1
|
Samsami Y, Akhlaghipour I, Taghehchian N, Palizkaran Yazdi M, Farrokhi S, Rahimi HR, Moghbeli M. MicroRNA-382 as a tumor suppressor during tumor progression. Bioorg Med Chem Lett 2024; 113:129967. [PMID: 39293533 DOI: 10.1016/j.bmcl.2024.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Despite the recent progresses in therapeutic and diagnostic methods, there is still a significantly high rate of mortality among cancer patients. One of the main reasons for the high mortality rate in cancer patients is late diagnosis, which leads to the failure of therapeutic strategies. Therefore, investigation of cancer biology can lead to the introduction of early diagnostic markers in these patients. MicroRNAs (miRNAs) play an important role in regulation of cellular processes associated with tumor progression. Due to the high stability of miRNAs in body fluids, these factors can be considered as the non-invasive tumor markers. Deregulation of miR-382 has been widely reported in different cancers. Therefore, in this review, we investigated the role of miR-382 during tumor development. It has shown that miR-382 has mainly a tumor suppressive, which inhibits the growth of tumor cells through the regulation of signaling pathways, RNA-binding proteins, and transcription factors. Therefore, miR-382 can be suggested as a diagnostic and therapeutic marker in cancer patients.
Collapse
Affiliation(s)
- Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saba Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Du Y, He Z, Jin S, Jin G, Wang K, Yang F, Zhang J. Targeting histone methylation and demethylation for non-alcoholic fatty liver disease. Bioorg Chem 2024; 151:107698. [PMID: 39126869 DOI: 10.1016/j.bioorg.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide, facing increasing challenges in terms of prevention and treatment. The methylation of lysine and arginine residues on histone proteins is dynamically controlled by histone methyltransferases (HMTs) and histone demethylases (HDMs), regulating chromatin structure and gene transcription. Mutations, genetic translocations, and altered gene expression involving HMTs and HDMs are frequently observed in NAFLD. HMTs and HDMs are receiving increasing attention in regulating NALFD. Targeting specific HMTs and HDMs for drug development is becoming a new strategy for treating NAFLD. This review provides a comprehensive summary of the regulatory mechanism of histone methylation/demethylation in NAFLD. Additionally, we discuss the potential applications of HMTs and HDMs inhibitors in preventing NAFLD, which may provide a scientific basis for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuanbing Du
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Sasa Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Feifei Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| |
Collapse
|
3
|
Murga M, Lopez-Pernas G, Soliva R, Fueyo-Marcos E, Amor C, Faustino I, Serna M, Serrano AG, Díaz L, Martínez S, Blanco-Aparicio C, Antón ME, Seashore-Ludlow B, Pastor J, Jafari R, Lafarga M, Llorca O, Orozco M, Fernández-Capetillo O. SETD8 inhibition targets cancer cells with increased rates of ribosome biogenesis. Cell Death Dis 2024; 15:694. [PMID: 39341827 PMCID: PMC11438997 DOI: 10.1038/s41419-024-07106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
SETD8 is a methyltransferase that is overexpressed in several cancers, which monomethylates H4K20 as well as other non-histone targets such as PCNA or p53. We here report novel SETD8 inhibitors, which were discovered while trying to identify chemicals that prevent 53BP1 foci formation, an event mediated by H4K20 methylation. Consistent with previous reports, SETD8 inhibitors induce p53 expression, although they are equally toxic for p53 proficient or deficient cells. Thermal stability proteomics revealed that the compounds had a particular impact on nucleoli, which was confirmed by fluorescent and electron microscopy. Similarly, Setd8 deletion generated nucleolar stress and impaired ribosome biogenesis, supporting that this was an on-target effect of SETD8 inhibitors. Furthermore, a genome-wide CRISPR screen identified an enrichment of nucleolar factors among those modulating the toxicity of SETD8 inhibitors. Accordingly, the toxicity of SETD8 inhibition correlated with MYC or mTOR activity, key regulators of ribosome biogenesis. Together, our study provides a new class of SETD8 inhibitors and a novel biomarker to identify tumors most likely to respond to this therapy.
Collapse
Affiliation(s)
- Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Gema Lopez-Pernas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 3-2, 08029, Barcelona, Spain
| | - Elena Fueyo-Marcos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Corina Amor
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alicia G Serrano
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 3-2, 08029, Barcelona, Spain
| | - Sonia Martínez
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Elena Antón
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Joaquín Pastor
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Miguel Lafarga
- Departament of Anatomy and Cell Biology, Neurodegenerative diseases network (CIBERNED), University of Cantabria-IDIVAL, Santander, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Oscar Fernández-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden.
| |
Collapse
|
4
|
Zhou Y, Li T, Choppavarapu L, Fang K, Lin S, Jin VX. Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations. Nat Commun 2024; 15:8310. [PMID: 39333113 PMCID: PMC11436782 DOI: 10.1038/s41467-024-52440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
An integration of 3D chromatin structure and gene expression at single-cell resolution has yet been demonstrated. Here, we develop a computational method, a multiomic data integration (MUDI) algorithm, which integrates scHi-C and scRNA-seq data to precisely define the 3D-regulated and biological-context dependent cell subpopulations or topologically integrated subpopulations (TISPs). We demonstrate its algorithmic utility on the publicly available and newly generated scHi-C and scRNA-seq data. We then test and apply MUDI in a breast cancer cell model system to demonstrate its biological-context dependent utility. We find the newly defined topologically conserved associating domain (CAD) is the characteristic single-cell 3D chromatin structure and better characterizes chromatin domains in single-cell resolution. We further identify 20 TISPs uniquely characterizing 3D-regulated breast cancer cellular states. We reveal two of TISPs are remarkably resemble to high cycling breast cancer persister cells and chromatin modifying enzymes might be functional regulators to drive the alteration of the 3D chromatin structures. Our comprehensive integration of scHi-C and scRNA-seq data in cancer cells at single-cell resolution provides mechanistic insights into 3D-regulated heterogeneity of developing drug-tolerant cancer cells.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tian Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Lavanya Choppavarapu
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA
- MCW Cancer Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kun Fang
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA
- MCW Cancer Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, OH, USA
| | - Victor X Jin
- Division of Biostatistics, The Medical College of Wisconsin, Milwaukee, WI, USA.
- MCW Cancer Center, The Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
5
|
Chen H, Hu J, Xiong X, Chen H, Liao Q, Lin B, Chen Y, Peng Y, Li Y, Cheng D, Li Z. SETD8 inhibits apoptosis and ferroptosis of Ewing's sarcoma through YBX1/RAC3 axis. Cell Death Dis 2024; 15:494. [PMID: 38987564 PMCID: PMC11237091 DOI: 10.1038/s41419-024-06882-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Ewing's sarcoma (ES) represents a rare yet exceedingly aggressive neoplasm that poses a significant health risk to the pediatric and adolescent population. The clinical outcomes for individuals with relapsed or refractory ES are notably adverse, primarily attributed to the constrained therapeutic alternatives available. Despite significant advancements in the field, molecular pathology-driven therapeutic strategies have yet to achieve a definitive reduction in the mortality rates associated with ES. Consequently, there exists an imperative need to discover innovative therapeutic targets to effectively combat ES. To reveal the mechanism of the SETD8 (also known as lysine methyltransferase 5A) inhibitor UNC0379, cell death manners were analyzed with different inhibitors. The contributions of SETD8 to the processes of apoptosis and ferroptosis in ES cells were evaluated employing the histone methyltransferase inhibitor UNC0379 in conjunction with RNA interference techniques. The molecular regulatory mechanisms of SETD8 in ES were examined through the application of RNA sequencing (RNA-seq) and mass spectrometry-based proteomic analysis. Moreover, nude mouse xenograft models were established to explore the role of SETD8 in ES in vivo. SETD8, a sole nucleosome-specific methyltransferase that catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), was found to be upregulated in ES, and its overexpression was associated with dismal outcomes of patients. SETD8 knockdown dramatically induced the apoptosis and ferroptosis of ES cells in vitro and suppressed tumorigenesis in vivo. Mechanistic investigations revealed that SETD8 facilitated the nuclear translocation of YBX1 through post-transcriptional regulatory mechanisms, which subsequently culminated in the transcriptional upregulation of RAC3. In summary, SETD8 inhibits the apoptosis and ferroptosis of ES cells through the YBX1/RAC3 axis, which provides new insights into the mechanism of tumorigenesis of ES. SETD8 may be a potential target for clinical intervention in ES patients.
