1
|
Lia X, Zhanga X, Yin S, Nie J. Challenges and Prospects in HER2-Positive Breast Cancer-Targeted Therapy. Crit Rev Oncol Hematol 2025:104624. [PMID: 39826885 DOI: 10.1016/j.critrevonc.2025.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Breast cancer remains the most prevalent malignancy among women globally and ranks as the leading cause of cancer-related mortality in this demographic. Approximately 13%-15% of all breast cancer cases are classified as HER2-positive, a subtype associated with a particularly unfavorable prognosis. A large number of patients with HER2-positive breast cancer continue to face disease progression after receiving standardized treatment. Given these challenges, a thorough exploration into the mechanisms underlying drug resistance in HER2-targeted therapy is imperative. This review focuses on the factors related to drug resistance in HER2-targeted therapy, including tumor heterogeneity, antibody-binding efficacy, variations in the tumor microenvironment, and abnormalities in signal activation and transmission. Additionally, corresponding strategies to counteract these resistance mechanisms are discussed, to advance therapeutic efficacy and clinical benefits in the management of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiyin Lia
- (a)Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| | - Xueying Zhanga
- (a)Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650118, China.
| | - Jianyun Nie
- (a)Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| |
Collapse
|
2
|
Kim SJ, Park J, Shim JK, Choi RJ, Moon JH, Kim EH, Teo WY, Chang JH, Kang SG. Disruption of bioenergetics enhances the radio-sensitivity of patient-derived glioblastoma tumorspheres. Transl Oncol 2025; 51:102197. [PMID: 39550888 PMCID: PMC11609692 DOI: 10.1016/j.tranon.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Despite available treatment approaches, including surgical resection along with chemotherapy and radiotherapy, glioblastoma (GBM), the most prevalent primary brain tumor, remains associated with a grim prognosis. Although radiotherapy is central to GBM treatment, its combination with bioenergetics regulators has not been validated in clinical practice. Here, we hypothesized that bioenergetics regulators can enhance the radio-sensitivity of GBM tumorspheres (TSs). METHODS Gene expression profiles of GBM patient-derived TSs were obtained through microarray and RNA-seq. In vitro treatment efficacy was assessed using clonogenic assay, 3D invasion assay, neurosphere formation assay, and flow cytometry. Protein expression was measured via western blot, and γH2AX foci were detected via immunofluorescence. In vivo efficacy was confirmed in an orthotopic xenograft model. RESULTS Based on radiation response-associated gene expression, GBM TSs were classified into high- or low-radioresistant groups. Among the five bioenergetics regulators, the pentose phosphate pathway inhibitor DHEA and the glycolysis inhibitor 2-DG notably enhanced the efficacy of ionizing radiation (IR) efficacy in vitro, reducing the survival fraction, stemness, and invasiveness in high- and low-radioresistant TSs. Combination with 2-DG further stimulated IR-induced DNA damage response and apoptosis in low-radioresistant GBM TSs. RNA-seq analysis revealed a downregulation of bioenergetics- and cell cycle-associated genes, whereas extracellular matrix- and cell adhesion-associated genes were enhanced by combined IR and 2-DG treatment. This therapeutic regimen extended survival and diminished tumor size in mouse xenograft models. CONCLUSIONS Our data suggest that combination with bioenergetics regulator 2-DG enhances the radio-sensitivity of GBM TSs, highlighting the clinical potential of this combined regimen.
Collapse
Affiliation(s)
- Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea; Department of Medical Science, Yonsei University Graduate School, Seoul, South Korea.
| |
Collapse
|
3
|
Wang Y, Dong Q, Yuan M, Hu J, Lin P, Yan Y, Wang Y, Wang Y. Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study. Int Immunopharmacol 2024; 147:113892. [PMID: 39740506 DOI: 10.1016/j.intimp.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking. In a hypoxic tumor microenvironment (TME), BC cells can enhance aerobic-glycolysis rates, upregulate expression of key lipid metabolism enzymes such as cluster of differentiation (CD) 36 and 5-lipoxygenase (5-LOX), accelerate glutamine (Gln) uptake, and elevate extracellular adenosine (eADO) levels, thereby fostering MDSC proliferation and amplifying immune suppression. Concurrently, alterations in the metabolic state of MDSCs also influence BC progression. To ensure adequate proliferative resources, MDSCs upregulate the pentose phosphate pathway and expedite glycolysis for energy supply while increasing the expression of fatty acid transport proteins (FATPs) such as CD36 and fatty acid transporter 2 (FATP2) to maintain intracellular lipid availability, thereby enhancing their adaptability within the TME. Furthermore, MDSCs undermine T-cell anti-tumor efficacy by depleting essential amino acids (AAs), such as arginine (Arg), tryptophan (Trp), and cysteine (Cys), required for T-cell function. This review elucidates how pharmacological agents such as metformin, liver X receptor (LXR) agonists, and 6-diazo-5-oxo-L-norleucine (DON) can augment anti-cancer treatment efficacy by targeting metabolic pathways in MDSCs. We systematically delineate the mechanisms governing interactions between BC cells and MDSCs from a metabolic standpoint while summarizing therapeutic strategies to modulate metabolism within MDSCs. Our review provides a framework for optimizing MDSC applications in BC immunotherapy.
Collapse
Affiliation(s)
- Yulin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Menghan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxian Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyan Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Ghiglione N, Abbo D, Bushunova A, Costamagna A, Porporato PE, Martini M. Metabolic plasticity in pancreatic cancer: The mitochondrial connection. Mol Metab 2024; 92:102089. [PMID: 39736443 DOI: 10.1016/j.molmet.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity in pancreatic cancer significantly impacts patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. SCOPE OF THE REVIEW This review explores the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We discuss the significance of mitophagy dysregulation in PDAC pathogenesis, emphasizing its influence on treatment responses and prognosis. Furthermore, we analyze the impact of mitochondrial dynamics alterations, including fission and fusion processes, on PDAC progression and tumorigenesis. MAJOR CONCLUSION Targeting mitochondrial metabolism holds promise for advancing PDAC therapeutics. Ongoing clinical trials underscore the therapeutic potential of modulating key regulators of mitochondrial dynamics and mitophagy. Despite inherent challenges, these approaches offer diverse strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Noemi Ghiglione
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Damiano Abbo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Anastasia Bushunova
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Paolo Ettore Porporato
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC) Guido Tarone, University of Turin, Torino, Italy.
| |
Collapse
|
5
|
Grzelakowska A, Kalyanaraman B, Zielonka J. Small molecule probes for peroxynitrite detection. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100034. [PMID: 39781368 PMCID: PMC11709760 DOI: 10.1016/j.rbc.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Peroxynitrite (ONOO‒/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO- to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO‒ in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO‒, as they react directly and rapidly with ONOO-, they produce minor but ONOO‒‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO- in cell-free, cellular, and in vivo systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States
- Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
6
|
Liu C, Cheng S, Zhou X, Li L, Wang C, Zhang L. Mitochondrial dynamics and energy metabolism interference therapy for promoting photothermal sensitization. J Colloid Interface Sci 2024; 680:429-440. [PMID: 39522238 DOI: 10.1016/j.jcis.2024.10.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Photothermal therapy (PTT) is minimally invasive, precisely controlled, and therapeutically effective treatment method. However, its efficacy is limited by the overexpression of heat shock proteins (HSP), which leads to cellular thermal blockade. Targeting mitochondria with PTT can enhance anticancer efficacy, as mitochondria encode genes related to HSP and provide energy for their production. Nevertheless, mitochondrial dynamics confer resistance to damage from external stimuli. Therefore, disrupting the balance of mitochondrial dynamics is essential to impede HSP production. Herein, we synthesized degradable Cu3BiS3 (CBS) nanosheets (NSs) with one face modified by carboxylated triphenylphosphonium (TPP) to target mitochondria. This modification increases the production of exogenous reactive oxygen species (ROS) and induces the overexpression of dynamin-related protein 1 (Drp1), disrupting mitochondrial dynamic homeostasis. The other face was modified with carboxylated β-cyclodextrin (CD) to load the glycolysis inhibitor (2-deoxyglucose, 2DG), thereby reducing adenosine triphosphate (ATP) production in the extra-mitochondrial space, as glycolysis also occurs in the cytoplasm. The resulting TPP-CBS-2DG Janus NSs (JNSs) not only disrupt mitochondrial energy production, leading to cell starvation, but also inhibit HSP production. Consequently, TPP-CBS-2DG JNSs can enhance tumor thermal sensitivity in PTT, improving its efficacy. This work holds great promise for overcoming tumor heat resistance in PTT and provides a feasible method for fabricating selectively modified multifunctional NSs.
