1
|
Hu F, Zhao L, Wang J, Li X, Xue Z, Ma Y, Zheng M, Chen C, Tong M, Guo X, Li H, Jin H, Xie Q, Zhang X, Huang C, Huang H. TRIM40 interacts with ROCK1 directly and inhibits colorectal cancer cell proliferation through the c-Myc/p21 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119855. [PMID: 39357549 DOI: 10.1016/j.bbamcr.2024.119855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignancy of the digestive tract, and to date, morbidity and mortality rates remain high. While existing therapeutic methods have achieved certain effective outcomes, there are still many problems in treating this disease. Therefore, it is still urgent to constantly find new therapeutic targets in CRC that could lead to new therapeutics. METHODS Immunohistochemistry, Real-time PCR and Western Blot were employed to measure mRNA and protein levels of the target protein, respectively. The proliferation ability of CRC cells was evaluated using ATP assay, Soft agar assay, and nude mouse subcutaneous tumorigenesis assay. Protein Degradation Assay was conducted to determine protein degradation rate, while Ubiquitination assay was used to assess the ubiquitination modification level of target proteins. Immunoprecipitation assay was used to study protein interactions, and pull-down assay was employed to investigate direct interactions between proteins. RESULTS TRIM40 was significantly down-regulated in CRC tissues, with its expression levels positively correlating with disease prognosis. Using both in vitro and in vivo approaches, it was demonstrated that TRIM40 could significantly inhibit the proliferation of CRC cells. Molecular mechanism studies showed that TRIM40 directly binds to and ubiquitinates ROCK1 protein, accelerating its degradation and subsequently reducing the stability of c-Myc protein. This cascade of events results in the release of transcriptional inhibition of p21 by c-Myc, leading to increased p21 expression and G0/G1 phase arrest in CRC cells. CONCLUSION This research suggests that TRIM40 could be a valuable therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Fangyu Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Junyu Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoying Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zixuan Xue
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yimeng Ma
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghui Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenglin Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meiting Tong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohuan Guo
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qipeng Xie
- Department of Laboratory Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325035, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Ali BM, El-Abhar HS, Mohamed G, Nassar HR, Aliedin N, Sharaky M, Shouman SA, Kamel M. A study of the role of androgen receptor and androgen receptor variant 7 in TNBC patients and the effect of their targeting by Enzalutamide and EPI-001 in MDA-MB-231. J Steroid Biochem Mol Biol 2024:106636. [PMID: 39536950 DOI: 10.1016/j.jsbmb.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The lack of targeted therapy for triple-negative breast cancer (TNBC) is among the mainsprings of its poor prognosis. This study aimed to elucidate the role of the androgen receptor (AR) and its splice variant 7 (ARv7) in TNBC patients. Further, the molecular impact of their blockers, Enzalutamide and EPI-001, on the TNBC cell line MDA-MB-231 was investigated. Thereby, immunohistochemical expression of AR/ARv7 was assessed for TNBC Egyptian patients. Moreover, bioinformatics analysis of AR/ARv7 RNA status was carried out on TNBC patients from The Cancer Genome Atlas Breast Carcinoma project (TCGA-BRCA). Data from both groups was correlated with patients' clinicopathological features. Besides, scratch wound healing assay and ELISA were employed to assess the effect of AR/ARv7 blockers on several metastasis markers in MDA-MB-231 cell line. In the Egyptian-TNBC patients, AR expression was associated with worse 7-year DFS (40.6±18.6%). In addition, ARv7 showed cytoplasmic and nuclear patterns, and both cytoplasmic and nuclear ARv7+ patients demonstrated a worse 7-year DFS (22.7±17.7% and 20±17.9%) and overall survival (63.6±14.5% and 40±21.8%). Importantly, 80% of the nuclear ARv7+ patients developed distant metastasis. The data of the TCGA-TNBC patients showed a tendency for poor outcomes in the high ARv7-expressing patients. Molecularly, in MDA-MB-231, both inhibitors modulated metastasis and epithelial to mesenchymal transition (EMT) markers ROCK1, ROCK2, c-Myc, E-cadherin and N-cadherin, with EPI-001 downregulating NF-ĸB level as well. We concluded that ARv7 indicated poor prognosis in the studied cohorts and that blocking of AR/ARv7 abated metastasis and key regulators of EMT in MDA-MB-231, at least in part by targeting ROCK/NF-ĸB/c-Myc axis.
Collapse
Affiliation(s)
- Belal M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Ministry of Health and Population, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Ghada Mohamed
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hanan R Nassar
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Nelly Aliedin
- Department of Medical Statistics Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Marwa Sharaky
- Department of Cancer Biology, unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Samia A Shouman
- Department of Cancer Biology, unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Marwa Kamel
- Department of Cancer Biology, unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
3
|
Zhou W, Li X, Zhang B, Peng H, Quan C, Xiao X, Luo M, Huang Y, Xu D, Huang K, Jin Q, Lu S. The long non-coding RNA CCAT1 promotes erlotinib resistance in cholangiocarcinoma by inducing epithelial-mesenchymal transition via the miR-181a-5p/ROCK2 axis. Am J Cancer Res 2024; 14:2852-2867. [PMID: 39005692 PMCID: PMC11236789 DOI: 10.62347/eqdk1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a common malignancy of the digestive system, and its treatment is greatly challenged by rising chemoresistance. Long non-coding RNAs (lncRNAs) have been shown to play critical roles in the development of drug resistance in tumors. However, the role of the lncRNA CCAT1 in erlotinib resistance in CCA remains unclear. In this investigation, we identified CCAT1 as a pivotal factor contributing to erlotinib resistance in CCA. Furthermore, we uncovered that lncRNA CCAT1 modulated epithelial-mesenchymal transition (EMT) through Rho-associated coiled-coil-forming protein kinase 2 (ROCK2), thereby conferring erlotinib resistance upon CCA cells. Mechanistically, we demonstrated that miR-181a-5p interacted with CCAT1 to modulate the expression of ROCK2. Collectively, these findings shed light on the significant role of CCAT1 in the development of erlotinib resistance in CCA. The functional suppression of CCAT1 holds promise in enhancing the sensitivity to erlotinib by reversing EMT through the miR-181a-5p/ROCK2 signaling pathway. These findings provide valuable insights into the mechanisms underlying erlotinib resistance in CCA and the potential strategies for its treatment.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Abdominal Surgery, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Oncology Teaching and Research Office, The Second Affiliated Hospital of Nanchang Medical CollegeNanchang 330029, Jiangxi, China
- Key Laboratory of Tumor Transformation Medicine, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Xingquan Li
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Bolin Zhang
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People’s Liberation Army JointNanchang 330029, Jiangxi, China
| | - Chunyang Quan
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Xin Xiao
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Man Luo
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Yanxiao Huang
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Debin Xu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Kai Huang
- Department of Abdominal Surgery, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Oncology Teaching and Research Office, The Second Affiliated Hospital of Nanchang Medical CollegeNanchang 330029, Jiangxi, China
- Key Laboratory of Tumor Transformation Medicine, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
| | - Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shan Lu
- Oncology Teaching and Research Office, The Second Affiliated Hospital of Nanchang Medical CollegeNanchang 330029, Jiangxi, China
- Key Laboratory of Tumor Transformation Medicine, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
- Department of General Surgery, Jiangxi Cancer Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330029, Jiangxi, China
- Department of Gastroenterology and Oncology, Jiangxi Cancer HospitalNanchang 330029, Jiangxi, China
| |
Collapse
|
4
|
Zhang Y, Yao L, Chung CR, Huang Y, Li S, Zhang W, Pang Y, Lee TY. KinPred-RNA-kinase activity inference and cancer type classification using machine learning on RNA-seq data. iScience 2024; 27:109333. [PMID: 38523792 PMCID: PMC10959666 DOI: 10.1016/j.isci.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Kinases as important enzymes can transfer phosphate groups from high-energy and phosphate-donating molecules to specific substrates and play essential roles in various cellular processes. Existing algorithms for kinase activity from phosphorylated proteomics data are often costly, requiring valuable samples. Moreover, methods to extract kinase activities from bulk RNA sequencing data remain undeveloped. In this study, we propose a computational framework KinPred-RNA to derive kinase activities from bulk RNA-sequencing data in cancer samples. KinPred-RNA framework, using the extreme gradient boosting (XGBoost) regression model, outperforms random forest regression, multiple linear regression, and support vector machine regression models in predicting kinase activities from cancer-related RNA sequencing data. Efficient gene signatures from the LINCS-L1000 dataset were used as inputs for KinPred-RNA. The results highlight its potential to be related to biological function. In conclusion, KinPred RNA constitutes a significant advance in cancer research by potentially facilitating the identification of cancer.
