1
|
Zaied H, Ashmawy MI, Abdel Karim AE, Ghareeb DA, El Wakil A. Berberine-loaded albumin nanoparticles alleviate liver damage in rats by modulating mitochondrial biogenesis and mitochondria-endoplasmic reticulum interactions. Biochem Biophys Res Commun 2025; 754:151555. [PMID: 40036899 DOI: 10.1016/j.bbrc.2025.151555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The liver performs essential functions critical to overall health. This study evaluated the efficacy of berberine-loaded albumin nanoparticles (BRB-BSA NPs) and cisplatin in mitigating hepatic damage caused by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) in male albino rats. Molecular modeling was conducted to explore BRB interactions with Sirt1, a NAD+-dependent protein deacetylase involved in key cellular pathways. BRB-BSA NPs showed superior results to cisplatin in reducing liver enzymes, oxidative stress, and proinflammatory markers while enhancing antioxidant activities. Cisplatin, however, was more effective in restoring mitochondrial pathway regulators. Additionally, BRB-BSA NPs improved liver tissue histoarchitecture and ultrastructure, bringing them closer to normal. In conclusion, BRB-BSA NPs demonstrated potent efficacy in alleviating DEN/CCl4-induced liver injury in male rats.
Collapse
Affiliation(s)
- Heba Zaied
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mohamed I Ashmawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed E Abdel Karim
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Qian X, Zhou Q, Ouyang Y, Wu X, Sun X, Wang S, Duan Y, Hu Z, Hou Y, Wang Z, Chen X, Wang KL, Shen Y, Dong B, Lin Y, Wen T, Tian Q, Guo Z, Li M, Xiao L, Wu Q, Meng Y, Liu G, Ying H, Zhou Y, Zhang W, Duan S, Bai X, Liu T, Zhan P, Lu Z, Xu D. Transferrin promotes fatty acid oxidation and liver tumor growth through PHD2-mediated PPARα hydroxylation in an iron-dependent manner. Proc Natl Acad Sci U S A 2025; 122:e2412473122. [PMID: 39888917 PMCID: PMC11804496 DOI: 10.1073/pnas.2412473122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/02/2025] [Indexed: 02/02/2025] Open
Abstract
Tumor cells reshape iron and lipid metabolism for their rapid proliferation. However, how tumor cells coordinate the interplay between tumor cell-specific iron homeostasis and lipid metabolism reprogramming to counteract energy shortages remains unclear. Here, we demonstrated that glucose deprivation in hepatocellular carcinoma (HCC) cells induced AMPK-dependent Transferrin S685 phosphorylation, which exposed Transferrin nuclear localization signal (NLS) for binding to importin α7 and subsequent nuclear translocation. Nucleus-translocated Transferrin interacts with PPARα and enhance its protein stability to increase fatty acid oxidation (FAO) upon glucose deprivation. Mechanistically, PPARα-associated Transferrin upregulates iron-dependent PHD2-mediated PPARα P87 hydroxylation and subsequently disrupts the binding of MDM2 to PPARα, therefore inhibiting MDM2-mediated PPARα ubiquitination and degradation. Reconstitution of Transferrin S685A and NLS mutation or knock-in expression of PPARα P87A inhibited PPARα-mediated FAO upon energy stress, enhanced HCC cell apoptosis, and impeded liver tumor growth in mice. Importantly, combined treatment with Transferrin pS685 blocking peptide suppressing AMPK-Transferrin-PPARα axis could synergize with a well-established AMPK activator Metformin to inhibit tumor growth. Additionally, Transferrin pS685-mediated PPARα P87 hydroxylation is positively correlated with PPARα expression levels in human HCC specimens and poor patient prognosis. These findings revealed a mechanism by which Transferrin can sense energy stress to promote the hydroxylation and protein stability of PPARα through iron-dependent activation of PHD2 and underscore the moonlighting function of Transferrin in lipid catabolism and liver tumor development.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, China
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai200125, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaohong Wu
- National Health Commission (NHC) Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang150081, China
| | - Xue Sun
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150081, China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Yuran Duan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Zhiqiang Hu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Yueru Hou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Zheng Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Xiaohan Chen
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150081, China
| | | | - Yuli Shen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Bofei Dong
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Yanni Lin
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Ting Wen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Qi Tian
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Zhanpeng Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Min Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Hangjie Ying
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, China
| | - Yahui Zhou
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou310022, China
| | - Wuchang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai200125, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou310000, China
| | - Xueli Bai
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
| | - Tong Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150081, China
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang150081, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong250012, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
| | - Daqian Xu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang310029, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang310029, China
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang150081, China
| |
Collapse
|
3
|
Zheng X, Luo Y, Huo R, Wang Y, Chen Y, Chen M, Zhao Q, Li K, Zhang H, Li X, Li X, Zhang H, He Z, Huang L, Yang CT. Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur. Sci Rep 2025; 15:3708. [PMID: 39880887 PMCID: PMC11779946 DOI: 10.1038/s41598-024-83530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability. This study aimed to investigate the effects of PSCP on HCC and elucidate the underlying mechanisms. We utilized bioinformatics algorithms for clustering, function enrichment, feature screening and survival analysis on proteomic data from the Cancer Proteome Atlas (CPTAC) and transcriptomic data from the Cancer Genome Atlas (TCGA). The impact of PSCP on HCC was assessed in vitro and in vivo, focusing on the expression and activity of p53 and AMP-activated protein kinase (AMPK), as well as mitochondrial function. The molecular target of PSCP was identified using Autodock, and binding interactions were visually analyzed. Sulfur metabolism was found to be reprogrammed in HCC, with downregulation of sulfur-related pathways correlating with poor patient prognosis. PSCP treatment significantly inhibited HCC tumor growth in an allograft model, reduced cell viability and proliferation, and induced apoptosis. PSCP potently increased p53 expression and induced AMPK phosphorylation in SNU398 HCC cells. AMPK suppression diminished PSCP-induced p53 upregulation. PSCP also impaired mitochondrial function by inhibiting mitochondrial respiratory complex I, with Ndus3 likely being the target of PSCP's action. Supplementation with ATP significantly countered PSCP-induced SNU398 cell injury. Our findings suggest that the reprogramming of sulfur-related metabolic pathways is pivotal in HCC. PSCP presents as a promising therapeutic strategy by activating the AMPK-p53 signaling axis.