Collapse
Affiliation(s)
- Cuimei Liu
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical and Materials Engineering, Bohai University, 19 Science and Technology Road, Jinzhou 121013, PR China
| | - Sihang Cheng
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical and Materials Engineering, Bohai University, 19 Science and Technology Road, Jinzhou 121013, PR China
| | - Xue Zhou
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Lu Li
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Chungang Wang
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China
| | - Lingyu Zhang
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China.
| |
Collapse
|
7
|
Xu Y, Dang H, Teng C, Yin D, Yan L. ATP Inhibition for Starvation/Mild Photothermal/Photodynamic Synergy Therapy Using Polypeptide Nanoparticles Conjugating 2-Deoxy-D-Glucose and Dye under NIR Phototheranostic Strategy. Adv Healthc Mater 2024; 13:e2401219. [PMID: 38758576 DOI: 10.1002/adhm.202401219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/27/2024] [Indexed: 05/18/2024]
Abstract
Rapid propagation of tumor cells requires plenty of energy, which is adenosine triphosphate (ATP) dependent. ATP inhibition in tumors not only results in the starvation of tumor cells but also down-regulation of the level of heat shock proteins (HSPs), which usually increase during traditional photothermal therapy (PTT), especially when the temperature is up 50 °C. 2-deoxy-D-glucose (2DG) is an anti-glycolytic reagent and can be used as an efficient agent for ATP inhibition in tumors. Compared with typical PTT, low-temperature mild photothermal therapy (MPTT) is receiving more and more attention because it avoids the high temperatures causing damage to the normal tissue, and the increase of HSPs which decrease PTT. Here, multifunctional polypeptide nanoparticles pDG@Ahx conjugating both a NIR probe Ahx-BDP and 2DG into the side chain of the amphiphilic polypeptide have been prepared. In vitro and in vivo studies reveal that the as-prepared nanoparticles achieve a synergistic effect of starvation/MPTT/PDT (photodynamic therapy), and it provides a new strategy to NIR-I/II fluorescence imaging-guided starvation/MPTT/PDT synergy therapy for tumors.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, Anhui, 230026, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, Anhui, 230026, P. R. China
| | - Huiping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, Anhui, 230026, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, Anhui, 230026, P. R. China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, Anhui, 230026, P. R. China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, Anhui, 230026, P. R. China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai Road 96, Anhui, 230026, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Zheng JH, Zhu YH, Yang J, Ji PX, Zhao RK, Duan ZH, Yao HF, Jia QY, Yin YF, Hu LP, Li Q, Jiang SH, Huo YM, Liu W, Sun YW, Liu DJ. A CLIC1 network coordinates matrix stiffness and the Warburg effect to promote tumor growth in pancreatic cancer. Cell Rep 2024; 43:114633. [PMID: 39154343 DOI: 10.1016/j.celrep.2024.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/19/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator. Elevated CLIC1 expression, induced by matrix stiffness through Wnt/β-catenin/TCF4 signaling, signifies poorer prognostic outcomes in PDAC. Functionally, CLIC1 serves as a catalyst for glycolytic metabolism, propelling tumor proliferation. Mechanistically, CLIC1 fortifies HIF1α stability by curbing hydroxylation via reactive oxygen species (ROS). Collectively, PDAC cells elevate CLIC1 levels in a matrix-stiffness-responsive manner, bolstering the Warburg effect to drive tumor growth via ROS/HIF1α signaling. Our insights highlight opportunities for targeted therapies that concurrently address matrix properties and metabolic rewiring, with CLIC1 emerging as a promising intervention point.
Collapse
Affiliation(s)
- Jia-Hao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yu-Heng Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jian Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Pei-Xuan Ji
- Shanghai Institute of Digestive Disease, Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Rui-Kang Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Zong-Hao Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hong-Fei Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Qin-Yuan Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Fan Yin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qing Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan-Miao Huo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| | - Wei Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| | - Yong-Wei Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| | - De-Jun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
| |
Collapse
|
9
|
An J, Guo R, Liu M, Hu H, Zhang H. Multi-modal Ca 2+ nanogenerator via reversing T cell exhaustion for enhanced chemo-immunotherapy. J Control Release 2024; 372:715-727. [PMID: 38955253 DOI: 10.1016/j.jconrel.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Chemo-immunotherapy holds the advantage of specific antitumor effects by activating cytotoxic lymphocyte cells (CTLs) immune response. However, multiple barriers have limited the outcomes partly due to tumor-cell-mediated exhaustion of CTLs in the immunosuppressive tumor microenvironment (iTME). Here, we rationally designed a simple-yet-versatile Ca2+ nanogenerator to modulate iTME for enhancing 2-deoxyglucose (2-DG) mediated chemo-immunotherapy. Briefly, after 2-DG chemotherapy, CaO2 nanoparticles coated with EL4 cell membrane (denoted as CaNP@ECM) could preferentially accumulate in tumor tissue via adhesion between LFA-1 on EL4 cell membrane and ICAM-1 on inflamed endothelial cell in tumor tissues and display a series of benefits for CTLs: i) Increasing glucose availability of CTLs while reducing lactic acid secretion through Ca2+ overloading mediated inhibition of tumor cell glycolysis, as well as relieving hypoxia; ii) Reversing CTLs exhaustion via TGF-β1 scavenging and PD-L1 blockade through PD-1 and TGF-β1R on EL4 cell membrane; iii) Boosting tumor immunotherapy via immunologic death (ICD) of tumor cells induced by Ca2+ overloading. We demonstrate that the multi-modal Ca2+ nanogenerator rescues T cells from exhaustion and inhibits tumor growth both in vitro and in vivo. More importantly, the study also facilitate the development of glucose metabolism inhibition-based tumor immunotherapy via Ca2+ overloading.
Collapse
Affiliation(s)
- Jingyi An
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Guo
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyuan Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Haiying Hu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
10
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
11
|
Chen H, Lu M, Lyu Q, Shi L, Zhou C, Li M, Feng S, Liang X, Zhou X, Ren L. Mitochondrial dynamics dysfunction: Unraveling the hidden link to depression. Biomed Pharmacother 2024; 175:116656. [PMID: 38678964 DOI: 10.1016/j.biopha.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Depression is a common mental disorder and its pathogenesis is not fully understood. However, more and more evidence shows that mitochondrial dynamics dysfunction may play an important role in the occurrence and development of depression. Mitochondria are the centre of energy production in cells, and are also involved in important processes such as apoptosis and oxidative stress. Studies have found that there are abnormalities in mitochondrial function in patients with depression, including mitochondrial morphological changes, mitochondrial dynamics disorders, mitochondrial DNA damage, and impaired mitochondrial respiratory chain function. These abnormalities may cause excessive free radicals and oxidative stress in mitochondria, which further damage cells and affect the balance of neurotransmitters, causing or aggravating depressive symptoms. Studies have shown that mitochondrial dynamics dysfunction may participate in the occurrence and development of depression by affecting neuroplasticity, inflammation and neurotransmitters. This article reviews the effects of mitochondrial dynamics dysfunction on the pathogenesis of depression and its potential molecular pathway. The restorers for the treatment of depression by regulating the function of mitochondrial dynamics were summarized and the possibility of using mitochondrial dynamics as a biomarker of depression was discussed.
Collapse
Affiliation(s)
- Haiyang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Liuqing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Chuntong Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mingjie Li
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Shiyu Feng
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Xicai Liang
- Experimental Animal Center of Liaoning University of traditional Chinese Medicine, Shenyang 110847, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Mental disorders research laboratory, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| |
Collapse
|
12
|
Mahmoudi-Filabadi F, Doosti A. pDNA-tachyplesin treatment stimulates the immune system and increases the probability of apoptosis in MC4-L2 tumor cells. Amino Acids 2024; 56:34. [PMID: 38691208 PMCID: PMC11062983 DOI: 10.1007/s00726-024-03393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer is the most common cancer among women worldwide, and marine creatures are the most abundant reservoir of anticancer medicines. Tachyplesin peptides have shown antibacterial capabilities, but their potential to inhibit cancer growth and trigger cancer cell death has not been investigated. A synthetic tachyplesin nucleotide sequence was generated and inserted into the pcDNA3.1( +) Mammalian Expression Vector. PCR analysis and enzyme digesting procedures were used to evaluate the vectors' accuracy. The transfection efficiency of MCF-7 and MCF10-A cells was 57% and 65%, respectively. The proliferation of MCF-7 cancer cells was markedly suppressed. Administration of plasmid DNA (pDNA) combined with tachyplesin to mice with tumors did not cause any discernible morbidity or mortality throughout treatment. The final body weight curves revealed a significant reduction in weight among mice treated with pDNA/tachyplesin and tachyplesin at a dose of 100 µg/ml (18.4 ± 0.24 gr, P < 0.05; 11.4 ± 0.24 gr P < 0.01) compared to the control group treated with PBS (22 ± 0.31 gr). Animals treated with pDNA/tachyplesin and tachyplesin exhibited a higher percentage of CD4 + Foxp3 + Tregs, CD8 + Foxp3 + Tregs, and CD4 + and CD8 + T cell populations expressing CTLA-4 in their lymph nodes and spleen compared to the PBS group. The groups that received pDNA/tachyplesin exhibited a substantial upregulation in the expression levels of caspase-3, caspase-8, BAX, PI3K, STAT3, and JAK genes. The results offer new possibilities for treating cancer by targeting malignancies using pDNA/tachyplesin and activating the mTOR and NFκB signaling pathways.
Collapse
Affiliation(s)
- Fatemeh Mahmoudi-Filabadi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
13
|
Noble J, Macek Jilkova Z, Aspord C, Malvezzi P, Fribourg M, Riella LV, Cravedi P. Harnessing Immune Cell Metabolism to Modulate Alloresponse in Transplantation. Transpl Int 2024; 37:12330. [PMID: 38567143 PMCID: PMC10985621 DOI: 10.3389/ti.2024.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.