Collapse
Affiliation(s)
- Huimou Chen
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Jing Hu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xilin Xiong
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Hongling Chen
- Department of Clinical Laboratory, Maoming People's Hospital, Maoming, Guangdong, 525000, China
| | - Qiaofang Liao
- Department of Oncology, Huizhou First Hospital, Huizhou, Guangdong, 516000, China
| | - Biaojun Lin
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yusong Chen
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yanting Peng
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yang Li
- Department of Oncology, Medical Centre of Pediatric, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China.
| | - Di Cheng
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China.
| | - Zhihua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Zheng R, Su R, Fan Y, Xing F, Huang K, Yan F, Chen H, Liu B, Fang L, Du Y, Zhou F, Wang D, Feng S. Machine Learning-Based Integrated Multiomics Characterization of Colorectal Cancer Reveals Distinctive Metabolic Signatures. Anal Chem 2024; 96:8772-8781. [PMID: 38743842 DOI: 10.1021/acs.analchem.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The metabolic signature identification of colorectal cancer is critical for its early diagnosis and therapeutic approaches that will significantly block cancer progression and improve patient survival. Here, we combined an untargeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry and the machine learning approach to analyze metabolites in 173 pairs of cancer samples and matched normal tissue samples to build robust metabolic signature models for diagnostic purposes. Screening and independent validation of metabolic signatures from colorectal cancers via machine learning methods (Logistic Regression_L1 for feature selection and eXtreme Gradient Boosting for classification) was performed to generate a panel of seven signatures with good diagnostic performance (the accuracy of 87.74%, sensitivity of 85.82%, and specificity of 89.66%). Moreover, seven signatures were evaluated according to their ability to distinguish between cancer and normal tissues, with the metabolic molecule PC (30:0) showing good diagnostic performance. In addition, genes associated with PC (30:0) were identified by multiomics analysis (combining metabolic data with transcriptomic data analysis) and our results showed that PC (30:0) could promote the proliferation of colorectal cancer cell SW480, revealing the correlation between genetic changes and metabolic dysregulation in cancer. Overall, our results reveal potential determinants affecting metabolite dysregulation, paving the way for a mechanistic understanding of altered tissue metabolites in colorectal cancer and design interventions for manipulating the levels of circulating metabolites.
Collapse
Affiliation(s)
- Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yusi Fan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130021, China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Laiping Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yechao Du
- Department of General Surgery Center, First Hospital of Jilin University, 1 Xinmin Street Changchun, Jilin 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130021, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, 1 Xinmin Street Changchun, Jilin 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Bamgbose G, Bordet G, Lodhi N, Tulin A. Mono-methylated histones control PARP-1 in chromatin and transcription. eLife 2024; 13:RP91482. [PMID: 38690995 PMCID: PMC11062633 DOI: 10.7554/elife.91482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.
Collapse
Affiliation(s)
- Gbolahan Bamgbose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North DakotaGrand ForksUnited States
| | - Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North DakotaGrand ForksUnited States
| | - Niraj Lodhi
- Fox Chase Cancer CenterPhiladelphiaUnited States
| | - Alexei Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North DakotaGrand ForksUnited States
| |
Collapse
|
8
|
Xiao C, Wu X, Gallagher CS, Rasooly D, Jiang X, Morton CC. Genetic contribution of reproductive traits to risk of uterine leiomyomata: a large-scale, genome-wide, cross-trait analysis. Am J Obstet Gynecol 2024; 230:438.e1-438.e15. [PMID: 38191017 DOI: 10.1016/j.ajog.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Although phenotypic associations between female reproductive characteristics and uterine leiomyomata have long been observed in epidemiologic investigations, the shared genetic architecture underlying these complex phenotypes remains unclear. OBJECTIVE We aimed to investigate the shared genetic basis, pleiotropic effects, and potential causal relationships underlying reproductive traits (age at menarche, age at natural menopause, and age at first birth) and uterine leiomyomata. STUDY DESIGN With the use of large-scale, genome-wide association studies conducted among women of European ancestry for age at menarche (n=329,345), age at natural menopause (n=201,323), age at first birth (n=418,758), and uterine leiomyomata (ncases/ncontrols=35,474/267,505), we performed a comprehensive, genome-wide, cross-trait analysis to examine systematically the common genetic influences between reproductive traits and uterine leiomyomata. RESULTS Significant global genetic correlations were identified between uterine leiomyomata and age at menarche (rg, -0.17; P=3.65×10-10), age at natural menopause (rg, 0.23; P=3.26×10-07), and age at first birth (rg, -0.16; P=1.96×10-06). Thirteen genomic regions were further revealed as contributing significant local correlations (P<.05/2353) to age at natural menopause and uterine leiomyomata. A cross-trait meta-analysis identified 23 shared loci, 3 of which were novel. A transcriptome-wide association study found 15 shared genes that target tissues of the digestive, exo- or endocrine, nervous, and cardiovascular systems. Mendelian randomization suggested causal relationships between a genetically predicted older age at menarche (odds ratio, 0.88; 95% confidence interval, 0.85-0.92; P=1.50×10-10) or older age at first birth (odds ratio, 0.95; 95% confidence interval, 0.90-0.99; P=.02) and a reduced risk for uterine leiomyomata and between a genetically predicted older age at natural menopause and an increased risk for uterine leiomyomata (odds ratio, 1.08; 95% confidence interval, 1.06-1.09; P=2.30×10-27). No causal association in the reverse direction was found. CONCLUSION Our work highlights that there are substantial shared genetic influences and putative causal links that underlie reproductive traits and uterine leiomyomata. The findings suggest that early identification of female reproductive risk factors may facilitate the initiation of strategies to modify potential uterine leiomyomata risk.
Collapse
Affiliation(s)
- Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
10
|
Kato H, Hayami S, Ueno M, Suzaki N, Nakamura M, Yoshimura T, Miyamoto A, Shigekawa Y, Okada K, Miyazawa M, Kitahata Y, Ehata S, Hamamoto R, Yamaue H, Kawai M. Histone methyltransferase SUV420H1/KMT5B contributes to poor prognosis in hepatocellular carcinoma. Cancer Sci 2024; 115:385-400. [PMID: 38082550 PMCID: PMC10859612 DOI: 10.1111/cas.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/15/2023] [Accepted: 11/20/2023] [Indexed: 02/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high rate of recurrence and poor prognosis, even after curative surgery. Multikinase inhibitors have been applied for HCC patients, but their effect has been restricted. This study aims to clarify the clinical impact of SUV420H1/KMT5B, one of the methyltransferases for histone H4 at lysine 20, and elucidate the novel mechanisms of HCC progression. We retrospectively investigated SUV420H1 expression using HCC clinical tissue samples employing immunohistochemical analysis (n = 350). We then performed loss-of-function analysis of SUV420H1 with cell cycle analysis, migration assay, invasion assay and RNA sequence for Gene Ontology (GO) pathway analysis in vitro, and animal experiments with xenograft mice in vivo. The SUV420H1-high-score group (n = 154) had significantly poorer prognosis for both 5-year overall and 2-year/5-year disease-free survival than the SUV420H1-low-score group (n = 196) (p < 0.001 and p < 0.05, respectively). The SUV420H1-high-score group had pathologically larger tumor size, more tumors, poorer differentiation, and more positive vascular invasion than the SUV420H1-low-score group. Multivariate analysis demonstrated that SUV420H1 high score was the poorest independent factor for overall survival. SUV420H1 knockdown could suppress cell cycle from G1 to S phase and cell invasion. GO pathway analysis showed that SUV420H1 contributed to cell proliferation, cell invasion, and/or metastasis. Overexpression of SUV420H1 clinically contributed to poor prognosis in HCC, and the inhibition of SUV420H1 could repress tumor progression and invasion both in vitro and in vivo; thus, further analyses of SUV420H1 are necessary for the discovery of future molecularly targeted drugs.