Collapse
Affiliation(s)
- Xue Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuhua Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rui Huo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiwen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Youbang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mianrong Chen
- Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511447, China
| | - Qi Zhao
- Department of Laboratory Medicine, Lecong Hospital, Foshan, 528315, China
| | - Kexin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hanyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaotong Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiang Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hui Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zaopeng He
- Department of Laboratory Medicine, Lecong Hospital, Foshan, 528315, China.
| | - Li Huang
- Department of PancreatoBiliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chun-Tao Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Laboratory Medicine, Lecong Hospital, Foshan, 528315, China.
| |
Collapse
|
4
|
Miao X, Zhang J, Huang W, Wang Y, Jin A, Cao J, Zhao Z. Research Progress of SGLT2 Inhibitors in Cancer Treatment. Drug Des Devel Ther 2025; 19:505-514. [PMID: 39872633 PMCID: PMC11771169 DOI: 10.2147/dddt.s485755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Sodium glucose co-transporter 2 (SGLT2) inhibitors represent a novel class of hypoglycemic drugs that have emerged in recent years. These inhibitors function primarily by blocking the reabsorption of glucose in the kidneys, specifically targeting the SGLT2 proteins in the proximal convoluted tubules. This inhibition results in the reduction of blood glucose levels through increased glucose excretion in the urine. Recent studies have identified SGLT2 expression in various cancer types, suggesting that SGLT2 inhibition can potentially suppress tumor growth. This article provides a comprehensive review of the role of SGLT2 in tumorigenesis and tumor progression, and explores the underlying mechanisms and potential therapeutic applications of SGLT2 inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Xiaoyong Miao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianing Zhang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Weiyan Huang
- Student Brigade, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yifei Wang
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Aixia Jin
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Jianping Cao
- Department of Anesthesiology, Naval Medical Center, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhenzhen Zhao
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Hidalgo F, Ferretti AC, Etichetti CB, Baffo E, Pariani AP, Maknis TR, Bussi J, Girardini JE, Larocca MC, Favre C. Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis. Sci Rep 2024; 14:21275. [PMID: 39261583 PMCID: PMC11390941 DOI: 10.1038/s41598-024-72309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) associated with viral or metabolic liver diseases is a growing cancer without effective therapy. AMPK is downregulated in HCC and its activation diminishes tumor growth. Alpha lipoic acid (ALA), an indirect AMPK activator that inhibits hepatic steatosis, shows antitumor effects in different cancers. We aimed to study its putative action in liver-cancer derived cell lines through AMPK signaling. We performed cytometric studies for apoptosis and cell cycle, and 2D and 3D migration analysis in HepG2/C3A and Hep3B cells. ALA led to significant inhibition of cell migration/invasion only in HepG2/C3A cells. We showed that these effects depended on AMPK, and ALA also increased the levels and nuclear compartmentalization of the AMPK target p53. The anti-invasive effect of ALA was abrogated in stable-silenced (shTP53) versus isogenic-TP53 HepG2/C3A cells. Furthermore, ALA inhibited epithelial-mesenchymal transition (EMT) in control HepG2/C3A but not in shTP53 nor in Hep3B cells. Besides, we spotted that in patients from the HCC-TCGA dataset some EMT genes showed different expression patterns or survival depending on TP53. ALA emerges as a potent activator of AMPK-p53 axis in HCC cells, and it decreases migration/invasion by reducing EMT which could mitigate the disease in wild-type TP53 patients.
Collapse
Affiliation(s)
- Florencia Hidalgo
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Anabela C Ferretti
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Carla Borini Etichetti
- Institute of Clinical and Experimental Immunology of Rosario (IDICER), CONICET-University of Rosario, Rosario, Argentina
| | - Emilia Baffo
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Alejandro P Pariani
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Tomás Rivabella Maknis
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Javier Bussi
- School of Statistics, University of Rosario, Rosario, Argentina
| | - Javier E Girardini
- Institute of Clinical and Experimental Immunology of Rosario (IDICER), CONICET-University of Rosario, Rosario, Argentina
| | - María C Larocca
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina
| | - Cristián Favre
- Institute of Experimental Physiology (IFISE), School of Biochemical and Pharmaceutical Sciences, CONICET-University of Rosario, Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
6
|
Xie L, Li C, Wang C, Wu Z, Wang C, Chen C, Chen X, Zhou D, Zhou Q, Lu P, Ding C, Liu C, Lin J, Zhang X, Yu X, Yu W. Aspirin-Mediated Acetylation of SIRT1 Maintains Intestinal Immune Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306378. [PMID: 38482749 PMCID: PMC11109641 DOI: 10.1002/advs.202306378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Indexed: 05/23/2024]
Abstract
Aspirin, also named acetylsalicylate, can directly acetylate the side-chain of lysine in protein, which leads to the possibility of unexplained drug effects. Here, the study used isotopic-labeling aspirin-d3 with mass spectrometry analysis to discover that aspirin directly acetylates 10 HDACs proteins, including SIRT1, the most studied NAD+-dependent deacetylase. SIRT1 is also acetylated by aspirin in vitro. It is also identified that aspirin directly acetylates lysine 408 of SIRT1, which abolishes SIRT1 deacetylation activity by impairing the substrates binding affinity. Interestingly, the lysine 408 of SIRT1 can be acetylated by CBP acetyltransferase in cells without aspirin supplement. Aspirin can inhibit SIRT1 to increase the levels of acetylated p53 and promote p53-dependent apoptosis. Moreover, the knock-in mice of the acetylation-mimic mutant of SIRT1 show the decreased production of pro-inflammatory cytokines and maintain intestinal immune homeostasis. The study indicates the importance of the acetylated internal functional site of SIRT1 in maintaining intestinal immune homeostasis.