Collapse
Affiliation(s)
- Johan Noble
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
| | - Zuzana Macek Jilkova
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Grenoble, Grenoble, France
| | - Caroline Aspord
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Établissement Français du Sang Auvergne-Rhône-Alpes, R&D-Laboratory, Grenoble, France
| | - Paolo Malvezzi
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
| | - Miguel Fribourg
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| |
Collapse
|
14
|
Wang J, Mu HJ, Sun YL, Yuan B, Wang Y. Use of honokiol in lung cancer therapy: a mini review of its pharmacological mechanism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1029-1037. [PMID: 37010929 DOI: 10.1080/10286020.2023.2193695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Honokiol (3',5-di-(2-propenyl)-1,1'-biphenyl-2,2'-diol) is a biologically active natural product derived from Magnolia and has been shown to have excellent biological activities. This paper discusses research progress on the use of honokiol in the treatment of lung cancer, as studies have confirmed that honokiol can exert anti-lung-cancer effects through multiple pathways and multiple signaling pathways, such as inhibiting angiogenesis, affecting mitochondrial function and apoptosis, regulating of autophagy and epithelial-mesenchymal transition (EMT). In addition, honokiol combined with other chemotherapy drugs is also a way in which it can be applied.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Hui-Juan Mu
- Department of Drug Clinical Trials, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Yu-Li Sun
- Department of Hepatobiliary Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bo Yuan
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| |
Collapse
|
15
|
Yang Y, An Y, Ren M, Wang H, Bai J, Du W, Kong D. The mechanisms of action of mitochondrial targeting agents in cancer: inhibiting oxidative phosphorylation and inducing apoptosis. Front Pharmacol 2023; 14:1243613. [PMID: 37954849 PMCID: PMC10635426 DOI: 10.3389/fphar.2023.1243613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
The tumor microenvironment affects the structure and metabolic function of mitochondria in tumor cells. This process involves changes in metabolic activity, an increase in the amount of reactive oxygen species (ROS) in tumor cells compared to normal cells, the production of more intracellular free radicals, and the activation of oxidative pathways. From a practical perspective, it is advantageous to develop drugs that target mitochondria for the treatment of malignant tumors. Such drugs can enhance the selectivity of treatments for specific cell groups, minimize toxic effects on normal tissues, and improve combinational treatments. Mitochondrial targeting agents typically rely on small molecule medications (such as synthetic small molecules agents, active ingredients of plants, mitochondrial inhibitors or autophagy inhibitors, and others), modified mitochondrial delivery system agents (such as lipophilic cation modification or combining other molecules to form targeted mitochondrial agents), and a few mitochondrial complex inhibitors. This article will review these compounds in three main areas: oxidative phosphorylation (OXPHOS), changes in ROS levels, and endogenous oxidative and apoptotic processes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yahui An
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingli Ren
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haijiao Wang
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenli Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Hopkins MD, Costello IJ, Brandeburg ZC, Slay EL, Zanders LA, Dunn CE, Derewonko CA, Davitt CL, Reeder MA, Prichard K, Chiew B, McCluskey A, Sheaff RJ, Lamar AA. Expansion of a Synthesized Library of N-Benzyl Sulfonamides Derived from an Indole Core to Target Pancreatic Cancer. ChemMedChem 2023; 18:e202300265. [PMID: 37421174 DOI: 10.1002/cmdc.202300265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
In an effort to further investigate previously observed activity of indolyl sulfonamides towards pancreatic cancer cell lines, a library of 44 compounds has been synthesized. The biological activity of the compounds has been determined using two different screening assay techniques against 7 pancreatic cancer cell lines and 9 non-pancreatic cancer cell lines. In the first assay, the cytotoxicity of the compounds was evaluated using a traditional (48 hour compound exposure) method. An in silico investigation was conducted to determine if the compounds might be inducing cell death by inhibiting the S100A2-p53 protein-protein interaction. In the second assay, the potential role of the compounds as metabolic inhibitors of ATP production was evaluated using a rapid screening (1-2 hour compound exposure) method. IC50 values of the hit compounds were obtained and four compounds displayed sub-micromolar potency against PANC-1 cells. The investigation has provided several compounds that display selective in vitro activity toward pancreatic cancer that warrant further development.
Collapse
Affiliation(s)
- Megan D Hopkins
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Ian J Costello
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Zachary C Brandeburg
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Emily L Slay
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Levi A Zanders
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Caroline E Dunn
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Carina A Derewonko
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Colin L Davitt
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Madison A Reeder
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Kate Prichard
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, 2308, Callaghan, NSW, Australia
| | - Beatrice Chiew
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, 2308, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental & Life Sciences, The University of Newcastle, University Drive, 2308, Callaghan, NSW, Australia
| | - Robert J Sheaff
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| | - Angus A Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, 74104, Tulsa, OK, USA
| |
Collapse
|
17
|
Cheng G, Karoui H, Hardy M, Kalyanaraman B. Redox-crippled MitoQ potently inhibits breast cancer and glioma cell proliferation: A negative control for verifying the antioxidant mechanism of MitoQ in cancer and other oxidative pathologies. Free Radic Biol Med 2023; 205:175-187. [PMID: 37321281 PMCID: PMC11129726 DOI: 10.1016/j.freeradbiomed.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Mitochondria-targeted coenzyme Q10 (Mito-ubiquinone, Mito-quinone mesylate, or MitoQ) was shown to be an effective antimetastatic drug in patients with triple-negative breast cancer. MitoQ, sold as a nutritional supplement, prevents breast cancer recurrence. It potently inhibited tumor growth and tumor cell proliferation in preclinical xenograft models and in vitro breast cancer cells. The proposed mechanism of action involves the inhibition of reactive oxygen species by MitoQ via a redox-cycling mechanism between the oxidized form, MitoQ, and the fully reduced form, MitoQH2 (also called Mito-ubiquinol). To fully corroborate this antioxidant mechanism, we substituted the hydroquinone group (-OH) with the methoxy group (-OCH3). Unlike MitoQ, the modified form, dimethoxy MitoQ (DM-MitoQ), lacks redox-cycling between the quinone and hydroquinone forms. DM-MitoQ was not converted to MitoQ in MDA-MB-231 cells. We tested the antiproliferative effects of both MitoQ and DM-MitoQ in human breast cancer (MDA-MB-231), brain-homing cancer (MDA-MB-231BR), and glioma (U87MG) cells. Surprisingly, DM-MitoQ was slightly more potent than MitoQ (IC50 = 0.26 μM versus 0.38 μM) at inhibiting proliferation of these cells. Both MitoQ and DM-MitoQ potently inhibited mitochondrial complex I-dependent oxygen consumption (IC50 = 0.52 μM and 0.17 μM, respectively). This study also suggests that DM-MitoQ, which is a more hydrophobic analog of MitoQ (logP: 10.1 and 8.7) devoid of antioxidant function and reactive oxygen species scavenging ability, can inhibit cancer cell proliferation. We conclude that inhibition of mitochondrial oxidative phosphorylation by MitoQ is responsible for inhibition of breast cancer and glioma proliferation and metastasis. Blunting the antioxidant effect using the redox-crippled DM-MitoQ can serve as a useful negative control in corroborating the involvement of free radical-mediated processes (e.g., ferroptosis, protein oxidation/nitration) using MitoQ in other oxidative pathologies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
18
|
Zhang K, Zhu J, Wang R, Zhu W, Zhang Z, Gong L, Feng F, Liu W, Han L, Qu W. Mitochondria-Anchoring Self-assembled Nanoparticles for Multi-Path Energy Depletion: A "Nano Bomb" in Chemo-co-Starvation Therapy. Int J Pharm 2023:123180. [PMID: 37364784 DOI: 10.1016/j.ijpharm.2023.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
As the main systemic treatment for triple-negative breast cancer (TNBC), the bleak medical prognosis of chemotherapy resulted in impaired life quality by tumor recurrence and metastasis. The feasible cancer starvation therapy could inhibit tumor progression by blocking energy supplements, however, the mono-therapeutic modality showed limited curing efficacy due to heterogeneity and abnormal energy metabolism of TNBC. Thus, the development of a synergistic nano-therapeutic modality involving different anti-tumor mechanisms to simultaneously transport medicines to the organelle where metabolism took place, might remarkably improve curing efficacy, targeting ability, and bio-safety. Herein, the hybrid BLG@TPGS NPs were prepared by doping multi-path energy inhibitors Berberine (BBR) and Lonidamine (LND) as well as the chemotherapeutic agent Gambogic acid (GA). Our research indicated that Nanobomb\mathord{-} BLG@TPGS NPs inherited the mitochondria targeting ability from BBR to accumulate precisely at the "energy factory" mitochondria, and then induce starvation therapy to efficiently eradicated cancer cells by coordinately powered off tumor cells via a "three-prone strategy" to cut off mitochondrial respiration, glycolysis, and glutamine metabolism. The inhibition of tumor proliferation and migration was enlarged by the synergistic combination with chemotherapy. Besides, apoptosis via mitochondria pathway and mitochondria fragmentation supported the hypothesis that NPs eliminated MDA-MB-231 cells by violently attacking MDA-MB-231 cells and especially the mitochondria. In summary, this synergistic chemo-co-starvation nanomedicine proposed an innovative site-specific targeting strategy for improved tumor treatment and decreased toxicity to normal tissues, which provided an option for clinical TNBC-sensitive treatment.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Zhu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruyi Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanfang Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Liangping Gong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Nanjing Medical University, Nanjing, 211198, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
19
|
Rainho MDA, Siqueira PB, de Amorim ÍSS, Mencalha AL, Thole AA. Mitochondria in colorectal cancer stem cells - a target in drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:273-283. [PMID: 37457136 PMCID: PMC10344721 DOI: 10.20517/cdr.2022.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second most deadly type of cancer worldwide. In late diagnosis, CRC can resist therapy regimens in which cancer stem cells (CSCs) are intimately related. CSCs are a subpopulation of tumor cells responsible for tumor initiation and maintenance, metastasis, and resistance to conventional treatments. In this scenario, colorectal cancer stem cells (CCSCs) are considered an important key for therapeutic failure and resistance. In its turn, mitochondria is an organelle involved in many mechanisms in cancer, including chemoresistance of cytotoxic drugs due to alterations in mitochondrial metabolism, apoptosis, dynamics, and mitophagy. Therefore, it is crucial to understand the mitochondrial role in CCSCs regarding CRC drug resistance. It has been shown that enhanced anti-apoptotic protein expression, mitophagy rate, and addiction to oxidative phosphorylation are the major strategies developed by CCSCs to avoid drug insults. Thus, new mitochondria-targeted drug approaches must be explored to mitigate CRC chemoresistance via the ablation of CCSCs.
