1
|
Wang SS, Wang CC, Wang CL, Lin YC, Tung CW. Incorporating Tissue-Specific Gene Expression Data to Improve Chemical-Disease Inference of in Silico Toxicogenomics Methods. J Xenobiot 2024; 14:1023-1035. [PMID: 39189172 PMCID: PMC11348041 DOI: 10.3390/jox14030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
In silico toxicogenomics methods are resource- and time-efficient approaches for inferring chemical-protein-disease associations with potential mechanism information for exploring toxicological effects. However, current in silico toxicogenomics systems make inferences based on only chemical-protein interactions without considering tissue-specific gene/protein expressions. As a result, inferred diseases could be overpredicted with false positives. In this work, six tissue-specific expression datasets of genes and proteins were collected from the Expression Atlas. Genes were then categorized into high, medium, and low expression levels in a tissue- and dataset-specific manner. Subsequently, the tissue-specific expression datasets were incorporated into the chemical-protein-disease inference process of our ChemDIS system by filtering out relatively low-expressed genes. By incorporating tissue-specific gene/protein expression data, the enrichment rate for chemical-disease inference was largely improved with up to 62.26% improvement. A case study of melamine showed the ability of the proposed method to identify more specific disease terms that are consistent with the literature. A user-friendly user interface was implemented in the ChemDIS system. The methodology is expected to be useful for chemical-disease inference and can be implemented for other in silico toxicogenomics tools.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan;
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan;
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Chien-Lun Wang
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan;
| | - Ying-Chi Lin
- Master and Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 10675, Taiwan;
- Master and Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| |
Collapse
|
2
|
Wang F, Moon W, Letsou W, Sapkota Y, Wang Z, Im C, Baedke JL, Robison L, Yasui Y. Genome-Wide Analysis of Rare Haplotypes Associated with Breast Cancer Risk. Cancer Res 2023; 83:332-345. [PMID: 36354368 PMCID: PMC9852031 DOI: 10.1158/0008-5472.can-22-1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Numerous common genetic variants have been linked to breast cancer risk, but they only partially explain the total breast cancer heritability. Inference from Nordic population-based twin data indicates rare high-risk loci as the chief determinant of breast cancer risk. Here, we use haplotypes, rather than single variants, to identify rare high-risk loci for breast cancer. With computationally phased genotypes from 181,034 white British women in the UK Biobank, a genome-wide haplotype-breast cancer association analysis was conducted using sliding windows of 5 to 500 consecutive array-genotyped variants. In the discovery stage, haplotype-breast cancer associations were evaluated retrospectively in the prestudy-enrollment data including 5,487 breast cancer cases. Breast cancer hazard ratios (HR) for additive haplotypic effects were estimated using Cox regression. The replication analysis included a prospective cohort of women free of breast cancer at enrollment, of whom 3,524 later developed breast cancer. This two-stage analysis detected 13 rare loci (frequency <1%), each associated with an appreciable breast cancer-risk increase (discovery: HRs = 2.84-6.10, P < 5 × 10-8; replication: HRs = 2.08-5.61, P < 0.01). In contrast, the variants that formed these rare haplotypes individually exhibited much smaller effects. Functional annotation revealed extensive cis-regulatory DNA elements in breast cancer-related cells underlying the replicated rare haplotypes. Using phased, imputed genotypes from 30,064 cases and 25,282 controls in the DRIVE OncoArray case-control study, 6 of the 13 rare-loci associations were found generalizable (odds ratio estimates: 1.48-7.67, P < 0.05). This study demonstrates the complementary advantage of utilizing rare haplotypes to capture novel risk loci and suggests the potential for the discovery of more genetic elements contributing to cancer heritability as large data sets of germline whole-genome sequencing become available. SIGNIFICANCE A genome-wide two-stage haplotype analysis identifies rare haplotypes associated with breast cancer risk and suggests that the rare risk haplotypes represent long-range interactions with regulatory consequences influencing cancer risk.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Wonjong Moon
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - William Letsou
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Cindy Im
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Jessica L. Baedke
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Leslie Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
3
|
Ruan H, Wang PC, Han L. Characterization of circular RNAs with advanced sequencing technologies in human complex diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1759. [PMID: 36164985 DOI: 10.1002/wrna.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 01/31/2023]
Abstract
Circular RNAs (circRNAs) are one category of non-coding RNAs that do not possess 5' caps and 3' free ends. Instead, they are derived in closed circle forms from pre-mRNAs by a non-canonical splicing mechanism named "back-splicing." CircRNAs were discovered four decades ago, initially called "scrambled exons." Compared to linear RNAs, the expression levels of circRNAs are considerably lower, and it is challenging to identify circRNAs specifically. Thus, the biological relevance of circRNAs has been underappreciated until the advancement of next generation sequencing (NGS) technology. The biological insights of circRNAs, such as their tissue-specific expression patterns, biogenesis factors, and functional effects in complex diseases, namely human cancers, have been extensively explored in the last decade. With the invention of the third generation sequencing (TGS) with longer sequencing reads and newly designed strategies to characterize full-length circRNAs, the panorama of circRNAs in human complex diseases could be further unveiled. In this review, we first introduce the history of circular RNA detection. Next, we describe widely adopted NGS-based methods and the recently established TGS-based approaches capable of characterizing circRNAs in full-length. We then summarize data resources and representative circRNA functional studies related to human complex diseases. In the last section, we reviewed computational tools and discuss the potential advantages of utilizing advanced sequencing approaches to a functional interpretation of full-length circRNAs in complex diseases. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Hang Ruan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Peng-Cheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
4
|
Fisher CL, Dillon R, Anguita E, Morris-Rosendahl DJ, Awan AR. A Novel Bead-Capture Nanopore Sequencing Method for Large Structural Rearrangement Detection in Cancer. J Mol Diagn 2022; 24:1264-1278. [PMID: 36243290 DOI: 10.1016/j.jmoldx.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Rapid, cost-effective genomic stratification of structural rearrangements in cancer is often of vital importance when determining treatment; however, existing diagnostic cytogenetic and molecular testing fails to deliver the required speed when deployed at scale. Next-generation sequencing-based methods are widely used, but these can lack sensitivity and require batching of samples to be cost-effective, with long turnaround times. Here we present a novel method for rearrangement detection from genomic DNA based on third-generation long-read sequencing that overcomes these time and cost issues. The utility of this approach for the genomic stratification of patients with acute myeloid leukemia is shown based on detection of four of the most prevalent structural rearrangements. The method not only determines the precise genomic breakpoint for each expected rearrangement but also discovers and validates novel translocations in one-third of the tested samples, 80% of which involve known oncogenes. This method may prove to be a powerful tool for the diagnosis, genomic stratification, and characterization of cancers.
Collapse
Affiliation(s)
- Chloe L Fisher
- Genomics Innovation Unit, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Richard Dillon
- Department of Medical and Molecular Genetics King's College London, London, United Kingdom; Department of Haematology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Eduardo Anguita
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos, Hospital Clínico San Carlos, Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy's and St Thomas' NHS Trust, London, United Kingdom; Molecular Genetics, NHLI, Imperial College London, London, United Kingdom
| | - Ali R Awan
- Genomics Innovation Unit, Guy's and St Thomas' NHS Trust, London, United Kingdom; Comprehensive Cancer Centre, King's College London, London, United Kingdom.
| |
Collapse
|
5
|
Zhang L, Wang D, Han X, Guo X, Cao Y, Xia Y, Gao D. Novel read-through fusion transcript Bcl2l2-Pabpn1 in glioblastoma cells. J Cell Mol Med 2022; 26:4686-4697. [PMID: 35894779 PMCID: PMC9443946 DOI: 10.1111/jcmm.17481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired‐end RNA‐seq of rat C6 glioma cells and normal cells and discovered a read‐through fusion transcript Bcl2l2‐Pabpn1 in which exon 3 of Bcl‐2‐like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate‐binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2‐Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2‐Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2‐Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2‐Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma‐associated Bcl2l2‐Pabpn1 fusion transcript shared by humans and rats.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Dan Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Xiao Han
- Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Cao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Resolving missing protein problems using functional class scoring. Sci Rep 2022; 12:11358. [PMID: 35790756 PMCID: PMC9256666 DOI: 10.1038/s41598-022-15314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Despite technological advances in proteomics, incomplete coverage and inconsistency issues persist, resulting in “data holes”. These data holes cause the missing protein problem (MPP), where relevant proteins are persistently unobserved, or sporadically observed across samples, hindering biomarker discovery and proper functional characterization. Network-based approaches can provide powerful solutions for resolving these issues. Functional Class Scoring (FCS) is one such method that uses protein complex information to recover missing proteins with weak support. However, FCS has not been evaluated on more recent proteomic technologies with higher coverage, and there is no clear way to evaluate its performance. To address these issues, we devised a more rigorous evaluation schema based on cross-verification between technical replicates and evaluated its performance on data acquired under recent Data-Independent Acquisition (DIA) technologies (viz. SWATH). Although cross-replicate examination reveals some inconsistencies amongst same-class samples, tissue-differentiating signal is nonetheless strongly conserved, confirming that FCS selects for biologically meaningful networks. We also report that predicted missing proteins are statistically significant based on FCS p values. Despite limited cross-replicate verification rates, the predicted missing proteins as a whole have higher peptide support than non-predicted proteins. FCS also predicts missing proteins that are often lost due to weak specific peptide support.