Collapse
Affiliation(s)
- Yuntian Zhang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320953, Taiwan
| | - Yixian Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenyang Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
5
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
6
|
Lai B, Jiang H, Gao Y, Zhou X. Identification of ROCK1 as a novel biomarker for postmenopausal osteoporosis and pan-cancer analysis. Aging (Albany NY) 2023; 15:8873-8907. [PMID: 37683138 PMCID: PMC10522383 DOI: 10.18632/aging.205004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a prevalent bone disorder with significant global impact. The elevated risk of osteoporotic fracture in elderly women poses a substantial burden on individuals and society. Unfortunately, the current lack of dependable diagnostic markers and precise therapeutic targets for PMOP remains a major challenge. METHODS PMOP-related datasets GSE7429, GSE56814, GSE56815, and GSE147287, were downloaded from the GEO database. The DEGs were identified by "limma" packages. WGCNA and Machine Learning were used to choose key module genes highly related to PMOP. GSEA, DO, GO, and KEGG enrichment analysis was performed on all DEGs and the selected key hub genes. The PPI network was constructed through the GeneMANIA database. ROC curves and AUC values validated the diagnostic values of the hub genes in both training and validation datasets. xCell immune infiltration and single-cell analysis identified the hub genes' function on immune reaction in PMOP. Pan-cancer analysis revealed the role of the hub genes in cancers. RESULTS A total of 1278 DEGs were identified between PMOP patients and the healthy controls. The purple module and cyan module were selected as the key modules and 112 common genes were selected after combining the DEGs and module genes. Five Machine Learning algorithms screened three hub genes (KCNJ2, HIPK1, and ROCK1), and a PPI network was constructed for the hub genes. ROC curves validate the diagnostic values of ROCK1 in both the training (AUC = 0.73) and validation datasets of PMOP (AUC = 0.81). GSEA was performed for the low-ROCK1 patients, and the top enriched field included protein binding and immune reaction. DCs and NKT cells were highly expressed in PMOP. Pan-cancer analysis showed a correlation between low ROCK1 expression and SKCM as well as renal tumors (KIRP, KICH, and KIRC). CONCLUSIONS ROCK1 was significantly associated with the pathogenesis and immune infiltration of PMOP, and influenced cancer development, progression, and prognosis, which provided a potential therapy target for PMOP and tumors. However, further laboratory and clinical evidence is required before the clinical application of ROCK1 as a therapeutic target.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Witkowski TA, Li B, Andersen JG, Kumar B, Mroz EA, Rocco JW. Y-27632 acts beyond ROCK inhibition to maintain epidermal stem-like cells in culture. J Cell Sci 2023; 136:jcs260990. [PMID: 37698512 PMCID: PMC10508688 DOI: 10.1242/jcs.260990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/24/2023] [Indexed: 09/13/2023] Open
Abstract
Conditional reprogramming is a cell culture technique that effectively immortalizes epithelial cells with normal genotypes by renewing epidermal stem cells. Y-27632, a compound that promotes conditional reprogramming through an unknown mechanism, was developed to inhibit the two Rho-associated kinase (ROCK) isoforms. We used human foreskin keratinocytes (HFKs) to study the role of Y-27632 in conditional reprogramming and learn how ROCKs control epidermal stem cell renewal. In conditional reprogramming, Y-27632 increased HFK adherence to culture dishes, progression through S, G2 and M phases of the cell cycle, and epidermal stem cell marker levels. Although this correlated with ROCK inhibition by Y-27632, we generated CRISPR-Cas9-mediated HFK ROCK knockouts to test the direct role of ROCK inhibition. Knockout of single ROCK isoforms was insufficient to disrupt ROCK activity or promote HFK propagation without Y-27632. Although ROCK activity was reduced, HFKs with double knockout of ROCK1 and ROCK2 still required Y-27632 to propagate. Y-27632 was the most effective among the ROCK inhibitors we tested at promoting HFK proliferation and epidermal stem cell marker expression. Thus, the ability of Y-27632 to promote an epidermal stem cell state in conditional reprogramming not only depends upon ROCK inhibition but also acts via as-yet-unidentified mechanisms. Epidermal stem cell renewal might in part be regulated by ROCKs, but also involves additional pathways.
Collapse
Affiliation(s)
- Travis A. Witkowski
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Li
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jason G. Andersen
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bhavna Kumar
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Edmund A. Mroz
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - James W. Rocco
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center – James, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Fang S, Zheng L, Shen L, Su Y, Ding J, Chen W, Chen X, Chen W, Shu G, Chen M, Zhao Z, Tu J, Ji J. Inactivation of KDM5A suppresses growth and enhances chemosensitivity in liver cancer by modulating ROCK1/PTEN/AKT pathway. Eur J Pharmacol 2023; 940:175465. [PMID: 36566915 DOI: 10.1016/j.ejphar.2022.175465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Liver cancer is a kind of malignant tumor with poor sensitivity to chemotherapy. It is urgent to investigate approaches to improve the outcome of chemotherapy. KDM5A has been reported to be an oncogene in various cancers and is associated with drug resistance. However, the functions of KDM5A in chemotherapeutic sensitivity of liver cancer not been well illustrated. In this study, we found that KDM5A was upregulated in liver cancer tissue and cell lines. KDM5A knockdown using a gene interference strategy suppressed the growth of liver cancer in vitro and in vivo. CPI-455, a pharmacological inactivation of KDM5A enhanced the cytotoxicity of cisplatin (CDDP) in liver cells. CPI-455 and CDDP cotreatment resulted in apoptosis and mitochondrial dysfunction. We also found that knockdown or inactivation of KDM5A resulted in the downregulation of ROCK1, an oncogene regulating the activation of the PTEN/AKT signaling pathway. In particular, overexpression of ROCK1 or SF1670, a pharmacological inhibitor of PTEN, alleviated the cytotoxicity of CPI-455 and CDDP cotreatment. In HCCLM3 xenografts, CPI-455 and CDDP cotreatment dramatically inhibited the growth of xenograft tumor compared to CPI-455 or CDDP treatment alone. In conclusion, this study suggested that targeting the inactivation of KDM5A is an efficient strategy to enhance the chemosensitivity of liver cancer cells to CDDP by modulating the ROCK1/PTEN/AKT signaling pathway.
Collapse
Affiliation(s)
- Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yanping Su
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoxiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China; Interventional Diagnosis and Treatment Center, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| |
Collapse
|
9
|
Hu P, Wan P, Xu A, Yan B, Liu C, Xu Q, Wei Z, Xu J, Liu S, Yang G, Pan Y. Neferine, a novel ROCK1-targeting inhibitor, blocks EMT process and induces apoptosis in non-small cell lung cancer. J Cancer Res Clin Oncol 2023; 149:553-566. [PMID: 35984492 DOI: 10.1007/s00432-022-04280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
The compounds derived from Traditional Chinese Medicines have shown various pharmacological activities with unique advantages, especially in the aspect of antitumor. Neferine (Nef), a natural compound, extracted from green seed embryos of Lotus (Nelumbo nucifera Gaertn.) also exerts antitumor effects on cancers. In this study, the effects and mechanisms of Nef on epithelial-to-mesenchymal transition (EMT) process in non-small cell lung cancer (NSCLC) were evaluated. The results showed that Nef had the antitumor effects in vivo and in vitro. Nef significantly suppressed cell viability and induced apoptosis in NSCLC cells, with elevated reactive oxygen species and reduced BCL2/BAX ratio. Nef was also demonstrated to inhibit the invasion, metastasis and EMT process of NSCLC cells, and attenuate EMT-related changes of E-cadherin, N-cadherin and Vimentin at both transcriptional and translational levels. Moreover, we concluded that the inhibitory effects of Nef on EMT was achieved by targeting Rho-associated protein kinase 1, a protein mediating the process of EMT in various cancers. These results showed that Nef had a significant antitumor effect on NSCLC cells by inducing apoptosis and blocking EMT, providing the therapeutical prospect on NSCLC treatment.
Collapse
Affiliation(s)
- Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Anna Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Binghui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qixuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenhuan Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingyi Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siqi Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guangming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
11
|
Ye Q, Ying Q, Dai Q, Liao C, Xiao G. Tumor-suppressing effects of miR-381-3p in pediatric acute myeloid leukemia via ROCK1 downregulation. Funct Integr Genomics 2023; 23:43. [PMID: 36658407 DOI: 10.1007/s10142-022-00950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023]
Abstract
MicroRNA (miR)-381-3p is the newly discovered tumor-associated miRNA, which is frequently associated with diverse human malignancies; but, it is still unknown about its effect on acute myeloid leukemia (AML) in children. This work focused on exploring miR-381-3p's effect on childhood AML and identifying the possible mechanisms facilitating new treatment development. Using qRT-PCR analysis, miR-381-3p expression remarkably reduced in pediatric AML patients and AML cell lines (HL-60 and U937). Following transfection of miR-381-3p mimic or inhibitor into HL-60 and U937 cells, we conducted MTT assay to evaluate cell proliferation, flow cytometry (FCM) to measured cell apoptosis and cell cycle, whereas Transwell assays to detect cell invasion and migration. Our results demonstrated that miR-381-3p overexpression remarkably repressed cell growth, invasion and migration; additionally, miR-381-3p overexpression resulted in arrest of cell cycle and enhanced cell apoptosis. In contrast, miR-381-3p knockdown led to an opposite effect. Moreover, we predicted miR-381's target gene and validated it by luciferase reporter assay and TargetScan, separately. We identified miR-381-3p's binding site in ROCK1 3'-UTR. As revealed by Western-blot (WB) assay, miR-381-3p overexpression notably suppressed ROCK1 level. Moreover, restoring ROCK1 expression abolished miR-381-3p's inhibition on cell proliferation, invasion and migration. Data in this work indicated the role of miR-381-3p as the tumor suppressor within pediatric AML by targeting ROCK1. Therefore, miR-381-3p might serve as a potential therapeutic target for the treatment of pediatric AML.
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China.
| | - Qianqian Ying
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Qiaoyan Dai
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Cong Liao
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Gang Xiao
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| |
Collapse
|
12
|
Yang L, Qiao P, Zhang J, Chen X, Hu A, Huang S. Crosstalk between ROCK1 and PYROXD1 regulates CAFs activation and promotes laryngeal squamous cell carcinoma metastasis. Discov Oncol 2022; 13:120. [PMID: 36334145 PMCID: PMC9637080 DOI: 10.1007/s12672-022-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022] Open
Abstract
We previously found that the Rho-associated kinase 1 (ROCK1) activated Cancer-associated fibroblasts (CAFs) to promote LSCC metastasis. Accumulating evidence indicates that pyridine nucleotide-disulfide oxidoreductase domain 1 (PYROXD1) is an oncogene; however, the crosstalk between ROCK1 and PYROXD1 in LSCC metastasis remains largely unknown. Here, we found that ROCK1 could target PYROXD1. The knockdown of ROCK1 expression reduces the expression of PYROXD1, while the knockdown of PYROXD1 expression did not alter the expression of ROCK1 indicating that ROCK1 is upstream of PYROXD1. Further, LSCC cells cocultured with PYROXD1 knocked-down CAFs exhibited lower proliferation, migration, invasion and metastasis abilities. Conversely, LSCC cells cocultured with PYROXD1-overexpressing CAFs showed opposite results. In conclusion, the crosstalk between ROCK1 and PYROXD1 regulated CAFs activation and promoted LSCC metastasis.