Collapse
Affiliation(s)
- Mateus de Almeida Rainho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Priscyanne Barreto Siqueira
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Ísis Salviano Soares de Amorim
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Andre Luiz Mencalha
- Laboratory of Cancer Biology, Biometry and Biophysics Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
20
|
Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells. Sci Rep 2023; 13:7254. [PMID: 37142668 PMCID: PMC10160116 DOI: 10.1038/s41598-023-34266-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
N-acetylcysteine (NAC) has been used as an antioxidant drug in tumor cells and preclinical mice tumor xenografts, and it improves adaptive immunotherapy in melanoma. NAC is not readily bioavailable and is used in high concentrations. The effects of NAC have been attributed to its antioxidant and redox signaling role in mitochondria. New thiol-containing molecules targeted to mitochondria are needed. Here, mitochondria-targeted NAC with a 10-carbon alkyl side chain attached to a triphenylphosphonium group (Mito10-NAC) that is functionally similar to NAC was synthesized and studied. Mito10-NAC has a free sulfhydryl group and is more hydrophobic than NAC. Mito10-NAC is nearly 2000-fold more effective than NAC in inhibiting several cancer cells, including pancreatic cancer cells. Methylation of NAC and Mito10-NAC also inhibited cancer cell proliferation. Mito10-NAC inhibits mitochondrial complex I-induced respiration and, in combination with monocarboxylate transporter 1 inhibitor, synergistically decreased pancreatic cancer cell proliferation. Results suggest that the antiproliferative effects of NAC and Mito10-NAC are unlikely to be related to their antioxidant mechanism (i.e., scavenging of reactive oxygen species) or to the sulfhydryl group-dependent redox modulatory effects.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- CNRS, ICR, UMR 7273, Aix Marseille Univ, 13013, Marseille, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
21
|
Bachman LO, Zwezdaryk KJ. Targeting the Host Mitochondria as a Novel Human Cytomegalovirus Antiviral Strategy. Viruses 2023; 15:v15051083. [PMID: 37243170 DOI: 10.3390/v15051083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) exploits host mitochondrial function to promote viral replication. HCMV gene products have been described to directly interact and alter functional or structural aspects of host mitochondria. Current antivirals against HCMV, such as ganciclovir and letermovir, are designed against viral targets. Concerns with the current antivirals include toxicity and viral resistance. Targeting host mitochondrial function is a promising alternative or complimentary antiviral approach as (1) drugs targeting host mitochondrial function interact with host targets, minimizing viral resistance, and (2) host mitochondrial metabolism plays key roles in HCMV replication. This review describes how HCMV alters mitochondrial function and highlights pharmacological targets that can be exploited for novel antiviral development.
Collapse
Affiliation(s)
- Lauryn O Bachman
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA 70112, USA
| | - Kevin J Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:ijms24087463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
23
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Singh R, Gupta V, Kumar A, Singh K. 2-Deoxy-D-Glucose: A Novel Pharmacological Agent for Killing Hypoxic Tumor Cells, Oxygen Dependence-Lowering in Covid-19, and Other Pharmacological Activities. Adv Pharmacol Pharm Sci 2023; 2023:9993386. [PMID: 36911357 PMCID: PMC9998157 DOI: 10.1155/2023/9993386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) has shown promising pharmacological activities, including inhibition of cancerous cell growth and N-glycosylation. It has been used as a glycolysis inhibitor and as a potential energy restriction mimetic agent, inhibiting pathogen-associated molecular patterns. Radioisotope derivatives of 2-DG have applications as tracers. Recently, 2-DG has been used as an anti-COVID-19 drug to lower the need for supplemental oxygen. In the present review, various pharmaceutical properties of 2-DG are discussed.
Collapse
Affiliation(s)
- Raman Singh
- Division Chemistry & Toxicology, WTL-Clean and Renewable Energy Pvt. Ltd., New Delhi, India
| | - Vidushi Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Kuldeep Singh
- Department of Applied Chemistry, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| |
Collapse
|
25
|
Genetic mutations affecting mitochondrial function in cancer drug resistance. Genes Genomics 2023; 45:261-270. [PMID: 36609747 PMCID: PMC9947062 DOI: 10.1007/s13258-022-01359-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Mitochondria are organelles that serve as a central hub for physiological processes in eukaryotes, including production of ATP, regulation of calcium dependent signaling, generation of ROS, and regulation of apoptosis. Cancer cells undergo metabolic reprogramming in an effort to support their increasing requirements for cell survival, growth, and proliferation, and mitochondria have primary roles in these processes. Because of their central function in survival of cancer cells and drug resistance, mitochondria are an important target in cancer therapy and many drugs targeting mitochondria that target the TCA cycle, apoptosis, metabolic pathway, and generation of ROS have been developed. Continued use of mitochondrial-targeting drugs can lead to resistance due to development of new somatic mutations. Use of drugs is limited due to these mutations, which have been detected in mitochondrial proteins. In this review, we will focus on genetic mutations in mitochondrial target proteins and their function in induction of drug-resistance.
Collapse
|
26
|
Fu X, Kimura Y, Toku Y, Song G, Ju Y. Stiffer-Matrix-Induced PGC-1α Upregulation Enhanced Mitochondrial Biogenesis and Oxidative Stress Resistance in Non-small Cell Lung Cancer. Cell Mol Bioeng 2023; 16:69-80. [PMID: 36660585 PMCID: PMC9842820 DOI: 10.1007/s12195-022-00751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Metabolic strategies in different microenvironments can affect cancer metabolic adaptation, ultimately influencing the therapeutic response. Understanding the metabolic alterations of cancer cells in different microenvironments is critical for therapeutic success. Methods In this study, we cultured non-small cell lung cancer cells in three different microenvironments (two-dimensional (2D) plates, soft elastic three-dimensional (3D) porous 2 wt% scaffolds, and stiff elastic 3D porous 4 wt% scaffolds) to investigate the effects of different matrix elasticity as well as 2D and 3D culture settings on the metabolic adaptation of cancer cells. Results The results revealed that PGC-1α expression is sensitive to the elasticity of the 3D scaffold. PGC-1α expression was markedly increased in cancer cells cultured in stiff elastic 3D porous 4 wt% scaffolds compared with cells cultured in soft elastic 3D porous 2 wt% scaffolds or 2D plates, enhancing mitochondrial biogenesis and oxidative stress resistance of non-small cell lung cancer through increased reactive oxygen species (ROS) detoxification capacity. However, phosphofructokinase-1 (PFK-1) expression, a key rate-limiting enzyme in glycolysis, did not change significantly in the three microenvironments, indicating that microenvironments may not affect the early stage of glycolysis. Conversely, monocarboxylate transporter 1 (MCT1) expression in 3D culture was significantly reduced compared to 2D culture but without significant difference between soft and stiff scaffolds, indicating that MCT1 expression is more sensitive to the shape of the different cultures of 2D and 3D microenvironment surrounding cells but is unaffected by the scaffold elasticity. Conclusions Together, these results demonstrate that differences in the microenvironment of cancer cells profoundly impact their metabolic response.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya City, Aichi State Japan
| | - Yasuhiro Kimura
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya City, Aichi State Japan
| | - Yuhki Toku
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya City, Aichi State Japan
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing, 400030 People’s Republic of China
| | - Yang Ju
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya City, Aichi State Japan
| |
Collapse
|
27
|
Tellería F, Mansilla S, Méndez D, Sepúlveda M, Araya-Maturana R, Castro L, Trostchansky A, Fuentes E. The Use of Triphenyl Phosphonium Cation Enhances the Mitochondrial Antiplatelet Effect of the Compound Magnolol. Pharmaceuticals (Basel) 2023; 16:210. [PMID: 37259359 PMCID: PMC9958981 DOI: 10.3390/ph16020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 08/31/2023] Open
Abstract
Although platelets are anucleated cells, they have fully functional mitochondria, and currently, it is known that several processes that occur in the platelet require the action of mitochondria. There are plenty of mitochondrial-targeted compounds described in the literature related to cancer, however, only a small number of studies have approached their interaction with platelet mitochondria and/or their effects on platelet activity. Recent studies have shown that magnolia extract and mitochondria-targeted magnolol can inhibit mitochondrial respiration and cell proliferation in melanoma and oral cancer cells, respectively, and they can also induce ROS and mitophagy. In this study, the effect of triphenylphosphonium cation, linked by alkyl chains of different lengths, to the organic compound magnolol on human-washed platelets was evaluated. We demonstrated that the addition of triphenylphosphonium by a four-carbon linker to magnolol (MGN4) considerably enhanced the Magnolol antiplatelet effect by a 3-fold decrease in the IC50. Additionally, platelets exposed to MGN4 5 µM showed several differences from the control including increased basal respiration, collagen-induced respiration, ATP-independent respiration, and reduced ATP-dependent respiration and non-mitochondrial respiration.