Collapse
Affiliation(s)
- Liangguo Xie
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chaoqun Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chao Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhen Wu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Changchun Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chunyu Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaojian Chen
- Department of Colorectal and Anal SurgeryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dejian Zhou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Qiang Zhou
- Department of Research Center for Molecular Recognition and SynthesisDepartment of ChemistryFudan UniversityShanghaiChina
| | - Ping Lu
- Department of Research Center for Molecular Recognition and SynthesisDepartment of ChemistryFudan UniversityShanghaiChina
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Chen‐Ying Liu
- Department of Colorectal and Anal SurgeryXinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinzhong Lin
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xumin Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Xiaofei Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Sun M, Sun J, Sun W, Li X, Wang Z, Sun L, Wang Y. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1369352. [PMID: 38595915 PMCID: PMC11002155 DOI: 10.3389/fphar.2024.1369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer and diabetes are significant diseases that pose a threat to human health. Their interconnection is complex, particularly when they coexist, often necessitating multiple therapeutic approaches to attain remission. Sodium-glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a treatment for hyperglycemia, but subsequently exhibited noteworthy extra-glycemic properties, such as being registered for the treatment of heart failure and chronic kidney disease, especially with co-existing albuminuria, prompting its assessment as a potential treatment for various non-metabolic diseases. Considering its overall tolerability and established use in diabetes management, SGLT-2i may be a promising candidate for cancer therapy and as a supplementary component to conventional treatments. This narrative review aimed to examine the potential roles and mechanisms of SGLT-2i in the management of diverse types of cancer. Future investigations should focus on elucidating the antitumor efficacy of individual SGLT-2i in different cancer types and exploring the underlying mechanisms. Additionally, clinical trials to evaluate the safety and feasibility of incorporating SGLT-2i into the treatment regimen of specific cancer patients and determining appropriate dosage combinations with established antitumor agents would be of significant interest.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Jilei Sun
- Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Wei Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaonan Li
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
8
|
Kang JA, Kim YJ, Jang KY, Moon HW, Lee H, Lee S, Song HK, Cho SW, Yoo YS, Han HG, Kim MJ, Chung MJ, Choi CY, Lee C, Chung C, Hur GM, Kim YS, Jeon YJ. SIRT1 ISGylation accelerates tumor progression by unleashing SIRT1 from the inactive state to promote its deacetylase activity. Exp Mol Med 2024; 56:656-673. [PMID: 38443596 PMCID: PMC10985095 DOI: 10.1038/s12276-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
ISG15 is an interferon-stimulated ubiquitin-like protein (UBL) with multifaceted roles as a posttranslational modifier in ISG15 conjugation (ISGylation). However, the mechanistic consequences of ISGylation in cancer have not been fully elucidated, largely due to a lack of knowledge on the ISG15 target repertoire. Here, we identified SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, as a new target for ISGylation. SIRT1 ISGylation impairs the association of SIRT1 with its negative regulator, deleted in breast cancer 1 (DBC1), which unleashes SIRT1 from its inactive state and leads to an increase in its deacetylase activity. Importantly, SIRT1 ISGylation promoted lung cancer progression and limited lung cancer cell sensitivity to DNA damage-based therapeutics in vivo and in vitro models. The levels of ISG15 mRNA and protein were significantly higher in lung cancer tissues than in adjacent normal tissues. Accordingly, elevated expression of SIRT1 and ISG15 was associated with poor prognosis in lung cancer patients, a finding that could be translated for lung cancer patient stratification and disease outcome evaluation. Taken together, our findings provide a mechanistic understanding of the regulatory effect of SIRT1 ISGylation on tumor progression and therapeutic efficacy in lung cancer.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yoon Jung Kim
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonjeong Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Sun Yoo
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Min-Ju Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University, School of Medicine & Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
9
|
Pokhrel RH, Acharya S, Mishra S, Gu Y, Manzoor U, Kim JK, Park Y, Chang JH. AMPK Alchemy: Therapeutic Potentials in Allergy, Aging, and Cancer. Biomol Ther (Seoul) 2024; 32:171-182. [PMID: 38346909 PMCID: PMC10902700 DOI: 10.4062/biomolther.2023.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Wang Z, Xu T, Sun Y, Zhang X, Wang X. AMPK/PGC-1α and p53 modulate VDAC1 expression mediated by reduced ATP level and metabolic oxidative stress in neuronal cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:162-173. [PMID: 38298056 PMCID: PMC10984866 DOI: 10.3724/abbs.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/12/2023] [Indexed: 02/02/2024] Open
Abstract
Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.
Collapse
Affiliation(s)
- Zhitong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
- Department of PharmacyPeking University Third HospitalInstitute for Drug EvaluationPeking University Health Science CenterTherapeutic Drug Monitoring and Clinical Toxicology CenterPeking UniversityBeijing100191China
| | - Tingting Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Xiang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesDepartment of PharmacologyInstitute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
11
|
Chen X, Wang Z, Li C, Zhang Z, Lu S, Wang X, Liang Q, Zhu X, Pan C, Wang Q, Ji Z, Wang Y, Piao M, Chi G, Ge P. SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via induction of NAD+ depletion-dependent activation of ATF3. Redox Biol 2024; 69:103030. [PMID: 38181705 PMCID: PMC10791567 DOI: 10.1016/j.redox.2024.103030] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis is a type of programmed cell death resulting from iron overload-dependent lipid peroxidation, and could be promoted by activating transcription factor 3 (ATF3). SIRT1 is an enzyme accounting for removing acetylated lysine residues from target proteins by consuming NAD+, but its role remains elusive in ferroptosis and activating ATF3. In this study, we found SIRT1 was activated during the process of RSL3-induced glioma cell ferroptosis. Moreover, the glioma cell death was aggravated by SIRT1 activator SRT2183, but suppressed by SIRT inhibitor EX527 or when SIRT1 was silenced with siRNA. These indicated SIRT1 sensitized glioma cells to ferroptosis. Furthermore, we found SIRT1 promoted RSL3-induced expressional upregulation and nuclear translocation of ATF3. Silence of ATF3 with siRNA attenuated RSL3-induced increases of ferrous iron and lipid peroxidation, downregulation of SLC7A11 and GPX4 and depletion of cysteine and GSH. Thus, SIRT1 promoted glioma cell ferroptosis by inducting ATF3 activation. Mechanistically, ATF3 activation was reinforced when RSL3-induced decline of NAD+ was aggravated by FK866 that could inhibit NAD + synthesis via salvage pathway, but suppressed when intracellular NAD+ was maintained at higher level by supplement of exogenous NAD+. Notably, the NAD + decline caused by RSL3 was enhanced when SIRT1 was further activated by SRT2183, but attenuated when SIRT1 activation was inhibited by EX527. These indicated SIRT1 promoted ATF3 activation via consumption of NAD+. Finally, we found RSL3 activated SIRT1 by inducing reactive oxygen species-dependent upregulation of AROS. Together, our study revealed SIRT1 activated by AROS sensitizes glioma cells to ferroptosis via activation of ATF3-dependent inhibition of SLC7A11 and GPX4.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhao Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qi Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaoxi Zhu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chengliang Pan