Collapse
Affiliation(s)
- Liyun Yang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Peipei Qiao
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Jianwei Zhang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Xiaoping Chen
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - An Hu
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China.
| | - Shuixian Huang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China.
| |
Collapse
|
13
|
Gao W, Zhang S, Guorong L, Liu Q, Zhu A, Gui F, Zou Y, Wu Y, Luo Y, Hong Z. Nc886 promotes renal cancer cell drug-resistance by enhancing EMT through Rock2 phosphorylation-mediated β-catenin nuclear translocation. Cell Cycle 2022; 21:340-351. [PMID: 34974812 PMCID: PMC8855853 DOI: 10.1080/15384101.2021.2020431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Drug resistance is a significant challenge in the present treatment regimens of renal cell carcinoma (RCC). Our previous study confirmed that nc886 functions as an oncogene in RCC. Nevertheless, the role and underlying mechanism of nc886 in RCC drug resistance are unclear. In the present study, Sunitinib and Everolimus treatment, respectively, downregulated nc886 expression in a dose-dependent manner in all four renal cancer cell lines. Nc886 overexpression in 786-O cells and ACHN cells significantly reduced the sensitivity of cancer cells to both Sunitinib and Everolimus treatment, respectively, by promoting cell viability and inhibiting cell apoptosis, whereas nc886 silencing increased cancer cell sensitivity. In renal cancer cell line with the highest drug-resistance, 786-O cells, Sunitinib, or Everolimus treatment enhanced the cellular EMT and was further enhanced by nc886 overexpression while attenuated by nc886 silencing. In 786-O cells, nc886 overexpression significantly promoted EMT, ROCK2 phosphorylation, and β-catenin nucleus translocation under Sunitinib or Everolimus treatment. Moreover, ROCK2 silencing significantly reversed the effects of nc886 overexpression on EMT, ROCK2 phosphorylation, and β-catenin nucleus translocation, as well as drug-resistant renal cancer cell viability and apoptosis. In conclusion, it was demonstrated that nc886 promotes renal cancer cell proliferation, migration, and invasion, as demonstrated previously. nc886 also promotes renal cancer cell drug-resistance to Sunitinib or Everolimus by promoting EMT through Rock2 phosphorylation-mediated nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Weiyin Gao
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Children’s Hospital, Nanchang, Jiangxi Province, China
| | - Li Guorong
- Department of Urology, North Hospital, Chu Saint-Etienne, University of Jean-Monnet, Saint-Etienne, France
| | - Queling Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fu Gui
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yan Zou
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yiguo Wu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yang Luo
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Zhengdong Hong The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, Jiangxi Province, China
| |
Collapse
|
14
|
Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021; 13:1939-1960. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miRNA-148b belongs to the family miR-148/-152, with significant differences in nonseed sequences, which can target diverse mRNA molecules. Reportedly, it may undergo deregulation in lung and ovarian cancers and downregulation in gastric, pancreatic and colon cancers. However, there is a need for further studies to better characterize its mechanism of action and in different types of cancer. In this review, we focus on the aberrant expression of miR-148b in different cancer types and highlight its main target genes and signaling pathways, as well as its pathophysiologic role and relevance to tumorigenesis in several types of cancer.
Collapse
Affiliation(s)
- Najmeh Dorraki
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Sadegh Ahmadi
- Department of Genetics, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Vahideh Keyvani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Arash Salmani Nejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Samaneh Mollazadeh
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Mei Y, Wu Y, Ma L, Zhang H, Li L, Wang F. Overexpression of ROCK1 promotes cancer cell proliferation and is associated with poor prognosis in human urothelial bladder cancer. Mamm Genome 2021; 32:466-475. [PMID: 34322718 DOI: 10.1007/s00335-021-09896-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Rho-associated protein kinase 1 (ROCK1) has been reported to be overexpressed in many types of tumors, but its role in urothelial bladder cancer is poorly understood. The study aims to investigate the role of ROCK1 in urothelial bladder cancer and explored the underlying mechanism. Protein and mRNA levels of ROCK1 were detected in 64 urothelial bladder cancer patients using western blot, immunohistochemistry and qRT-PCR. Relationships between ROCK1 expression and clinicopathological factors and survival rate were analyzed. ROCK1 was silenced by shRNA in multiple urothelial bladder cancer cells to explore its function and underlying mechanism. ROCK1 expression was significantly increased in tumor tissues compared with the paired adjacent healthy tissues of patients. Higher ROCK1 expression of tumor tissues positively correlated with poor prognosis of patients (p = 0.0435). ROCK1 silence significantly inhibited cell proliferation and colony formation, and enhanced activation of apoptotic pathway in urothelial bladder cancer cells. High ROCK1 expression predicts poor prognosis of urothelial bladder cancer. ROCK1 silence inhibit cell proliferation and promote apoptosis, which may be of value as a therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Yuhai Wu
- Department of Urology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Longbo Ma
- Department of Oncology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Hongli Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, No 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Lei Li
- Department of Oncology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Feng Wang
- Department of Oncology, Binzhou Medical University Hospital, No 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
| |
Collapse
|
16
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
17
|
Muñoz EN, Rivera HM, Gómez LA. Changes in cytoarchitecture and mobility in B16F1 melanoma cells induced by 5-Br-2'-dU coincide with Rock2, miRNAs 138-5p and 455-3p reciprocal expressions. Biochem Biophys Rep 2021; 27:101027. [PMID: 34159262 PMCID: PMC8202345 DOI: 10.1016/j.bbrep.2021.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
ROCK2 is a protein involved in the restructuring of the cytoskeleton in cell adhesion and contractibility processes. miR-138-5p and miR-455-3p regulate Rock2 expression, cell proliferation, migration, and invasion in different experimental cell models. However, their participation in the cytoarchitecture and mobility of B16F1 melanoma cells exposed to 5-Br-2'-dU is partially known. This work aimed to analyze ROCK2 and miRs 138-5p and 455-3p expression associated with morphological and mobility changes of B16F1 mouse melanoma cells exposed to the thymidine analog 5-Bromo-2'-deoxyuridine (5-Br-2'-dU). We observed an increase (2.2X n = 3, p < 0.05) in the cell area, coinciding with an increase in cell diameter (1.27X n = 3, p < 0.05), as well as greater cell granularity, capacity for circularization, adhesion, which was associated with more significant polymerization of F-actin, collapsed in the intermediate filaments of vimentin (VIM), and coinciding with a decrease in migration (87%). Changes coincided with a decrease in Rock2 mRNA expression (2.88X n = 3, p < 0.05), increased vimentin and a reciprocal decrease in miR-138-5p (1.8X), and an increase in miR-455-3p (2.39X). The Rock2 kinase inhibitor Y27632 partially rescued these changes. These results suggest ROCK2 and VIM regulate the morphological and mobility changes of B16 melanoma cells after exposure to 5-Br-2'-dU, and its expression may be reciprocally regulated, at least in part, by miR-138-5p and miR-455-3p.
Collapse
Affiliation(s)
- Esther Natalia Muñoz
- Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, Bogotá, D.C., Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Hernán Mauricio Rivera
- Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, Bogotá, D.C., Colombia
| | - Luis Alberto Gómez
- Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, Bogotá, D.C., Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| |
Collapse
|
18
|
Ghosh S, Keretsu S, Cho SJ. Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR. PeerJ 2021; 9:e11951. [PMID: 34434664 PMCID: PMC8359802 DOI: 10.7717/peerj.11951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
Rho-associated kinase-1 (ROCK1) has been recognized for its pivotal role in heart diseases, different types of malignancy, and many neurological disorders. Hyperactivity of ROCK phosphorylates the protein kinase-C (PKC), which ultimately induces smooth muscle cell contraction in the vascular system. Inhibition of ROCK1 has been shown to be a promising therapy for patients with cardiovascular disease. In this study, we have conducted molecular modeling techniques such as docking, molecular dynamics (MD), and 3-Dimensional structure-activity relationship (3D-QSAR) on a series of N-ethyl-4-(pyridin-4-yl)benzamide-based compounds. Docking and MD showed critical interactions and binding affinities between ROCK1 and its inhibitors. To establish the structure-activity relationship (SAR) of the compounds, 3D-QSAR techniques such as Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were used. The CoMFA (q 2 = 0.774, r 2 = 0.965, ONC = 6, and r p r e d 2 = 0.703) and CoMSIA (q 2 = 0.676, r 2 = 0.949, ONC = 6, and r p r e d 2 = 0.548) both models have shown reasonable external predictive activity, and contour maps revealed favorable and unfavorable substitutions for chemical group modifications. Based on the contour maps, we have designed forty new compounds, among which, seven compounds exhibited higher predictive activity (pIC50). Further, we conducted the MD study, ADME/Tox, and SA score prediction using the seven newly designed compounds. The combination of docking, MD, and 3D-QSAR studies helps to understand the coherence modification of existing molecules. Our study may provide valuable insight into the development of more potent ROCK1 inhibitors.
Collapse
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, South Korea.,Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, South Korea
| |
Collapse
|
19
|
miR-135a inhibits malignant proliferation and diffusion of non-small cell lung cancer cells by down-regulating ROCK1 protein. Biosci Rep 2021; 40:225118. [PMID: 32484204 PMCID: PMC7295638 DOI: 10.1042/bsr20201276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: To seek the clinical significance and regulatory mechanism of miR-135a and Rho-associated protein kinase 1 (ROCK1) in non-small cell lung cancer (NSCLC). Methods: NSCLC cells were purchased, and miR-135a-mimics, miR-135a-inhibitor, miR-NC, si-ROCK1 and Sh-ROCK1 were transfected into NSCLC cells HCC827 and NCI-H524. qRT-PCR and Western blot were used to detect the expression of miR-135a, ROCK1, Bax, Caspase3, Bcl-2, N-cadherin, vimentin and E-cadherin. MTT, scratch test, Transwell and flow cytometry were used to analyze the cell proliferation, migration, invasion and apoptosis. Results: miR-135a was low expressed in serum of NSCLC group, while ROCK1 was opposite. miR-135a low level or ROCK1 high level was associated with poor prognosis of NSCLC and lower 3-year OS. Over-expression of miR-135a and inhibition of ROCK1 expression could control malignant growth and diffusion of cells and expression of Bcl-2, N-cadherin and vimentin proteins, and promote apoptosis and expression of Bax, Caspase3 and E-cadherin proteins. After transfection of miR-135a-mimics+sh-ROCK1 to HCC827 and NCI-H524, the malignant proliferation and diffusion behavior of the cells were not different from those of the miR-NC group with no transfection sequence. The double luciferase report revealed that miR-135a has a targeting relationship with ROCK1. Conclusion: miR-135a is abnormally down-regulated in NSCLC. As a serum indicator, miR-135a has the potential to diagnose NSCLC and predict prognosis. The up-regulated expression of miR-135a protein can down-regulate the ROCK1 protein, inhibit the malignant proliferation, migration, invasion, EMT and other diffusion behaviors of NSCLC cells, and increase the apoptosis ability of cells.