Collapse
|
7
|
The Landscape of Novel Expressed Chimeric RNAs in Rheumatoid Arthritis. Cells 2022; 11:cells11071092. [PMID: 35406656 PMCID: PMC8998144 DOI: 10.3390/cells11071092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
In cancers and other complex diseases, the fusion of two genes can lead to the production of chimeric RNAs, which are associated with disease development. Several recurrent chimeric RNAs are expressed in different cancers and are thus used for clinical cancer diagnosis. Rheumatoid arthritis (RA) is an immune-mediated joint disorder resulting in synovial inflammation and joint destruction. Despite advances in therapy, many patients do not respond to treatment and present persistent inflammation. Understanding the landscape of chimeric RNA expression in RA patients could provide a better insight into RA pathogenesis, which might provide better treatment strategies and tailored therapies. Accordingly, we analyzed the publicly available RNA-seq data of synovium tissue from 151 RA patients and 28 healthy controls and were able to identify 37 recurrent chimeric RNAs found to be expressed in at least 3 RA samples. Furthermore, the parental genes of these 37 recurrent chimeric RNAs were found to be differentially expressed and enriched in immune-related processes, such as adaptive immune response and the positive regulation of B-cell activation. Interestingly, the appearance of 5 coding and 23 non-coding chimeric RNAs might be associated with regulating their parental gene expression, leading to the generation of dysfunctional immune responses, such as inflammation and bone destruction. Therefore, in this paper, we present the first study to demonstrate the novel chimeric RNAs that are highly expressed and functional in RA.
Collapse
|
8
|
Lovino M, Montemurro M, Barrese VS, Ficarra E. Identifying the oncogenic potential of gene fusions exploiting miRNAs. J Biomed Inform 2022; 129:104057. [PMID: 35339665 DOI: 10.1016/j.jbi.2022.104057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
It is estimated that oncogenic gene fusions cause about 20% of human cancer morbidity. Identifying potentially oncogenic gene fusions may improve affected patients' diagnosis and treatment. Previous approaches to this issue included exploiting specific gene-related information, such as gene function and regulation. Here we propose a model that profits from the previous findings and includes the microRNAs in the oncogenic assessment. We present ChimerDriver, a tool to classify gene fusions as oncogenic or not oncogenic. ChimerDriver is based on a specifically designed neural network and trained on genetic and post-transcriptional information to obtain a reliable classification. The designed neural network integrates information related to transcription factors, gene ontologies, microRNAs and other detailed information related to the functions of the genes involved in the fusion and the gene fusion structure. As a result, the performances on the test set reached 0.83 f1-score and 96% recall. The comparison with state-of-the-art tools returned comparable or higher results. Moreover, ChimerDriver performed well in a real-world case where 21 out of 24 validated gene fusion samples were detected by the gene fusion detection tool Starfusion. ChimerDriver integrates transcriptional and post-transcriptional information in an ad-hoc designed neural network to effectively discriminate oncogenic gene fusions from passenger ones. ChimerDriver source code is freely available at https://github.com/martalovino/ChimerDriver.
Collapse
Affiliation(s)
- Marta Lovino
- University of Modena and Reggio Emilia, Via Vivarelli 10/1, 41125 Modena, Italy.
| | | | - Venere S Barrese
- Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Elisa Ficarra
- University of Modena and Reggio Emilia, Via Vivarelli 10/1, 41125 Modena, Italy
| |
Collapse
|
9
|
Mukherjee S, Detroja R, Balamurali D, Matveishina E, Medvedeva Y, Valencia A, Gorohovski A, Frenkel-Morgenstern M. Computational analysis of sense-antisense chimeric transcripts reveals their potential regulatory features and the landscape of expression in human cells. NAR Genom Bioinform 2021; 3:lqab074. [PMID: 34458728 PMCID: PMC8386243 DOI: 10.1093/nargab/lqab074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/02/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells. Subsequently, numerous SAS chimeras have been reported in the ChiTaRS-2.1 database. However, the landscape of their expression in human cells and functional aspects are still unknown. We found that longer palindromic sequences are a unique feature of SAS chimeras. Structural analysis indicates that a long hairpin-like structure formed by many consecutive Watson-Crick base pairs appears because of these long palindromic sequences, which possibly play a similar role as double-stranded RNA (dsRNA), interfering with gene expression. RNA-RNA interaction analysis suggested that SAS chimeras could significantly interact with their parental mRNAs, indicating their potential regulatory features. Here, 267 SAS chimeras were mapped in RNA-seq data from 16 healthy human tissues, revealing their expression in normal cells. Evolutionary analysis suggested the positive selection favoring sense-antisense fusions that significantly impacted the evolution of their function and structure. Overall, our study provides detailed insight into the expression landscape of SAS chimeras in human cells and identifies potential regulatory features.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Deepak Balamurali
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Elena Matveishina
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russian Federation
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russian Federation
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russian Federation
- Department of Biomedical Physics, Moscow Institute of Technology, Dolgoprudny 141701, Russian Federation
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
10
|
Singh S, Li H. Comparative study of bioinformatic tools for the identification of chimeric RNAs from RNA Sequencing. RNA Biol 2021; 18:254-267. [PMID: 34142643 DOI: 10.1080/15476286.2021.1940047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chimeric RNAs are gaining more and more attention as they have broad implications in both cancer and normal physiology. To date, over 40 chimeric RNA prediction methods have been developed to facilitate their identification from RNA sequencing data. However, a limited number of studies have been conducted to compare the performance of these tools; additionally, previous studies have become outdated as more software tools have been developed within the last three years. In this study, we benchmarked 16 chimeric RNA prediction software, including seven top performers in previous benchmarking studies, and nine that were recently developed. We used two simulated and two real RNA-Seq datasets, compared the 16 tools for their sensitivity, positive prediction value (PPV), F-measure, and also documented the computational requirements (time and memory). We noticed that none of the tools are inclusive, and their performance varies depending on the dataset and objects. To increase the detection of true positive events, we also evaluated the pair-wise combination of these methods to suggest the best combination for sensitivity and F-measure. In addition, we compared the performance of the tools for the identification of three classes (read-through, inter-chromosomal and intra-others) of chimeric RNAs. Finally, we performed TOPSIS analyses and ranked the weighted performance of the 16 tools.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Wang MY, Huang M, Wang CY, Tang XY, Wang JG, Yang YD, Xiong X, Gao CW. Transcriptome Analysis Reveals MFGE8-HAPLN3 Fusion as a Novel Biomarker in Triple-Negative Breast Cancer. Front Oncol 2021; 11:682021. [PMID: 34211850 PMCID: PMC8239224 DOI: 10.3389/fonc.2021.682021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive cancer with poor prognosis. The lack of effective targeted therapies for TNBC remains a profound clinical challenge. Fusion transcripts play critical roles in carcinogenesis and serve as valuable diagnostic and therapeutic targets in cancer. The present study aimed to identify novel fusion transcripts in TNBC. Methods We analyzed the RNA sequencing data of 360 TNBC samples to identify and filter fusion candidates through SOAPfuse and ChimeraScan analysis. The characteristics, including recurrence, fusion type, chromosomal localization, TNBC subgroup distribution, and clinicopathological correlations, were analyzed in all candidates. Furthermore, we selected the promising fusion transcript and predicted its fusion type and protein coding capacity. Results Using the RNA sequencing data, we identified 189 fusion transcripts in TNBC, among which 22 were recurrent fusions. Compared to para-tumor tissues, TNBC tumor tissues accumulated more fusion events, especially in high-grade tumors. Interestingly, these events were enriched at specific chromosomal loci, and the distribution pattern varied in different TNBC subtypes. The vast majority of fusion partners were discovered on chromosomes 1p, 11q, 19p, and 19q. Besides, fusion events mainly clustered on chromosome 11 in the immunomodulatory subtype and chromosome 19 in the luminal androgen receptor subtype of TNBC. Considering the tumor specificity and frameshift mutation, we selected MFGE8-HAPLN3 as a novel biomarker and further validated it in TNBC samples using PCR and Sanger sequencing. Further, we successfully identified three types of MFGE8-HAPLN3 (E6-E2, E5-E3, and E6-E3) and predicted the ORF of E6-E2, which could encode a protein of 712 amino acids, suggesting its critical role in TNBC. Conclusions Improved bioinformatic stratification and comprehensive analysis identified the fusion transcript MFGE8-HAPLN3 as a novel biomarker with promising clinical application in the future.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Man Huang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chao-Yi Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiao-Ying Tang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Jian-Gen Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yong-De Yang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xin Xiong
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chao-Wei Gao
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
12
|
Bellil H, Ghieh F, Hermel E, Mandon-Pepin B, Vialard F. Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility. Basic Clin Androl 2021; 31:9. [PMID: 33882832 PMCID: PMC8061069 DOI: 10.1186/s12610-021-00127-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/14/2021] [Indexed: 01/28/2023] Open
Abstract
Spermatogenesis is a complex process regulated by a multitude of genes. The identification and characterization of male-germ-cell-specific genes is crucial to understanding the mechanisms through which the cells develop. The term “TEX gene” was coined by Wang et al. (Nat Genet. 2001; 27: 422–6) after they used cDNA suppression subtractive hybridization (SSH) to identify new transcripts that were present only in purified mouse spermatogonia. TEX (Testis expressed) orthologues have been found in other vertebrates (mammals, birds, and reptiles), invertebrates, and yeasts. To date, 69 TEX genes have been described in different species and different tissues. To evaluate the expression of each TEX/tex gene, we compiled data from 7 different RNA-Seq mRNA databases in humans, and 4 in the mouse according to the expression atlas database. Various studies have highlighted a role for many of these genes in spermatogenesis. Here, we review current knowledge on the TEX genes and their roles in spermatogenesis and fertilization in humans and, comparatively, in other species (notably the mouse). As expected, TEX genes appear to have a major role in reproduction in general and in spermatogenesis in humans but also in all mammals such as the mouse. Most of them are expressed specifically or predominantly in the testis. As most of the TEX genes are highly conserved in mammals, defects in the male (gene mutations in humans and gene-null mice) lead to infertility. In the future, cumulative data on the human TEX genes’ physiological functions and pathophysiological dysfunctions should become available and is likely to confirm the essential role of this family in the reproductive process. Thirteen TEX genes are now referenced in the OMIM database, and 3 have been linked to a specific phenotype. TEX11 (on Xq13.1) is currently the gene most frequently reported as being associated with azoospermia.