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Qingxuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhilin Ji
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yubo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Chen Y, Han Z, Zhang L, Gao C, Wei J, Yang X, Han Y, Li Y, Zhang C, Wei Y, Dong J, Xun W, Sun W, Zhang T, Zhang H, Chen J, Yuan P. TIMELESS promotes reprogramming of glucose metabolism in oral squamous cell carcinoma. J Transl Med 2024; 22:21. [PMID: 38178094 PMCID: PMC10768318 DOI: 10.1186/s12967-023-04791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), the predominant malignancy of the oral cavity, is characterized by high incidence and low survival rates. Emerging evidence suggests a link between circadian rhythm disruptions and cancer development. The circadian gene TIMELESS, known for its specific expression in various tumors, has not been extensively studied in the context of OSCC. This study aims to explore the influence of TIMELESS on OSCC, focusing on cell growth and metabolic alterations. METHODS We analyzed TIMELESS expression in OSCC using western blot, immunohistochemistry, qRT-PCR, and data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). The role of TIMELESS in OSCC was examined through clone formation, MTS, cell cycle, and EdU assays, alongside subcutaneous tumor growth experiments in nude mice. We also assessed the metabolic impact of TIMELESS by measuring glucose uptake, lactate production, oxygen consumption, and medium pH, and investigated its effect on key metabolic proteins including silent information regulator 1 (SIRT1), hexokinase 2 (HK2), pyruvate kinase isozyme type M2 (PKM2), recombinant lactate dehydrogenase A (LDHA) and glucose transporter-1 (GLUT1). RESULTS Elevated TIMELESS expression in OSCC tissues and cell lines was observed, correlating with reduced patient survival. TIMELESS overexpression enhanced OSCC cell proliferation, increased glycolytic activity (glucose uptake and lactate production), and suppressed oxidative phosphorylation (evidenced by reduced oxygen consumption and altered pH levels). Conversely, TIMELESS knockdown inhibited these cellular and metabolic processes, an effect mirrored by manipulating SIRT1 levels. Additionally, SIRT1 was positively associated with TIMELESS expression. The expression of SIRT1, HK2, PKM2, LDHA and GLUT1 increased with the overexpression of TIMELESS levels and decreased with the knockdown of TIMELESS. CONCLUSION TIMELESS exacerbates OSCC progression by modulating cellular proliferation and metabolic pathways, specifically by enhancing glycolysis and reducing oxidative phosphorylation, largely mediated through the SIRT1 pathway. This highlights TIMELESS as a potential target for OSCC therapeutic strategies.
Collapse
Affiliation(s)
- Yafan Chen
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Zhengyang Han
- Department of Clinical Laboratory, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, China
| | - Le Zhang
- Department of Interventional Radiology and Pain Treatment, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Caihong Gao
- Xi'an Physical Education University, Xi'an, 710068, Shaanxi, China
| | - Jingyi Wei
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xuyuan Yang
- School of Nursing and Rehabilitation, Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Yabing Han
- Medical College of Ankang University, Ankang, 725000, Shaanxi, China
| | - Yunbo Li
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Chunmei Zhang
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yixin Wei
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Jiaqi Dong
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Wenxing Xun
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Weifu Sun
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Taotao Zhang
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Hui Zhang
- Department of Ultrasound Diagnosis, Xi'an Children's Hospital, 69 West Park Lane, Xi'an, 710002, Shaanxi, China.
| | - Jingtao Chen
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Peng Yuan
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
13
|
Kolahdouzmohammadi M, Pahlavan S, Sotoodehnejadnematalahi F, Tahamtani Y, Totonchi M. Activation of AMPK promotes cardiac differentiation by stimulating the autophagy pathway. J Cell Commun Signal 2023; 17:939-955. [PMID: 37040028 PMCID: PMC10409960 DOI: 10.1007/s12079-023-00744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autophagy, a critical catabolic process for cell survival against different types of stress, has a role in the differentiation of various cells, such as cardiomyocytes. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of autophagy. In addition to its direct role in regulating autophagy, AMPK can also influence other cellular processes by regulating mitochondrial function, posttranslational acetylation, cardiomyocyte metabolism, mitochondrial autophagy, endoplasmic reticulum stress, and apoptosis. As AMPK is involved in the control of various cellular processes, it can influence the health and survival of cardiomyocytes. This study investigated the effects of an AMPK inducer (Metformin) and an autophagy inhibitor (Hydroxychloroquine) on the differentiation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). The results showed that autophagy was upregulated during cardiac differentiation. Furthermore, AMPK activation increased the expression of CM-specific markers in hPSC-CMs. Additionally, autophagy inhibition impaired cardiomyocyte differentiation by targeting autophagosome-lysosome fusion. These results indicate the significance of autophagy in cardiomyocyte differentiation. In conclusion, AMPK might be a promising target for the regulation of cardiomyocyte generation by in vitro differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
14
|
Branch MR, Hsu CL, Ohnishi K, Shen WC, Lee E, Meisenhelder J, Winborn B, Sopher BL, Taylor JP, Hunter T, La Spada AR. MAP4K3 inhibits Sirtuin-1 to repress the LKB1-AMPK pathway to promote amino acid-dependent activation of the mTORC1 complex. Life Sci Alliance 2023; 6:e202201525. [PMID: 37221017 PMCID: PMC10205607 DOI: 10.26508/lsa.202201525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
mTORC1 is the key rheostat controlling the cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here, we examined the process of MAP4K3 regulation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to achieve robust mTORC1 activation. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor sirtuin-1 (SIRT1) and phosphorylates SIRT1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.