Collapse
|
20
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
21
|
Wu X, Verschut V, Woest ME, Ng-Blichfeldt JP, Matias A, Villetti G, Accetta A, Facchinetti F, Gosens R, Kistemaker LEM. Rho-Kinase 1/2 Inhibition Prevents Transforming Growth Factor-β-Induced Effects on Pulmonary Remodeling and Repair. Front Pharmacol 2021; 11:609509. [PMID: 33551810 PMCID: PMC7855981 DOI: 10.3389/fphar.2020.609509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor (TGF)-β-induced myofibroblast transformation and alterations in mesenchymal-epithelial interactions contribute to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Rho-associated coiled-coil-forming protein kinase (ROCK) consists as two isoforms, ROCK1 and ROCK2, and both are playing critical roles in many cellular responses to injury. In this study, we aimed to elucidate the differential role of ROCK isoforms on TGF-β signaling in lung fibrosis and repair. For this purpose, we tested the effect of a non-selective ROCK 1 and 2 inhibitor (compound 31) and a selective ROCK2 inhibitor (compound A11) in inhibiting TGF-β-induced remodeling in lung fibroblasts and slices; and dysfunctional epithelial-progenitor interactions in lung organoids. Here, we demonstrated that the inhibition of ROCK1/2 with compound 31 represses TGF-β-driven actin remodeling as well as extracellular matrix deposition in lung fibroblasts and PCLS, whereas selective ROCK2 inhibition with compound A11 did not. Furthermore, the TGF-β induced inhibition of organoid formation was functionally restored in a concentration-dependent manner by both dual ROCK 1 and 2 inhibition and selective ROCK2 inhibition. We conclude that dual pharmacological inhibition of ROCK 1 and 2 counteracts TGF-β induced effects on remodeling and alveolar epithelial progenitor function, suggesting this to be a promising therapeutic approach for respiratory diseases associated with fibrosis and defective lung repair.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Manon E. Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- AQUILO BV, Groningen, Netherlands
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ana Matias
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gino Villetti
- Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Alessandro Accetta
- Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Loes E. M. Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- AQUILO BV, Groningen, Netherlands
| |
Collapse
|
22
|
Deng B, Deng J, Yi X, Zou Y, Li C. ROCK2 Promotes Osteosarcoma Growth and Glycolysis by Up-Regulating HKII via Phospho-PI3K/AKT Signalling. Cancer Manag Res 2021; 13:449-462. [PMID: 33500659 PMCID: PMC7823140 DOI: 10.2147/cmar.s279496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumour that exhibits a high mortality. While tumours thrive in a state of malnutrition, the mechanism by which OS cells adapt to metabolic stress through metabolic reprogramming remains unclear. Methods We analysed the expression of ROCK2 in osteosarcoma tissues by RT-qPCR and Western blot. Cell proliferation were analysed using CCK8, EdU and colony formation assays. The level of cell glycolysis was detected by glucose-6 phosphate, glucose consumption, lactate production and ATP levels. Results Herein, our study showed that ROCK2 expression in OS tissues was higher than in adjacent tissues. Functional assays have demonstrated that ROCK2 contributes to the growth of OS cells by inducing aerobic glycolysis. The current study revealed that ROCK2 knockdown decreased the levels of mitochondrial hexokinase II (HKII). And also indicated that ROCK2 served as a key enzyme in glycolysis and that it served an important role in tumour growth. A significant positive correlation was identified between the mRNA and protein expressions of ROCK2 and HKII, further demonstrating that ROCK2-induced glycolysis and proliferation was dependent on HKII expression in OS cells. Mechanistically, ROCK2 promotes HKII expression by activating the phospho-PI3K/AKT signalling pathway. Conclusion Taken together, the results of the current study linked the two drivers of OS growth and aerobic glycolysis and identified a new mechanism of ROCK2 control in OS.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Chen Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
23
|
Na T, Zhang K, Yuan BZ. The DLC-1 tumor suppressor is involved in regulating immunomodulation of human mesenchymal stromal /stem cells through interacting with the Notch1 protein. BMC Cancer 2020; 20:1064. [PMID: 33148199 PMCID: PMC7640439 DOI: 10.1186/s12885-020-07542-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/20/2020] [Indexed: 03/11/2023] Open
Abstract
Background Immunomodulatory activities of human mesenchymal stromal /stem cells (hMSCs) has been widely recognized as the most critical function of hMSCs for exerting its therapeutic effects. However, the detailed mechanisms responsible for regulating the immunomodulation of hMSCs still remain largely unknown. Previous studies revealed that the Notch1 protein exerted a pro-immunomodulatory function probably through interacting with the protein(s) subjective to proteasome-mediated protein degradation. The DLC-1 protein represents a well characterized tumor suppressor subjective to proteasome-mediated degradation. However, the detailed signaling pathway of Notch1 and the involvement of DLC-1 in regulating the immunomodulation of hMSCs have not been studied before. Methods The transfection with cDNA or siRNA into hMSCs assisted by co-culture of hMSCs with peripheral blood mononuclear cells and small molecule inhibitors of signaling proteins, followed by immunoprecipitation, Western blotting, RT-PCR, and flowcytometry, were employed to characterize the Notch1 signaling, to identify DLC-1 as a candidate proteasome-targeted protein, and to characterize DLC-1 signaling pathway and its interaction with the Notch1 signaling, in the regulation of immunomodulation of hMSCs, specifically, the inhibition of pro-inflammatory CD4+-Th1 lymphocytes, and the release of immunomodulatory molecule IDO1. Statistical analysis One-way ANOVA was utilized as a statistical tool to analyze the data presented as means ± SEM of at least three separate experiments. Results The present study revealed that the Notch1-Hey1 axis, but not the Notch1-Hes1 axis, was likely responsible for mediating the pro-immunomodulatory function of the Notch1 signaling. The DLC-1 protein was found subjective to proteasome-mediated protein degradation mediated by the DDB1 and FBXW5 E3 ligases and served as an inhibitor of the immunomodulation of hMSCs through inhibiting Rock1, but not Rock2, downstream the DLC-1 signaling. The Notch1 signaling in the Notch1-Hey1 pathway and the DLC-1 signaling in the DLC-1-Rock1-FBXW5 pathway exhibited a mutual exclusion interaction in the regulation of immunomodulation of hMSCs. Conclusions The present study uncovers a novel function of DLC-1 tumor suppressor in regulating the immunomodulation of hMSCs. It also proposes a novel mutual exclusion mechanism between the DLC-1 signaling and the Notch1 signaling that is possibly responsible for fine-tuning the immunomodulation of hMSCs with different clinical implications in hMSCs therapy. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12885-020-07542-5.
Collapse
Affiliation(s)
- Tao Na
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Kehua Zhang
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Bao-Zhu Yuan
- The Cell Collection and Research Center, National Institutes for Food and Drug Control, No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
24
|
Li X, Song F, Sun H. Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncol Lett 2020; 20:239. [PMID: 32973953 PMCID: PMC7509509 DOI: 10.3892/ol.2020.12102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
The long non-coding (lnc)RNA associated with poor prognosis of hepatocellular carcinoma (AWPPH) serves as an oncogene in several cancers, such as liver and bladder cancers, however, to the best of our knowledge, its function in T-cell acute lymphoblastic leukemia is unknown. The results of the present study revealed that the expression levels of lncRNA AWPPH and Rho-associated protein kinase 2 (ROCK2) were upregulated in the bone marrow of patients with pediatric T-cell acute lymphoblastic leukemia compared with healthy controls. Expression levels of lncRNA AWPPH and ROCK2 were positively correlated with each other. lncRNA AWPPH and ROCK2 overexpression promoted the proliferation and inhibited the apoptosis of Loucy cells, an acute lymphoblastic leukemia cell line. Overexpression of lncRNA AWPPH resulted in upregulation of ROCK2 expression in Loucy cells. Similarly, ROCK2 overexpression also resulted in upregulation of lncRNA AWPPH in Loucy cells, suggesting an element of reciprocity in the function of lncRNA AWPPH and ROCK2. It was concluded that lncRNA AWPPH promoted the proliferation and inhibited the apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia possibly through interactions with ROCK2.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Pediatrics, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feifei Song
- Department of Pediatrics, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongqiang Sun
- Department of Pediatrics, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
25
|
Screening and identification of potential prognostic biomarkers in bladder urothelial carcinoma: Evidence from bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
27
|
Nishimura T, Nakamura H, Yachie A, Hase T, Fujii K, Koizumi H, Naruki S, Takagi M, Matsuoka Y, Furuya N, Kato H, Saji H. Disease-related cellular protein networks differentially affected under different EGFR mutations in lung adenocarcinoma. Sci Rep 2020; 10:10881. [PMID: 32616892 PMCID: PMC7331587 DOI: 10.1038/s41598-020-67894-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) affect downstream molecular networks and pathways. This study aimed to provide information on the influences of these mutations. The study assessed 36 protein expression profiles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identified 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen-activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identified various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Haruhiko Nakamura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Ayako Yachie
- The Systems Biology Institute, Tokyo, 141-0022, Japan
| | - Takeshi Hase
- The Systems Biology Institute, Tokyo, 141-0022, Japan
| | - Kiyonaga Fujii
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hirotaka Koizumi
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Saeko Naruki
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masayuki Takagi
- Department of Pathology, St. Marianna University Hospital, Kawasaki, Kanagawa, 216-8511, Japan
| | | | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Harubumi Kato
- Tokyo Medical University, Tokyo, 160-0023, Japan
- International University of Health and Welfare, Tokyo, 107-8402, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
28
|
So S, Lee Y, Choi J, Kang S, Lee JY, Hwang J, Shin J, Dutton JR, Seo EJ, Lee BH, Kim CJ, Mitalipov S, Oh SJ, Kang E. The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research. PLoS One 2020; 15:e0233057. [PMID: 32396545 PMCID: PMC7217428 DOI: 10.1371/journal.pone.0233057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Poor survival of human pluripotent stem cells (hPSCs) following freezing, thawing, or passaging hinders the maintenance and differentiation of stem cells. Rho-associated kinases (ROCKs) play a crucial role in hPSC survival. To date, a typical ROCK inhibitor, Y-27632, has been the primary agent used in hPSC research. Here, we report that another ROCK inhibitor, fasudil, can be used as an alternative and is cheaper than Y-27632. It increased hPSC growth following thawing and passaging, like Y-27632, and did not affect pluripotency, differentiation ability, and chromosome integrity. Furthermore, fasudil promoted retinal pigment epithelium (RPE) differentiation and the survival of neural crest cells (NCCs) during differentiation. It was also useful for single-cell passaging of hPSCs and during aggregation. These findings suggest that fasudil can replace Y-27632 for use in stem research.