Collapse
Affiliation(s)
- Hirotaka Kato
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinya Hayami
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Masaki Ueno
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Norihiko Suzaki
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Masashi Nakamura
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Tomohiro Yoshimura
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Atsushi Miyamoto
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshinobu Shigekawa
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Ken‐Ichi Okada
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Motoki Miyazawa
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yuji Kitahata
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Ryuji Hamamoto
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
| | - Hiroki Yamaue
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Manabu Kawai
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
11
|
Nagasaka M, Inoue Y, Nagao Y, Miyajima C, Morishita D, Aoki H, Aoyama M, Imamura T, Hayashi H. SET8 is a novel negative regulator of TGF-β signaling in a methylation-independent manner. Sci Rep 2023; 13:22877. [PMID: 38129484 PMCID: PMC10739863 DOI: 10.1038/s41598-023-49961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that induces a diverse set of cellular processes principally through Smad-dependent transcription. Transcriptional responses induced by Smads are tightly regulated by Smad cofactors and histone modifications; however, the underlying mechanisms have not yet been elucidated in detail. We herein report lysine methyltransferase SET8 as a negative regulator of TGF-β signaling. SET8 physically associates with Smad2/3 and negatively affects transcriptional activation by TGF-β in a catalytic activity-independent manner. The depletion of SET8 results in an increase in TGF-β-induced plasminogen activator inhibitor-1 (PAI-1) and p21 expression and enhances the antiproliferative effects of TGF-β. Mechanistically, SET8 occupies the PAI-1 and p21 promoters, and a treatment with TGF-β triggers the replacement of the suppressive binding of SET8 with p300 on these promoters, possibly to promote gene transcription. Collectively, the present results reveal a novel role for SET8 in the negative regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Yuji Nagao
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, 791-0295, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| |
Collapse
|
12
|
Zhou Y, Li T, Choppavarapu L, Jin VX. Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560193. [PMID: 37873257 PMCID: PMC10592853 DOI: 10.1101/2023.09.29.560193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
An integration of 3D chromatin structure and gene expression at single-cell resolution has yet been demonstrated. Here, we develop a computational method, a multiomic data integration (MUDI) algorithm, which integrates scHi-C and scRNA-seq data to precisely define the 3D-regulated and biological-context dependent cell subpopulations or topologically integrated subpopulations (TISPs). We demonstrate its algorithmic utility on the publicly available and newly generated scHi-C and scRNA-seq data. We then test and apply MUDI in a breast cancer cell model system to demonstrate its biological-context dependent utility. We found the newly defined topologically conserved associating domain (CAD) is the characteristic single-cell 3D chromatin structure and better characterizes chromatin domains in single-cell resolution. We further identify 20 TISPs uniquely characterizing 3D-regulated breast cancer cellular states. We reveal two of TISPs are remarkably resemble to high cycling breast cancer persister cells and chromatin modifying enzymes might be functional regulators to drive the alteration of the 3D chromatin structures. Our comprehensive integration of scHi-C and scRNA-seq data in cancer cells at single-cell resolution provides mechanistic insights into 3D-regulated heterogeneity of developing drug-tolerant cancer cells.
Collapse
|
13
|
Della Monica R, Buonaiuto M, Cuomo M, Pagano C, Trio F, Costabile D, de Riso G, Cicala FS, Raia M, Franca RA, Del Basso De Caro M, Sorrentino D, Navarra G, Coppola L, Tripodi L, Pastore L, Hench J, Frank S, Schonauer C, Catapano G, Bifulco M, Chiariotti L, Visconti R. Targeted inhibition of the methyltransferase SETD8 synergizes with the Wee1 inhibitor adavosertib in restraining glioblastoma growth. Cell Death Dis 2023; 14:638. [PMID: 37758718 PMCID: PMC10533811 DOI: 10.1038/s41419-023-06167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Despite intense research efforts, glioblastoma remains an incurable brain tumor with a dismal median survival time of 15 months. Thus, identifying new therapeutic targets is an urgent need. Here, we show that the lysine methyltransferase SETD8 is overexpressed in 50% of high-grade gliomas. The small molecule SETD8 inhibitor UNC0379, as well as siRNA-mediated inhibition of SETD8, blocked glioblastoma cell proliferation, by inducing DNA damage and activating cell cycle checkpoints. Specifically, in p53-proficient glioblastoma cells, SETD8 inhibition and DNA damage induced p21 accumulation and G1/S arrest whereas, in p53-deficient glioblastoma cells, DNA damage induced by SETD8 inhibition resulted in G2/M arrest mediated by Chk1 activation. Checkpoint abrogation, by the Wee1 kinase inhibitor adavosertib, induced glioblastoma cell lines and primary cells, DNA-damaged by UNC0379, to progress to mitosis where they died by mitotic catastrophe. Finally, UNC0379 and adavosertib synergized in restraining glioblastoma growth in a murine xenograft model, providing a strong rationale to further explore this novel pharmacological approach for adjuvant glioblastoma treatment.
Collapse
Affiliation(s)
- Rosa Della Monica
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy.
| | - Michela Buonaiuto
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Mariella Cuomo
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Federica Trio
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
| | - Davide Costabile
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- SEMM-European School of Molecular Medicine, University of Napoli "Federico II", Napoli, Italy
| | - Giulia de Riso
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Francesca Sveva Cicala
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Maddalena Raia
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
| | | | | | | | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lorella Tripodi
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lucio Pastore
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Juergen Hench
- Institute for Medical Genetics and Pathology, Basel University Hospitals, Basel, Switzerland
| | - Stephan Frank
- Institute for Medical Genetics and Pathology, Basel University Hospitals, Basel, Switzerland
| | | | | | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy
| | - Lorenzo Chiariotti
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli "Federico II", Napoli, Italy.
| | - Roberta Visconti
- CEINGE-Advanced Biotechnologies "Franco Salvatore", Napoli, Italy.
- Institute for the Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research of Italy, Napoli, Italy.
| |
Collapse
|
14
|
Wang X, Cao C, Tan X, Liao X, Du X, Wang X, Liu T, Gong D, Hu Z, Tian X. SETD8, a frequently mutated gene in cervical cancer, enhances cisplatin sensitivity by impairing DNA repair. Cell Biosci 2023; 13:107. [PMID: 37308924 DOI: 10.1186/s13578-023-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Cisplatin is commonly used to treat cervical cancer while drug resistance limits its effectiveness. There is an urgent need to identify strategies that increase cisplatin sensitivity and improve the outcomes of chemotherapy. RESULTS We performed whole exome sequencing (WES) of 156 cervical cancer tissues to assess genomic features related to platinum-based chemoresistance. By using WES, we identified a frequently mutated locus SETD8 (7%), which was associated with drug sensitivity. Cell functional assays, in vivo xenografts tumor growth experiments, and survival analysis were used to investigate the functional significance and mechanism of chemosensitization after SETD8 downregulation. Knockdown of SETD8 increased the responsiveness of cervical cancer cells to cisplatin treatment. The mechanism is exerted by reduced binding of 53BP1 to DNA breaks and inhibition of the non-homologous end joining (NHEJ) repair pathway. In addition, SETD8 expression was positively correlated with resistance to cisplatin and negatively associated with the prognosis of cervical cancer patients. Further, UNC0379 as a small molecule inhibitor of SETD8 was found to enhance cisplatin sensitivity both in vitro and in vivo. CONCLUSIONS SETD8 was a promising therapeutic target to ameliorate cisplatin resistance and improve the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiangyu Tan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xueyao Liao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xiaofang Du
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Danni Gong
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China.
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
15
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
16
|
Kim S, Kim Y, Kim Y, Yoon S, Lee KY, Lee Y, Kang S, Myung K, Oh CK. PCNA Ser46-Leu47 residues are crucial in preserving genomic integrity. PLoS One 2023; 18:e0285337. [PMID: 37205694 DOI: 10.1371/journal.pone.0285337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a maestro of DNA replication. PCNA forms a homotrimer and interacts with various proteins, such as DNA polymerases, DNA ligase I (LIG1), and flap endonuclease 1 (FEN1) for faithful DNA replication. Here, we identify the crucial role of Ser46-Leu47 residues of PCNA in maintaining genomic integrity using in vitro, and cell-based assays and structural prediction. The predicted PCNAΔSL47 structure shows the potential distortion of the central loop and reduced hydrophobicity. PCNAΔSL47 shows a defective interaction with PCNAWT leading to defects in homo-trimerization in vitro. PCNAΔSL47 is defective in the FEN1 and LIG1 interaction. PCNA ubiquitination and DNA-RNA hybrid processing are defective in PCNAΔSL47-expressing cells. Accordingly, PCNAΔSL47-expressing cells exhibit an increased number of single-stranded DNA gaps and higher levels of γH2AX, and sensitivity to DNA-damaging agents, highlighting the importance of PCNA Ser46-Leu47 residues in maintaining genomic integrity.