Collapse
Affiliation(s)
- Hela Bellil
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France
| | - Farah Ghieh
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Emeline Hermel
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Béatrice Mandon-Pepin
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - François Vialard
- Département de Génétique, CHI de Poissy St Germain en Laye, Poissy, France. .,Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France. .,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France.
| |
Collapse
|
13
|
Landscape of Chimeric RNAs in Non-Cancerous Cells. Genes (Basel) 2021; 12:genes12040466. [PMID: 33805149 PMCID: PMC8064075 DOI: 10.3390/genes12040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
Gene fusions and their products (RNA and protein) have been traditionally recognized as unique features of cancer cells and are used as ideal biomarkers and drug targets for multiple cancer types. However, recent studies have demonstrated that chimeric RNAs generated by intergenic alternative splicing can also be found in normal cells and tissues. In this study, we aim to identify chimeric RNAs in different non-neoplastic cell lines and investigate the landscape and expression of these novel candidate chimeric RNAs. To do so, we used HEK-293T, HUVEC, and LO2 cell lines as models, performed paired-end RNA sequencing, and conducted analyses for chimeric RNA profiles. Several filtering criteria were applied, and the landscape of chimeric RNAs was characterized at multiple levels and from various angles. Further, we experimentally validated 17 chimeric RNAs from different classifications. Finally, we examined a number of validated chimeric RNAs in different cancer and non-cancer cells, including blood from healthy donors, and demonstrated their ubiquitous expression pattern.
Collapse
|
14
|
Zhang Y, Hamada M. Identification of m 6A-Associated RNA Binding Proteins Using an Integrative Computational Framework. Front Genet 2021; 12:625797. [PMID: 33732286 PMCID: PMC7957075 DOI: 10.3389/fgene.2021.625797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 12/05/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant modification on mRNA that plays an important role in regulating essential RNA activities. Several wet lab studies have identified some RNA binding proteins (RBPs) that are related to m6A's regulation. The objective of this study was to identify potential m6A-associated RBPs using an integrative computational framework. The framework was composed of an enrichment analysis and a classification model. Utilizing RBPs' binding data, we analyzed reproducible m6A regions from independent studies using this framework. The enrichment analysis identified known m6A-associated RBPs including YTH domain-containing proteins; it also identified RBM3 as a potential m6A-associated RBP for mouse. Furthermore, a significant correlation for the identified m6A-associated RBPs is observed at the protein expression level rather than the gene expression level. On the other hand, a Random Forest classification model was built for the reproducible m6A regions using RBPs' binding data. The RBP-based predictor demonstrated not only competitive performance when compared with sequence-based predictions but also reflected m6A's action of repelling against RBPs, which suggested that our framework can infer interaction between m6A and m6A-associated RBPs beyond sequence level when utilizing RBPs' binding data. In conclusion, we designed an integrative computational framework for the identification of known and potential m6A-associated RBPs. We hope the analysis will provide more insights on the studies of m6A and RNA modifications.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
15
|
Videm P, Kumar A, Zharkov O, Grüning BA, Backofen R. ChiRA: an integrated framework for chimeric read analysis from RNA-RNA interactome and RNA structurome data. Gigascience 2021; 10:6123621. [PMID: 33511995 PMCID: PMC7844879 DOI: 10.1093/gigascience/giaa158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND With the advances in next-generation sequencing technologies, it is possible to determine RNA-RNA interaction and RNA structure predictions on a genome-wide level. The reads from these experiments usually are chimeric, with each arm generated from one of the interaction partners. Owing to short read lengths, often these sequenced arms ambiguously map to multiple locations. Thus, inferring the origin of these can be quite complicated. Here we present ChiRA, a generic framework for sensitive annotation of these chimeric reads, which in turn can be used to predict the sequenced hybrids. RESULTS Grouping reference loci on the basis of aligned common reads and quantification improved the handling of the multi-mapped reads in contrast to common strategies such as the selection of the longest hit or a random choice among all hits. On benchmark data ChiRA improved the number of correct alignments to the reference up to 3-fold. It is shown that the genes that belong to the common read loci share the same protein families or similar pathways. In published data, ChiRA could detect 3 times more new interactions compared to existing approaches. In addition, ChiRAViz can be used to visualize and filter large chimeric datasets intuitively. CONCLUSION ChiRA tool suite provides a complete analysis and visualization framework along with ready-to-use Galaxy workflows and tutorials for RNA-RNA interactome and structurome datasets. Common read loci built by ChiRA can rescue multi-mapped reads on paralogous genes without requiring any information on gene relations. We showed that ChiRA is sensitive in detecting new RNA-RNA interactions from published RNA-RNA interactome datasets.
Collapse
Affiliation(s)
- Pavankumar Videm
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Anup Kumar
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Oleg Zharkov
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Björn Andreas Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Wakabayashi M, Tamura S, Kanzaki S, Kosugi M, Yoshimura Y, Ito T, Nagata K, Sato K, Takada S, Sekita Y, Kimura T. Five multicopy gene family genes expressed during the maternal-to-zygotic transition are not essential for mouse development. Biochem Biophys Res Commun 2021; 534:752-757. [PMID: 33162025 DOI: 10.1016/j.bbrc.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/21/2022]
Abstract
Upon fertilization, oocytes transform into totipotent and pluripotent cleavage stage cells through the maternal-to-zygotic transition (MZT), which is regulated by maternal factors and zygotic genome activation (ZGA). Here, we investigated the in vivo function of 16 genes expressed with strong biases in oocytes and cleavage stage embryos by generating knockout (KO) mice. These MZT-associated genes are conserved across many mammalian species and include five multicopy gene family genes: the Nlrp9, Khdc1, Rfpl4, Trim43, and Zscan5 genes. Intercrosses between female KO and male KO mice, including Nlrp9a/b/c triple KO (TKO), Khdc1a/b/c TKO, Rfpl4a/b double KO (DKO), Trim43a/b/c TKO, and Zscan5b KO mice led to the birth to healthy offspring that in turn produced healthy offspring. Our study not only demonstrated that these MZT-associated genes are not essential for mouse development, but also provides valuable resources for analyzing the functions of these genes in other genetic backgrounds, in the presence of stressors, and under pathogenic conditions.
Collapse
Affiliation(s)
- Mizuki Wakabayashi
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shiori Tamura
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Satoko Kanzaki
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mayuko Kosugi
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuki Yoshimura
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Toshiaki Ito
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kei Nagata
- School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kazuha Sato
- School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Graduate School of Science, Japan; School of Science, Kitasato University, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
17
|
Ruffin M, Mercier J, Calmel C, Mésinèle J, Bigot J, Sutanto EN, Kicic A, Corvol H, Guillot L. Update on SLC6A14 in lung and gastrointestinal physiology and physiopathology: focus on cystic fibrosis. Cell Mol Life Sci 2020; 77:3311-3323. [PMID: 32166393 PMCID: PMC7426304 DOI: 10.1007/s00018-020-03487-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
The solute carrier family 6 member 14 (SLC6A14) protein imports and concentrates all neutral amino acids as well as the two cationic acids lysine and arginine into the cytoplasm of different cell types. Primarily described as involved in several cancer and colonic diseases physiopathological mechanisms, the SLC6A14 gene has been more recently identified as a genetic modifier of cystic fibrosis (CF) disease severity. It was indeed shown to have a pleiotropic effect, modulating meconium ileus occurrence, lung disease severity, and precocity of P. aeruginosa airway infection. The biological mechanisms explaining the impact of SLC6A14 on intestinal and lung phenotypes of CF patients are starting to be elucidated. This review focuses on SLC6A14 in lung and gastrointestinal physiology and physiopathology, especially its involvement in the pathophysiology of CF disease.
Collapse
Affiliation(s)
- Manon Ruffin
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France
| | - Julia Mercier
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France
| | - Claire Calmel
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France
| | - Julie Mésinèle
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France
| | - Jeanne Bigot
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France
| | - Erika N Sutanto
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- School of Public Health, Curtin University, Bentley, WA, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- School of Public Health, Curtin University, Bentley, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
| | - Harriet Corvol
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France.
- Pneumologie Pédiatrique, APHP, Hôpital Trousseau, Paris, France.
| | - Loic Guillot
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint‑Antoine (CRSA), Paris, France
| |
Collapse
|
18
|
Singh S, Qin F, Kumar S, Elfman J, Lin E, Pham LP, Yang A, Li H. The landscape of chimeric RNAs in non-diseased tissues and cells. Nucleic Acids Res 2020; 48:1764-1778. [PMID: 31965184 PMCID: PMC7038929 DOI: 10.1093/nar/gkz1223] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/13/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Chimeric RNAs and their encoded proteins have been traditionally viewed as unique features of neoplasia, and have been used as biomarkers and therapeutic targets for multiple cancers. Recent studies have demonstrated that chimeric RNAs also exist in non-cancerous cells and tissues, although large-scale, genome-wide studies of chimeric RNAs in non-diseased tissues have been scarce. Here, we explored the landscape of chimeric RNAs in 9495 non-diseased human tissue samples of 53 different tissues from the GTEx project. Further, we established means for classifying chimeric RNAs, and observed enrichment for particular classifications as more stringent filters are applied. We experimentally validated a subset of chimeric RNAs from each classification and demonstrated functional relevance of two chimeric RNAs in non-cancerous cells. Importantly, our list of chimeric RNAs in non-diseased tissues overlaps with some entries in several cancer fusion databases, raising concerns for some annotations. The data from this study provides a large repository of chimeric RNAs present in non-diseased tissues, which can be used as a control dataset to facilitate the identification of true cancer-specific chimeras.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Shailesh Kumar
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Justin Elfman
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Lin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lam-Phong Pham
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Amy Yang
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Beato M, Sharma P. Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. Int J Mol Sci 2020; 21:ijms21041351. [PMID: 32079300 PMCID: PMC7072959 DOI: 10.3390/ijms21041351] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Protein arginine deimination leading to the non-coded amino acid citrulline remains a key question in the field of post-translational modifications ever since its discovery by Rogers and Simmonds in 1958. Citrullination is catalyzed by a family of enzymes called peptidyl arginine deiminases (PADIs). Initially, increased citrullination was associated with autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, as well as other neurological disorders and multiple types of cancer. During the last decade, research efforts have focused on how citrullination contributes to disease pathogenesis by modulating epigenetic events, pluripotency, immunity and transcriptional regulation. However, our knowledge regarding the functional implications of citrullination remains quite limited, so we still do not completely understand its role in physiological and pathological conditions. Here, we review the recently discovered functions of PADI2-mediated citrullination of the C-terminal domain of RNA polymerase II in transcriptional regulation in breast cancer cells and the proposed mechanisms to reshape the transcription regulatory network that promotes cancer progression.