Collapse
Affiliation(s)
- Seongjun So
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yeonmi Lee
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwan Choi
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Yoon Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Julie Hwang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joosung Shin
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - James R. Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eul-Ju Seo
- Medical Genetics Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Hee Lee
- Medical Genetics Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Kang
- Stem Cell Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Zhang W, Shi J, Cheng C, Wang H. CircTIMELESS regulates the proliferation and invasion of lung squamous cell carcinoma cells via the miR-136-5p/ROCK1 axis. J Cell Physiol 2020; 235:5962-5971. [PMID: 31960961 DOI: 10.1002/jcp.29521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/08/2020] [Indexed: 12/30/2022]
Abstract
Numerous studies demonstrate that circular RNAs (circRNAs) are critical regulators of the occurrence and progression of tumors. However, research on the involvement of circRNAs in lung squamous cell carcinoma (LUSC) is limited. In our study, circTIMELESS (also named hsa_circ_0000408 in the Human circRNA Database) was upregulated in both LUSC tissues and LUSC cells, and circTIMELESS expression was positively associated with the TNM stage. Moreover, circTIMELESS silencing markedly suppressed invasion in vitro and disrupted proliferation in vitro as well as in vivo. Additional investigations have shown that circTIMELESS functions as a miR-136-5p "sponge" and regulates miR-136-5p expression. Furthermore, the impact of miR-136-5p upregulation was consistent with the results of circTIMELESS silencing, both of which inhibited the proliferation and invasion of LUSC cells. Additional results showed that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) is targeted by miR-136-5p. The results of recovery experiments showed that ROCK1 overexpression partly rescued the impact of circTIMELESS silencing and miR-136-5p upregulation on proliferation and invasion. Consequently, our findings confirmed that circTIMELESS exists in LUSC and acts as a tumor promoter through the miR-136-5p/ROCK1 axis. Based on these findings, circTIMELESS may be potentially utilized as a therapeutic target for LUSC.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Basic Medicine Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jingjing Shi
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chuanhao Cheng
- School of Basic Medicine Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Huaqi Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Inhibition of Rho-Associated Kinase Suppresses Medulloblastoma Growth. Cancers (Basel) 2019; 12:cancers12010073. [PMID: 31888022 PMCID: PMC7016943 DOI: 10.3390/cancers12010073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is one of the most common malignant brain tumor types in children, with an overall survival of 70%. Mortality is associated with metastatic relapsed tumors. Rho-associated kinases (ROCKs), important for epithelial-mesenchymal transition (EMT) and proper nervous system development, have previously been identified as a promising drug target to inhibit cancer growth and metastatic spread. Here, we show that ROCKs are expressed in medulloblastoma, with higher ROCK2 mRNA expression in metastatic compared to non-metastatic tumors. By evaluating three ROCK inhibitors in a panel of medulloblastoma cell lines we demonstrated that medulloblastoma cells were sensitive for pharmacological ROCK inhibition. The specific ROCK inhibitor RKI-1447 inhibited the tumorigenicity in medulloblastoma cells as well as impeded cell migration and invasion. Differential gene expression analysis suggested that ROCK inhibition was associated with the downregulation of signaling pathways important in proliferation and metastasis e.g., TNFα via NFκβ, TGFβ, and EMT. Expression of key proteins in these pathways such as RHOA, RHOB, JUN, and vimentin was downregulated in ROCK inhibited cells. Finally, we showed that ROCK inhibition by RKI-1447 suppressed medulloblastoma growth and proliferation in vivo. Collectively, our results suggest that ROCK inhibition presents a potential new therapeutic option in medulloblastoma, especially for children with metastatic disease.
Collapse
|
31
|
Myosin Heavy Chain-Associated RNA Transcripts Promotes Gastric Cancer Progression Through the miR-4529-5p/ROCK2 Axis. Dig Dis Sci 2019; 64:3539-3548. [PMID: 31273599 DOI: 10.1007/s10620-019-05708-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Characterization of genetic aberrations provides novel strategies for diagnosis and treatment of gastric cancer. Accumulating evidence has shown the involvement of long non-coding RNA (lncRNA) in the pathology of gastric cancer, especially in proliferation and metastasis. The aim of this study was to delineate the role of myosin heavy chain-associated RNA transcripts (MHRT), a heart-specific lncRNA, in gastric cancer and to understand the correlation between MHRT, miR-4529-5p, and ROCK2. METHODS To study expression level of MHRT, clinical gastric cancer samples, gastric cancer cell lines, adjacent normal tissues, and gastric epithelial cell lines were used. Additionally, apoptosis, proliferation, and invasion of gastric cancer cells were studied with or without downregulation of MHRT and miR-4529-5p. RESULTS We identified that MHRT was ectopically expressed in gastric cancer tissues and cell lines. Interestingly, similar to the anti-apoptotic role of MHRT in cardiomyocytes, our data illustrated that MHRT inhibits apoptosis of gastric cancer cells. Moreover, we found that MHRT promotes proliferation and invasion of gastric cancer cells in vitro. Importantly, our data revealed that MHRT regulates the expression of miR-4529-5p via direct binding. Additionally, functional experiments illustrated that miR-4529-5p is particularly responsible for MHRT-mediated regulation of apoptosis. Besides, ROCK2 was identified as a downstream target of miR-4529-5p. Additionally, upregulated MHRT promotes the expression of ROCK2 by inhibiting miR-4529-5p. CONCLUSION Our data illustrated a MHRT/miR-4529-5p/ROCK2 regulatory axis that contributes to the tumorigenesis of gastric cancer and provided potential therapeutic targets for precise gastric cancer treatment.
Collapse
|
32
|
Deng X, Yi X, Deng J, Zou Y, Wang S, Shan W, Liu P, Zhang Z, Chen L, Hao L. ROCK2 promotes osteosarcoma growth and metastasis by modifying PFKFB3 ubiquitination and degradation. Exp Cell Res 2019; 385:111689. [PMID: 31678169 DOI: 10.1016/j.yexcr.2019.111689] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
Rho-associated coiled-coil-containing protein kinase 2 (ROCK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) are widely involved in cell biological activities and play a key role in controlling various cell phenomena. However, the underlying mechanisms connecting ROCK2 and PFKFB3 in osteosarcoma growth and metastasis are poorly understood. In this study, we explored and analysed the role and molecular mechanism of ROCK2 and PFKFB3 in osteosarcoma. We analysed ROCK2 and PFKFB3 protein expression in 51 surgical specimens from osteosarcoma patients and determined the correlation between ROCK2 and PFKFB3. In addition, we used Transwell and wound-healing assays to detect cell invasion and migration and CCK8 and EdU assays to assess cell proliferation. Herein, we confirmed that ROCK2 and PFKFB3 proteins were significantly upregulated in osteosarcoma compared with adjacent normal tissues. Further studies revealed that knockdown of ROCK2 significantly decreased the expression levels of PFKFB3; moreover, growth and metastasis were decreased in shROCK2 osteosarcoma cells. Additionally, upregulation of PFKFB3 rescued the decreased proliferation and metastasis induced by ROCK2 knockdown, whereas knockdown of PFKFB3 decreased ROCK2-enhanced osteosarcoma proliferation and metastasis. These results suggest that PFKFB3 is essential for ROCK2-mediated proliferation and metastasis of osteosarcoma cells. Mechanistically, ROCK2 stabilizes PFKFB3 expression by modifying its ubiquitination and degradation. Taken together, our results link two drivers of proliferation and metastasis in osteosarcoma and identify a novel pathway for PFKFB3 regulation. Thus, we provide new evidence of the biological and clinical significance of PFKFB3 as a potential biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Xueqiang Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yeqin Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanshan Wang
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenhao Shan
- Department of Orthopedics, Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Liu
- Department of Gastroenterology, Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhibin Zhang
- Department of Dermatology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
33
|
Razdan A, de Souza P, Roberts TL. Role of MicroRNAs in Treatment Response in Prostate Cancer. Curr Cancer Drug Targets 2019; 18:929-944. [PMID: 29644941 PMCID: PMC6463399 DOI: 10.2174/1568009618666180315160125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer in men worldwide, resulting in significant mortality and morbidity. Depending on the grade and stage of the cancer, patients may be given radiation therapy, hormonal therapy, or chemotherapy. However, more than half of these patients develop resistance to treatment, leading to disease progression and metastases, often with lethal consequences. MicroRNAs (miRNAs) are short, non-coding RNAs, which regulate numerous physiological as well as pathological processes, including cancer. miRNAs mediate their regulatory effect predominately by binding to the 3'-untranslated region (UTR) of their target mRNAs. In this review, we will describe the mechanisms by which miRNAs mediate resistance to radiation and drug therapy (i.e. hormone therapy and chemotherapy) in PCa, including control of apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition (EMT), invasion and metastasis, and cancer stem cells (CSCs). Furthermore, we will discuss the utility of circulating miRNAs isolated from different body fluids of prostate cancer patients as non-invasive biomarkers of cancer detection, disease progression, and therapy response. Finally, we will shortlist the candidate miRNAs, which may have a role in drug and radioresistance, that could potentially be used as predictive biomarkers of treatment response.