Collapse
Affiliation(s)
- Sangin Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Yeongjae Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Youyoung Kim
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Suhyeon Yoon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Integrated Data Sciences Section, Research Technologies Branch, Bethesda, MD, United States of America
| | - Kyoo-Young Lee
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sukhyun Kang
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
| | - Kyungjae Myung
- Institute for Basic Science, Center for Genomic Integrity, Ulsan, Korea
- Ulsan National Institute of Science and Technology, Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan, Korea
| | - Chang-Kyu Oh
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, Korea
| |
Collapse
|
17
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
18
|
Kukita A, Sone K, Kaneko S, Kawakami E, Oki S, Kojima M, Wada M, Toyohara Y, Takahashi Y, Inoue F, Tanimoto S, Taguchi A, Fukuda T, Miyamoto Y, Tanikawa M, Mori-Uchino M, Tsuruga T, Iriyama T, Matsumoto Y, Nagasaka K, Wada-Hiraike O, Oda K, Hamamoto R, Osuga Y. The Histone Methyltransferase SETD8 Regulates the Expression of Tumor Suppressor Genes via H4K20 Methylation and the p53 Signaling Pathway in Endometrial Cancer Cells. Cancers (Basel) 2022; 14:5367. [PMID: 36358786 PMCID: PMC9655767 DOI: 10.3390/cancers14215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/01/2023] Open
Abstract
The histone methyltransferase SET domain-containing protein 8 (SETD8), which methylates histone H4 lysine 20 (H4K20) and non-histone proteins such as p53, plays key roles in human carcinogenesis. Our aim was to determine the involvement of SETD8 in endometrial cancer and its therapeutic potential and identify the downstream genes regulated by SETD8 via H4K20 methylation and the p53 signaling pathway. We examined the expression profile of SETD8 and evaluated whether SETD8 plays a critical role in the proliferation of endometrial cancer cells using small interfering RNAs (siRNAs). We identified the prognostically important genes regulated by SETD8 via H4K20 methylation and p53 signaling using chromatin immunoprecipitation sequencing, RNA sequencing, and machine learning. We confirmed that SETD8 expression was elevated in endometrial cancer tissues. Our in vitro results suggest that the suppression of SETD8 using siRNA or a selective inhibitor attenuated cell proliferation and promoted the apoptosis of endometrial cancer cells. In these cells, SETD8 regulates genes via H4K20 methylation and the p53 signaling pathway. We also identified the prognostically important genes related to apoptosis, such as those encoding KIAA1324 and TP73, in endometrial cancer. SETD8 is an important gene for carcinogenesis and progression of endometrial cancer via H4K20 methylation.
Collapse
Affiliation(s)
- Asako Kukita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Eiryo Kawakami
- Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Shinya Oki
- National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Machiko Kojima
- Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| | - Miku Wada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yu Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
19
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
20
|
Chen L, Yang C, Tang SB, Long QY, Chen JD, Wu M, Li LY. Inhibition of histone methyltransferase SETD8 represses DNA virus replication. CELL INSIGHT 2022; 1:100033. [PMID: 37193046 PMCID: PMC10120311 DOI: 10.1016/j.cellin.2022.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Multiple diseases, such as cancer and neural degeneration diseases, are related with the latent infection of DNA viruses. However, it is still difficult to clean up the latent DNA viruses and new anti-viral strategies are critical for disease treatment. Here, we screen a pool of small chemical molecules and identify UNC0379, an inhibitor for histone H4K20 methyltransferase SETD8, as an effective inhibitor for multiple DNA viruses. UNC0379 not only enhances the expression of anti-viral genes in THP-1 cells, but also repress DNA virus replication in multiple cell lines with defects in cGAS pathway. We prove that SETD8 promotes DNA virus replication in a manner dependent on its enzyme activity. Our results further indicated that SETD8 is required for PCNA stability, one factor critical for viral DNA replication. Viral infection stimulates the interaction between SETD8 and PCNA and thus enhances PCNA stability and viral DNA replication. Taken together, our study reveals a new mechanism for regulating viral DNA replication and provides a potential strategy for treatment of diseases related with DNA viruses.
Collapse
Affiliation(s)
- Lin Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chen Yang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shan-Bo Tang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiao-Yun Long
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ji-Dong Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Crain AT, Klusza S, Armstrong RL, Santa Rosa P, Temple BRS, Strahl BD, McKay DJ, Matera AG, Duronio RJ. Distinct developmental phenotypes result from mutation of Set8/KMT5A and histone H4 lysine 20 in Drosophila melanogaster. Genetics 2022; 221:iyac054. [PMID: 35404465 PMCID: PMC9157153 DOI: 10.1093/genetics/iyac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.
Collapse
Affiliation(s)
- Aaron T Crain
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Stephen Klusza
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
| | | | - Brenda R S Temple
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| |
Collapse
|
22
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
23
|
Xu L, Zhang L, Sun J, Hu X, Kalvakolanu DV, Ren H, Guo B. Roles for the methyltransferase SETD8 in DNA damage repair. Clin Epigenetics 2022; 14:34. [PMID: 35246238 PMCID: PMC8897848 DOI: 10.1186/s13148-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/20/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetic posttranslational modifications are critical for fine-tuning gene expression in various biological processes. SETD8 is so far the only known lysyl methyltransferase in mammalian cells to produce mono-methylation of histone H4 at lysine 20 (H4K20me1), a prerequisite for di- and tri-methylation. Importantly, SETD8 is related to a number of cellular activities, impinging upon tissue development, senescence and tumorigenesis. The double-strand breaks (DSBs) are cytotoxic DNA damages with deleterious consequences, such as genomic instability and cancer origin, if unrepaired. The homology-directed repair and canonical nonhomologous end-joining are two most prominent DSB repair pathways evolved to eliminate such aberrations. Emerging evidence implies that SETD8 and its corresponding H4K20 methylation are relevant to establishment of DSB repair pathway choice. Understanding how SETD8 functions in DSB repair pathway choice will shed light on the molecular basis of SETD8-deficiency related disorders and will be valuable for the development of new treatments. In this review, we discuss the progress made to date in roles for the lysine mono-methyltransferase SETD8 in DNA damage repair and its therapeutic relevance, in particular illuminating its involvement in establishment of DSB repair pathway choice, which is crucial for the timely elimination of DSBs.
Collapse
Affiliation(s)
- Libo Xu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ling Zhang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jicheng Sun
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xindan Hu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology, University of Maryland School Medicine, Baltimore, MD, USA
| | - Hui Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| | - Baofeng Guo
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
24
|
Talukdar A, Mukherjee A, Bhattacharya D. Fascinating Transformation of SAM-Competitive Protein Methyltransferase Inhibitors from Nucleoside Analogues to Non-Nucleoside Analogues. J Med Chem 2022; 65:1662-1684. [PMID: 35014841 DOI: 10.1021/acs.jmedchem.1c01208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The abnormal expression of protein methyltransferase (PMT) has been linked with many diseases such as diabetes, neurological disorders, and cancer. S-Adenyl-l-methionine (SAM) is a universal methyl donor and gets converted to S-adenyl-l-homocysteine (SAH), an endogenous competitive inhibitor of SAM. Initially developed SAM/SAH mimetic nucleoside analogues were pan methyltransferase inhibitors. The gradual understanding achieved through ligand-receptor interaction paved the way for various rational approaches of drug design leading to potent and selective nucleoside inhibitors. The present perspective is based on the systematic evolution of selective SAM-competitive heterocyclic non-nucleoside inhibitors from nucleoside inhibitors. This fascinating transition has resolved several issues inherent to nucleoside analogues such as poor pharmacokinetics leading to poor in vivo efficacy. The perspective has brought together various concepts and strategies of drug design that contributed to this rational transition. We firmly believe that the strategies described herein will serve as a template for the future development of drugs in general.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| |
Collapse
|
25
|
Chen X, Liu J, Li Y, Pandey NK, Chen T, Wang L, Amador EH, Chen W, Liu F, Xiao E, Chen W. Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioact Mater 2022; 7:504-514. [PMID: 34466749 PMCID: PMC8385117 DOI: 10.1016/j.bioactmat.2021.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Copper-cysteamine as a new generation of sensitizers can be activated by light, X-rays, microwaves, or ultrasound to produce reactive oxygen species. X-ray induced photodynamic therapy (X-PDT) has been studied extensively; however, most of the studies reported so far were conducted in the laboratory, which is not conducive to the clinical translation conditions. In this contribution, for the first time, we investigated the treatment efficiency of copper-cysteamine (Cu-Cy) based X-PDT by mimicking the clinical conditions with a clinical linear accelerator and building deep-seated tumor models to study not only the effectiveness but also its effects on the cell migration and proliferation in the level of the cell, tissue, and animal. The results showed that, without X-ray irradiation, Cu-Cy nanoparticles (NPs) had a low toxicity in HepG2, SK-HEP-1, Li-7, and 4T1 cells at a concentration below 100 mg/L. Interestingly, for the first time, it was observed that Cu-Cy mediated X-PDT can inhibit the proliferation and migration of these cell lines in a dose-dependent manner. Antigen markers of migration and cell proliferation, proliferating cell nuclear antigen (PCNA) and E-cadherin, from tumor tissue in the X-PDT group were remarkably different from that of the control group. Furthermore, the MRI assessment showed that the Cu-Cy based X-PDT inhibited the growth of deeply located tumors in mice and rabbits (p < 0.05) without any obvious toxicities in vivo. Overall, these new findings demonstrate that Cu-Cy NPs have a safe and promising clinical application prospect in X-PDT to improve the efficiency of radiotherapy (RT) for deep-seated tumors and effectively inhibit tumor cell proliferation and migration.
