to Venus fluorescent protein (MYC-Venus). This probe enables protein half-life to be scored as a function of fluorescence intensity and distribution. Rapid turnover prevents maximal fluorescence of the probe due to the relatively longer maturation time of the fluorescent protein. Cells expressing the MYC-Venus probe were analyzed using a pipeline in which automated confocal microscopy and image analyses were used to score MYC-Venus stability by two strategies: assaying the percentage of cells with Venus fluorescence above background, and phenotypic comparative analysis. To evaluate this high-content screening pipeline and our probe, a kinase inhibitor library was screened by confocal microscopy to identify known and novel kinases that regulate MYC stability. Compounds identified were shown to increase the half-life of both MYC-Venus and endogenous MYC, validating the probe and pipeline. Fusion of another short half-life protein, myeloid cell leukemia 1 (MCL1), with Venus also demonstrated an increase in percent Venus-positive cells after treatment with inhibitors known to stabilize MCL1. Together, the results validate the use of our automated microscopy and image analysis pipeline of stability probe-expressing cells to rapidly and quantitatively identify regulators of short half-life proteins. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- K. Ashley Hickman
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Santosh Hariharan
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Jason De Melo
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
| | - Jarkko Ylanko
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
| | - Lindsay C. Lustig
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - Linda Z. Penn
- Princess Margaret Cancer CenterTorontoON M5G 1L7Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| | - David W. Andrews
- Sunnybrook Research InstituteTorontoON M4N 3M5Canada
- Faculty of Medicine, Department of Medical BiophysicsUniversity of TorontoTorontoON M5G 1L7Canada
| |
Collapse
|
10
|
Harrington CT, Sotillo E, Robert A, Hayer KE, Bogusz AM, Psathas J, Yu D, Taylor D, Dang CV, Klein PS, Hogarty MD, Geoerger B, El-Deiry WS, Wiels J, Thomas-Tikhonenko A. Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma. Leukemia 2019; 33:2429-2441. [PMID: 30914792 PMCID: PMC6884148 DOI: 10.1038/s41375-019-0454-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. Considerable efforts have been expended toward silencing MYC, which drives many human cancers including Burkitt lymphomas (BL). Yet, the effects of MYC silencing on standard-of-care therapies are poorly understood. Here we found that inhibition of MYC transcription renders B-lymphoblastoid cells refractory to chemotherapeutic agents. This suggested that in the context of chemotherapy, stabilization of Myc protein could be more beneficial than its inactivation. We tested this hypothesis by pharmacologically inhibiting glycogen synthase kinase 3β (GSK-3β), which normally targets Myc for proteasomal degradation. We discovered that chemorefractory BL cell lines responded better to doxorubicin and other anti-cancer drugs when Myc was transiently stabilized. In vivo, GSK3 inhibitors (GSK3i) enhanced doxorubicin-induced apoptosis in BL patient-derived xenografts (BL-PDX), as well as in murine MYC-driven lymphoma allografts. This enhancement was accompanied by and required deregulation of several key genes acting in the extrinsic, death-receptor-mediated apoptotic pathway. Consistent with this mechanism of action, GSK3i also facilitated lymphoma cell killing by a death ligand TRAIL and by a death receptor agonist mapatumumab. Thus, GSK3i synergizes with both standard chemotherapeutics and direct engagers of death receptors and could improve outcomes in patients with refractory lymphomas.