Collapse
Affiliation(s)
- Mary Rose Branch
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, CA, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Cynthia L Hsu
- Department of Pediatrics, University of California, San Diego; La Jolla, CA, USA
| | - Kohta Ohnishi
- Department of Pediatrics, University of California, San Diego; La Jolla, CA, USA
| | - Wen-Chuan Shen
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, CA, USA
| | - Elian Lee
- Department of Pediatrics, University of California, San Diego; La Jolla, CA, USA
| | - Jill Meisenhelder
- Molecular and Cellular Biology Laboratory, Salk Institute, La Jolla, CA, USA
| | - Brett Winborn
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bryce L Sopher
- Department of Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tony Hunter
- Molecular and Cellular Biology Laboratory, Salk Institute, La Jolla, CA, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, CA, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, University of California, San Diego; La Jolla, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
16
|
Scarpa ES, Giordani C, Antonelli A, Petrelli M, Balercia G, Silvetti F, Pieroni A, Sabbatinelli J, Rippo MR, Olivieri F, Matacchione G. The Combination of Natural Molecules Naringenin, Hesperetin, Curcumin, Polydatin and Quercetin Synergistically Decreases SEMA3E Expression Levels and DPPIV Activity in In Vitro Models of Insulin Resistance. Int J Mol Sci 2023; 24:ijms24098071. [PMID: 37175783 PMCID: PMC10178687 DOI: 10.3390/ijms24098071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease characterized by a prolonged hyperglycemic condition caused by insulin resistance mechanisms in muscle and liver, reduced insulin production by pancreatic β cells, and a chronic inflammatory state with increased levels of the pro-inflammatory marker semaphorin 3E. Phytochemicals present in several foods have been used to complement oral hypoglycemic drugs for the management of T2DM. Notably, dipeptidyl peptidase IV (DPPIV) inhibitors have demonstrated efficacy in the treatment of T2DM. Our study aimed to investigate, in in vitro models of insulin resistance, the ability of the flavanones naringenin and hesperetin, used alone and in combination with the anti-inflammatory natural molecules curcumin, polydatin, and quercetin, to counteract the insulin resistance and pro-inflammatory molecular mechanisms that are involved in T2DM development. Our results show for the first time that the combination of naringenin, hesperetin, curcumin, polydatin, and quercetin (that mirror the nutraceutical formulation GliceFen®, Mivell, Italy) synergistically decreases expression levels of the pro-inflammatory gene SEMA3E in insulin-resistant HepG2 cells and synergistically decreases DPPIV activity in insulin-resistant Hep3B cells, indicating that the combination of these five phytochemicals is able to inhibit pro-inflammatory and insulin resistance molecular mechanisms and could represent an effective innovative complementary approach to T2DM pharmacological treatment.
Collapse
Affiliation(s)
| | - Chiara Giordani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Massimiliano Petrelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesca Silvetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessio Pieroni
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Laboratory and Precision Medicine, IRCCS Istituto Nazionale di Ricovero e Cura per Anziani, 60121 Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
17
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Xiao WC, Zhou G, Wan L, Tu J, Yu YJ, She ZG, Xu CL, Wang L. Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation. Brain Res Bull 2023; 195:37-46. [PMID: 36775042 DOI: 10.1016/j.brainresbull.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated. METHODS Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue. RESULTS Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor. CONCLUSION Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK activation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Chang Xiao
- Department of Cardiovascular Surgery, Huanggang Central Hospital, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Gang Zhou
- Department of Neurology, Huanggang Central Hospital, Huanggang, China.
| | - Lu Wan
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Jun Tu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Yong-Jie Yu
- Huanggang Institute of Translational Medicine, Huanggang, China.
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Chun-Lin Xu
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China.
| |
Collapse
|
19
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
20
|
Konieczny P, Adamus T, Sułkowski M, Skrzypek K, Majka M. Impact of AMPK on cervical carcinoma progression and metastasis. Cell Death Dis 2023; 14:43. [PMID: 36658117 PMCID: PMC9852279 DOI: 10.1038/s41419-023-05583-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Cervical cancer (CC) is the fourth most common malignant neoplasm among women. Late diagnosis is directly associated with the incidence of metastatic disease and remarkably limits the effectiveness of conventional anticancer therapies at the advanced tumor stage. In this study, we investigated the role of 5'AMP-activated kinase (AMPK) in the metastatic progression of cervical cancer. Since the epithelial mesenchymal transition (EMT) is known as major mechanism enabling cancer cell metastasis, cell lines, which accurately represent this process, have been used as a research model. We used C-4I and HTB-35 cervical cancer cell lines representing distant stages of the disease, in which we genetically modified the expression of the AMPK catalytic subunit α. We have shown that tumor progression leads to metabolic deregulation which results in reduced expression and activity of AMPK. We also demonstrated that AMPK is related to the ability of cells to acquire invasive phenotype and potential for in vivo metastases, and its activity may inhibit these processes. Our findings support the hypothesis that AMPK is a promising therapeutic target and modulation of its expression and activity may improve the efficacy of cervical cancer treatment.
Collapse
Affiliation(s)
- Paweł Konieczny
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Tomasz Adamus
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Maciej Sułkowski
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland.