Collapse
Affiliation(s)
- Francisca Tellería
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Diego Méndez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Magdalena Sepúlveda
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Fuentes
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Department of Clinical Biochemistry and Immunohematology, Thrombosis Research Center, Medical Technology School, Faculty of Health Sciences, Universidad de Talca, Talca 3480094, Chile
| |
Collapse
|
28
|
AbuEid M, Keyes RF, McAllister D, Peterson F, Kadamberi IP, Sprague DJ, Chaluvally-Raghavan P, Smith BC, Dwinell MB. Fluorinated triphenylphosphonium analogs improve cell selectivity and in vivo detection of mito-metformin. iScience 2022; 25:105670. [PMID: 36567718 PMCID: PMC9768319 DOI: 10.1016/j.isci.2022.105670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Triphenylphosphonium (TPP+) conjugated compounds selectively target cancer cells by exploiting their hyperpolarized mitochondrial membrane potential. To date, studies have focused on modifying either the linker or the cargo of TPP+-conjugated compounds. Here, we investigated the biological effects of direct modification to TPP+ to improve the efficacy and detection of mito-metformin (MMe), a TPP+-conjugated probe we have shown to have promising preclinical efficacy against solid cancer cells. We designed, synthesized, and tested trifluoromethyl and methoxy MMe analogs (pCF3-MMe, mCF3-MMe, and pMeO-MMe) against multiple distinct human cancer cells. pCF3-MMe showed enhanced selectivity toward cancer cells compared to MMe, while retaining the same signaling mechanism. Importantly, pCF3-MMe allowed quantitative monitoring of cellular accumulation via 19F-NMR in vitro and in vivo. Furthermore, adding trifluoromethyl groups to TPP+ reduced toxicity in vivo while retaining anti-tumor efficacy, opening an avenue to de-risk these next-generation TPP+-conjugated compounds.
Collapse
Affiliation(s)
- Mahmoud AbuEid
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Center for Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Robert F. Keyes
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Francis Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | | | - Daniel J. Sprague
- Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53122, USA
| | | | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Corresponding author
| | - Michael B. Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Center for Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Corresponding author
| |
Collapse
|
29
|
Luo Y, Li Y, Huang Z, Li X, Wang Y, Hou J, Zhou S. A Nanounit Strategy Disrupts Energy Metabolism and Alleviates Immunosuppression for Cancer Therapy. NANO LETTERS 2022; 22:6418-6427. [PMID: 35856800 DOI: 10.1021/acs.nanolett.2c02475] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aberrant energy metabolism not only endows tumor cells with unlimited proliferative capacity but also contributes to the establishment of the glucose-deficient/lactate-rich immunosuppressive tumor microenvironment (ITM) impairing antitumor immunity. Herein, a novel metabolic nanoregulator (D/B/CQ@ZIF-8@CS) was developed by enveloping 2-deoxy-d-glucose (2-DG), BAY-876, and chloroquine (CQ) into zeolitic imidazolate framework-8 (ZIF-8) to simultaneously deprive the energy/nutrition supply of tumor cells and relieve the ITM for synergetic tumor starvation-immunotherapy. Aerobic glycolysis, glucose uptake, and autophagy flux could be concurrently blocked by D/B/CQ@ZIF-8@CS, cutting off the nutrition/energy supply and the source of lactate. Furthermore, inhibition of glucose uptake and aerobic glycolysis could effectively reverse the glucose-deficient/lactate-rich ITM, thus functionally inactivating regulatory T cells and augmenting anti-CTLA-4 immunotherapy. Such a two-pronged strategy would provide new insights for the design of metabolic intervention-based synergistic cancer therapy.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yingmin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Zhengjie Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xinyang Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
30
|
Huang D, Liu Q, Zhang M, Guo Y, Cui Z, Li T, Luo D, Xu B, Huang C, Guo J, Tam KY, Zhang M, Zhang SL, He Y. A Mitochondria-Targeted Phenylbutyric Acid Prodrug Confers Drastically Improved Anticancer Activities. J Med Chem 2022; 65:9955-9973. [PMID: 35818137 DOI: 10.1021/acs.jmedchem.2c00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phenylbutyric acid (PBA) has been reported as a dual inhibitor of pyruvate dehydrogenase kinases (PDKs) and histone deacetylases (HDACs), exhibiting anticancer effects. However, the low membrane permeability and poor cellular uptake limit its access to the target organelle, resulting in weak potencies against the intended targets. Herein, we report the design and identification of a novel 4-CF3-phenyl triphenylphosphonium-based PBA conjugate (53) with improved in vitro and in vivo anticancer activities. Compound 53 exhibited an IC50 value of 2.22 μM against A375 cells, outperforming the parent drug PBA by about 4000-fold. In the A375 cell-derived xenograft mouse model, 53 reduced the tumor growth by 76% at a dose of 40 mg/kg, while PBA only reduced the tumor growth by 10% at a dose of 80 mg/kg. On the basis of these results, 53 may be considered for further preclinical evaluations for cancer therapy.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Qingwang Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Zhiying Cui
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Biao Xu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Jian Guo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Min Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
31
|
Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl 2022; 37:614-633. [PMID: 35790487 DOI: 10.1177/08853282221111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction, characterized by the electron transport chain (ETC) leakage and reduced adenosine tri-phosphate synthesis, occurs primarily due to free radicals -induced mutations in either the mitochondrial deoxyribonucleic acid (mtDNA) or nuclear (n) DNA caused by pathogenic infections, toxicant exposures, adverse drug-effects, or other environmental exposures, leading to secondary dysfunction affecting ischemic, diabetic, cancerous, and degenerative diseases. In these concerns, mitochondria-targeted remedies may include a significant role in the protection and treatment of mitochondrial function to enhance its activity. Coenzyme Q10 pyridinol and pyrimidinol antioxidant analogues and other potent drug-compounds for their multifunctional radical quencher and other anti-toxic activities may take a significant therapeutic effectivity for ameliorating mitochondrial dysfunction. Moreover, the encapsulation of these bioactive ligands-attached potent compounds in vesicular system may enable them a superb biological effective for the treatment of mitochondria-targeted dysfunction-related diseases with least side effects. This review depicts mainly on mitochondrial enzymatic dysfunction and their amelioration by potent drugs with the usages of nanoparticulated delivery system against mitochondria-affected diseases.
Collapse
|
32
|
Kalyanaraman B, Cheng G, Hardy M. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities. Front Oncol 2022; 12:816504. [PMID: 35756631 PMCID: PMC9214210 DOI: 10.3389/fonc.2022.816504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/20/2022] [Indexed: 12/22/2022] Open
Abstract
Therapeutic targeting of tumor vulnerabilities is emerging as a key area of research. This review is focused on exploiting the vulnerabilities of tumor cells and the immune cells in the tumor immune microenvironment (TIME), including tumor hypoxia, tumor acidity, the bidirectional proton-coupled monocarboxylate transporters (MCTs) of lactate, mitochondrial oxidative phosphorylation (OXPHOS), and redox enzymes in the tricarboxylic acid cycle. Cancer cells use glucose for energy even under normoxic conditions. Although cancer cells predominantly rely on glycolysis, many have fully functional mitochondria, suggesting that mitochondria are a vulnerable target organelle in cancer cells. Thus, one key distinction between cancer and normal cell metabolism is metabolic reprogramming. Mitochondria-targeted small molecule inhibitors of OXPHOS inhibit tumor proliferation and growth. Another hallmark of cancer is extracellular acidification due lactate accumulation. Emerging results show that lactate acts as a fuel for mitochondrial metabolism and supports tumor proliferation and growth. Metabolic reprogramming occurs in glycolysis-deficient tumor phenotypes and in kinase-targeted, drug-resistant cancers overexpressing OXPHOS genes. Glycolytic cancer cells located away from the vasculature overexpress MCT4 transporter to prevent overacidification by exporting lactate, and the oxidative cancer cells located near the vasculature express MCT1 transporter to provide energy through incorporation of lactate into the tricarboxylic acid cycle. MCTs are, therefore, a vulnerable target in cancer metabolism. MCT inhibitors exert synthetic lethality in combination with metformin, a weak inhibitor of OXPHOS, in cancer cells. Simultaneously targeting multiple vulnerabilities within mitochondria shows synergistic antiproliferative and antitumor effects. Developing tumor-selective, small molecule inhibitors of OXPHOS with a high therapeutic index is critical to fully exploiting the mitochondrial vulnerabilities. We and others developed small-molecule inhibitors containing triphenylphosphonium cation that potently inhibit OXPHOS in tumor cells and tissues. Factors affecting tumor cell vulnerabilities also impact immune cells in the TIME. Glycolytic tumor cells supply lactate to the tumor-suppressing regulatory T cells overexpressing MCTs. Therapeutic opportunities for targeting vulnerabilities in tumor cells and the TIME, as well as the implications on cancer health disparities and cancer treatment, are addressed.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States.,Center for Disease Prevention Research, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Micael Hardy
- Aix Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Radicalaire (ICR), Marseille, France
| |
Collapse
|
33
|
Yang L, Li J, Guan Z, Zhang J, Wang X, Tang R. Carrier-free prodrug nanoparticles based on lonidamine and cisplatin for synergistic treatment of breast cancer. J Biomater Appl 2022; 37:634-645. [PMID: 35689328 DOI: 10.1177/08853282221107951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, we combined a derivative of cisplatin (CP) and the chemosensitizer lonidamine (LND) to design an amphiphilic prodrug, in which the ratio of LND to cisplatin was fixed at 2:1. Diaminedichlorodihydroxyplatinum (DH-CP) is a hydrophilic cisplatin derivative. Due to its appropriate amphiphilicity, this prodrug could self-assemble into stable nanoparticles (denoted as LNP-NPs). Under the action of excessive glutathione (GSH) in tumor cells, DH-CP could be reduced to cytotoxic cisplatin. In addition, the released LND could inhibit the metabolic process of tumor cells, and improving the sensitivity of tumor cells to cisplatin. In vitro studies demonstrated that LNP-NPs displayed significantly cytotoxicity on breast cancer cells, and the cell viability after co-incubation for 48 h (CP 16 μg/mL) were 18.77% (MCF-7) and 20.01% (EMT6), respectively. LNP-NPs could also significantly inhibit the growth of MCF-7 tumor-like spheroids, which were realized through the high coordination and cooperation between CP and LND. Therefore, the carrier-free drug delivery system based on LND and DH-CP is expected to achieve a good synergistic anti-tumor effect.