Collapse
Affiliation(s)
- Colleen T Harrington
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elena Sotillo
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Stanford Cancer Institute, 265 Campus Dr., Stanford, CA, 94305, USA
| | - Aude Robert
- CNRS UMR 8126, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Agata M Bogusz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Psathas
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, 200 Great Valley Parkway, Malvern, PA, 19355, USA
| | - Duonan Yu
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Noncoding RNA Center, Yangzhou University, 225001, Yangzhou, China
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chi V Dang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Peter S Klein
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael D Hogarty
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Birgit Geoerger
- CNRS UMR 8203, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Wafik S El-Deiry
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI, 02912, USA
| | - Joëlle Wiels
- CNRS UMR 8126, Univ Paris-Sud - Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Cell & Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Zhao X, Liu L, Li R, Wei X, Luan W, Liu P, Zhao J. Hypoxia-Inducible Factor 1-α (HIF-1α) Induces Apoptosis of Human Uterosacral Ligament Fibroblasts Through the Death Receptor and Mitochondrial Pathways. Med Sci Monit 2018; 24:8722-8733. [PMID: 30504760 PMCID: PMC6289032 DOI: 10.12659/msm.913384] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Hypoxia induces cell apoptosis in the uterosacral ligaments of patients with pelvic organ prolapse by upregulation of hypoxia-inducible factor-1α (HIF-1α). This study aimed to investigate the effects of HIF-1α on human uterosacral ligament fibroblasts (hUSLFs) following treatment with the chemical inducer of hypoxia, cobalt chloride (CoCl2), and to explore the underlying mechanisms. Material/Methods Ten women who underwent hysterectomy for benign disease provided uterosacral ligament tissue for cell extraction. Following CoCl2 treatment, cell viability of isolated and cultured hUSLFs was evaluated by the MTT assay. JC-1 fluorescence mitochondrial imaging was used to study the change in mitochondrial membrane potential. Cell apoptosis and expression of apoptosis-associated proteins and collagen type I alpha 1 (COL1A1) were measured by flow cytometry, TUNEL and Western blot, respectively. Results Hypoxia increased the expression of HIF-1α and increased cell apoptosis, decreased cell viability and expression levels of COL1A1. The JC-1 assay showed that the mitochondrial membrane potential was reduced and caspase-8, and -9 inhibitors partly reduced hUSLF apoptosis. HIF-1α treatment downregulated the expression of cellular FLICE inhibitory protein (c-FLIP), decoy receptor 2 (DcR2), and the ratio of Bcl-2 to Bax, and upregulated the expression tumor necrosis factor related apoptosis-inducing ligand (TRAIL), death receptor 5 (DR5) or TRAIL-R2, Fas, Bcl-2 interacting protein 3 (BNIP3), and cytochrome C, and increased the activation of caspase-3, caspase-8, and caspase-9, all of which were reversed by knockdown of HIF-1α. Conclusions HIF-1α significantly induced apoptosis of hUSLFs through both the cell death receptor and the mitochondrial-associated apoptosis pathways.
Collapse
Affiliation(s)
- Xinrui Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Wenqing Luan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University , Jinan, Shandong, China (mainland)
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
12
|
Kuroda K, Yamashita M, Murahata Y, Azuma K, Osaki T, Tsuka T, Ito N, Imagawa T, Okamoto Y. Use of ozonated water as a new therapeutic approach to solve current concerns around antitumor treatment. Exp Ther Med 2018; 16:1597-1602. [PMID: 30186377 PMCID: PMC6122405 DOI: 10.3892/etm.2018.6415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/09/2018] [Indexed: 01/15/2023] Open
Abstract
Tumor hypoxia is a severe problem affecting tumor therapy because it reduces the sensitivity of chemotherapy and radiation therapy. Ozone has been known to improve peripheral blood perfusion and oxygen partial pressure. The effect of ozonated water on tumor hypoxia, alone and in combination with an antitumor drug was studied in the present study. Following intraperitoneal administration of ozonated water to colon-26-bearing mice, the Hoechst 33342-positive area and the intratumoral oxygen partial pressure was significantly increased. The tumor growth rate was more suppressed when ozonated water was combined with cisplatin (CDDP) compared with CDDP treatment alone. The number of Ki-67-positive cells significantly decreased, whereas the number of TUNEL-positive cells significantly increased. The present study showed that ozonated water increased intratumoral blood perfusion and improved tumor hypoxia. In addition, ozonated water increased the therapeutic effect of CDDP. These findings, as well as previous reports, suggest that tumor growth is suppressed after treatment with ozonated water as the amount of CDDP reaching the tumor is increased when the intratumoral blood perfusion is increased due to the ozonated water. Thus, the administration of ozonated water may be a new therapeutic approach to solve current concerns regarding antitumor treatment.