| |
Collapse
|
21
|
Lu C, Zhao H, Liu Y, Yang Z, Yao H, Liu T, Gou T, Wang L, Zhang J, Tian Y, Yang Y, Zhang H. Novel Role of the SIRT1 in Endocrine and Metabolic Diseases. Int J Biol Sci 2023; 19:484-501. [PMID: 36632457 PMCID: PMC9830516 DOI: 10.7150/ijbs.78654] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Silent information regulator 1 (SIRT1), a highly conserved NAD+-dependent deacetylase, is a cellular regulator that has received extensive attention in recent years and regarded as a sensor of cellular energy and metabolism. The accumulated evidence suggests that SIRT1 is involved in the development of endocrine and metabolic diseases. In a variety of organisms, SIRT1 regulates gene expression through the deacetylation of histone, transcription factors, and lysine residues of other modified proteins including several metabolic and endocrine signal transcription factors, thereby enhancing the therapeutic effects of endocrine and metabolic diseases. These evidences indicate that targeting SIRT1 has promising applications in the treatment of endocrine and metabolic diseases. This review focuses on the role of SIRT1 in endocrine and metabolic diseases. First, we describe the background and structure of SIRT1. Then, we outline the role of SIRT1 in endocrine and metabolic diseases such as hyperuricemia, diabetes, hypertension, hyperlipidemia, osteoporosis, and polycystic ovarian syndrome. Subsequently, the SIRT1 agonists and inhibitors in the above diseases are summarized and future research directions are proposed. Overall, the information presents here may highlight the potential of SIRT1 as a future biomarker and therapeutic target for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yanqing Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Hairong Yao
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tong Liu
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Tiantian Gou
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Li Wang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Juan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ye Tian
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.,✉ Corresponding authors: Yang Yang: . Huan Zhang: . Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| |
Collapse
|
22
|
Bond NLS, Dréau D, Marriott I, Bennett JM, Turner MJ, Arthur ST, Marino JS. Low-Dose Metformin Treatment Reduces In Vitro Growth of the LL/2 Non-small Cell Lung Cancer Cell Line. Biomedicines 2022; 11:biomedicines11010065. [PMID: 36672573 PMCID: PMC9856116 DOI: 10.3390/biomedicines11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Lung cancer maintains a relatively small survival rate (~19%) over a 5-year period and up to 80-85% of all lung cancer diagnoses are Non-Small Cell Lung Cancer (NSCLC). To determine whether metformin reduces non-small cell lung cancer (NSCLC) LL/2 cell growth, cells were grown in vitro and treated with metformin for 48 h. qPCR was used to assess genes related to cell cycle regulation and pro-apoptotic markers, namely Cyclin D, CDK4, p27, p21, and HES1. Treatment with 10 mM metformin significantly reduced HES1 expression (p = 0.011). Furthermore, 10 mM metformin treatment significantly decreased REDD1 (p = 0.0082) and increased p-mTOR Ser2448 (p = 0.003) protein expression. Control cells showed significant reductions in phosphorylated p53 protein expression (p = 0.0367), whereas metformin treated cells exhibited reduced total p53 protein expression (p = 0.0078). There were no significant reductions in AMPK, PKB/AKT, or STAT3. In addition, NSCLC cells were treated for 48 h. with 10 mM metformin, 4 µM gamma-secretase inhibitor (GSI), or the combination of metformin (10 mM) and GSI (4 µM) to determine the contribution of respective signaling pathways. Metformin treatment significantly reduced total nucleus expression of the proliferation maker Ki-67 with an above 65% reduction in Ki-67 expression between control and metformin-treated cells (p = 0.0021). GSI (4 µM) treatment significantly reduced Ki-67 expression by ~20% over 48 h (p = 0.0028). Combination treatment (10 mM metformin and 4 µM GSI) significantly reduced Ki-67 expression by more than 50% over 48 h (p = 0.0245). As such, direct administration of metformin (10 mM for 48 h) proved to be an effective pharmaceutical agent in reducing the proliferation of cultured non-small cell cancer cells. These intriguing in vitro results, therefore, support the further study of metformin in appropriate in vivo models as an anti-oncogenic agent and/or an adjunctive therapy.
Collapse
Affiliation(s)
- Nicole L. Stott Bond
- Distance Education, Technology and Integration, University of North Georgia, Dahlonega, GA 30597, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jeanette M. Bennett
- Department of Psychological Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Michael J. Turner
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence:
| |
Collapse
|
23
|
Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci 2022; 12:83. [PMID: 35659740 PMCID: PMC9164400 DOI: 10.1186/s13578-022-00821-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors directly regulate gene expression by recognizing and binding to specific DNA sequences, involving the dynamic alterations of chromatin structure and the formation of a complex with different kinds of cofactors, like DNA/histone modifying-enzymes, chromatin remodeling factors, and cell cycle factors. Despite the significance of transcription factors, it remains unclear to determine how these cofactors are regulated to cooperate with transcription factors, especially DNA/histone modifying-enzymes. It has been known that DNA/histone modifying-enzymes are regulated by post-translational modifications. And the most common and important modification is phosphorylation. Even though various DNA/histone modifying-enzymes have been classified and partly explained how phosphorylated sites of these enzymes function characteristically in recent studies. It still needs to find out the relationship between phosphorylation of these enzymes and the diseases-associated transcriptional regulation. Here this review describes how phosphorylation affects the transcription activity of these enzymes and other functions, including protein stability, subcellular localization, binding to chromatin, and interaction with other proteins.
Collapse
|
24
|
Insights into Regulators of p53 Acetylation. Cells 2022; 11:cells11233825. [PMID: 36497084 PMCID: PMC9737083 DOI: 10.3390/cells11233825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.
Collapse
|
25
|
SGLT-2 Inhibitors in Cancer Treatment-Mechanisms of Action and Emerging New Perspectives. Cancers (Basel) 2022; 14:cancers14235811. [PMID: 36497303 PMCID: PMC9738342 DOI: 10.3390/cancers14235811] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
A new group of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT-2 inhibitors), have recently been shown to have anticancer effects and their expression has been confirmed in many cancer cell lines. Given the metabolic reprogramming of these cells in a glucose-based model, the ability of SGLT-2 inhibitors to block the glucose uptake by cancer cells appears to be an attractive therapeutic approach. In addition to tumour cells, SGLT-2s are only found in the proximal tubules in the kidneys. Furthermore, as numerous clinical trials have shown, the use of SGLT-2 inhibitors is well-tolerated and safe in patients with diabetes and/or heart failure. In vitro cell culture studies and preclinical in vivo studies have confirmed that SGLT-2 inhibitors exhibit antiproliferative effects on certain types of cancer. However, the mechanisms of this action remain unclear. Even in those tumour cell types in which SGLT-2 is present, there is sometimes an SGLT-2-independent mechanism of anticancer action of this group of drugs. This article presents the current state of knowledge of the potential mechanisms of the anticancer action of SGLT-2 inhibitors and their possible future application in clinical oncology.