Collapse
Affiliation(s)
- Anshuli Razdan
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, Australia
| | - Paul de Souza
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, Australia.,School of Medicine, The University of New South Wales, Sydney, New South Wales, Australia.,Department of Medical Oncology, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Tara Laurine Roberts
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, New South Wales, Australia.,School of Medicine, The University of New South Wales, Sydney, New South Wales, Australia.,The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| |
Collapse
|
34
|
Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z, Huang JA. miR-335-5p inhibits TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer via ROCK1. Respir Res 2019; 20:225. [PMID: 31638991 PMCID: PMC6805547 DOI: 10.1186/s12931-019-1184-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Significant evidence has shown that the miRNA pathway is an important component in the downstream signaling cascades of TGF-β1 pathway. Our previous study has indicated that miR-335-5p expression was significantly down-regulated and acted as a vital player in the metastasis of non-small cell lung cancer (NSCLC), however the underlying mechanism remained unclear. METHODS The differential expression level of miR-335-5p and ROCK1 were determined by qRT-PCR and IHC analysis in human tissue samples with or without lymph node metastasis. Transwell assay was conducted to determine cell ability of migration and invasion. SiRNA interference, microRNA transfection and western blot analysis were utilized to clarify the underlying regulatory mechanism. RESULTS We showed that down-regulated expression of miR-335-5p and up-regulated expression of ROCK1 in NSCLC tissues were associated with lymph node metastasis. Over-expresion of miR-335-5p significantly inhibited TGF-β1-mediated NSCLC migration and invasion. Furthermore, luciferase reporter assays proved that miR-335-5p can bind to 3'-UTR of ROCK1 directly. Moreover, we confirmed that siRNA-mediated silencing of ROCK1 significantly diminished TGF-β1-mediated EMT and migratory and invasive capabilities of A549 and SPC-A1 cells. CONCLUSION This is the first time to report that miR-335-5p regulates ROCK1 and impairs its functions, thereby playing a key role in TGF-β1-induced EMT and cell migration and invasion in NSCLC.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Haicheng Tang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Department of Respiratory Medicine, The First People's Hospital of Yancheng City, Yancheng, 224001, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China. .,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China. .,Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
35
|
Feng X, Zhang L, Nie S, Zhuang L, Wang W, Huang J, Yan X, Meng F. The Effect of Ras Homolog C/Rho-Associated Coiled-Protein Kinase (Rho/ROCK) Signaling Pathways on Proliferation and Apoptosis of Human Myeloma Cells. Med Sci Monit 2019; 25:7605-7616. [PMID: 31599230 PMCID: PMC6798802 DOI: 10.12659/msm.915998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the impact of Ras homolog C/Rho-associated coiled-protein kinase (Rho/ROCK) signaling pathways intervention on biological characteristics of the human multiple myeloma cell lines RPMI-8226 and U266 cells, and to investigate the expression of RhoC, ROCK1, and ROCK2 in RPMI-8226 and U266 cells. MATERIAL AND METHODS RPMI8226 and U266 cell lines were treated by 5-aza-2-deoxycytidine (5-Aza-Dc), trichostatin A (TSA), RhoA inhibitor CCG-1423, Rac1 inhibitor NSC23766, and ROCK inhibitor fasudil. Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay and clone formation. Cell apoptosis was examined by flow cytometry and TUNEL assay. The mRNA and protein expressions of RhoC, ROCK1, and ROCK2 were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot, respectively. RESULTS CCG-1423, NSC23766, and fasudil could significantly inhibit the proliferation of RPMI8226 and U266 cells. The inhibitory effect was dose- and time-dependent within a certain concentration range (P<0.05). After treatment with CCG-1423, NSC23766, and fasudil for 24 hours, the apoptosis rates of RPMI8226 and U266 cells were significantly higher than those of the control group, which were dose-dependent (P<0.05). Compared with the control group, the mRNA and protein expressions of RhoC, ROCK1, and ROCK2 in RPMI8226 and U266 cells were significantly decreased with single 5-Aza-Dc or TSA treatment. However, the effects were obviously stronger after combined treatment of 5-Aza-CdR and TSA (P<0.05). CONCLUSIONS We found that 5-Aza-Dc and TSA can effectively decrease the mRNA and protein expressions of RhoC, ROCK1, and ROCK2. Furthermore, Rho and ROCK inhibitors significantly inhibit cell growth and induce cell apoptosis in the human multiple myeloma cell lines RPMI-8226 and U266.
Collapse
Affiliation(s)
- Xianqi Feng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ling Zhang
- Department of Pediatrics, Laiwu People's Hospital, Laiwu, Shandong, China (mainland)
| | - Shumin Nie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Likun Zhuang
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xueshen Yan
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Fanjun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
36
|
Wang X, Ju S, Chen Y, Qian Q, Yan C, Chen S, Chang Y, Xu Y, Ma Z, Zhang C, Qin N, Gu Y, Wang C, Zhang E, Hu Z. Hypomethylation-activated cancer-testis gene SPANXC promotes cell metastasis in lung adenocarcinoma. J Cell Mol Med 2019; 23:7261-7267. [PMID: 31483565 PMCID: PMC6815806 DOI: 10.1111/jcmm.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
Many studies have shown that there were similarity between tumorigenesis and gametogenesis. Our previous work found that cancer-testis (CT) genes could serve as a novel source of candidate of cancer. Here, by analysing The Cancer Genome Atlas (TCGA) database, we characterized a CT gene, SPANXC, which is expressed only in testis. The SPANXC was reactivated in lung adenocarcinoma (LUAD) tissues. And the expression of SPANXC was associated with prognosis of LUAD. We also found that the activation of SPANXC was due to the promoter hypomethylation of SPANXC. Moreover, SPANXC could modulate cell metastasis both in vitro and in vivo. Mechanistically, we found that SPANXC could bind to ROCK1, a metastasis-related gene, and thus SPANXC may regulate cell metastasis partly through interaction with ROCK1 in LUAD. Together, our results demonstrated that the CT expression pattern of SPANXC served as a crucial role in metastasis of LUAD. And these data further corroborated the resemblance between processes of germ cell development and tumorigenesis, including migration and invasion.
Collapse
Affiliation(s)
- Xuewei Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sihan Ju
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Chen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qufei Qian
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Shuaizhou Chen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuting Chang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yide Xu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zijian Ma
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Wei L, Yang N, Sun L, Zhang L, Li Z, Li D, Qin T, Huang H. LncRNA SNHG1 upregulates ROCK2 to reduce cisplatin sensitivity of NSCLC cells by targeting miR-101-3p. Transl Cancer Res 2019; 8:2141-2150. [PMID: 35116964 PMCID: PMC8798157 DOI: 10.21037/tcr.2019.09.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cisplatin is the most commonly used chemotherapy drug in clinical settings, and decreased sensitivity or resistance to cisplatin is the main cause of chemotherapy failure or death among cancer patients. Long non-coding RNA (lncRNA) SNHG1 is highly expressed in non-small cell lung cancer (NSCLC) tissues and promotes the proliferation of NSCLC cells, but the effect of SNHG1 on cisplatin sensitivity of NSCLC cells is unclear. METHODS We compared the expression of SNHG1 in cisplatin-sensitive and insensitive NSCLC tissues and explored the molecular mechanism of SNHG1 regulation of the sensitivity of NSCLC cells to cisplatin in vitro. RESULTS We found that SNHG1 is upregulated in cisplatin insensitive NSCLC tissues and cells, and that it can regulate cisplatin sensitivity of NSCLC cells in vitro. Furthermore, we also found that the expression of miR-101-3p in NSCLC tissues is negatively correlated with SNHG1 or ROCK2. Additionally, in NSCLC cells, SNHG1 and miR-101-3p are mutually suppressed, but miR-101-3p targets the inhibition of ROCK2. More importantly, the regulation of ROCK2 expression in vitro can also change the sensitivity of NSCLC cells to cisplatin. CONCLUSIONS In summary, our results provide novel mechanistic insights into the role of SNHG1/miR-101-3p/ROCK2 signaling in cisplatin resistance of NSCLC cells.
Collapse
Affiliation(s)
- Lei Wei
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Nan Yang
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Lei Sun
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Lei Zhang
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhongdong Li
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Demin Li
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tao Qin
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Hairong Huang
- Department of Cardio-Thoracic Surgery, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| |
Collapse
|
38
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
39
|
Ai N, Li B, Li L, Li Z, Ji H, Yang G, Yin F. MicroRNA-466 inhibits cancer cell migration and invasion in hepatocellular carcinoma by indirectly mediating the downregulation of ROCK2. Exp Ther Med 2019; 18:1493-1499. [PMID: 31363382 PMCID: PMC6614712 DOI: 10.3892/etm.2019.7709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/18/2019] [Indexed: 01/05/2023] Open
Abstract
MicroRNA-466 was recently characterized as a tumor suppressor with known biological function in prostate cancer. The aim of the current study was to investigate the possible involvement of microRNA-466 in hepatocellular carcinoma (HCC). The current study demonstrated that the expression level of microRNA-466 was significantly downregulated; while the mRNA expression level of Rho-associated coiled-coil containing protein kinase 2 (ROCK2) was significantly upregulated in tumor tissue compared with adjacent healthy tissue samples obtained from patients with HCC. In addition, the relative plasma level of microRNA-466 was significantly decreased, while the relative plasma level of ROCK2 was significantly increased in patients with HCC compared with healthy controls. Expression levels of microRNA-466 and ROCK2 were inversely correlated in tumor tissue but not in adjacent healthy tissue samples obtained from patients with HCC. Plasma levels of microRNA-466 and ROCK2 were inversely correlated in patients with HCC but not in healthy controls. In addition, reduced plasma levels of microRNA-466 may have a diagnostic value in the detection of early stage HCC. MicroRNA-466 overexpression significantly suppressed ROCK2 expression in HCC cells, whereas ROCK2 overexpression did not significantly affect microRNA-466 expression. MicroRNA-466 overexpression significantly suppressed, while ROCK2 overexpression significantly enhanced HCC cell migration and invasion. In addition, ROCK2 overexpression partially reversed the inhibitory effect of microRNA-466 overexpression on HCC cell migration and invasion. Taken together, these results suggest that microRNA-466 may inhibit HCC cell migration and invasion by indirectly mediating the downregulation of ROCK2.
Collapse
Affiliation(s)
- Ning Ai
- Department of Interventional Radiology, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| | - Bo Li
- Department of Interventional Radiology, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| | - Li Li
- Department of Interventional Radiology, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| | - Zhigang Li
- Department of Interventional Radiology, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| | - Hong Ji
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| | - Guang Yang
- Department of Interventional Radiology, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| | - Fenghua Yin
- Department of Interventional Radiology, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei 050011, P.R. China
| |
Collapse
|
40
|
Jin Z, Jiang S, Jian S, Shang Z. Long noncoding RNA MORT overexpression inhibits cancer cell proliferation in oral squamous cell carcinoma by downregulating ROCK1. J Cell Biochem 2019; 120:11702-11707. [PMID: 30805944 DOI: 10.1002/jcb.28449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Long noncoding RNA (lncRNA) mortal obligate RNA transcript (MORT) was downregulated many types of cancer tissues, while its functionality in cancer biology is unclear. In the present study, we systemically investigated the involvement of lncRNA MORT in oral squamous cell carcinoma (OSCC). In the present study, we found that lncRNA MORT was downregulated, while rho-associated coiled-coil containing protein kinase 1 (ROCK1) messenger RNA was upregulated in cancer tissues than in adjacent healthy tissues of OSCC patients. In addition, expression levels of lncRNA MORT and ROCK1 were inversely correlated in both tumor tissues and healthy tissues. Follow-up study showed that low MORT level was significantly correlated with poor survival. Overexpression of lncRNA MORT inhibited the proliferation of OSCC cells and downregulated ROCK1. ROCK1 overexpression led to significantly promoted cell proliferation but showed no significant effect on MORT expression. In addition, ROCK1 overexpression attenuated the inhibitory effects of lncRNA MORT overexpression on the proliferation of OSCC cells. Therefore, lncRNA MORT overexpression may inhibit cancer cell proliferation in OSCC cells by downregulating ROCK1.