Collapse
Affiliation(s)
- Kohei Kuroda
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Masamiti Yamashita
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yusuke Murahata
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Kazuo Azuma
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Takeshi Tsuka
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tomohiro Imagawa
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
13
|
Harashima N, Takenaga K, Akimoto M, Harada M. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression. Oncotarget 2018; 8:42887-42900. [PMID: 28476028 PMCID: PMC5522113 DOI: 10.18632/oncotarget.17157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Nanae Harashima
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | - Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
14
|
Affiliation(s)
- Noel A Warfel
- a Department of Cellular and Molecular Medicine , University of Arizona Cancer Center , Tucson , AZ , USA
| |
Collapse
|
15
|
Zhang J, Zhou L, Zhao S, Dicker DT, El-Deiry WS. The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle 2017; 16:1193-1200. [PMID: 28486050 DOI: 10.1080/15384101.2017.1320005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an inherent impediment to cancer therapy. Palbociclib, a highly selective inhibitor for CDK4/6, has been tested in numerous clinical trials and has been approved by the FDA. We previously reported that CDK inhibitors can destabilize HIF1α regardless of the presence of hypoxia and can sensitize tumor cells to TRAIL through dual blockade of CDK1 and GSK-3β. To translate this knowledge into a cancer therapeutic strategy, we investigated the therapeutic effects and molecular mechanisms of CDK inhibition against colon cancer cells under normoxia and hypoxia. We found that palbociclib sensitizes colon cancer cells to hypoxia-induced apoptotic resistance via deregulation of HIF-1α accumulation. In addition to inhibition of cell proliferation, we observed that palbociclib promotes colon cancer cell death regardless of the presence of hypoxia at a comparatively high concentration via regulating ERK/GSK-3β signaling and GSK-3β expression. Furthermore, palbociclib synergized with irinotecan in a variety of colon cancer cell lines with various molecular subtypes via deregulating irinotecan-induced Rb phosphorylation and reducing HIF-1α accumulation under normoxia or hypoxia. Collectively, our findings provide a novel combination therapy strategy against hypoxic colon cancer cells that may be further translated in the clinic.
Collapse
Affiliation(s)
- Jun Zhang
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Lanlan Zhou
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Shuai Zhao
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - David T Dicker
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Wafik S El-Deiry
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|
16
|
Santha S, Davaakhuu G, Basu A, Ke R, Das S, Rana A, Rana B. Modulation of glycogen synthase kinase-3β following TRAIL combinatorial treatment in cancer cells. Oncotarget 2016; 7:66892-66905. [PMID: 27602497 PMCID: PMC5341845 DOI: 10.18632/oncotarget.11834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
Glycogen Synthase Kinase-3β (GSK3β) is a serine/threonine kinase, known to regulate various cellular processes including proliferation, differentiation, survival, apoptosis as well as TRAIL-resistance. Thus pathways that can modulate GSK3β axis are important targets for cancer drug development. Our earlier studies have shown that combinatorial treatment with Troglitazone (TZD) and TRAIL can induce apoptosis in TRAIL-resistant cancer cells. The current studies were undertaken to investigate whether GSK3β pathway was modulated during this apoptosis. Our results indicated an increase in inhibitory GSK3βSer9 phosphorylation during apoptosis, mediated via AKT. At a later time, however, TZD alone and TRAIL-TZD combination produced a dramatic reduction of GSK3β expression, which was abolished by cycloheximide. Luciferase assays with GSK3β-luc promoter reporter showed that TZD can effectively antagonize GSK3β promoter activity. Since TZD is a ligand for transcription factor PPARγ and can activate AMPK, we determined their roles on antagonism of GSK3β. Knockdown of PPARγ was unable to restore GSK3β expression or antagonize GSK3βSer9 phosphorylation. Although pretreatment with Compound C (pharmacological inhibitor of AMPK) partially rescued GSK3β expression, knockdown of AMPKα1 or α2 alone or in combination were ineffective. These studies suggested a novel PPARγ-AMPK-independent mechanism of targeting GSK3β by TZD, elucidation of which might provide newer insights to improve our understanding of TRAIL-resistance.