Collapse
|
26
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
27
|
Lee YH, Kim SJ, Surh YJ. Role of Post-translational Modification of Silent Mating Type Information Regulator 2 Homolog 1 in Cancer and Other Disorders. J Cancer Prev 2022; 27:157-169. [PMID: 36258719 PMCID: PMC9537581 DOI: 10.15430/jcp.2022.27.3.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Silent mating type information regulator 2 homolog 1 (SIRT1), an NAD+-dependent histone/protein deacetylase, has multifarious physiological roles in development, metabolic regulation, and stress response. Thus, its abnormal expression or malfunction is implicated in pathogenesis of various diseases. SIRT1 undergoes post-translational modifications, including phosphorylation, oxidation/reduction, carbonylation, nitrosylation, glycosylation, ubiquitination/deubiquitination, SUMOylation etc. which can modulate its catalytic activity, stability, subcellular localization, and also binding affinity for substrate proteins. This short review highlights the regulation of SIRT1 post-translational modifications and their pathophysiologic implications.
Collapse
Affiliation(s)
- Yeon-Hwa Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul, Korea,Cancer Research Institute, Seoul National University, Seoul, Korea,Correspondence to Young-Joon Surh, E-mail: , https://orcid.org/0000-0001-8310-1795
| |
Collapse
|
28
|
Xia JK, Qin XQ, Zhang L, Liu SJ, Shi XL, Ren HZ. Roles and regulation of histone acetylation in hepatocellular carcinoma. Front Genet 2022; 13:982222. [PMID: 36092874 PMCID: PMC9452893 DOI: 10.3389/fgene.2022.982222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the liver, but its prognosis is poor. Histone acetylation is an important epigenetic regulatory mode that modulates chromatin structure and transcriptional status to control gene expression in eukaryotic cells. Generally, histone acetylation and deacetylation processes are controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of histone modification is reported to drive aberrant transcriptional programmes that facilitate liver cancer onset and progression. Emerging studies have demonstrated that several HDAC inhibitors exert tumor-suppressive properties via activation of various cell death molecular pathways in HCC. However, the complexity involved in the epigenetic transcription modifications and non-epigenetic cellular signaling processes limit their potential clinical applications. This review brings an in-depth view of the oncogenic mechanisms reported to be related to aberrant HCC-associated histone acetylation, which might provide new insights into the effective therapeutic strategies to prevent and treat HCC.
Collapse
Affiliation(s)
- Jin-kun Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Xue-qian Qin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu-jun Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Nimma R, Kalvala AK, Patel N, Surapaneni SK, Sun L, Singh R, Nottingham E, Bagde A, Kommineni N, Arthur P, Nathani A, Meckes DG, Singh M. Combined Transcriptomic and Proteomic Profiling to Unravel Osimertinib, CARP-1 Functional Mimetic (CFM 4.17) Formulation and Telmisartan Combo Treatment in NSCLC Tumor Xenografts. Pharmaceutics 2022; 14:pharmaceutics14061156. [PMID: 35745729 PMCID: PMC9230742 DOI: 10.3390/pharmaceutics14061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ramesh Nimma
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Li Sun
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA; (L.S.); (D.G.M.J.)
| | - Rakesh Singh
- Department of Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA;
| | - Ebony Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - David G. Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA; (L.S.); (D.G.M.J.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
- Correspondence: or ; Tel.: +1-850-561-2790; Fax: +1-850-599-3813
| |
Collapse
|
30
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
31
|
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022; 13:831168. [PMID: 35359990 PMCID: PMC8962665 DOI: 10.3389/fimmu.2022.831168] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
Collapse
Affiliation(s)
- Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunwei Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongyi Chao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
32
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
33
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
34
|
Xiao M, Tang Y, Wang J, Lu G, Niu J, Wang J, Li J, Liu Q, Wang Z, Huang Z, Guo Y, Gao T, Zhang X, Yue S, Gu J. A new FGF1 variant protects against adriamycin-induced cardiotoxicity via modulating p53 activity. Redox Biol 2022; 49:102219. [PMID: 34990928 PMCID: PMC8743227 DOI: 10.1016/j.redox.2021.102219] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
A cumulative and progressively developing cardiomyopathy induced by adriamycin (ADR)-based chemotherapy is a major obstacle for its clinical application. However, there is a lack of safe and effective method to protect against ADR-induced cardiotoxicity. Here, we found that mRNA and protein levels of FGF1 were decreased in ADR-treated mice, primary cardiomyocytes and H9c2 cells, suggesting the potential effect of FGF1 to protect against ADR-induced cardiotoxicity. Then, we showed that treatment with a FGF1 variant (FGF1ΔHBS) with reduced proliferative potency significantly prevented ADR-induced cardiac dysfunction as well as ADR-associated cardiac inflammation, fibrosis, and hypertrophy. The mechanistic study revealed that apoptosis and oxidative stress, the two vital pathological factors in ADR-induced cardiotoxicity, were largely alleviated by FGF1ΔHBS treatment. Furthermore, the inhibitory effects of FGF1ΔHBS on ADR-induced apoptosis and oxidative stress were regulated by decreasing p53 activity through upregulation of Sirt1-mediated p53 deacetylation and enhancement of murine double minute 2 (MDM2)-mediated p53 ubiquitination. Upregulation of p53 expression or cardiac specific-Sirt1 knockout (Sirt1-CKO) almost completely abolished FGF1ΔHBS-induced protective effects in cardiomyocytes. Based on these findings, we suggest that FGF1ΔHBS may be a potential therapeutic agent against ADR-induced cardiotoxicity. Cardiac expression of FGF1 were decreased by ADR treatment. FGF1ΔHBS prevented ADR-induced cardiac structural abnormalities and dysfunction. FGF1ΔHBS inhibited ADR-induced oxidative stress and apoptosis by deacetylating p53. Deacetylated p53 induced by FGF1ΔHBS accelerated the ubiquitination of p53 by MDM2.