Collapse
Affiliation(s)
- Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiayi Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Nil Kanatha Pandey
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Lingyun Wang
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Eric Horacio Amador
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Weijun Chen
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feiyue Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
26
|
Ahmadi S, Shamloo N, Taghavi N, Shalpoush S. Immunohistochemical analysis of proliferating cell nuclear antigen and minichromosome maintenance complex component 7 in benign and malignant salivary gland tumors. Dent Res J (Isfahan) 2022; 19:17. [PMID: 35308440 PMCID: PMC8927963 DOI: 10.4103/1735-3327.338780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/12/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Proliferation markers have been used to determine the behavior and prognosis of benign and malignant tumors; this study was aimed to compare the immunohistochemical (IHC) expression of proliferating cell nuclear antigen (PCNA) and novel marker minichromosome maintenance complex component 7 (MCM7) in common salivary gland tumors including pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (AdCC), to find a possible significant correlation between benign and malignant tumors. Materials and Methods: In this cross-sectional study, a total of 90 cases, including 30 PAs, 30 MECs, and 30 AdCCs, were collected. The IHC expressions of PCNA and MCM7 were evaluated. Their expressions were compared with each other and between benign and malignant tumors. Statistical analysis was performed by Chi-square and Tukey's test. P value was considered 0.05. Results: Out of 30 cases of PA, 28 cases (93.3%) were PCNA positive and 28 cases (93.3%) were MCM7 positive. In the AdCC cases, 29 cases (96.6%) were PCNA positive and 29 cases (96.6%) were MCM7 positive. In the MEC cases, all cases (100%) were PCNA positive and 23 cases (76.6%) were MCM7 positive. The labeling index (LI) of MCM7 and PCNA was evaluated, and this index was lower in MCM7 LI than PCNA in all tumors. The MCM7 and PCNA expression showed a significant difference in PA and MEC (P < 0.001). Conclusion: PCNA expression was higher than MCM7 expression in salivary gland tumors. However, more studies are needed to evaluate the malignant activity of these tumors with group of markers such as MCM family members.
Collapse
|
27
|
Li X, Liu Z, Xia C, Yan K, Fang Z, Fan Y. SETD8 stabilized by USP17 epigenetically activates SREBP1 pathway to drive lipogenesis and oncogenesis of ccRCC. Cancer Lett 2021; 527:150-163. [PMID: 34942305 DOI: 10.1016/j.canlet.2021.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Recently, epigenetic modifications, including DNA methylation, histone modification and noncoding RNA (ncRNA)-associated gene silencing, have received increasing attention from the scientific community. Many studies have demonstrated that epigenetic regulation can render dynamic alterations in the transcriptional potential of a cell, which then affects the cell's biological function. The initiation and development of clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell cancer (RCC), is also closely related to genomic alterations by epigenetic modification. For ccRCC, lipid accumulation is one of the most typical characteristics. In other words, dysregulation of lipid uptake and synthesis occurs in ccRCC, which inversely promotes cancer proliferation and progression. However, the link among epigenetic alterations, lipid biosynthesis and renal cancer progression remains unclear. SETD8 is a histone methyltransferase and plays pivotal roles in cell cycle regulation and oncogenesis of various cancers, but its role in RCC is not well understood. In this study, we discovered that SETD8 was significantly overexpressed in RCC tumors, which was positively related to lipid storage and correlated with advanced tumor grade and stage and poor patient prognosis. Depletion of SETD8 by siRNAs or inhibitor UNC0379 diminished fatty acid (FA) de novo synthesis, cell proliferation and metastasis in ccRCC cells. Mechanistically, SETD8, which was posttranslationally stabilized by USP17, could transcriptionally modulate sterol regulatory element-binding protein 1 (SREBP1), a key transcription factor in fatty acid biosynthesis and lipogenesis, by monomethylating the 20th lysine of the H4 histone, elevating lipid biosynthesis and accumulation in RCC and further promoting cancer progression and metastasis. Taken together, the USP17/SETD8/SREBP1 signaling pathway plays a pivotal role in promoting RCC progression. SETD8 might be a novel biomarker and potential therapeutic target for treating RCC.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China; Key Laboratory of Cardio-vascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, China.
| | - Zhengfang Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Chuanyou Xia
- The First Affiliated Hospital of Shandong First Medical University/Shandong Provincial Qian-Fo-Shan Hospital, China.
| | - Keqiang Yan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| | - Yidong Fan
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji Nan 250012, Shandong, China.
| |
Collapse
|
28
|
Guillade L, Mora P, Villar P, Alvarez R, R de Lera A. Total synthesis of nahuoic acid A via a putative biogenetic intramolecular Diels-Alder (IMDA) reaction. Chem Sci 2021; 12:15157-15169. [PMID: 34909158 PMCID: PMC8612404 DOI: 10.1039/d1sc04524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Inspired by the biogenetic proposal of an intramolecular Diels-Alder (IMDA) cycloaddition, the total synthesis of natural product nahuoic acid A, a cofactor-competitive inhibitor of the epigenetic enzyme lysine methyl transferase SETD8, has been carried out. A non-conjugated pentaenal precursor was synthesized with high levels of stereoselectivity at seven stereogenic centers and with the appropriate control of double bond geometries. Although the IMDA reaction of the non-conjugated pentaenal using Me2AlCl for catalysis at -40 °C selectively afforded the trans-fused diastereomer corresponding to the Re-endo mode of cycloaddition, under thermal reaction conditions it gave rise to a mixture of diastereomers, that preferentially formed through the exo mode, including the cis-fused angularly-methylated octahydronaphthalene diastereomer precursor of nahuoic acid A. The natural product could be obtained upon oxidation and overall deprotection of the hydroxyl groups present in the Si-exo IMDA diastereomer.
Collapse
Affiliation(s)
- Lucía Guillade
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Paula Mora
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Pedro Villar
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Rosana Alvarez
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO, IIS Galicia Sur, Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|
29
|
Zhang S, Zhou T, Wang Z, Yi F, Li C, Guo W, Xu H, Cui H, Dong X, Liu J, Song X, Cao L. Post-Translational Modifications of PCNA in Control of DNA Synthesis and DNA Damage Tolerance-the Implications in Carcinogenesis. Int J Biol Sci 2021; 17:4047-4059. [PMID: 34671219 PMCID: PMC8495385 DOI: 10.7150/ijbs.64628] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.
Collapse
Affiliation(s)
- Siyi Zhang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Tingting Zhou
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Zhuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Fei Yi
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Chunlu Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Wendong Guo
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongde Xu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Hongyan Cui
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiang Dong
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Jingwei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Xiaoyu Song
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning Province, 110122, PR China
| |
Collapse
|
30
|
Yang Y, Ma Y, Yuan M, Peng Y, Fang Z, Wang J. Identifying the biomarkers and pathways associated with hepatocellular carcinoma based on an integrated analysis approach. Liver Int 2021; 41:2485-2498. [PMID: 34033190 DOI: 10.1111/liv.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. The molecular mechanism underlying HCC is still unclear. In this study, we conducted a comprehensive analysis to explore the genes, pathways and their interactions involved in HCC. METHODS We analysed the gene expression datasets corresponding to 488 samples from 10 studies on HCC and identified the genes differentially expressed in HCC samples. Then, the genes were compared against Phenolyzer and GeneCards to screen those potentially associated with HCC. The features of the selected genes were explored by mapping them onto the human protein-protein interaction network, and a subnetwork related to HCC was constructed. Hub genes in this HCC specific subnetwork were identified, and their relevance with HCC was investigated by survival analysis. RESULTS We identified 444 differentially expressed genes (177 upregulated and 267 downregulated) related to HCC. Functional enrichment analysis revealed that pathways like p53 signalling and chemical carcinogenesis were eriched in HCC genes. In the subnetwork related to HCC, five disease modules were detected. Further analysis identified six hub genes from the HCC specific subnetwork. Survival analysis showed that the expression levels of these genes were negatively correlated with survival rate of HCC patients. CONCLUSIONS Based on a systems biology framework, we identified the genes, pathways, as well as the disease specific network related to HCC. We also found novel biomarkers whose expression patterns were correlated with progression of HCC, and they could be candidates for further investigation.