Collapse
Affiliation(s)
- Sreevidya Santha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gantulga Davaakhuu
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Aninda Basu
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
17
|
Ko YS, Cho SJ, Park J, Choi Y, Lee JS, Youn HD, Kim WH, Kim MA, Park JW, Lee BL. Hypoxic inactivation of glycogen synthase kinase-3β promotes gastric tumor growth and angiogenesis by facilitating hypoxia-inducible factor-1 signaling. APMIS 2016; 124:748-56. [PMID: 27365055 DOI: 10.1111/apm.12569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/20/2016] [Indexed: 12/01/2022]
Abstract
Since the molecular mechanism of hypoxic adaptation in cancer cells is cell-type specific, we investigated whether glycogen synthase kinase-3β (GSK-3β) activation is involved in hypoxia-induced gastric tumor promotion. Stable gastric cancer cell lines (SNU-638, SNU-484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild-type GSK-3β (WT-GSK-3β) or kinase-dead mutant of GSK-3β (KD-GSK-3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK-3β activation in gastric cancer cells. Cell viability and the expressions of HIF-1α protein and VEGF mRNA in gastric cancer cells were higher in KD-GSK-3β transfectants than in WT-GSK-3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF-1α activation, and VEGF expression were higher in KD-GSK-3β tumors than in WT-GSK-3β tumors in vivo. In addition, the expression of hypoxia-induced HIF-1α protein was regulated by GSK-3β at the translational level. Our data suggest that GSK-3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Young San Ko
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Jin Cho
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | - Jinju Park
- Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yiseul Choi
- Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Seon Lee
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Hong-Duk Youn
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Min A Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Lan Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea.,Department of Tumor Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
19
|
Gariboldi MB, Taiana E, Bonzi MC, Craparotta I, Giovannardi S, Mancini M, Monti E. The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil. Cancer Lett 2015; 364:156-64. [PMID: 25979228 DOI: 10.1016/j.canlet.2015.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 12/16/2022]
Abstract
Activation of hypoxia-inducible factor (HIF)-1 is a feature of hypoxic solid tumors that has been associated with drug resistance, mainly due to disruption of Bcl-2 family dynamics. Resetting the balance in favor of proapoptotic family members is an attractive therapeutic goal that has been pursued by developing BH3-mimetic compounds. In the present study we evaluated the response of human colon adenocarcinoma cells to the BH3-mimetic obatoclax (OBX), in terms of growth arrest, apoptosis and autophagy, in the presence or absence of HIF-1α-stabilizing conditions; its possible effect on HIF-1α expression and HIF-1 activity; and the possibility to improve the response of colon cancer cells to cytotoxic chemotherapeutics by combining them with OBX. Colon cancer cell response to the BH3-mimetic was unmodified by HIF-1 activation and OBX induced a decrease in HIF-1α protein levels and HIF-1 transcriptional activity, probably by decreasing HIF-1α synthesis and facilitating a VHL-independent proteasomal degradation pathway. Finally, a chemosensitizing effect of OBX with respect to 5-fluorouracil or oxaliplatin treatment was observed, highlighting the possibility that patients with hypoxic colon tumors might benefit from combined regimens including OBX.
Collapse
Affiliation(s)
- Marzia B Gariboldi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Elisa Taiana
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Maria Chiara Bonzi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Ilaria Craparotta
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Stefano Giovannardi
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Monica Mancini
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy
| | - Elena Monti
- Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, via A. da Giussano 10, Busto Arsizio, Varese 21052, Italy.
| |
Collapse
|
20
|
Su B, Su J, He H, Wu Y, Xia H, Zeng X, Dai W, Ai X, Ling H, Jiang H, Su Q. Identification of potential targets for diallyl disulfide in human gastric cancer MGC-803 cells using proteomics approaches. Oncol Rep 2015; 33:2484-94. [PMID: 25812569 DOI: 10.3892/or.2015.3859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Diallyl disulfide (DADS) is characterized as an effective agent for the prevention and therapy of cancer, however, mechanisms regarding its anticancer effects are not fully clarified. In the present study, we compared the protein expression profile of gastric cancer MGC-803 cells subjected to DADS treatment with that of untreated control cells to explore potential molecules regulated by DADS. Using proteomic approaches, we identified 23 proteins showing statistically significant differences in expression, including 9 upregulated and 14 downregulated proteins. RT-PCR and western blot analysis confirmed that retinoid-related orphan nuclear receptor α (RORα) and nM23 were increased by DADS, whereas LIM kinase-1 (LIMK1), urokinase-type plasminogen activator receptor (uPAR) and cyclin-dependent kinase-1 (CDK1) were decreased. DADS treatment and knockdown of uPAR caused suppression of ERK/Fra-1 pathway, downregulation of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9) and vimentin, and upregulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) and E-cadherin, concomitant with inhibition of cell migration and invasion. Moreover, knockdown of uPAR potentiated the effects of DADS on MGC-803 cells. These data demonstrate that downregulation of uPAR may partially be responsible for DADS-induced inhibition of ERK/Fra-1 pathway, as well as cell migration and invasion. Thus, the discovery of DADS-induced differential expression proteins is conducive to reveal unknown mechanisms of DADS anti-gastric cancer.