Collapse
Affiliation(s)
- Zhongzhi Jin
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Shujuan Jian
- Department of Stomatology, Wuhan Third Hospital, Wuhan, Hubei, People's Republic of China
| | - Zhengjun Shang
- Department of Oral and Maxillofacial Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
41
|
Jin X, Ye L, Lin M, Gu B, Wang J, He Y, Li W. lncRNA-CCHE1 is involved in migration and invasion but not in proliferation of pancreatic adenocarcinoma cells possibly by interacting with ROCK1. Oncol Lett 2019; 18:1218-1224. [PMID: 31423182 PMCID: PMC6607354 DOI: 10.3892/ol.2019.10416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Cervical carcinoma high-expressed long non-coding RNA (lncRNA) 1 (lncRNA-CCHE1) serves an oncogenic role in cervical and liver cancer. The present study aimed to explore the role of CCHE1 in pancreatic adenocarcinoma. CCHE1 expression was detected by reverse transcription-quantitative polymerase chain reaction, and rho associated coiled-coil containing protein kinase 1 (ROCK1) levels were detected using an ELISA assay. Diagnostic analysis was performed by receiver operating characteristic curve analysis. The effects of CCHE1 on ROCK1 were analyzed by western blotting. Cell migration and invasion were analyzed by Transwell migration and invasion assays. The results of the present study demonstrated that, compared with healthy controls, CCHE1 and ROCK1 were upregulated in the serum of patients with metastatic pancreatic adenocarcinoma. CCHE1 overexpression distinguished patients with metastatic pancreatic adenocarcinoma from patients with non-metastatic pancreatic adenocarcinoma and healthy controls. A significant positive correlation between serum levels of CCHE1 and ROCK1 was identified in patients with metastatic pancreatic adenocarcinoma. Furthermore, CCHE1 overexpression led to upregulated ROCK1 in human pancreatic adenocarcinoma cell lines, whereas no significant effects of ROCK1 overexpression upon CCHE1 expression were identified. CCHE1 overexpression promoted the migration and invasion of human pancreatic adenocarcinoma cell lines, but no significant effects on cell proliferation were identified. ROCK1 small interfering RNA-induced silencing partially reversed the enhancing effects of CCHE1 overexpression on cancer cell migration and invasion. Therefore, lncRNA-CCHE1 may be involved in migration and invasion but not in proliferation of pancreatic adenocarcinoma cells, possibly by interacting with ROCK1.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Liping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Minhua Lin
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Binbin Gu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Jun Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Yequn He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Weilin Li
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| |
Collapse
|
42
|
Tang H, Du W, Jiang Y, Li H, Bo H, Song S. Upregulated expression of ROCK1 promotes cell proliferation by functioning as a target of miR-335-5p in non-small cell lung cancer. J Cell Physiol 2019. [PMID: 31140617 DOI: 10.1002/jcp.28886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Lung cancer is regarded as one of the dominant causes in cancer patients among men and women all over the world. Rho-associated coiled-coil forming protein kinase l (ROCK1) is characterized as pivotal downstream effectors of the small GTPase RhoA and reported to participate in tumor metastasis. miR-335-5p acts as tumor suppressor microRNA and is identified to be downregulated in tumor tissues. miR-335-5p/ROCK1 axis has been demonstrated to promote cell proliferation and metastasis in gastric cancer, hepatocellular carcinoma and so on. However, the role it plays in promoting cell proliferation in non-small cell lung cancer (NSCLC) is poorly understood. Here, we demonstrated that the upregulated expression of ROCK1 was highly correlated with downregulated expression of miR-335-5p in NSCLC tissues and cell lines. Mechanistically, Knockdown of ROCK1 inhibited cell proliferation in vitro, accompanied by cell cycle change confirmed by flow analysis. Furthermore, miR-335-5p can downregulate the ROCK1 expression by directly binding to the 3'-untranslated region in posttranscriptional level. In vivo animal model showed similar results. Our findings highlighted the crucial role that miR-335-5p acted as a tumor suppressor to modulate cell proliferation and cell cycle progression via downregulating ROCK1 expression. And this miR-335-5p/ROCK1 axis contributed to NSCLC pathogenesis and might be promising targets for NSCLC therapy.
Collapse
Affiliation(s)
- Haicheng Tang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongqian Jiang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Hongmiao Li
- Department of Respiratory Medicine, Jianhu Hospital Affiliated to Nantong University, Yancheng, China
| | - Hongjian Bo
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, Yancheng, China
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Shu Song
- The Fourth Affiliated Hospital of Nantong University, Yancheng, China
- Department of Pathology, The First People's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
43
|
Liu P, Du R, Yu X. LncRNA HAND2-AS1 overexpression inhibits cancer cell proliferation in melanoma by downregulating ROCK1. Oncol Lett 2019; 18:1005-1010. [PMID: 31423160 PMCID: PMC6607374 DOI: 10.3892/ol.2019.10402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/01/2019] [Indexed: 01/20/2023] Open
Abstract
Long non-coding (lnc)RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (HAND2-AS1), an lncRNA antisense transcript adjacent to the heart and neural crest derivatives expressed 2 protein (HAND2), inhibits the development of several types of cancer; however, its role in melanoma is currently unknown. In the present study, it was revealed that lncRNA HAND2-AS1 was downregulated, whereas Rho-associated protein kinase 1 (ROCK1) mRNA was upregulated in tumor tissues when compared with the healthy tissues of patients with melanoma. Expression levels of lncRNA HAND2-AS1 and ROCK1 were inversely correlated in tumor tissues, but not in healthy tissues. LncRNA HAND2-AS1 expression levels were affected by tumor thickness, but not by tumor metastasis. LncRNA HAND2-AS1 overexpression led to inhibited melanoma cancer cell proliferation and an increased expression level of ROCK1. ROCK1 overexpression caused no evident effects on lncRNA HAND2-AS1 expression, but promoted cancer cell proliferation and decreased the effects of lncRNA HAND2-AS1 overexpression on cancer cell proliferation. Thus, it is possible that lncRNA HAND2-AS1 overexpression leads to inhibited cancer cell proliferation in melanoma cells through the downregulation of ROCK1.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin 130021, P.R. China
| | - Ruili Du
- Department of Clinical Laboratory, The Second Hospital of Changchun City, Changchun, Jilin 130022, P.R. China
| | - Xin Yu
- Department of Hand and Pediatric Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,Jilin Province Key Laboratory of Tissue Repair, Reconstruction and Regeneration, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
44
|
Wan X, Xiang J, Zhang Q, Bian C. Long noncoding RNA POU3F3 promotes cancer cell proliferation in prostate carcinoma by upregulating rho-associated protein kinase 1. J Cell Biochem 2019; 120:8195-8200. [PMID: 30474879 DOI: 10.1002/jcb.28101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Long noncoding RNAs (lncRNAs) POU3F3 is overexpressed in esophageal squamous-cell carcinomas, while its role in other human cancers is unclear. In this study we found that POU3F3 and rho-associated protein kinase 1 (ROCK1) were both increased in tumor tissues than in adjacent healthy tissues of patients with prostate carcinoma. Expression levels of POU3F3 increased with increase in the diameter of tumor but were not significantly affected by lymph node metastasis or distant metastasis. Expression levels of POU3F3 and ROCK1 were positive correlated in tumor tissues but not in adjacent healthy tissues. POU3F3 and ROCK1 overexpression promoted, while ROCK1 knockdown inhibited the proliferation of prostate carcinoma cells. ROCK1 knockdown reduced the enhancing effect of POU3F3 overexpression on cancer cell proliferation. POU3F3 overexpression led to ROCK1 overexpression in prostate carcinoma cells, while ROCK1 overexpression did not significantly affect POU3F3 expression. Therefore, lncRNA POU3F3 may promote cancer cell proliferation in prostate carcinoma by upregulating ROCK1.
Collapse
Affiliation(s)
- Xiaodong Wan
- Department of Urinary Surgery, Shanghai Tongji Hospital, Shanghai, China
| | - Jun Xiang
- Department of Urinary Surgery, Shanghai Tongji Hospital, Shanghai, China
| | - Qimin Zhang
- Department of Urinary Surgery, Shanghai Tongji Hospital, Shanghai, China
| | - Cuidong Bian
- Department of Urinary Surgery, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|
45
|
Niu Y, Tang G. miR-185-5p targets ROCK2 and inhibits cell migration and invasion of hepatocellular carcinoma. Oncol Lett 2019; 17:5087-5093. [PMID: 31105794 PMCID: PMC6507519 DOI: 10.3892/ol.2019.10144] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated microRNA-185 (miR-185) as a tumor suppressive microRNA (miRNA) in various types of cancer. The current study aimed to verify this finding in hepatocellular carcinoma (HCC) and explored the downstream channel of miR-185-5p. We detected miR-185-5p and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) mRNA and protein levels by reverse transcription-quantitative PCR (RT-qPCR) and western blotting in HCC tissues and cell lines. Luciferase reporter assay proved the direct relationship between miR-185-5p and ROCK2. Cell migration and invasion were assessed via Transwell assay. miR-185-5p level was reduced in HCC tissues and cell lines. miR-185-5p overexpression impeded migration and invasion of HCC cells. Moreover, miR-185-5p directly targeted ROCK2 which was repressed by miR-185-5p in HCC. In addition, ROCK2 contributed to cell metastasis of HCC. In summary, miR-185-5p inhibited cell metastasis of HCC by suppressing ROCK2. The novel miR-185/ROCK2 axis shows potential in improving the therapies of HCC and enhancing HCC survival.