Collapse
Affiliation(s)
- Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| | - Priyanka Sharma
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain
- Correspondence: (M.B.); (P.S.)
| |
Collapse
|
20
|
Balamurali D, Gorohovski A, Detroja R, Palande V, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS 5.0: the comprehensive database of chimeric transcripts matched with druggable fusions and 3D chromatin maps. Nucleic Acids Res 2020; 48:D825-D834. [PMID: 31747015 PMCID: PMC7145514 DOI: 10.1093/nar/gkz1025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric RNA transcripts are formed when exons from two genes fuse together, often due to chromosomal translocations, transcriptional errors or trans-splicing effect. While these chimeric RNAs produce functional proteins only in certain cases, they play a significant role in disease phenotyping and progression. ChiTaRS 5.0 (http://chitars.md.biu.ac.il/) is the latest and most comprehensive chimeric transcript repository, with 111 582 annotated entries from eight species, including 23 167 known human cancer breakpoints. The database includes unique information correlating chimeric breakpoints with 3D chromatin contact maps, generated from public datasets of chromosome conformation capture techniques (Hi-C). In this update, we have added curated information on druggable fusion targets matched with chimeric breakpoints, which are applicable to precision medicine in cancers. The introduction of a new section that lists chimeric RNAs in various cell-lines is another salient feature. Finally, using text-mining techniques, novel chimeras in Alzheimer's disease, schizophrenia, dyslexia and other diseases were collected in ChiTaRS. Thus, this improved version is an extensive catalogue of chimeras from multiple species. It extends our understanding of the evolution of chimeric transcripts in eukaryotes and contributes to the analysis of 3D genome conformational changes and the functional role of chimeras in the etiopathogenesis of cancers and other complex diseases.
Collapse
Affiliation(s)
- Deepak Balamurali
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Alessandro Gorohovski
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rajesh Detroja
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Vikrant Palande
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Dorith Raviv-Shay
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Laboratory of Cancer Genomics and Biocomputing of Complex Diseases, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
21
|
Abstract
An important capacity of genes is the rapid change of expression levels to cope with the environment, known as expression responsiveness or plasticity. Elucidating the genomic mechanisms determining expression plasticity is critical for understanding the molecular basis of phenotypic plasticity, fitness and adaptation. In this study, we systematically quantified gene expression plasticity in four metazoan species by integrating changes of expression levels under a large number of genetic and environmental conditions. From this, we demonstrated that expression plasticity measures a distinct feature of gene expression that is orthogonal to other well-studied features, including gene expression level and tissue specificity/broadness. Expression plasticity is conserved across species with important physiological implications. The magnitude of expression plasticity is highly correlated with gene function and genes with high plasticity are implicated in disease susceptibility. Genome-wide analysis identified many conserved promoter cis-elements, trans-acting factors (such as CTCF), and gene body histone modifications (H3K36me3, H3K79me2 and H4K20me1) that are significantly associated with expression plasticity. Analysis of expression changes in perturbation experiments further validated a causal role of specific transcription factors and histone modifications. Collectively, this work reveals the general properties, physiological implications and multivariable regulation of gene expression plasticity in metazoans, extending the mechanistic understanding of gene regulation.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Fei He
- Biology Department, Brookhaven National Lab, Upton, NY 11967, USA
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
22
|
Dai X, Zhang X, Lu P. Toward a holistic view of multiscale breast cancer molecular biomarkers. Biomark Med 2019; 13:1509-1533. [PMID: 31668082 DOI: 10.2217/bmm-2019-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Powered by rapid technology developments, biomarkers become increasingly diverse, including those detected at genomic, transcriptomic, proteomic, metabolomic and cellular levels. While diverse sets of biomarkers have been utilized in breast cancer predisposition, diagnosis, prognosis, treatment and management, recent additions derived from lincRNA, circular RNA, circulating DNA together with its methylated and hydroxymethylated forms and immune signatures are likely to further transform clinical practice. Here, we take breast cancer as an example of heterogeneous diseases that require many informed decisions from treatment to care to review the huge variety of biomarkers. By assessing the advantages and limitations of modern biomarkers in diverse use scenarios, this article outlines the prospects and challenges of releasing complimentary advantages by augmentation of multiscale molecular biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Peihua Lu
- Wuxi People's Hospital, Nan Chang Qu, Wuxi, Jiangsu, PR China
| |
Collapse
|
23
|
Amirfallah A, Arason A, Einarsson H, Gudmundsdottir ET, Freysteinsdottir ES, Olafsdottir KA, Johannsson OT, Agnarsson BA, Barkardottir RB, Reynisdottir I. High expression of the vacuole membrane protein 1 (VMP1) is a potential marker of poor prognosis in HER2 positive breast cancer. PLoS One 2019; 14:e0221413. [PMID: 31442252 PMCID: PMC6707546 DOI: 10.1371/journal.pone.0221413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background Fusion genes result from genomic structural changes, which can lead to alterations in gene expression that supports tumor development. The aim of the study was to use fusion genes as a tool to identify new breast cancer (BC) genes with a role in BC progression. Methods Fusion genes from breast tumors and BC cell lines were collected from publications. RNA-Seq data from tumors and cell lines were retrieved from databanks and analyzed for fusions with SOAPfuse or the analysis was purchased. Fusion genes identified in both tumors (n = 1724) and cell lines (n = 45) were confirmed by qRT-PCR and sequencing. Their individual genes were ranked by selection criteria that included correlation of their mRNA level with copy number. The expression of the top ranked gene was measured by qRT-PCR in normal tissue and in breast tumors from an exploratory cohort (n = 141) and a validation cohort (n = 277). Expression levels were correlated with clinical and pathological factors as well as the patients’ survival. The results were followed up in BC cohorts from TCGA (n = 818) and METABRIC (n = 2509). Results Vacuole membrane protein 1 (VMP1) was the most promising candidate based on specific selection criteria. Its expression was higher in breast tumor tissue than normal tissue (p = 1x10-4), and its expression was significantly higher in HER2 positive than HER2 negative breast tumors in all four cohorts analyzed. High expression of VMP1 associated with breast cancer specific survival (BCSS) in cohort 1 (hazard ratio (HR) = 2.31, CI 1.27–4.18) and METABRIC (HR = 1.26, CI 1.02–1.57), and also after adjusting for HER2 expression in cohort 1 (HR = 2.03, CI 1.10–3.72). BCSS was not significant in cohort 2 or TCGA cohort, which may be due to differences in treatment regimens. Conclusions The results suggest that high VMP1 expression is a potential marker of poor prognosis in HER2 positive BC. Further studies are needed to elucidate how VMP1 could affect pathways supportive of tumorigenesis.
Collapse
Affiliation(s)
- Arsalan Amirfallah
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Adalgeir Arason
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hjorleifur Einarsson
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Eydis Thorunn Gudmundsdottir
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Edda Sigridur Freysteinsdottir
- Molecular Pathology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Oskar Thor Johannsson
- Department of Oncology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjarni Agnar Agnarsson
- Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rosa Bjork Barkardottir
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Inga Reynisdottir
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
24
|
The pivotal role of sampling recurrent tumors in the precision care of patients with tumors of the central nervous system. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004143. [PMID: 31371350 PMCID: PMC6672021 DOI: 10.1101/mcs.a004143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Effective management of brain and spine tumors relies on a multidisciplinary approach encompassing surgery, radiation, and systemic therapy. In the era of personalized oncology, the latter is complemented by various molecularly targeting agents. Precise identification of cellular targets for these drugs requires comprehensive profiling of the cancer genome coupled with an efficient analytic pipeline, leading to an informed decision on drug selection, prognosis, and confirmation of the original pathological diagnosis. Acquisition of optimal tumor tissue for such analysis is paramount and often presents logistical challenges in neurosurgery. Here, we describe the experience and results of the Personalized OncoGenomics (POG) program with a focus on tumors of the central nervous system (CNS). Patients with recurrent CNS tumors were consented and enrolled into the POG program prior to accrual of tumor and matched blood followed by whole-genome and transcriptome sequencing and processing through the POG bioinformatic pipeline. Sixteen patients were enrolled into POG. In each case, POG analyses identified genomic drivers including novel oncogenic fusions, aberrant pathways, and putative therapeutic targets. POG has highlighted that personalized oncology is truly a multidisciplinary field, one in which neurosurgeons must play a vital role if these programs are to succeed and benefit our patients.