Collapse
Affiliation(s)
- Lu Yang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Junnan Li
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Zhaoyuan Guan
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Jingwen Zhang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, P. R. China
| |
Collapse
|
34
|
Pal AK, Sharma P, Zia A, Siwan D, Nandave D, Nandave M, Gautam RK. Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective. PATHOPHYSIOLOGY 2022; 29:200-222. [PMID: 35736645 PMCID: PMC9230911 DOI: 10.3390/pathophysiology29020017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer cells undergo transient EMT and MET phenomena or vice versa, along with the parallel interplay of various markers, often correlated as the determining factor in decoding metabolic profiling of breast cancers. Moreover, various cancer signaling pathways and metabolic changes occurring in breast cancer cells modulate the expression of such markers to varying extents. The existing research completed so far considers the expression of such markers as determinants regulating the invasiveness and survival of breast cancer cells. Therefore, this manuscript is crosstalk among the expression levels of such markers and their correlation in regulating the aggressiveness and invasiveness of breast cancer. We also attempted to cover the possible EMT-based metabolic targets to retard migration and invasion of breast cancer.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Prateek Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Alishan Zia
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
| | - Dipali Nandave
- Department of Dravyaguna, Karmavir V. T. Randhir Ayurved College, Boradi 425428, India;
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India; (A.K.P.); (P.S.); (A.Z.); (D.S.)
- Correspondence: (M.N.); (R.K.G.)
| | - Rupesh K. Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Ambala 134007, India
- Correspondence: (M.N.); (R.K.G.)
| |
Collapse
|
35
|
Peng Q, Ren X. Mapping of Female Breast Cancer Incidence and Mortality Rates to Socioeconomic Factors Cohort: Path Diagram Analysis. Front Public Health 2022; 9:761023. [PMID: 35178368 PMCID: PMC8843849 DOI: 10.3389/fpubh.2021.761023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Breast cancer is the leading cause of death in women around the world. Its occurrence and development have been linked to genetic factors, living habits, health conditions, and socioeconomic factors. Comparisons of incidence and mortality rates of female breast cancer are useful approaches to define cancer-related socioeconomic disparities. METHODS This was a retrospective observational cohort study on breast cancer of women in several developed countries over 30 years. Effects of socioeconomic factors were analyzed using a path diagram method. RESULTS We found a positive, significant association of public wealth on incidence and mortality of breast cancer, and the path coefficients in the structural equations are -0.51 and -0.39, respectively. The unemployment rate (UR) is critical and the path coefficients are all 0.2. The path coefficients of individual economic wealth to the rates of breast cancer are 0.18 and 0.27, respectively. CONCLUSION The influence of social pressure on the incidence and mortality of breast cancer was not typical monotonous. The survival rate of breast cancer determined by the ratio of mortality rate to incidence rate showed a similar pattern with socioeconomic factors.
Collapse
Affiliation(s)
- Qiongle Peng
- Blood Transfusion Department, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoling Ren
- Central Laboratory, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| |
Collapse
|
36
|
2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation. Biochem Pharmacol 2022; 199:115029. [PMID: 35381210 DOI: 10.1016/j.bcp.2022.115029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
Chloroethylnitrosoureas (CENUs) exert antitumor activity via producing dG-dC interstrand crosslinks (ICLs). However, tumor resistance make it necessary to find novel strategies to improve the therapeutic effect of CENUs. 2-Deoxy-D-glucose (2-DG) is a well-known glycolytic inhibitor, which can reprogram tumor energy metabolism closely related to tumor resistance. Here, we investigated the chemosensitization effect of 2-DG on l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) against glioblastoma cells and the underlying mechanisms. We found that 2-DG significantly increased the inhibitory effects of BCNU on tumor cells compared with BCNU alone, while 2-DG showed no obvious enhancing effect on the BCNU-induced cytotoxicity for normal HaCaT and HA1800 cells. Proliferation, migration and invasion determinations presented the same trend as survival on tumor cells. 2-DG plus BCNU increased the energy deficiency through a more effective inhibition of glycolytic pathway. Notably, the combination of 2-DG and BCNU aggravated oxidative stress in glioblastoma cells, along with a significant decrease in glutathione (GSH) levels, and an increase in intracellular reactive oxygen species (ROS). Subsequently, we demonstrated that the combination treatment led to increased apoptosis via activating mitochondria and endoplasmic reticulum stress (ERS) related apoptosis pathways. Finally, we found that the dG-dC level was significantly increased after 2-DG pretreatment compared to BCNU alone by HPLC-ESI-MS/MS analysis. Finally, in vivo, 2-DG plus BCNU significantly suppressed tumor growth with lower side effects compared with BCNU alone in tumor-bearing mice. In summary, we proposed that 2-DG may have potential to increase the sensitivity of glioblastoma cells to BCNU by regulating glycolysis, ROS and ERS pathways in clinical setting.
Collapse
|
37
|
Kalyanaraman B. Exploiting the tumor immune microenvironment and immunometabolism using mitochondria-targeted drugs: Challenges and opportunities in racial disparity and cancer outcome research. FASEB J 2022; 36:e22226. [PMID: 35233843 PMCID: PMC9242412 DOI: 10.1096/fj.202101862r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Black and Hispanic cancer patients have a higher incidence of cancer mortality. Many factors (e.g., socioeconomic differences, insufficient access to healthcare) contribute to racial disparity. Emerging research implicates biological disparity in cancer outcomes. Studies show distinct differences in the tumor immune microenvironment (TIME) in Black cancer patients. Studies also have linked altered mitochondrial metabolism to changes in immune cell activation in TIME. Recent publications revealed a novel immunomodulatory role for triphenylphosphonium-based mitochondrial-targeted drugs (MTDs). These are synthetically modified, naturally occurring molecules (e.g., honokiol, magnolol, metformin) or FDA-approved small molecule drugs (e.g., atovaquone, hydroxyurea). Modifications involve conjugating the parent molecule via an alkyl linker chain to a triphenylphosphonium moiety. These modified molecules (e.g., Mito-honokiol, Mito-magnolol, Mito-metformin, Mito-atovaquone, Mito-hydroxyurea) accumulate in tumor cell mitochondria more effectively than in normal cells and inhibit mitochondrial respiration, induce reactive oxygen species, activate AMPK and redox transcription factors, and inhibit cancer cell proliferation. Besides these intrinsic effects of MTDs in redox signaling and proliferation in tumors, MTDs induced extrinsic effects in the TIME of mouse xenografts. MTD treatment inhibited tumor-suppressive immune cells, myeloid-derived suppressor cells, and regulatory T cells, and activated T cells and antitumor immune effects. One key biological disparity in Black cancer patients was related to altered mitochondrial oxidative metabolism; MTDs targeting vulnerabilities in tumor cells and the TIME may help us understand this biological disparity. Clinical trials should include an appropriate number of Black and Hispanic cancer patients and should validate the intratumoral, antihypoxic effects of MTDs with imaging.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
- Center for Disease Prevention ResearchMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
38
|
Yaqoob MD, Xu L, Li C, Leong MML, Xu DD. Targeting Mitochondria for Cancer Photodynamic Therapy. Photodiagnosis Photodyn Ther 2022; 38:102830. [PMID: 35341979 DOI: 10.1016/j.pdpdt.2022.102830] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cancer remains a health-related concern globally from the ancient times till to date. The application of light to be used as therapeutic potential/agent has been used for several thousands of years. Photodynamic therapy (PDT) is a modern, non-invasive therapeutic modality for the treatment of various infections by bacteria, fungi, and viruses. Mitochondria are subcellular, double-membrane organelles that have the role in cancer and anticancer therapy. Mitochondria play a key role in regulation of apoptosis and these organelles produce most of the cell's energy which enhance its targeting objective. The role of mitochondria in anticancer approach is achieved by targeting its metabolism (glycolysis and TCA cycle) and apoptotic and ROS homeostasis. The role of mitochondria-targeted cancer therapies in photodynamic therapy have proven to be more effective than other similar non-targeting techniques. Particularly in PDT, mitochondria-targeting sensitizers are important as they have a crucial role in overcoming the hypoxia factor, resulting in high efficacy. IR-730 and IR-Pyr are the indocyine derivatives photosensitizers that play a crucial role in targeting mitochondria because of their better photostability during laser irradiation. Clinical and pre-clinical trials are going on this approach to target different solid tumors using mitochondrial targeted photodynamic therapy.