Collapse
Affiliation(s)
- Bo Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui He
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Youhua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Xia
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wenxiang Dai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Ai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Ling
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hao Jiang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
21
|
Hypoxia-Inducible Factor-1α and its Role in the Proliferation of Retinoblastoma Cells. Pathol Oncol Res 2013; 20:557-63. [DOI: 10.1007/s12253-013-9728-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
22
|
Warfel NA, Dolloff NG, Dicker DT, Malysz J, El-Deiry WS. CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle 2013; 12:3689-701. [PMID: 24189531 DOI: 10.4161/cc.26930] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a major mediator of tumor physiology, and its activation is correlated with tumor progression, metastasis, and therapeutic resistance. HIF-1 is activated in a broad range of solid tumors due to intratumoral hypoxia or genetic alterations that enhance its expression or inhibit its degradation. As a result, decreasing HIF-1α expression represents an attractive strategy to sensitize hypoxic tumors to anticancer therapies. Here, we show that cyclin-dependent kinase 1 (CDK1) regulates the expression of HIF-1α, independent of its known regulators. Overexpression of CDK1 and/or cyclin B1 is sufficient to stabilize HIF-1α under normoxic conditions, whereas inhibition of CDK1 enhances the proteasomal degradation of HIF-1α, reducing its half-life and steady-state levels. In vitro kinase assays reveal that CDK1 directly phosphorylates HIF-1α at a previously unidentified regulatory site, Ser668. HIF-1α is stabilized under normoxic conditions during G 2/M phase via CDK1-mediated phosphorylation of Ser668. A phospho-mimetic construct of HIF-1α at Ser668 (S668E) is significantly more stable under both normoxic and hypoxic conditions, resulting in enhanced transcription of HIF-1 target genes and increased tumor cell invasion and migration. Importantly, HIF-1α (S668E) displays increased tumor angiogenesis, proliferation, and tumor growth in vivo compared with wild-type HIF-1α. Thus, we have identified a novel link between CDK1 and HIF-1α that provides a potential molecular explanation for the elevated HIF-1 activity observed in primary and metastatic tumors, independent of hypoxia, and offers a molecular rationale for the clinical translation of CDK inhibitors for use in tumors with constitutively active HIF-1.
Collapse
Affiliation(s)
- Noel A Warfel
- Department of Medicine (Hematology/Oncology); Penn State Hershey Cancer Institute; Penn State College of Medicine; Hershey, PA USA
| | | | | | | | | |
Collapse
|
23
|
Aarts M, Linardopoulos S, Turner NC. Tumour selective targeting of cell cycle kinases for cancer treatment. Curr Opin Pharmacol 2013; 13:529-35. [PMID: 23597425 DOI: 10.1016/j.coph.2013.03.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/25/2013] [Indexed: 12/22/2022]
Abstract
The deregulation of the cell cycle and checkpoint machinery in cancer presents a highly attractive therapeutic strategy. We review here the strategies used to exploit the dysregulated cell cycle, both through targeting kinases required for cell cycle progression, and checkpoint kinases to inappropriately force cells through the cell cycle. Appropriate control of the cell cycle is critical for proliferating normal cells, and we discuss the importance of defining tumour specific vulnerabilities that could be targeted with cell cycle kinase inhibitors. Recent studies have shown that ER-positive breast cancers rely on CDK4 to promote proliferation. TP53 mutant cancer cell lines are sensitive to WEE1 and CHK1 inhibitors in combination with chemotherapy, while PTEN-deficient aneuploid cancer cell lines are sensitive to TTK inhibitors.
Collapse
Affiliation(s)
- Marieke Aarts
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
24
|
Dolloff NG, Allen JE, Dicker DT, Aqui N, Vogl D, Malysz J, Talamo G, El-Deiry WS. Sangivamycin-like molecule 6 exhibits potent anti-multiple myeloma activity through inhibition of cyclin-dependent kinase-9. Mol Cancer Ther 2012; 11:2321-30. [PMID: 22964485 DOI: 10.1158/1535-7163.mct-12-0578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant treatment advances over the past decade, multiple myeloma (MM) remains largely incurable. In this study we found that MM cells were remarkably sensitive to the death-inducing effects of a new class of sangivamycin-like molecules (SLM). A panel of structurally related SLMs selectively induced apoptosis in MM cells but not other tumor or nonmalignant cell lines at submicromolar concentrations. SLM6 was the most active compound in vivo, where it was well tolerated and significantly inhibited growth and induced apoptosis of MM tumors. We determined that the anti-MM activity of SLM6 was mediated by direct inhibition of cyclin-dependent kinase 9 (CDK9), which resulted in transcriptional repression of oncogenes that are known to drive MM progression (MAF, CCND1, MYC, and others). Furthermore, SLM6 showed superior in vivo anti-MM activity more than the CDK inhibitor flavopiridol, which is currently in clinical trials for MM. These findings show that SLM6 is a novel CDK9 inhibitor with promising preclinical activity as an anti-MM agent.
Collapse
Affiliation(s)
- Nathan G Dolloff
- Penn State Milton S. Hershey Medical Center and Cancer Institute, 500 University Drive CH046, Office T4419, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic.
Collapse
|