Collapse
|
25
|
Chiabotto G, Gai C, Deregibus MC, Camussi G. Salivary Extracellular Vesicle-Associated exRNA as Cancer Biomarker. Cancers (Basel) 2019; 11:cancers11070891. [PMID: 31247906 PMCID: PMC6679099 DOI: 10.3390/cancers11070891] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/11/2019] [Accepted: 06/22/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) secreted in biological fluids contain several transcripts of the cell of origin, which may modify the functions and phenotype of proximal and distant cells. Cancer-derived EVs may promote a favorable microenvironment for cancer growth and invasion by acting on stroma and endothelial cells and may favor metastasis formation. The transcripts contained in cancer EVs may be exploited as biomarkers. Protein and extracellular RNA (exRNA) profiling in patient bio-fluids, such as blood and urine, was performed to identify molecular features with potential diagnostic and prognostic values. EVs are concentrated in saliva, and salivary EVs are particularly enriched in exRNAs. Several studies were focused on salivary EVs for the detection of biomarkers either of non-oral or oral cancers. The present paper provides an overview of the available studies on the diagnostic potential of exRNA profiling in salivary EVs.
Collapse
Affiliation(s)
- Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Chiara Gai
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| | - Maria Chiara Deregibus
- i3T Business Incubator and Technology Transfer, University of Torino, Torino 10126, Italy.
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy.
| |
Collapse
|
26
|
Detection of novel fusion-transcripts by RNA-Seq in T-cell lymphoblastic lymphoma. Sci Rep 2019; 9:5179. [PMID: 30914738 PMCID: PMC6435891 DOI: 10.1038/s41598-019-41675-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/14/2019] [Indexed: 02/08/2023] Open
Abstract
Fusions transcripts have been proven to be strong drivers for neoplasia-associated mutations, although their incidence in T-cell lymphoblastic lymphoma needs to be determined yet. Using RNA-Seq we have selected 55 fusion transcripts identified by at least two of three detection methods in the same tumour. We confirmed the existence of 24 predicted novel fusions that had not been described in cancer or normal tissues yet, indicating the accuracy of the prediction. Of note, one of them involves the proto oncogene TAL1. Other confirmed fusions could explain the overexpression of driver genes such as COMMD3-BMI1, LMO1 or JAK3. Five fusions found exclusively in tumour samples could be considered pathogenic (NFYG-TAL1, RIC3-TCRBC2, SLC35A3-HIAT1, PICALM MLLT10 and MLLT10-PICALM). However, other fusions detected simultaneously in normal and tumour samples (JAK3-INSL3, KANSL1-ARL17A/B and TFG-ADGRG7) could be germ-line fusions genes involved in tumour-maintaining tasks. Notably, some fusions were confirmed in more tumour samples than predicted, indicating that the detection methods underestimated the real number of existing fusions. Our results highlight the potential of RNA-Seq to identify new cryptic fusions, which could be drivers or tumour-maintaining passenger genes. Such novel findings shed light on the searching for new T-LBL biomarkers in these haematological disorders.
Collapse
|
27
|
Pospiech K, Płuciennik E, Bednarek AK. WWOX Tumor Suppressor Gene in Breast Cancer, a Historical Perspective and Future Directions. Front Oncol 2018; 8:345. [PMID: 30211123 PMCID: PMC6121138 DOI: 10.3389/fonc.2018.00345] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
The WWOX tumor suppressor gene is located at 16q23. 1–23.2, which covers the region of FRA16D—a common fragile sites. Deletions within the WWOX coding sequence are observed in up to 80% of breast cancer cases, which makes it one of the most common genetic alterations in this tumor type. The WWOX gene is known to play a role in breast cancer: increased expression of WWOX inhibits cell proliferation in suspension, reduces tumor growth rates in xenographic transplants, but also enhances cell migration through the basal membrane and contributes to morphological changes in 3D matrix-based cell cultures. The WWOX protein may act in several ways, as it has three functional domains—two WW domains, responsible for protein-protein interactions and an SDR domain (short dehydrogenase/reductase domain) which catalyzes conversions of low molecular weight ligands, most likely steroids. In epithelial cells, WWOX modulates gene transcription through interaction with p73, AP-2γ, and ERBB4 proteins. In steroid hormone-regulated tissues like mammary gland epithelium, the WWOX SDR domain acts as a steroid dehydrogenase. The relationship between WWOX and hormone receptors was shown in an animal model, where WWOX(C3H)+/–mice exhibited loss of both ER and PR receptors. Moreover, in breast cancer specimens, a positive correlation was observed between WWOX expression and ER status. On the other hand, decreased WWOX expression was associated with worse prognosis, namely higher relapse and mortality rates in BC patients. Recently, it was shown that genomic instability might be driven by the loss of WWOX expression. It was reported that WWOX plays role in DNA damage response (DDR) and DNA repair by regulating ATM activation through physical interaction. A genome caretaker function has also been proposed for WWOX, as it was found that WWOX sufficiency decreases homology directed repair (HDR) and supports non-homologous end-joining (NHEJ) repair as the dominant DSB repair pathway by Brca1-Wwox interaction. In breast cancer cells, WWOX was also found to modulate the expression of glycolysis pathway genes, through hypoxia-inducible transcription factor 1α (HIF1α) regulation. The paper presents the current state of knowledge regarding the WWOX tumor suppressor gene in breast cancer, as well as future research perspectives.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
28
|
Lokits AD, Indrischek H, Meiler J, Hamm HE, Stadler PF. Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa. BMC Evol Biol 2018; 18:51. [PMID: 29642851 PMCID: PMC5896119 DOI: 10.1186/s12862-018-1147-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Heterotrimeric G proteins are fundamental signaling proteins composed of three subunits, Gα and a Gβγ dimer. The role of Gα as a molecular switch is critical for transmitting and amplifying intracellular signaling cascades initiated by an activated G protein Coupled Receptor (GPCR). Despite their biochemical and therapeutic importance, the study of G protein evolution has been limited to the scope of a few model organisms. Furthermore, of the five primary Gα subfamilies, the underlying gene structure of only two families has been thoroughly investigated outside of Mammalia evolution. Therefore our understanding of Gα emergence and evolution across phylogeny remains incomplete. RESULTS We have computationally identified the presence and absence of every Gα gene (GNA-) across all major branches of Deuterostomia and evaluated the conservation of the underlying exon-intron structures across these phylogenetic groups. We provide evidence of mutually exclusive exon inclusion through alternative splicing in specific lineages. Variations of splice site conservation and isoforms were found for several paralogs which coincide with conserved, putative motifs of DNA-/RNA-binding proteins. In addition to our curated gene annotations, within Primates, we identified 15 retrotranspositions, many of which have undergone pseudogenization. Most importantly, we find numerous deviations from previous findings regarding the presence and absence of individual GNA- genes, nuanced differences in phyla-specific gene copy numbers, novel paralog duplications and subsequent intron gain and loss events. CONCLUSIONS Our curated annotations allow us to draw more accurate inferences regarding the emergence of all Gα family members across Metazoa and to present a new, updated theory of Gα evolution. Leveraging this, our results are critical for gaining new insights into the co-evolution of the Gα subunit and its many protein binding partners, especially therapeutically relevant G protein - GPCR signaling pathways which radiated in Vertebrata evolution.
Collapse
Affiliation(s)
- A. D. Lokits
- 0000 0001 2264 7217grid.152326.1Neuroscience Program, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Indrischek
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 2230 9752grid.9647.cComputational EvoDevo Group, Bioinformatics Department, Leipzig University, Leipzig, Germany
| | - J. Meiler
- 0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Chemistry Department, Vanderbilt University, Nashville, TN USA
| | - H. E. Hamm
- 0000 0004 1936 9916grid.412807.8Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN USA
| | - P. F. Stadler
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 0674 042Xgrid.5254.6Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark ,0000 0001 2286 1424grid.10420.37Institute for Theoretical Chemistry, University of Vienna, Wien, Austria ,0000 0001 2230 9752grid.9647.cIZBI-Interdisciplinary Center for Bioinformatics and LIFE-Leipzig Research Center for Civilization Diseases and Competence Center for Scalable Data Services and Solutions, University Leipzig, Leipzig, Germany ,grid.419532.8Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany ,0000 0001 1941 1940grid.209665.eSanta Fe Institute, Santa Fe, NM USA
| |
Collapse
|
29
|
Fimereli D, Fumagalli D, Brown D, Gacquer D, Rothé F, Salgado R, Larsimont D, Sotiriou C, Detours V. Genomic hotspots but few recurrent fusion genes in breast cancer. Genes Chromosomes Cancer 2018; 57:331-338. [PMID: 29436103 DOI: 10.1002/gcc.22533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 02/04/2023] Open
Abstract
The advent of next generation sequencing technologies has boosted the interest in exploring the role of fusion genes in the development and progression of solid tumors. In breast cancer, most of the detected gene fusions seem to be "passenger" events while the presence of recurrent and driver fusions is still under study. We performed RNA sequencing in 55 well-characterized breast cancer samples and 10 adjacent normal breast tissues, complemented by an analysis of SNP array data. We explored the presence of fusion genes and defined their association with breast cancer subtypes, clinical-pathologic characteristics and copy number aberrations. Overall, 370 fusions were detected across the majority of the samples. HER2+ samples had significantly more fusions than triple negative and luminal subtypes. The number of fusions was correlated with histological grade, Ki67 and tumor size. Clusters of fusion genes were observed across the genome and a significant correlation of fusions with copy number aberrations and more specifically amplifications was also revealed. Despite the large number of fusion events, only a few were recurrent, while recurrent individual genes forming fusions with different partners were also detected including the estrogen receptor 1 gene in the previously detected ESR1-CCDC170 fusion. Overall we detected novel gene fusion events while we confirmed previously reported fusions. Genomic hotspots of fusion genes, differences between subtypes and small number of recurrent fusions are the most relevant characteristics of these events in breast cancer. Further investigation is necessary to comprehend the biological significance of these fusions.