Collapse
Affiliation(s)
- Muhammad Danish Yaqoob
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China; Binzhou Medical University, Yantai, Shandong Province, PR China
| | - Long Xu
- Department of Radiology, Central Hospital of Dongying District, Dongying, Shandong, PR China
| | - Chuanfeng Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - Dan Dan Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
39
|
Combining PEGylated mito-atovaquone with MCT and Krebs cycle redox inhibitors as a potential strategy to abrogate tumor cell proliferation. Sci Rep 2022; 12:5143. [PMID: 35332210 PMCID: PMC8948292 DOI: 10.1038/s41598-022-08984-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Glycolytic and mitochondrial oxidative metabolism, which are two major energy sources in tumors, are potential targets in cancer treatment. Metabolic reprogramming from glycolysis to mitochondrial oxidative metabolism and vice versa is an adaptive strategy with which tumor cells obtain energy to survive and thrive under the compromised conditions of glycolysis and mitochondrial respiration. Developing highly potent, nontoxic, and tumor-selective oxidative phosphorylation (OXPHOS) inhibitors may help advance therapeutic targeting of mitochondrial drugs in cancer. The FDA-approved antimalarial drug atovaquone (ATO), a mitochondrial complex III inhibitor, was repurposed in cancer treatment. Here, we developed a new class of PEGylated mitochondria-targeted ATO (Mito-(PEG)n-ATO). Depending on the PEGylation chain length (n), Mito-PEG-ATO analogs inhibit both mitochondrial complex I- and complex III-induced oxygen consumption in human pancreatic (MiaPaCa-2) and brain (U87MG) cancer cells. Mito-PEG5-ATO is one of the most potent antiproliferative mitochondria-targeted compounds (IC50 = 38 nM) in MiaPaCa-2 cells, and is more effective than other inhibitors of OXPHOS in MiaPaCa-2 and U87MG cells. Furthermore, we show that the combined use of the most potent OXPHOS-targeted inhibitors (Mito-PEG5-ATO) and inhibitors of monocarboxylate transporters (MCT-1 and MCT-4), Krebs cycle redox metabolism, or glutaminolysis will synergistically abrogate tumor cell proliferation. Potential clinical benefits of these combinatorial therapies are discussed.
Collapse
|
40
|
Gao S, Dai Z, Xu H, Lai L. Pinpointing Cancer Sub-Type Specific Metabolic Tasks Facilitates Identification of Anti-cancer Targets. Front Med (Lausanne) 2022; 9:872024. [PMID: 35402442 PMCID: PMC8984102 DOI: 10.3389/fmed.2022.872024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumorigenesis. Understanding the metabolic changes in cancer cells may provide attractive therapeutic targets and new strategies for cancer therapy. The metabolic states are not the same in different cancer types or subtypes, even within the same sample of solid tumors. In order to understand the heterogeneity of cancer cells, we used the Pareto tasks inference method to analyze the metabolic tasks of different cancers, including breast cancer, lung cancer, digestive organ cancer, digestive tract cancer, and reproductive cancer. We found that cancer subtypes haves different propensities toward metabolic tasks, and the biological significance of these metabolic tasks also varies greatly. Normal cells treat metabolic tasks uniformly, while different cancer cells focus on different pathways. We then integrated the metabolic tasks into the multi-objective genome-scale metabolic network model, which shows higher accuracy in the in silico prediction of cell states after gene knockout than the conventional biomass maximization model. The predicted potential single drug targets could potentially turn into biomarkers or drug design targets. We further implemented the multi-objective genome-scale metabolic network model to predict synthetic lethal target pairs of the Basal and Luminal B subtypes of breast cancer. By analyzing the predicted synthetic lethal targets, we found that mitochondrial enzymes are potential targets for drug combinations. Our study quantitatively analyzes the metabolic tasks of cancer and establishes cancer type-specific metabolic models, which opens a new window for the development of specific anti-cancer drugs and provides promising treatment plans for specific cancer subtypes.
Collapse
Affiliation(s)
- Shuaishi Gao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hanyu Xu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Luhua Lai,
| |
Collapse
|
41
|
Drp1-Mediated Mitochondrial Metabolic Dysfunction Inhibits the Tumor Growth of Pituitary Adenomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5652586. [PMID: 35368865 PMCID: PMC8967574 DOI: 10.1155/2022/5652586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/01/2021] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Metabolic changes have been suggested to be a hallmark of tumors and are closely associated with tumorigenesis. In a previous study, we demonstrated the role of lactate dehydrogenase in regulating abnormal glucose metabolism in pituitary adenomas (PA). As the key organelle of oxidative phosphorylation (OXPHOS), mitochondria play a vital role in the energy supply for tumor cells. However, few attempts have been made to elucidate mitochondrial metabolic homeostasis in PA. Dynamin-related protein 1 (Drp1) is a member of the dynamin superfamily of GTPases, which mediates mitochondrial fission. This study is aimed at investigating whether Drp1 affects the progression of PA through abnormal mitochondrial metabolism. We analyzed the expression of dynamin-related protein 1 (Drp1) in 20 surgical PA samples. The effects of Drp1 on PA growth were assessed in vitro and in xenograft models. We found an upregulation of Drp1 in PA samples with a low proliferation index. Knockdown or inhibition of Drp1 enhanced the proliferation of PA cell lines in vitro, while overexpression of Drp1 could reversed such effects. Mechanistically, overexpressed Drp1 damaged mitochondria by overproduction of reactive oxygen species (ROS), which induced mitochondrial OXPHOS inhibition and decline of ATP production. The energy deficiency inhibited proliferation of PA cells. In addition, overexpressed Drp1 promoted cytochrome c release from damaged mitochondria into the cytoplasm and then activated the downstream caspase apoptotic cascade reaction, which induced apoptosis of PA cells. Moreover, the decreased ATP production induced by Drp1 overexpressing activated the AMPK cellular energy stress sensor and enhanced autophagy through the AMPK-ULK1 pathway, which might play a protective role in PA growth. Furthermore, overexpression of Drp1 repressed PA growth in vivo. Our data indicates that Drp1-mediated mitochondrial metabolic dysfunction inhibits PA growth by affecting cell proliferation, apoptosis, and autophagy. Selectively targeting mitochondrial metabolic homeostasis stands out as a promising antineoplastic strategy for PA therapy.
Collapse
|
42
|
Glucose deprivation using 2-deoxyglucose and acarbose induce metabolic oxidative stress and apoptosis in female mice bearing breast cancer. Biochimie 2022; 195:59-66. [DOI: 10.1016/j.biochi.2022.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
|
43
|
Yoon NG, Lee H, Kim SY, Hu S, Kim D, Yang S, Hong KB, Lee JH, Kang S, Kim BG, Myung K, Lee C, Kang BH. Mitoquinone Inactivates Mitochondrial Chaperone TRAP1 by Blocking the Client Binding Site. J Am Chem Soc 2021; 143:19684-19696. [PMID: 34758612 DOI: 10.1021/jacs.1c07099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat shock protein 90 (Hsp90) family proteins are molecular chaperones that modulate the functions of various substrate proteins (clients) implicated in pro-tumorigenic pathways. In this study, the mitochondria-targeted antioxidant mitoquinone (MitoQ) was identified as a potent inhibitor of mitochondrial Hsp90, known as a tumor necrosis factor receptor-associated protein 1 (TRAP1). Structural analyses revealed an asymmetric bipartite interaction between MitoQ and the previously unrecognized drug binding sites located in the middle domain of TRAP1, believed to be a client binding region. MitoQ effectively competed with TRAP1 clients, and MitoQ treatment facilitated the identification of 103 TRAP1-interacting mitochondrial proteins in cancer cells. MitoQ and its redox-crippled SB-U014/SB-U015 exhibited more potent anticancer activity in vitro and in vivo than previously reported mitochondria-targeted TRAP1 inhibitors. The findings indicate that targeting the client binding site of Hsp90 family proteins offers a novel strategy for the development of potent anticancer drugs.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Darong Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Sujae Yang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ki Bum Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
44
|
Sharma P, Sharma V, Ahluwalia TS, Dogra N, Kumar S, Singh S. Let-7a induces metabolic reprogramming in breast cancer cells via targeting mitochondrial encoded ND4. Cancer Cell Int 2021; 21:629. [PMID: 34838007 PMCID: PMC8627041 DOI: 10.1186/s12935-021-02339-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES MicroRNA (miRNA) that translocate from the nucleus to mitochondria are referred to as mitochondrial microRNA (mitomiR). Albeit mitomiRs have been shown to modulate gene expression, their functional impact within mitochondria is unknown. The main objective of this study is to investigate whether the mitochondrial genome is regulated by miR present inside the mitochondria. METHODS AND RESULTS Here, we report mitomiR let-7a regulates mitochondrial transcription in breast cancer cells and reprogram the metabolism accordingly. These effects were mediated through the interaction of let-7a with mtDNA, as studied by RNA pull-down assays, altering the activity of Complex I in a cell line-specific manner. Our study, for the first time, identifies the role of mitomiR (let-7a) in regulating the mitochondrial genome by transcriptional repression and its contribution to regulating mitochondrial metabolism of breast cancer cells. CONCLUSION These findings uncover a novel mechanism by which mitomiR regulates mitochondrial transcription.