Collapse
Affiliation(s)
- Yuexiang Niu
- Department of Infectious Diseases, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Gongen Tang
- Department of Infectious Diseases, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
46
|
Zhang C, Lu C, Wang Z, Feng G, Du E, Liu Y, Wang L, Qiao B, Xu Y, Zhang Z. Antimony enhances c-Myc stability in prostate cancer via activating CtBP2-ROCK1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:61-68. [PMID: 30098506 DOI: 10.1016/j.ecoenv.2018.07.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 05/17/2023]
Abstract
Antimony, one of the heavier pnictogens, is widely used in industry, and its toxicity has become a major concern. Although previous studies suggested that antimony might be a tumorigenic risk factor in several cancers, the molecular basis underlying antimony-mediated transformation remains unclear. Our results showed that the serum concentration of antimony was higher in prostate cancer specimens relative to that of benign prostate tissues, and this high serum concentration of antimony was closely associated with poorer outcome in prostate cancer patients. Additionally, we demonstrated that antimony could promote prostate cancer cell growth in vitro and in vivo. In order to gain insight into the potential mechanisms, we examined the effects of antimony exposure on downstream signaling that could contribute to tumor development. We found that low-dose antimony could regulate the expression of Ctbp2 by binding and regulating the activity of its MRE domain. Meanwhile, CtBP2 could transcriptionally regulate the expression of RhoC, which is a member of the RhoGTPase family. Subsequently, the kinase activity of ROCK1 is increased, which promotes the stability of oncogene c-Myc. Overall, our study demonstrated that antimony could enhance c-Myc protein stability and promote prostate cancer cell proliferation through activating CtBP2-ROCK1 signaling pathway. These findings also substantially highlighted the potential of targeting molecules within antimony induced CtBP2-c-Myc signaling pathway as a promising therapeutic approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Chao Lu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Zhen Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Guowei Feng
- Department of Urology, Tianjin Tumor Hospital, Tianjin 300211, China.
| | - E Du
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yan Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Li Wang
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Baomin Qiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
47
|
Zhong Y, Yang S, Wang W, Wei P, He S, Ma H, Yang J, Wang Q, Cao L, Xiong W, Zhou M, Li G, Shuai C, Peng S. The interaction of Lin28A/Rho associated coiled-coil containing protein kinase2 accelerates the malignancy of ovarian cancer. Oncogene 2018; 38:1381-1397. [PMID: 30266988 PMCID: PMC6372474 DOI: 10.1038/s41388-018-0512-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/04/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022]
Abstract
Ovarian cancer (OC) is the leading cause of death among women with gynecologic malignant diseases, however, the molecular mechanism of ovarian cancer is not well defined. Previous studies have found that RNA binding protein Lin28A is a key factor of maintain the pluripotency of stem cells, and it is positively correlated with the degree of several cancers (breast, prostate, liver cancer, etc). Our previous study shows that Lin28A is highly expressed in OC tissues and is involved in the regulation of OC cell biological behavior. In this study, we confirmed that high expression of Lin28A promoted the survival, invasion, metastasis, and inhibited the apoptosis of OC cells. Lin28A interacts with Rho associated coiled-coil containing protein kinase2 (ROCK2) but not ROCK1 and upregulates the expression of ROCK2 in OC cells. The binding sites of each other were identified by truncated mutations and Immuno-precipitaion (IP) assay. After knock down of ROCK2 in cells with high expression of Lin28A, the survival, invasion, metastasis was significantly inhibited and early apoptosis was increased in OC cells and OC xenograft in nude mice. Our experimental data also showed that knock down of ROCK2 but not ROCK1 inhibited the invasion by decreasing the expression of N-cadherin, Slug, β-catenin and increasing ZO-1 expression. Simultaneously, knock down of ROCK2 induced cell apoptosis by increasing cleaved Caspase-9,cleaved Caspase-7, and cleaved Caspase-3. Taken together, Lin28A regulated the biological behaviors in OC cells through ROCK2 and the interaction of Lin28A/ROCK2 may be a new target for diagnosis and gene therapy of OC.
Collapse
Affiliation(s)
- Yancheng Zhong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Sheng Yang
- Human Reproduction Center, Shenzhen Hospital of Hongkong University, Haiyuan 1 Road, Futian, Shenzhen, China
| | - Wei Wang
- The Pathology Department of the Jining Medical University, Shan Dong, China
| | - Pingpin Wei
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shiwei He
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Haotian Ma
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Juan Yang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qian Wang
- The department of Gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lanqin Cao
- The department of Gynecology of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
48
|
Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol 2018; 234:231-245. [PMID: 30076721 DOI: 10.1002/jcp.26856] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
MiR-214 belongs to a family of microRNA (small, highly conserved noncoding RNA molecules) precursors that play a pivotal role in biological functions, such as cellular function, tissue development, tissue homeostasis, and pathogenesis of diseases. Recently, miR-214 emerged as a critical regulator of musculoskeletal metabolism. Specifically, miR-214 can mediate skeletal muscle myogenesis and vascular smooth muscle cell proliferation, migration, and differentiation. MiR-214 also modulates osteoblast function by targeting specific molecular pathways and the expression of various osteoblast-related genes; promotes osteoclast activity by targeting phosphatase and tensin homolog (Pten); and mediates osteoclast-osteoblast intercellular crosstalk via an exosomal miRNA paracrine mechanism. Importantly, dysregulation in miR-214 expression is associated with pathological bone conditions such as osteoporosis, osteosarcoma, multiple myeloma, and osteolytic bone metastasis of breast cancer. This review discusses the cellular targets of miR-214 in bone, the molecular mechanisms governing the activities of miR-214 in the musculoskeletal system, and the putative role of miR-214 in skeletal diseases. Understanding the biology of miR-214 could potentially lead to the development of miR-214 as a possible biomarker and a therapeutic target for musculoskeletal diseases.
Collapse
Affiliation(s)
- Youqiang Sun
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Vincent Kuek
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yuhao Liu
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China
| | - Leilei Chen
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Shao
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Zheng Y, Xiang L, Chen M, Xiang C. MicroRNA‑130a inhibits the proliferation, migration and invasive ability of hepatocellular carcinoma cells by downregulating Rho‑kinase 2. Mol Med Rep 2018; 18:3077-3084. [PMID: 30015839 DOI: 10.3892/mmr.2018.9283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA‑130a (miR‑130a) has been reported to be downregulated in hepatocellular carcinoma (HCC). However, the roles and underlying tumor‑suppressive mechanisms of miR‑130a in the pathogenesis of HCC remain unclear. In the current study, reduced expression of miR‑130a was observed in tumor tissues of patients with HCC in addition to in four HCC cell lines, BEL‑7402, MHCC97H, HepG2 and Huh7. Results of methyl thiazolyl tetrazolium (MTT) assays identified decreased growth rates of MHCC97H and HepG2 cells transfected with miR‑130a mimics. The in vitro colony formation assays demonstrated that the number of colonies formed by cells transfected with miR‑130a mimics and cells transfected with miR‑130a inhibitors was lower and higher, respectively, than that formed by the cells transfected with miR‑negative control. In addition, it was identified that overexpression of miR‑130a reduced the migration and invasiveness of MHCC97H and HepG2 cells. Luciferase reporter assays demonstrated that miR‑130a directly targeted the 3'‑untranslated region of Rho‑kinase 2 (ROCK2) mRNA. Northern and western blot analyses indicated that miR‑130a could modulate the mRNA and protein expression of ROCK2. Additionally, small‑interfering RNA‑mediated knockdown of ROCK2 decreased the proliferation, migration and invasiveness of MHCC97H and HepG2 cells. Overall, these observation suggest that miR‑130a is a regulator of ROCK2 and can inhibit proliferation, migration and invasive ability of HCC cells, at least in part, by suppressing the expression of ROCK2. The current study provides further insight into the molecular mechanisms of HCC pathogenesis and suggests a new potential biotarget for HCC treatment.
Collapse
Affiliation(s)
- Yansong Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liangguang Xiang
- Department of General Surgery, Fuqing City Hospital, Fuqing, Fujian 350300, P.R. China
| | - Mingliu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Chunhui Xiang
- Department of Neurosurgery, The Central Hospital of Enshi Autonomy State, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
50
|
Yi H, Wang K, Jin H, Su J, Zou Y, Li Q, He L, Liu X, Du B. Overexpression of Rho-Associated Coiled-Coil Containing Protein Kinase 2 Is Correlated with Clinical Progression and Poor Prognosis in Breast Cancer. Med Sci Monit 2018; 24:4776-4781. [PMID: 29990315 PMCID: PMC6069530 DOI: 10.12659/msm.908507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Rho-associated coiled-coil containing protein kinases 2 (ROCK2) is one of the best characterized targets for the small GTPase Rho. It has been reported that ROCK2 is critical for cancer cell migration and invasion. The objective of this study was to investigate the association of ROCK2 expression with clinicopathological features and overall survival of breast cancer patients. Material/Methods The expression of ROCK2 in breast cancer and paired adjacent normal tissues was detected and compared by immunohistochemical staining of tissue array. ROCK2 mRNA expression and clinicopathological information was extracted from the TCGA breast cancer dataset. The association of ROCK2 expression with the clinicopathological characteristics of patients with breast cancer was evaluated using univariate and multivariate Cox proportional hazards models. Overall survival was analyzed using the Kaplan-Meier method. Results Immunohistochemistry showed that ROCK2 expression was significantly higher in tumor tissues than in paired adjacent normal tissues [immunoreactivity score (IRS): tumor, 5.25±2.10, n=40 vs. adjacent normal 3.83±1.06, n=40, P<0.01]. The IRS was correlated to breast cancer staging. Similarly, the mRNA level of ROCK2 was correlated to tumor stage. Notably, ROCK2 mRNA expression (hazard ratio [HR] 1.665 and 95% confidence interval [CI] 1.115–2.488, P=0.013) were also associated with overall survival in a multivariate analysis. Conclusions Upregulation of ROCK2 was associated with the progression of breast cancer. High expression of ROCK2 may predict poor overall survival rates for breast cancer patients.
Collapse
Affiliation(s)
- Hua Yi
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Kun Wang
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - He Jin
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Junfang Su
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Yidan Zou
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Qiao Li
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Lina He
- Research Center for Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Biaoyan Du
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|