Collapse
Affiliation(s)
- Danai Fimereli
- IRIBHM, Université Libre de Bruxelles (ULB), 808 route de Lennik, Brussels, 1070, Belgium
| | - Debora Fumagalli
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - David Brown
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - David Gacquer
- IRIBHM, Université Libre de Bruxelles (ULB), 808 route de Lennik, Brussels, 1070, Belgium
| | - Françoise Rothé
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Roberto Salgado
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Christos Sotiriou
- J.-C. Heuson Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bld de Waterloo, 125, Brussels, 1000, Belgium
| | - Vincent Detours
- IRIBHM, Université Libre de Bruxelles (ULB), 808 route de Lennik, Brussels, 1070, Belgium.,WELBIO, 808 route de Lennik, Brussels, 1070, Belgium
| |
Collapse
|
30
|
Jha A, Khan Y, Mehdi M, Karim MR, Mehmood Q, Zappa A, Rebholz-Schuhmann D, Sahay R. Towards precision medicine: discovering novel gynecological cancer biomarkers and pathways using linked data. J Biomed Semantics 2017; 8:40. [PMID: 28927463 PMCID: PMC5606033 DOI: 10.1186/s13326-017-0146-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/30/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Next Generation Sequencing (NGS) is playing a key role in therapeutic decision making for the cancer prognosis and treatment. The NGS technologies are producing a massive amount of sequencing datasets. Often, these datasets are published from the isolated and different sequencing facilities. Consequently, the process of sharing and aggregating multisite sequencing datasets are thwarted by issues such as the need to discover relevant data from different sources, built scalable repositories, the automation of data linkage, the volume of the data, efficient querying mechanism, and information rich intuitive visualisation. RESULTS We present an approach to link and query different sequencing datasets (TCGA, COSMIC, REACTOME, KEGG and GO) to indicate risks for four cancer types - Ovarian Serous Cystadenocarcinoma (OV), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) - covering the 16 healthy tissue-specific genes from Illumina Human Body Map 2.0. The differentially expressed genes from Illumina Human Body Map 2.0 are analysed together with the gene expressions reported in COSMIC and TCGA repositories leading to the discover of potential biomarkers for a tissue-specific cancer. CONCLUSION We analyse the tissue expression of genes, copy number variation (CNV), somatic mutation, and promoter methylation to identify associated pathways and find novel biomarkers. We discovered twenty (20) mutated genes and three (3) potential pathways causing promoter changes in different gynaecological cancer types. We propose a data-interlinked platform called BIOOPENER that glues together heterogeneous cancer and biomedical repositories. The key approach is to find correspondences (or data links) among genetic, cellular and molecular features across isolated cancer datasets giving insight into cancer progression from normal to diseased tissues. The proposed BIOOPENER platform enriches mutations by filling in missing links from TCGA, COSMIC, REACTOME, KEGG and GO datasets and provides an interlinking mechanism to understand cancer progression from normal to diseased tissues with pathway components, which in turn helped to map mutations, associated phenotypes, pathways, and mechanism.
Collapse
Affiliation(s)
- Alokkumar Jha
- Insight Centre for Data Analytics, NUIG, Galway, Ireland
| | - Yasar Khan
- Insight Centre for Data Analytics, NUIG, Galway, Ireland
| | - Muntazir Mehdi
- Insight Centre for Data Analytics, NUIG, Galway, Ireland
| | | | - Qaiser Mehmood
- Insight Centre for Data Analytics, NUIG, Galway, Ireland
| | - Achille Zappa
- Insight Centre for Data Analytics, NUIG, Galway, Ireland
| | | | - Ratnesh Sahay
- Insight Centre for Data Analytics, NUIG, Galway, Ireland.
| |
Collapse
|
31
|
Mittal VK, McDonald JF. De novo assembly and characterization of breast cancer transcriptomes identifies large numbers of novel fusion-gene transcripts of potential functional significance. BMC Med Genomics 2017; 10:53. [PMID: 28851357 PMCID: PMC5575902 DOI: 10.1186/s12920-017-0289-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 08/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background Gene-fusion or chimeric transcripts have been implicated in the onset and progression of a variety of cancers. Massively parallel RNA sequencing (RNA-Seq) of the cellular transcriptome is a promising approach for the identification of chimeric transcripts of potential functional significance. We report here the development and use of an integrated computational pipeline for the de novo assembly and characterization of chimeric transcripts in 55 primary breast cancer and normal tissue samples. Methods An integrated computational pipeline was employed to screen the transcriptome of breast cancer and control tissues for high-quality RNA-sequencing reads. Reads were de novo assembled into contigs followed by reference genome mapping. Chimeric transcripts were detected, filtered and characterized using our R-SAP algorithm. The relative abundance of reads was used to estimate levels of gene expression. Results De novo assembly allowed for the accurate detection of 1959 chimeric transcripts to nucleotide level resolution and facilitated detailed molecular characterization and quantitative analysis. A number of the chimeric transcripts are of potential functional significance including 79 novel fusion-protein transcripts and many chimeric transcripts with alterations in their un-translated leader regions. A number of chimeric transcripts in the cancer samples mapped to genomic regions devoid of any known genes. Several ‘pro-neoplastic’ fusions comprised of genes previously implicated in cancer are expressed at low levels in normal tissues but at high levels in cancer tissues. Conclusions Collectively, our results underscore the utility of deep sequencing technologies and improved bioinformatics workflows to uncover novel and potentially significant chimeric transcripts in cancer and normal somatic tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0289-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinay K Mittal
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA
| | - John F McDonald
- Integrated Cancer Research Center, School of Biological Sciences, and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA, 30332, USA.
| |
Collapse
|
32
|
Abstract
Background Genome rearrangements are critical oncogenic driver events in many malignancies. However, the identification and resolution of the structure of cancer genomic rearrangements remain challenging even with whole genome sequencing. Methods To identify oncogenic genomic rearrangements and resolve their structure, we analyzed linked read sequencing. This approach relies on a microfluidic droplet technology to produce libraries derived from single, high molecular weight DNA molecules, 50 kb in size or greater. After sequencing, the barcoded sequence reads provide long range genomic information, identify individual high molecular weight DNA molecules, determine the haplotype context of genetic variants that occur across contiguous megabase-length segments of the genome and delineate the structure of complex rearrangements. We applied linked read sequencing of whole genomes to the analysis of a set of synchronous metastatic diffuse gastric cancers that occurred in the same individual. Results When comparing metastatic sites, our analysis implicated a complex somatic rearrangement that was present in the metastatic tumor. The oncogenic event associated with the identified complex rearrangement resulted in an amplification of the known cancer driver gene FGFR2. With further investigation using these linked read data, the FGFR2 copy number alteration was determined to be a deletion-inversion motif that underwent tandem duplication, with unique breakpoints in each metastasis. Using a three-dimensional organoid tissue model, we functionally validated the metastatic potential of an FGFR2 amplification in gastric cancer. Conclusions Our study demonstrates that linked read sequencing is useful in characterizing oncogenic rearrangements in cancer metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0447-8) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Xi X, Li T, Huang Y, Sun J, Zhu Y, Yang Y, Lu ZJ. RNA Biomarkers: Frontier of Precision Medicine for Cancer. Noncoding RNA 2017; 3:ncrna3010009. [PMID: 29657281 PMCID: PMC5832009 DOI: 10.3390/ncrna3010009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
As an essential part of central dogma, RNA delivers genetic and regulatory information and reflects cellular states. Based on high-throughput sequencing technologies, cumulating data show that various RNA molecules are able to serve as biomarkers for the diagnosis and prognosis of various diseases, for instance, cancer. In particular, detectable in various bio-fluids, such as serum, saliva and urine, extracellular RNAs (exRNAs) are emerging as non-invasive biomarkers for earlier cancer diagnosis, tumor progression monitor, and prediction of therapy response. In this review, we summarize the latest studies on various types of RNA biomarkers, especially extracellular RNAs, in cancer diagnosis and prognosis, and illustrate several well-known RNA biomarkers of clinical utility. In addition, we describe and discuss general procedures and issues in investigating exRNA biomarkers, and perspectives on utility of exRNAs in precision medicine.
Collapse
Affiliation(s)
- Xiaochen Xi
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Tianxiao Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yiming Huang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jiahui Sun
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yang Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 2017; 18:246-262. [PMID: 28053347 DOI: 10.1038/nrm.2016.143] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.
Collapse
Affiliation(s)
- Takao Fujisawa
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford.,Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
35
|
Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors. Oncotarget 2016; 7:6538-51. [PMID: 25987131 PMCID: PMC4872731 DOI: 10.18632/oncotarget.3731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 01/17/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. We sequenced nine exomes and transcriptomes, and two genomes of GISTs for integrated analyses. We detected 306 somatic variants in nine GISTs and recurrent protein-altering mutations in 29 genes. Transcriptome sequencing revealed 328 gene fusions, and the most frequently involved fusion events were associated with IGF2 fused to several partner genes including CCND1, FUS, and LASP1. We additionally identified three recurrent read-through fusion transcripts: POLA2-CDC42EP2, C8orf42-FBXO25, and STX16-NPEPL1. Notably, we found intragenic deletions in one of three exons of the VHL gene and increased mRNAs of VEGF, PDGF-β, and IGF-1/2 in 56% of GISTs, suggesting a mechanistic link between VHL inactivation and overexpression of hypoxia-inducible factor target genes in the absence of hypoxia. We also identified copy number gain and increased mRNA expression of AMACR, CRIM1, SKP2, and CACNA1E. Mapping of copy number and gene expression results to the KEGG pathways revealed activation of the JAK-STAT pathway in small intestinal GISTs and the MAPK pathway in wild-type GISTs. These observations will allow us to determine the genetic basis of GISTs and will facilitate further investigation to develop new therapeutic options.