Collapse
Affiliation(s)
- Praveen Sharma
- Molecular Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vibhuti Sharma
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | | | - Nilambra Dogra
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | | | - Sandeep Singh
- Molecular Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
45
|
Coronel-Hernández J, Pérez-Yépez EA, Delgado-Waldo I, Contreras-Romero C, Jacobo-Herrera N, Cantú-De León D, Pérez-Plasencia C. Aberrant Metabolism as Inductor of Epigenetic Changes in Breast Cancer: Therapeutic Opportunities. Front Oncol 2021; 11:676562. [PMID: 34692471 PMCID: PMC8531643 DOI: 10.3389/fonc.2021.676562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Aberrant metabolism is arising interest in the scientific community not only because of the role it plays in the development and establishment of the tumor mass but also the possibility of drug poisoning of key enzymes overexpressed in tumor cells. Moreover, tumor metabolism provides key molecules to maintain the epigenetic changes that are also an undisputed characteristic of each tumor type. This metabolic change includes the Warburg effect and alterations in key pathways involved in glutaminolysis, pentose phosphate, and unsaturated fatty acid biosynthesis. Modifications in all these pathways have consequences that impact genetics and epigenetics processes such as DNA methylation patterns, histone post-translational modifications, triggering oncogenes activation, and loss in tumor suppressor gene expression to lead the tumor establishment. In this review, we describe the metabolic rearrangement and its association with epigenetic regulation in breast cancer, as well as its implication in biological processes involved in cancer progression. A better understanding of these processes could help to find new targets for the diagnosis, prognosis, and treatment of this human health problem.
Collapse
Affiliation(s)
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedra-CONACYT, Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
| | | | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - David Cantú-De León
- Unidad de Investigación en Cáncer, Instituto Nacional de Cancerología , Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City, Mexico.,Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
46
|
Kalyanaraman B. Reactive oxygen species, proinflammatory and immunosuppressive mediators induced in COVID-19: overlapping biology with cancer. RSC Chem Biol 2021; 2:1402-1414. [PMID: 34704045 PMCID: PMC8496060 DOI: 10.1039/d1cb00042j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the published literature linking the different mechanisms focused on oxidative stress and inflammation that contribute to COVID-19 disease severity. The objective is to bring together potential proinflammatory mechanisms of COVID-19 pathogenesis and address mitigation strategies using naturally occurring compounds and FDA-approved drugs. Outstanding questions addressed include the following: What is the mechanistic basis for linking enhanced vulnerability in COVID-19 to increased oxidative damage and proinflammatory mediators (e.g., cytokines), especially in high-risk people? Can we repurpose anti-inflammatory and immunomodulatory agents to mitigate inflammation in COVID-19 patients? How does 2-deoxy-d-glucose function as an anti-COVID drug? COVID-19, cancer biology, and immunotherapy share many mechanistic similarities. Repurposing drugs that already have been FDA-approved for mitigating inflammation and immunosuppression in cancer may be a way to counteract disease severity, progression, and chronic inflammation in COVID-19. What are the long-term effects of reactive oxygen species-inducing immune cells and sustained inflammation in so-called long-haulers (long COVID) after recovery from COVID-19? Can we use mitochondria-targeted agents prophylactically to prevent inflammation and boost immunity in long-haulers? Addressing the oxidative chemical biology of COVID-19 and the mechanistic commonalities with cancer may provide new insights potentially leading to appropriate clinical trials and new treatments.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Cancer Center, Center for Disease Prevention Research, Medical College of Wisconsin 8701 Watertown Plank Road Milwaukee WI 53226 USA
| |
Collapse
|
47
|
Jana B, Kim S, Chae JB, Chung H, Kim C, Ryu JH. Mitochondrial Membrane Disrupting Molecules for Selective Killing of Senescent Cells. Chembiochem 2021; 22:3391-3397. [PMID: 34580971 DOI: 10.1002/cbic.202100412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Indexed: 11/06/2022]
Abstract
Cellular senescence, a stable form of cell cycle arrest, facilitates protection from tumorigenesis and aids in tissue repair as they accumulate in the body at an early age. However, long-term retention of senescent cells causes inflammation, aging of the tissue, and progression of deadly diseases such as obesity, diabetes, and atherosclerosis. Various attempts have been made to achieve selective elimination of senescent cells from the body, yet little has been explored in designing the mitochondria-targeted senolytic agent. Many characteristics of senescence are associated with mitochondria. Here we have designed a library of alkyl-monoquaternary ammonium-triphenyl phosphine (TPP) and alkyl-diquaternary ammonium-TPP of varying alkyl chain lengths, which target the mitochondria; we also studied their senolytic properties. It was observed that the alkyl-diquaternary ammonium-TPP with the longest chain length induced apoptosis in senescent cells selectively via an increase of reactive oxygen species (ROS) and mitochondrial membrane disruption. This study demonstrates that mitochondria could be a potential target for designing new small molecules as senolytic agents for the treatment of a variety of dysfunctions associated with pathological aging.
Collapse
Affiliation(s)
- Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jae-Byoung Chae
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, Korea
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul, Korea
| | - Chaekyu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
48
|
Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress. Biomedicines 2021; 9:biomedicines9091101. [PMID: 34572286 PMCID: PMC8466651 DOI: 10.3390/biomedicines9091101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.
Collapse
|
49
|
Andreidesz K, Szabo A, Kovacs D, Koszegi B, Bagone Vantus V, Vamos E, Isbera M, Kalai T, Bognar Z, Kovacs K, Gallyas F. Cytostatic Effect of a Novel Mitochondria-Targeted Pyrroline Nitroxide in Human Breast Cancer Lines. Int J Mol Sci 2021; 22:ijms22169016. [PMID: 34445722 PMCID: PMC8396499 DOI: 10.3390/ijms22169016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria have emerged as a prospective target to overcome drug resistance that limits triple-negative breast cancer therapy. A novel mitochondria-targeted compound, HO-5114, demonstrated higher cytotoxicity against human breast cancer lines than its component-derivative, Mito-CP. In this study, we examined HO-5114′s anti-neoplastic properties and its effects on mitochondrial functions in MCF7 and MDA-MB-231 human breast cancer cell lines. At a 10 µM concentration and within 24 h, the drug markedly reduced viability and elevated apoptosis in both cell lines. After seven days of exposure, even at a 75 nM concentration, HO-5114 significantly reduced invasive growth and colony formation. A 4 h treatment with 2.5 µM HO-5114 caused a massive loss of mitochondrial membrane potential, a decrease in basal and maximal respiration, and mitochondrial and glycolytic ATP production. However, reactive oxygen species production was only moderately elevated by HO-5114, indicating that oxidative stress did not significantly contribute to the drug’s anti-neoplastic effect. These data indicate that HO-5114 may have potential for use in the therapy of triple-negative breast cancer; however, the in vivo toxicity and anti-neoplastic effectiveness of the drug must be determined to confirm its potential.
Collapse
Affiliation(s)
- Kitti Andreidesz
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Viola Bagone Vantus
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Eszter Vamos
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Mostafa Isbera
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (M.I.); (T.K.)
| | - Tamas Kalai
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (M.I.); (T.K.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 7624 Pecs, Hungary; (K.A.); (A.S.); (D.K.); (B.K.); (V.B.V.); (E.V.); (Z.B.); (K.K.)
- Szentagothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- HAS-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
- Correspondence: ; Tel.: +36-72-536-278
| |
Collapse
|
50
|
Abebe F, Hopkins MD, Vodnala SN, Sheaff RJ, Lamar AA. Development of a Rapid In Vitro Screening Assay Using Metabolic Inhibitors to Detect Highly Selective Anticancer Agents. ACS OMEGA 2021; 6:18333-18343. [PMID: 34308064 PMCID: PMC8296616 DOI: 10.1021/acsomega.1c02203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 05/06/2023]
Abstract
Traditional long exposure (24-72 h) cell viability assays for identification of potential drug compounds can fail to identify compounds that are: (a) biologically active but not toxic and (b) inactive without the addition of a synergistic additive. Herein, we report the development of a rapid (1-2 h) compound screening technique using a commercially available cell viability kit (CellTiter-Glo) that has led to the detection of compounds that were not identified as active agents using traditional cytotoxicity screening methods. These compounds, in combination with metabolic inhibitor 2-deoxyglucose, display selectivity toward a pancreatic cancer cell line. An evaluation of 11 mammalian cell lines against 30 novel compounds and two metabolic inhibitors is reported. The inclusion of metabolic inhibitors during an initial screening process, and not simply during mechanistic investigations of a previously identified hit compound, provides a rapid and sensitive tool for identifying drug candidates potentially overlooked by other methods.
Collapse
|