Collapse
Affiliation(s)
- Yichen Yang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yuequn Ma
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonglin Peng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Zhonghai Fang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Herviou L, Ovejero S, Izard F, Karmous-Gadacha O, Gourzones C, Bellanger C, De Smedt E, Ma A, Vincent L, Cartron G, Jin J, De Bruyne E, Grimaud C, Julien E, Moreaux J. Targeting the methyltransferase SETD8 impairs tumor cell survival and overcomes drug resistance independently of p53 status in multiple myeloma. Clin Epigenetics 2021; 13:174. [PMID: 34530900 PMCID: PMC8447659 DOI: 10.1186/s13148-021-01160-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignancy of plasma cells that largely remains incurable. The search for new therapeutic targets is therefore essential. In addition to a wide panel of genetic mutations, epigenetic alterations also appear as important players in the development of this cancer, thereby offering the possibility to reveal novel approaches and targets for effective therapeutic intervention. Results Here, we show that a higher expression of the lysine methyltransferase SETD8, which is responsible for the mono-methylation of histone H4 at lysine 20, is an adverse prognosis factor associated with a poor outcome in two cohorts of newly diagnosed patients. Primary malignant plasma cells are particularly addicted to the activity of this epigenetic enzyme. Indeed, the inhibition of SETD8 by the chemical compound UNC-0379 and the subsequent decrease in histone H4 methylation at lysine 20 are highly toxic in MM cells compared to normal cells from the bone marrow microenvironment. At the molecular level, RNA sequencing and functional studies revealed that SETD8 inhibition induces a mature non-proliferating plasma cell signature and, as observed in other cancers, triggers an activation of the tumor suppressor p53, which together cause an impairment of myeloma cell proliferation and survival. However, a deadly level of replicative stress was also observed in p53-deficient myeloma cells treated with UNC-0379, indicating that the cytotoxicity associated with SETD8 inhibition is not necessarily dependent on p53 activation. Consistent with this, UNC-0379 triggers a p53-independent nucleolar stress characterized by nucleolin delocalization and reduction of nucleolar RNA synthesis. Finally, we showed that SETD8 inhibition is strongly synergistic with melphalan and may overcome resistance to this alkylating agent widely used in MM treatment. Conclusions Altogether, our data indicate that the up-regulation of the epigenetic enzyme SETD8 is associated with a poor outcome and the deregulation of major signaling pathways in MM. Moreover, we provide evidences that myeloma cells are dependent on SETD8 activity and its pharmacological inhibition synergizes with melphalan, which could be beneficial to improve MM treatment in high-risk patients whatever their status for p53. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01160-z.
Collapse
Affiliation(s)
- Laurie Herviou
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Sara Ovejero
- IGH, CNRS, Univ Montpellier, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Fanny Izard
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France
| | - Ouissem Karmous-Gadacha
- Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Eva De Smedt
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anqi Ma
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laure Vincent
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Guillaume Cartron
- University of Montpellier, 34090, Montpellier, France.,Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elke De Bruyne
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Grimaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France.,University of Montpellier, 34090, Montpellier, France.,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France
| | - Eric Julien
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Institut Régional du Cancer (ICM), 34298, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Centre National de La Recherche Scientifique (CNRS), 34293, Montpellier, France.
| | - Jérôme Moreaux
- IGH, CNRS, Univ Montpellier, Montpellier, France. .,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, CHU Montpellier, Montpellier, France. .,University of Montpellier, 34090, Montpellier, France. .,Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
32
|
LncRNA LINC00473 is involved in the progression of invasive pituitary adenoma by upregulating KMT5A via ceRNA-mediated miR-502-3p evasion. Cell Death Dis 2021; 12:580. [PMID: 34091587 PMCID: PMC8179925 DOI: 10.1038/s41419-021-03861-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) and their crosstalks with other RNAs have been revealed to be closely related to tumorigenesis and development, but their role in invasive pituitary adenoma (IPA) remains largely unclear. In our study, LINC00473 was identified as the most upregulated lncRNA in IPA by whole transcriptome RNA sequencing (RNA-Seq). Further, its related signaling pathway LINC00473/miR-502-3p/KMT5A was obtained by constructing a competing endogenous RNA (ceRNA) regulatory network. Their expression in IPA and non-invasive pituitary adenoma (NIPA) tissues was verified by qRT-PCR. Then the effects and mechanisms of LINC00473 and its ceRNA network on the proliferation of pituitary adenoma (PA) cells were confirmed by gene overexpression or silencing techniques combined with CCK-8 assay, EdU staining, flow cytometry assay, and double luciferase reporter gene assay in PA cell lines AtT-20 and GT1-1 in vitro and in a xenograft model in vivo. LINC00473 is overexpressed in IPA and can promote PA cells proliferation. Mechanistically, overexpression of LINC00473 restricts miR-502-3p through the ceRNA mechanism, upregulates KMT5A expression, and promotes the expression of cyclin D1 and CDK2, which is conducive to the cell cycle process, thereby promoting the proliferation of PA cells, involving IPA progression.
Collapse
|
33
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
34
|
Histone lysine methyltransferase SET8 is a novel therapeutic target for cancer treatment. Drug Discov Today 2021; 26:2423-2430. [PMID: 34022460 DOI: 10.1016/j.drudis.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
SET8 is the only lysine methyltransferase that can specifically monomethylate the histone H4K20. SET8-mediated protein modifications are largely involved in the regulation of cell cycle, DNA repair, gene transcription, cell apoptosis, and other vital physiological processes. The aberrant expression of SET8 is closely linked to the proliferation, invasion, metastasis, and prognosis of a variety of cancers. As a consequence, targeting SET8 could be an appealing strategy for cancer therapy. In this article, we introduce the molecular structure of SET8, followed by summarizing its roles in various biological pathways. Crucially, we highlight the potential functions of SET8 in tumors, as well as progress in the development of SET inhibitors for cancer treatment.
Collapse
|
35
|
Huang J, Gujar MR, Deng Q, Y Chia S, Li S, Tan P, Sung W, Wang H. Histone lysine methyltransferase Pr-set7/SETD8 promotes neural stem cell reactivation. EMBO Rep 2021; 22:e50994. [PMID: 33565211 PMCID: PMC8024890 DOI: 10.15252/embr.202050994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
The ability of neural stem cells (NSCs) to switch between quiescence and proliferation is crucial for brain development and homeostasis. Increasing evidence suggests that variants of histone lysine methyltransferases including KMT5A are associated with neurodevelopmental disorders. However, the function of KMT5A/Pr-set7/SETD8 in the central nervous system is not well established. Here, we show that Drosophila Pr-Set7 is a novel regulator of NSC reactivation. Loss of function of pr-set7 causes a delay in NSC reactivation and loss of H4K20 monomethylation in the brain. Through NSC-specific in vivo profiling, we demonstrate that Pr-set7 binds to the promoter region of cyclin-dependent kinase 1 (cdk1) and Wnt pathway transcriptional co-activator earthbound1/jerky (ebd1). Further validation indicates that Pr-set7 is required for the expression of cdk1 and ebd1 in the brain. Similar to Pr-set7, Cdk1 and Ebd1 promote NSC reactivation. Finally, overexpression of Cdk1 and Ebd1 significantly suppressed NSC reactivation defects observed in pr-set7-depleted brains. Therefore, Pr-set7 promotes NSC reactivation by regulating Wnt signaling and cell cycle progression. Our findings may contribute to the understanding of mammalian KMT5A/PR-SET7/SETD8 during brain development.
Collapse
Affiliation(s)
- Jiawen Huang
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Mahekta R Gujar
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Qiannan Deng
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Sook Y Chia
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
National Neuroscience InstituteSingaporeSingapore
| | - Song Li
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Patrick Tan
- Genome Institute of SingaporeSingaporeSingapore
- Cancer & Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Cellular and Molecular ResearchNational Cancer CentreSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Wing‐Kin Sung
- Genome Institute of SingaporeSingaporeSingapore
- Department of Computer ScienceNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
36
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Zhang Y, Rong D, Li B, Wang Y. Targeting Epigenetic Regulators with Covalent Small-Molecule Inhibitors. J Med Chem 2021; 64:7900-7925. [PMID: 33599482 DOI: 10.1021/acs.jmedchem.0c02055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression plays a critical role in various physiological processes, and epigenetic dysregulation is implicated in a number of diseases, prominently including cancer. Epigenetic regulators have been validated as potential therapeutic targets, and significant progress has been made in the discovery and development of epigenetic-based inhibitors. However, successful epigenetic drug discovery is still facing challenges, including moderate selectivity, limited efficacy, and acquired drug resistance. Inspired by the advantages of covalent small-molecule inhibitors, targeted covalent inhibition has attracted increasing interest in epigenetic drug discovery. In this review, we comprehensively summarize the structure-based design and characterization of covalent inhibitors targeting epigenetic writers, readers, and erasers and highlight their potential benefits in enhancing selectivity across the enzyme family and improving in vivo efficacy. We also discuss the challenges and opportunities of covalent small-molecule inhibitors and hope to shed light on future epigenetic drug discovery.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deqin Rong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bingbing Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
38
|
Lukinović V, Casanova AG, Roth GS, Chuffart F, Reynoird N. Lysine Methyltransferases Signaling: Histones are Just the Tip of the Iceberg. Curr Protein Pept Sci 2021; 21:655-674. [PMID: 31894745 DOI: 10.2174/1871527319666200102101608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7β-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Alexandre G Casanova
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Gael S Roth
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, INSERM U1209 - CNRS UMR5309 - Universite Grenoble Alpes, Grenoble Cedex, France
| |
Collapse
|
39
|
Shen M, Young A, Autexier C. PCNA, a focus on replication stress and the alternative lengthening of telomeres pathway. DNA Repair (Amst) 2021; 100:103055. [PMID: 33581499 DOI: 10.1016/j.dnarep.2021.103055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT+ cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT+ telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT+ telomeres.