Collapse
|
36
|
Urakami K, Shimoda Y, Ohshima K, Nagashima T, Serizawa M, Tanabe T, Saito J, Usui T, Watanabe Y, Naruoka A, Ohnami S, Ohnami S, Mochizuki T, Kusuhara M, Yamaguchi K. Next generation sequencing approach for detecting 491 fusion genes from human cancer. Biomed Res 2016; 37:51-62. [PMID: 26912140 DOI: 10.2220/biomedres.37.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Next-generation DNA sequencing (NGS) of the genomes of cancer cells is contributing to new discoveries that illuminate the mechanisms of tumorigenesis. To this end, the International Cancer Genome Consortium and The Cancer Genome Atlas are investigating novel alterations of genes that will define the pathways and mechanisms of the development and growth of cancers. These efforts contribute to the development of innovative pharmaceuticals as well as to the introduction of genome sequencing as a component of personalized medicine. In particular, chromosomal translocations that fuse coding sequences serve as important pharmaceutical targets and diagnostic markers given their association with tumorigenesis. Although increasing numbers of fusion genes are being discovered using NGS, the methodology used to identify such fusion genes is complicated, expensive, and requires relatively large samples. Here, to address these problems, we describe the design and development of a panel of 491 fusion genes that performed well in the analysis of cultured human cancer cell lines and 600 clinical tumor specimens.
Collapse
Affiliation(s)
- Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gorohovski A, Tagore S, Palande V, Malka A, Raviv-Shay D, Frenkel-Morgenstern M. ChiTaRS-3.1-the enhanced chimeric transcripts and RNA-seq database matched with protein-protein interactions. Nucleic Acids Res 2016; 45:D790-D795. [PMID: 27899596 PMCID: PMC5210585 DOI: 10.1093/nar/gkw1127] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/17/2022] Open
Abstract
Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database (http://chitars.md.biu.ac.il) is designed to make widely accessible a wealth of mined data on chimeric RNAs, with easy-to-use analytical tools built-in. The database comprises 34 922 chimeric transcripts along with 11 714 cancer breakpoints. In this latest version, we have included multiple cross-references to GeneCards, iHop, PubMed, NCBI, Ensembl, OMIM, RefSeq and the Mitelman collection for every entry in the ‘Full Collection’. In addition, for every chimera, we have added a predicted chimeric protein–protein interaction (ChiPPI) network, which allows for easy visualization of protein partners of both parental and fusion proteins for all human chimeras. The database contains a comprehensive annotation for 34 922 chimeric transcripts from eight organisms, and includes the manual annotation of 200 sense-antiSense (SaS) chimeras. The current improvements in the content and functionality to the ChiTaRS database make it a central resource for the study of chimeric transcripts and fusion proteins.
Collapse
Affiliation(s)
- Alessandro Gorohovski
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Somnath Tagore
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Vikrant Palande
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Assaf Malka
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Dorith Raviv-Shay
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel
| | - Milana Frenkel-Morgenstern
- Faculty of Medicine in Galilee, Bar-Ilan University, Henrietta Szold 8, Safed 13195, Israel. Corresponding author:
| |
Collapse
|
38
|
Willis RE. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment. Int J Mol Sci 2016; 17:ijms17091552. [PMID: 27649156 PMCID: PMC5037825 DOI: 10.3390/ijms17091552] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis.
Collapse
Affiliation(s)
- Rudolph E Willis
- OncoStem Biotherapeutics LLC, 423 W 127th St., New York, NY 10027, USA.
| |
Collapse
|
39
|
Poveda J, Sanz AB, Fernandez-Fernandez B, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Ortiz A, Sanchez-Niño MD. MXRA5 is a TGF-β1-regulated human protein with anti-inflammatory and anti-fibrotic properties. J Cell Mol Med 2016; 21:154-164. [PMID: 27599751 PMCID: PMC5192817 DOI: 10.1111/jcmm.12953] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023] Open
Abstract
Current therapy for chronic kidney disease (CKD) is unsatisfactory because of an insufficient understanding of its pathogenesis. Matrix remodelling-associated protein 5 (MXRA5, adlican) is a human protein of unknown function with high kidney tissue expression, not present in rodents. Given the increased expression of MXRA5 in injured tissues, including the kidneys, we have suggested that MXRA5 may modulate kidney injury. MXRA5 immunoreactivity was observed in tubular cells in human renal biopsies and in urine from CKD patients. We then explored factors regulating MXRA5 expression and MXRA5 function in cultured human proximal tubular epithelial cells and explored MXRA5 expression in kidney cancer cells and kidney tissue. The fibrogenic cytokine transforming growth factor-β1 (TGFβ1) up-regulated MXRA5 mRNA and protein expression. TGFβ1-induced MXRA5 up-regulation was prevented by either interference with TGFβ1 activation of the TGFβ receptor 1 (TGFBR1, ALK5) or by the vitamin D receptor agonist paricalcitol. By contrast, the pro-inflammatory cytokine TWEAK did not modulate MXRA5 expression. MXRA5 siRNA-induced down-regulation of constitutive MXRA5 expression resulted in higher TWEAK-induced expression of chemokines. In addition, MXRA5 down-regulation resulted in a magnified expression of genes encoding extracellular matrix proteins in response to TGFβ1. Furthermore, in clear cell renal cancer, von Hippel-Lindau (VHL) regulated MXRA5 expression. In conclusion, MXRA5 is a TGFβ1- and VHL-regulated protein and, for the first time, we identify MXRA5 functions as an anti-inflammatory and anti-fibrotic molecule. This information may yield clues to design novel therapeutic strategies in diseases characterized by inflammation and fibrosis.
Collapse
Affiliation(s)
- Jonay Poveda
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain
| | | | - Susana Carrasco
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain.,School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Pablo Cannata-Ortiz
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain.,School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.,Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Maria D Sanchez-Niño
- IIS-Fundacion Jimenez Diaz Universidad Autonoma de Madrid, REDINREN, Madrid, Spain
| |
Collapse
|
40
|
Santarpia L, Bottai G, Kelly CM, Győrffy B, Székely B, Pusztai L. Deciphering and Targeting Oncogenic Mutations and Pathways in Breast Cancer. Oncologist 2016; 21:1063-78. [PMID: 27384237 PMCID: PMC5016060 DOI: 10.1634/theoncologist.2015-0369] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/16/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED : Advances in DNA and RNA sequencing revealed substantially greater genomic complexity in breast cancer than simple models of a few driver mutations would suggest. Only very few, recurrent mutations or copy-number variations in cancer-causing genes have been identified. The two most common alterations in breast cancer are TP53 (affecting the majority of triple-negative breast cancers) and PIK3CA (affecting almost half of estrogen receptor-positive cancers) mutations, followed by a long tail of individually rare mutations affecting <1%-20% of cases. Each cancer harbors from a few dozen to a few hundred potentially high-functional impact somatic variants, along with a much larger number of potentially high-functional impact germline variants. It is likely that it is the combined effect of all genomic variations that drives the clinical behavior of a given cancer. Furthermore, entirely new classes of oncogenic events are being discovered in the noncoding areas of the genome and in noncoding RNA species driven by errors in RNA editing. In light of this complexity, it is not unexpected that, with the exception of HER2 amplification, no robust molecular predictors of benefit from targeted therapies have been identified. In this review, we summarize the current genomic portrait of breast cancer, focusing on genetic aberrations that are actively being targeted with investigational drugs. IMPLICATIONS FOR PRACTICE Next-generation sequencing is now widely available in the clinic, but interpretation of the results is challenging, and its impact on treatment selection is often limited. This work provides an overview of frequently encountered molecular abnormalities in breast cancer and discusses their potential therapeutic implications. This review emphasizes the importance of administering investigational targeted therapies, or off-label use of approved targeted drugs, in the context of a formal clinical trial or registry programs to facilitate learning about the clinical utility of tumor target profiling.
Collapse
Affiliation(s)
- Libero Santarpia
- Oncology Experimental Therapeutics, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Clinical and Research Institute, Milan, Italy
| | - Giulia Bottai
- Oncology Experimental Therapeutics, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Clinical and Research Institute, Milan, Italy
| | | | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Borbala Székely
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Lajos Pusztai
- Yale Cancer Center, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Shaver TM, Lehmann BD, Beeler JS, Li CI, Li Z, Jin H, Stricker TP, Shyr Y, Pietenpol JA. Diverse, Biologically Relevant, and Targetable Gene Rearrangements in Triple-Negative Breast Cancer and Other Malignancies. Cancer Res 2016; 76:4850-60. [PMID: 27231203 DOI: 10.1158/0008-5472.can-16-0058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/11/2016] [Indexed: 12/20/2022]
Abstract
Triple-negative breast cancer (TNBC) and other molecularly heterogeneous malignancies present a significant clinical challenge due to a lack of high-frequency "driver" alterations amenable to therapeutic intervention. These cancers often exhibit genomic instability, resulting in chromosomal rearrangements that affect the structure and expression of protein-coding genes. However, identification of these rearrangements remains technically challenging. Using a newly developed approach that quantitatively predicts gene rearrangements in tumor-derived genetic material, we identified and characterized a novel oncogenic fusion involving the MER proto-oncogene tyrosine kinase (MERTK) and discovered a clinical occurrence and cell line model of the targetable FGFR3-TACC3 fusion in TNBC. Expanding our analysis to other malignancies, we identified a diverse array of novel and known hybrid transcripts, including rearrangements between noncoding regions and clinically relevant genes such as ALK, CSF1R, and CD274/PD-L1 The over 1,000 genetic alterations we identified highlight the importance of considering noncoding gene rearrangement partners, and the targetable gene fusions identified in TNBC demonstrate the need to advance gene fusion detection for molecularly heterogeneous cancers. Cancer Res; 76(16); 4850-60. ©2016 AACR.