Collapse
Affiliation(s)
- Michelle Shen
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Adrian Young
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada; Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
40
|
Wang K, Huang W, Chen R, Lin P, Zhang T, Ni YF, Li H, Wu J, Sun XX, Geng JJ, Zhu YM, Nan G, Zhang W, Chen X, Zhu P, Bian H, Chen ZN. Di-methylation of CD147-K234 Promotes the Progression of NSCLC by Enhancing Lactate Export. Cell Metab 2021; 33:160-173.e6. [PMID: 33406400 DOI: 10.1016/j.cmet.2020.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/17/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
CD147 is a tumor-associated glycoprotein that regulates cell metabolism. However, CD147 methylation and its subsequent role in cancer cell metabolism remain unclear. Here, we detect CD147 di-methylation in 16 non-small-cell lung cancer (NSCLC) tissues using liquid chromatography-tandem mass spectrometry. CD147 is di-methylated to CD147-K234me2 by lysine methyltransferase 5A (KMT5A). The increase in KMT5A expression boosts the levels of CD147-K234me2, further promoting the interaction between CD147 and monocarboxylate transporter 4 (MCT4), which enhances the translocation of MCT4 from the cytoplasm to the membrane. Overexpression of CD147-K234me2 and KMT5A enhances glycolysis and lactate export in NSCLC cells. Clinical analysis shows that high CD147-K234me2 expression is significantly related to cancer progression and overall survival, and has prognostic significance in individuals with NSCLC, especially for those in the early stages. Our findings indicate that CD147-K234me2 plays a critical role in cancer metabolism, and it can be a highly promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Tao Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Hao Li
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Wei Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi, China
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, China
| | - Ping Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China; Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology and Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
41
|
Epigenetic Modifier SETD8 as a Therapeutic Target for High-Grade Serous Ovarian Cancer. Biomolecules 2020; 10:biom10121686. [PMID: 33339442 PMCID: PMC7766894 DOI: 10.3390/biom10121686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
The histone methyltransferase SETD8, which methylates the lysine 20 of histone H4 (H4K20), is reportedly involved in human carcinogenesis along with nonhistone proteins such as p53. However, its expression profiles and functions in the context of high-grade serous ovarian carcinoma (HGSOC) are still unknown. The purpose of this study was to investigate the role of SETD8 in HGSOC. We performed quantitative real-time PCR and immunohistochemistry to detect the expression of SETD8 in HGSOC samples and normal ovarian specimens. Then, we assessed the effect of the inhibition of SETD8 expression using small interfering RNA (siRNA) and a selective inhibitor (UNC0379) on cell proliferation and apoptosis in HGSOC cells. The expression of SETD8 was significantly upregulated in clinical ovarian cancer specimens compared to that in the corresponding normal ovary. In addition, suppression of SETD8 expression in HGSOC cells with either siRNA or UNC0379 resulted in reduced levels of H4K20 monomethylation, inhibition of cell proliferation, and induction of apoptosis. Furthermore, UNC0379 showed a long-term antitumor effect against HGSOC cells, as demonstrated by colony-formation assays. SETD8 thus constitutes a promising therapeutic target for HGSOC, warranting further functional studies.
Collapse
|
42
|
Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, Takahashi M, Jinnai S, Shimoyama R, Sakai A, Takasawa K, Bolatkan A, Shozu K, Dozen A, Machino H, Takahashi S, Asada K, Komatsu M, Sese J, Kaneko S. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers (Basel) 2020; 12:E3532. [PMID: 33256107 PMCID: PMC7760590 DOI: 10.3390/cancers12123532] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, advances in artificial intelligence (AI) technology have led to the rapid clinical implementation of devices with AI technology in the medical field. More than 60 AI-equipped medical devices have already been approved by the Food and Drug Administration (FDA) in the United States, and the active introduction of AI technology is considered to be an inevitable trend in the future of medicine. In the field of oncology, clinical applications of medical devices using AI technology are already underway, mainly in radiology, and AI technology is expected to be positioned as an important core technology. In particular, "precision medicine," a medical treatment that selects the most appropriate treatment for each patient based on a vast amount of medical data such as genome information, has become a worldwide trend; AI technology is expected to be utilized in the process of extracting truly useful information from a large amount of medical data and applying it to diagnosis and treatment. In this review, we would like to introduce the history of AI technology and the current state of medical AI, especially in the oncology field, as well as discuss the possibilities and challenges of AI technology in the medical field.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kruthi Suvarna
- Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India;
| | - Masayoshi Yamada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of Endoscopy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku Tokyo 104-0045, Japan
| | - Kazuma Kobayashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Norio Shinkai
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Masamichi Takahashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shunichi Jinnai
- Department of Dermatologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryo Shimoyama
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Akira Sakai
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken Takasawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kanto Shozu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Ai Dozen
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Hidenori Machino
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Satoshi Takahashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Jun Sese
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Humanome Lab, 2-4-10 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
43
|
Zhang X, Peng Y, Yuan Y, Gao Y, Hu F, Wang J, Zhu X, Feng X, Cheng Y, Wei Y, Fan X, Xie Y, Lv Y, Ashktorab H, Smoot D, Li S, Meltzer SJ, Hou G, Jin Z. Histone methyltransferase SET8 is regulated by miR-192/215 and induces oncogene-induced senescence via p53-dependent DNA damage in human gastric carcinoma cells. Cell Death Dis 2020; 11:937. [PMID: 33127874 PMCID: PMC7599338 DOI: 10.1038/s41419-020-03130-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
Gastric cancer (GC) is the most common cancer throughout the world. Despite advances of the treatments, detailed oncogenic mechanisms are largely unknown. In our previous study, we investigated microRNA (miR) expression profiles in human GC using miR microarrays. We found miR-192/215 were upregulated in GC tissues. Then gene microarray was implemented to discover the targets of miR-192/215. We compared the expression profile of BGC823 cells transfected with miR-192/215 inhibitors, and HFE145 cells transfected with miR-192/-215 mimics, respectively. SET8 was identified as a proposed target based on the expression change of more than twofold. SET8 belongs to the SET domain-containing methyltransferase family and specifically catalyzes monomethylation of H4K20me. It is involved in diverse functions in tumorigenesis and metastasis. Therefore, we focused on the contributions of miR-192/215/SET8 axis to the development of GC. In this study, we observe that functionally, SET8 regulated by miR-192/215 is involved in GC-related biological activities. SET8 is also found to trigger oncogene-induced senescence (OIS) in GC in vivo and in vitro, which is dependent on the DDR (DNA damage response) and p53. Our findings reveal that SET8 functions as a negative regulator of metastasis via the OIS-signaling pathway. Taken together, we investigated the functional significance, molecular mechanisms, and clinical impact of miR-192/215/SET8/p53 in GC.
Collapse
Affiliation(s)
- Xiaojing Zhang
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yin Peng
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuan Yuan
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yuli Gao
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Fan Hu
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Jian Wang
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xiaohui Zhu
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Xianling Feng
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yulan Cheng
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Yanjie Wei
- grid.458489.c0000 0001 0483 7922Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000 People’s Republic of China
| | - Xinmin Fan
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yaohong Xie
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Yansi Lv
- grid.263488.30000 0001 0472 9649Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060 People’s Republic of China
| | - Hassan Ashktorab
- grid.257127.40000 0001 0547 4545Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC 20060 USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208 USA
| | - Song Li
- grid.454883.6Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong 518055 People’s Republic of China
| | - Stephen J. Meltzer
- grid.21107.350000 0001 2171 9311Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD 21287 USA
| | - Gangqiang Hou
- Department of Medical Image Center, Kangning Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China.
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
44
|
Piao L, Che N, Li H, Li M, Feng Y, Liu X, Kim S, Jin Y, Xuan Y. SETD8 promotes stemness characteristics and is a potential prognostic biomarker of gastric adenocarcinoma. Exp Mol Pathol 2020; 117:104560. [PMID: 33127342 DOI: 10.1016/j.yexmp.2020.104560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain, which is involved in the carcinogenesis of many cancer types through monomethylation of the histone H4 lysine 20. However, its prognostic value and underlying mechanisms in gastric adenocarcinoma (GA) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness-related proteins, cell cycle-related proteins, and PI3K/Akt pathway proteins in GA. SETD8 expression in GA tissues was correlated with the primary tumor stage, lymph node metastasis, tumor size, gross type, and clinical stage. SETD8 was an independent predictor of poor overall survival of patients with GA. Cox regression analysis showed that SETD8 is a potential biomarker of unfavorable clinical outcomes in patients with GA. Moreover, SETD8 overexpression was associated with cancer stemness-related genes, cell cycle-related genes, and PI3K/Akt/NF-κB pathway genes in clinical GA tissue samples. SETD8 silencing downregulated the expression of cancer stemness-associated genes (LSD1 and SOX2) and inhibited GA cell proliferation, spheroid formation, invasion, and migration. Additionally, LY294002 significantly reduced the expression of SETD8, pAkt-Ser473, pPI3K-p85, and NFκB-p65 in MKN74 and MKN28 cells. SETD8 may be a novel cancer stemness-associated protein and potential prognostic biomarker in GA.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xingzhe Liu
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 110-745, Republic of Korea
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
45
|
Piao L, Feng Y, Che N, Li M, Li X, Jin Y, Xuan Y. SETD8 is a prognostic biomarker that contributes to stem-like cell properties in non-small cell lung cancer. Pathol Res Pract 2020; 216:153258. [PMID: 33130499 DOI: 10.1016/j.prp.2020.153258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain and has been reported to regulate various biological processes, including carcinogenesis. However, its prognostic value and mechanisms of action in non-small cell lung cancer (NSCLC) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness proteins, and cell cycle-regulating proteins in NSCLC. SETD8 expression in NSCLC tissues was correlated with primary tumor stage, lymph node metastases, and clinical stage. Moreover, SETD8 was an independent predictor of poor overall survival in NSCLC. A Cox regression analysis showed that SETD8 was a potential biomarker of unfavorable clinical outcomes in patients with NSCLC. SETD8 overexpression was associated with cancer stemness-related genes and cell cycle-related genes in NSCLC tissue samples. SETD8 silencing significantly reduced the expression of cancer stemness-associated genes (CD44, LGR5, and SOX2) and inhibited NSCLC cell proliferation, spheroid formation, invasion, and migration. Our findings demonstrate that SETD8 may be a novel cancer stemness-associated protein and a potential prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Lihua Piao
- Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xiaogang Li
- Department of Urology, Yanbian University Affiliated Hospital, Yanji 133002, Jilin Province, P.R. China
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, P.R. China; Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
46
|
The histone lysine methyltransferase SETD8 regulates angiogenesis through HES-1 in human umbilical vein endothelial cells. Sci Rep 2020; 10:12089. [PMID: 32694555 PMCID: PMC7374624 DOI: 10.1038/s41598-020-69103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/01/2020] [Indexed: 01/11/2023] Open
Abstract
Histone modifications, including histone lysine methylation, regulate gene expression in the vasculature, and targeting tumor blood vessels through histone modification decreases tumor growth. SETD8, a methyltransferase that catalyzes the mono-methylation of histone H4 lysine 20 is known to promote tumorigenesis in various cancers and its high levels of expression are related to poor prognosis. However, the detailed mechanisms by which SETD8 stimulates tumor progression and angiogenesis are still not well understood. Recent studies have demonstrated that, in vitro, BVT-948 efficiently and selectively suppresses SETD8 activity and histone methylation levels. In this study, we showed that BVT-948-mediated SETD8 inhibition in HUVECs results in an inhibition of angiogenesis. Inhibition of SETD8 not only inhibited angiogenesis but also disrupted actin stress fiber formation and induced cell cycle arrest at S phase. These effects were accompanied by increased HES-1 expression levels, decreased osteopontin levels, and a decreased differentiation of human induced pluripotent stem cells into endothelial cells. Interestingly, BVT-948 treatment reduced pathological angiogenesis in mouse OIR model. These data illustrate the mechanisms by which SETD8 regulates angiogenesis and may enable the use of a SETD8 inhibitor to treat various pathological conditions that are known to be associated with excessive angiogenesis, including and tumor growth.
Collapse
|
47
|
Rugo HS, Jacobs I, Sharma S, Scappaticci F, Paul TA, Jensen-Pergakes K, Malouf GG. The Promise for Histone Methyltransferase Inhibitors for Epigenetic Therapy in Clinical Oncology: A Narrative Review. Adv Ther 2020; 37:3059-3082. [PMID: 32445185 PMCID: PMC7467409 DOI: 10.1007/s12325-020-01379-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic processes are essential for normal development and the maintenance of tissue-specific gene expression in mammals. Changes in gene expression and malignant cellular transformation can result from disruption of epigenetic mechanisms, and global disruption in the epigenetic landscape is a key feature of cancer. The study of epigenetics in cancer has revealed that human cancer cells harbor both genetic alterations and epigenetic abnormalities that interplay at all stages of cancer development. Unlike genetic mutations, epigenetic aberrations are potentially reversible through epigenetic therapy, providing a therapeutically relevant treatment option. Histone methyltransferase inhibitors are emerging as an epigenetic therapy approach with great promise in the field of clinical oncology. The recent accelerated approval of the enhancer of zeste homolog 2 (EZH2; also known as histone-lysine N-methyltransferase EZH2) inhibitor tazemetostat for metastatic or locally advanced epithelioid sarcoma marks the first approval of such a compound for the treatment of cancer. Many other histone methyltransferase inhibitors are currently in development, some of which are being tested in clinical studies. This review focuses on histone methyltransferase inhibitors, highlighting their potential in the treatment of cancer. We also discuss the role for such epigenetic drugs in overcoming epigenetically driven drug resistance mechanisms, and their value in combination with other therapeutic approaches such as immunotherapy.
Collapse
|
48
|
Williams DE, Andersen RJ. Biologically active marine natural products and their molecular targets discovered using a chemical genetics approach. Nat Prod Rep 2020; 37:617-633. [PMID: 31750842 PMCID: PMC7874888 DOI: 10.1039/c9np00054b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Covering: 2000 to 2019The discovery of new natural products that have some combination of unprecedented chemical structures, biological activities of therapeutic interest for urgent medical needs, and new molecular targets provides the fuel that sustains the vitality of natural products chemistry research. Unfortunately, finding these important new compounds is neither routine or trivial and a major challenge is finding effective discovery paradigms. This review presents examples that illustrate the effectiveness of a chemical genetics approach to marine natural product (MNP) discovery that intertwines compound discovery, molecular target identification, and phenotypic response/biological activity. The examples include MNPs that have complex unprecedented structures, new or understudied molecular targets, and potent biological activities of therapeutic interest. A variety of methods to identify molecular targets are also featured.
Collapse
Affiliation(s)
- David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Science, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| | | |
Collapse
|
49
|
González-Magaña A, Blanco FJ. Human PCNA Structure, Function and Interactions. Biomolecules 2020; 10:biom10040570. [PMID: 32276417 PMCID: PMC7225939 DOI: 10.3390/biom10040570] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential factor in DNA replication and repair. It forms a homotrimeric ring that embraces the DNA and slides along it, anchoring DNA polymerases and other DNA editing enzymes. It also interacts with regulatory proteins through a sequence motif known as PCNA Interacting Protein box (PIP-box). We here review the latest contributions to knowledge regarding the structure-function relationships in human PCNA, particularly the mechanism of sliding, and of the molecular recognition of canonical and non-canonical PIP motifs. The unique binding mode of the oncogene p15 is described in detail, and the implications of the recently discovered structure of PCNA bound to polymerase δ are discussed. The study of the post-translational modifications of PCNA and its partners may yield therapeutic opportunities in cancer treatment, in addition to illuminating the way PCNA coordinates the dynamic exchange of its many partners in DNA replication and repair.
Collapse
Affiliation(s)
- Amaia González-Magaña
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 800, 48160 Derio, Bizkaia, Spain;
| | - Francisco J. Blanco
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 800, 48160 Derio, Bizkaia, Spain;
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 6 solairua, 48013 Bilbao, Bizkaia, Spain
- Correspondence:
| |
Collapse
|
50
|
Chin HG, Esteve PO, Ruse C, Lee J, Schaus SE, Pradhan S, Hansen U. The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin. J Biol Chem 2020; 295:4748-4759. [PMID: 32111740 PMCID: PMC7135998 DOI: 10.1074/jbc.ra119.010951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.
Collapse
Affiliation(s)
- Hang Gyeong Chin
- New England Biolabs, Ipswich, Massachusetts 01938
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215
| | | | | | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Scott E Schaus
- Center for Molecular Discovery, Boston University, Boston, Massachusetts 02215
| | | | - Ulla Hansen
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|