Collapse
Affiliation(s)
- Timothy M Shaver
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian D Lehmann
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - J Scott Beeler
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chung-I Li
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Zhu Li
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hailing Jin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas P Stricker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee. Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer A Pietenpol
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
42
|
Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth. Sci Rep 2016; 6:25521. [PMID: 27160768 PMCID: PMC4861919 DOI: 10.1038/srep25521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 04/15/2016] [Indexed: 12/26/2022] Open
Abstract
The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications.
Collapse
|
43
|
Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks. Sci Rep 2016; 6:25711. [PMID: 27161996 PMCID: PMC4861959 DOI: 10.1038/srep25711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
Collapse
|
44
|
Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep 2016; 6:21597. [PMID: 26862001 PMCID: PMC4748267 DOI: 10.1038/srep21597] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/27/2016] [Indexed: 12/12/2022] Open
Abstract
RNA-Seq made possible the global identification of fusion transcripts, i.e. "chimeric RNAs". Even though various software packages have been developed to serve this purpose, they behave differently in different datasets provided by different developers. It is important for both users, and developers to have an unbiased assessment of the performance of existing fusion detection tools. Toward this goal, we compared the performance of 12 well-known fusion detection software packages. We evaluated the sensitivity, false discovery rate, computing time, and memory usage of these tools in four different datasets (positive, negative, mixed, and test). We conclude that some tools are better than others in terms of sensitivity, positive prediction value, time consumption and memory usage. We also observed small overlaps of the fusions detected by different tools in the real dataset (test dataset). This could be due to false discoveries by various tools, but could also be due to the reason that none of the tools are inclusive. We have found that the performance of the tools depends on the quality, read length, and number of reads of the RNA-Seq data. We recommend that users choose the proper tools for their purpose based on the properties of their RNA-Seq data.
Collapse
|
45
|
Zhang J, White NM, Schmidt HK, Fulton RS, Tomlinson C, Warren WC, Wilson RK, Maher CA. INTEGRATE: gene fusion discovery using whole genome and transcriptome data. Genome Res 2015; 26:108-18. [PMID: 26556708 PMCID: PMC4691743 DOI: 10.1101/gr.186114.114] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/09/2015] [Indexed: 12/13/2022]
Abstract
While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use.
Collapse
Affiliation(s)
- Jin Zhang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nicole M White
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Heather K Schmidt
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Robert S Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
46
|
Zyprych-Walczak J, Szabelska A, Handschuh L, Górczak K, Klamecka K, Figlerowicz M, Siatkowski I. The Impact of Normalization Methods on RNA-Seq Data Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:621690. [PMID: 26176014 PMCID: PMC4484837 DOI: 10.1155/2015/621690] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022]
Abstract
High-throughput sequencing technologies, such as the Illumina Hi-seq, are powerful new tools for investigating a wide range of biological and medical problems. Massive and complex data sets produced by the sequencers create a need for development of statistical and computational methods that can tackle the analysis and management of data. The data normalization is one of the most crucial steps of data processing and this process must be carefully considered as it has a profound effect on the results of the analysis. In this work, we focus on a comprehensive comparison of five normalization methods related to sequencing depth, widely used for transcriptome sequencing (RNA-seq) data, and their impact on the results of gene expression analysis. Based on this study, we suggest a universal workflow that can be applied for the selection of the optimal normalization procedure for any particular data set. The described workflow includes calculation of the bias and variance values for the control genes, sensitivity and specificity of the methods, and classification errors as well as generation of the diagnostic plots. Combining the above information facilitates the selection of the most appropriate normalization method for the studied data sets and determines which methods can be used interchangeably.
Collapse
Affiliation(s)
- J. Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - A. Szabelska
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - L. Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - K. Górczak
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - K. Klamecka
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | - M. Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - I. Siatkowski
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland
| |
Collapse
|
47
|
Common Oncogene Mutations and Novel SND1-BRAF Transcript Fusion in Lung Adenocarcinoma from Never Smokers. Sci Rep 2015; 5:9755. [PMID: 25985019 PMCID: PMC4434945 DOI: 10.1038/srep09755] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/13/2015] [Indexed: 11/12/2022] Open
Abstract
Lung adenocarcinomas from never smokers account for approximately 15 to 20% of all lung cancers and these tumors often carry genetic alterations that are responsive to targeted therapy. Here we examined mutation status in 10 oncogenes among 89 lung adenocarcinomas from never smokers. We also screened for oncogene fusion transcripts in 20 of the 89 tumors by RNA-Seq. In total, 62 tumors had mutations in at least one of the 10 oncogenes, including EGFR (49 cases, 55%), K-ras (5 cases, 6%), BRAF (4 cases, 5%), PIK3CA (3 cases, 3%), and ERBB2 (4 cases, 5%). In addition to ALK fusions identified by IHC/FISH in four cases, two previously known fusions involving EZR- ROS1 and KIF5B-RET were identified by RNA-Seq as well as a third novel fusion transcript that was formed between exons 1–9 of SND1 and exons 2 to 3′ end of BRAF. This in-frame fusion was observed in 3/89 tested tumors and 2/64 additional never smoker lung adenocarcinoma samples. Ectopic expression of SND1-BRAF in H1299 cells increased phosphorylation levels of MEK/ERK, cell proliferation, and spheroid formation compared to parental mock-transfected control. Jointly, our results suggest a potential role of the novel BRAF fusion in lung cancer development and therapy.
Collapse
|
48
|
Dozmorov MG. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes. Epigenetics 2015; 10:484-95. [PMID: 25880792 DOI: 10.1080/15592294.2015.1040619] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although age-associated gene expression and methylation changes have been reported throughout the literature, the unifying epigenomic principles of aging remain poorly understood. Recent explosion in availability and resolution of functional/regulatory genome annotation data (epigenomic data), such as that provided by the ENCODE and Roadmap Epigenomics projects, provides an opportunity for the identification of epigenomic mechanisms potentially altered by age-associated differentially methylated regions (aDMRs) and regulatory signatures in the promoters of age-associated genes (aGENs). In this study we found that aDMRs and aGENs identified in multiple independent studies share a common Polycomb Repressive Complex 2 signature marked by EZH2, SUZ12, CTCF binding sites, repressive H3K27me3, and activating H3K4me1 histone modification marks, and a "poised promoter" chromatin state. This signature is depleted in RNA Polymerase II-associated transcription factor binding sites, activating H3K79me2, H3K36me3, H3K27ac marks, and an "active promoter" chromatin state. The PRC2 signature was shown to be generally stable across cell types. When considering the directionality of methylation changes, we found the PRC2 signature to be associated with aDMRs hypermethylated with age, while hypomethylated aDMRs were associated with enhancers. In contrast, aGENs were associated with the PRC2 signature independently of the directionality of gene expression changes. In this study we demonstrate that the PRC2 signature is the common epigenomic context of genomic regions associated with hypermethylation and gene expression changes in aging.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- a Department of Biostatistics; Virginia Commonwealth University ; Richmond , VA , USA
| |
Collapse
|
49
|
Danielsson F, James T, Gomez-Cabrero D, Huss M. Assessing the consistency of public human tissue RNA-seq data sets. Brief Bioinform 2015; 16:941-9. [PMID: 25829468 PMCID: PMC4652619 DOI: 10.1093/bib/bbv017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
Sequencing-based gene expression methods like RNA-sequencing (RNA-seq) have become increasingly common, but it is often claimed that results obtained in different studies are not comparable owing to the influence of laboratory batch effects, differences in RNA extraction and sequencing library preparation methods and bioinformatics processing pipelines. It would be unfortunate if different experiments were in fact incomparable, as there is great promise in data fusion and meta-analysis applied to sequencing data sets. We therefore compared reported gene expression measurements for ostensibly similar samples (specifically, human brain, heart and kidney samples) in several different RNA-seq studies to assess their overall consistency and to examine the factors contributing most to systematic differences. The same comparisons were also performed after preprocessing all data in a consistent way, eliminating potential bias from bioinformatics pipelines. We conclude that published human tissue RNA-seq expression measurements appear relatively consistent in the sense that samples cluster by tissue rather than laboratory of origin given simple preprocessing transformations. The article is supplemented by a detailed walkthrough with embedded R code and figures.
Collapse
|
50
|
Functional characterization of BC039389-GATM and KLK4-KRSP1 chimeric read-through transcripts which are up-regulated in renal cell cancer. BMC Genomics 2015; 16:247. [PMID: 25888189 PMCID: PMC4422297 DOI: 10.1186/s12864-015-1446-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Chimeric read-through RNAs are transcripts originating from two directly adjacent genes (<10 kb) on the same DNA strand. Although they are found in next-generation whole transcriptome sequencing (RNA-Seq) data on a regular basis, investigating them further has usually been refrained from. Therefore, their expression patterns or functions in general, and in oncogenesis in particular, are poorly understood. Results We used paired-end RNA-Seq and a specifically designed computational data analysis pipeline (FusionSeq) to nominate read-through events in a small discovery set of renal cell carcinomas (RCC) and confirmed them in a larger validation cohort. 324 read-through events were called overall; 22/27 (81%) selected nominees passed validation with conventional PCR and were sequenced at the junction region. We frequently identified various isoforms of a given read-through event. 2/22 read-throughs were up-regulated: BC039389-GATM was higher expressed in RCC compared to benign adjacent kidney; KLK4-KRSP1 was expressed in 46/169 (27%) RCCs, but rarely in normal tissue. KLK4-KRSP1 expression was associated with worse clinical outcome in the patient cohort. In cell lines, both read-throughs influenced molecular mechanisms (i.e. target gene expression or migration/invasion) in a way that counteracted the effect of the respective parent transcript GATM or KLK4. Conclusions Our data suggests that the up-regulation of read-through RNA chimeras in tumors is not random but causes regulatory effects on cellular mechanisms and may impact patient survival. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1446-z) contains supplementary material, which is available to authorized users.
Collapse
|