Collapse
Affiliation(s)
- Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianlou Niu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoyun Wang
- Department of Neurosurgical Intensive Care Unit & Emergency Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhifeng Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
35
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
36
|
Hydes TJ, Cuthbertson DJ, Graef S, Berhane S, Teng M, Skowronska A, Singh P, Dhanaraj S, Tahrani A, Johnson PJ. The Impact of Diabetes and Glucose-Lowering Therapies on Hepatocellular Carcinoma Incidence and Overall Survival. Clin Ther 2022; 44:257-268. [DOI: 10.1016/j.clinthera.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/08/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
|
37
|
Berglund A, Matta J, Encarnación-Medina J, Ortiz-Sanchéz C, Dutil J, Linares R, Marcial J, Abreu-Takemura C, Moreno N, Putney R, Chakrabarti R, Lin HY, Yamoah K, Osterman CD, Wang L, Dhillon J, Kim Y, Kim SJ, Ruiz-Deya G, Park JY. Dysregulation of DNA Methylation and Epigenetic Clocks in Prostate Cancer among Puerto Rican Men. Biomolecules 2021; 12:2. [PMID: 35053153 PMCID: PMC8773891 DOI: 10.3390/biom12010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.
Collapse
Affiliation(s)
- Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Jaime Matta
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jarline Encarnación-Medina
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Carmen Ortiz-Sanchéz
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Julie Dutil
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Raymond Linares
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Joshua Marcial
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Caren Abreu-Takemura
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Natasha Moreno
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Ryan Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Carlos Diaz Osterman
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Liang Wang
- Department of Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (A.B.); (R.P.); (Y.K.)
| | - Seung Joon Kim
- Department of Internal Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Gilberto Ruiz-Deya
- Department of Basic Sciences, Ponce Research Institute, School of Medicine, Ponce Health Sciences University, Ponce 00716-2347, Puerto Rico; (J.M.); (J.E.-M.); (C.O.-S.); (J.D.); (R.L.); (J.M.); (C.A.-T.); (C.D.O.); (G.R.-D.)
| | - Jong Y. Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
38
|
Lee YH, Kim SJ, Fang X, Song NY, Kim DH, Suh J, Na HK, Kim KO, Baek JH, Surh YJ. JNK-mediated Ser27 phosphorylation and stabilization of SIRT1 promote growth and progression of colon cancer through deacetylation-dependent activation of Snail. Mol Oncol 2021; 16:1555-1571. [PMID: 34826187 PMCID: PMC8978515 DOI: 10.1002/1878-0261.13143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/31/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Sirtuin 1 (SIRT1), an NAD+ -dependent histone/protein deacetylase, has multifaceted functions in various biological events such as inflammation, aging, and energy metabolism. The role of SIRT1 in carcinogenesis, however, is still under debate. Recent studies have indicated that aberrant overexpression of SIRT1 is correlated with metastasis and poor prognosis in several types of malignancy, including colorectal cancer. In the present study, we found that both SIRT1 and SIRT1 phosphorylated on serine 27 were coordinately upregulated in colon cancer patients' tissues and human colon cancer cell lines. This prompted us to investigate a role of phospho-SIRT1 in the context of colon cancer progression. A phosphorylation-defective mutant form of SIRT1, in which serine 27 was substituted by alanine (SIRT1-S27A), exhibited lower protein stability compared to that of wild-type SIRT1. Notably, human colon cancer (HCT-116) cells harboring the SIRT1-S27A mutation showed decreased cell proliferation and reduced capability to form xenograft tumor in athymic nude mice, which was accompanied by diminished transcriptional activity of Snail. HCT-116 cells carrying SIRT1-S27A were less capable of deacetylating the Snail protein, with a concomitant decrease in the levels of interleukin (IL)-6 and IL-8 mRNA transcripts. Taken together, these observations suggest that SIRT1 stabilized through phosphorylation on serine 27 exerts oncogenic effects at least partly through deacetylation-dependent activation of Snail and subsequent transcription of IL-6 and IL-8 in human colon cancer cells.
Collapse
Affiliation(s)
- Yeon-Hwa Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, South Korea
| | - Jinyoung Suh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon, Korea
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Lee SH, Golinska M, Griffiths JR. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021; 10:2371. [PMID: 34572020 PMCID: PMC8472468 DOI: 10.3390/cells10092371] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
| | - Monika Golinska
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
| |
Collapse
|
40
|
Cao L, Zhang X, Ji B, Ding S, Qi Z. Moderate endurance training reduced hepatic tumourigenesis associated with lower lactate overload compared to high-intensity interval training. Clin Exp Pharmacol Physiol 2021; 48:1239-1250. [PMID: 34096088 DOI: 10.1111/1440-1681.13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
The anti-tumour effects of exercise are still poorly understood. In recent years, high-intensity interval exercise has been recognised as one of the best choices for better health. However, high-intensity interval exercise induces lactate production in muscles and elevates blood lactic acid levels, and the resulting acidic microenvironment may promote tumour progression. Therefore, it is important to compare the anti-tumour effects of different types of exercise. OBJECTIVE In this study, we aimed to compare the anti-tumour effects of moderate endurance training and high-intensity interval training on diethylnitrosamine (DEN)-induced liver tumours and to explore the underlying mechanisms. METHODS Three-week-old male C57BL/6 mice were injected intraperitoneally with DEN for 10 weeks to induce hepatocellular carcinoma. DEN-treated mice were grouped and subjected to moderate endurance training (MET) or high-intensity interval training (HIIT) for 18 weeks. We performed real-time PCR to evaluate the mRNA expressions of key enzymes involved in lactate metabolism pathway and western blotting to examine the protein expressions of LDHA, AMPK/P-AMPK, PCK1, and G6Pase in the paracancerous liver tissue. We performed high-performance liquid mass spectrometry (HPLC) to detect lactate in liver. RESULTS Our results revealed that compared with HIIT, MET decreased hepatic tumour incidence, as HIIT increased blood lactate concentration at rest. Moreover, MET reduced the transcript-level expression of LDH subunit and significantly increased the mRNA levels of COX1 and ND1 in liver. However, no significant changes were observed in liver lactate levels and the expression of LDHA among the groups. In addition, no significant differences in the mRNA levels of critical enzymes involved in the gluconeogenesis pathway in liver were observed among the groups. Additionally, no significant differences were observed in the mRNA levels of MPC2, pdha2, and pdk4 among the groups. CONCLUSIONS Our findings suggest that MET may be more efficient than HIIT at reducing hepatic tumourigenesis, and that it is associated with improved mitochondrial function in liver and lower lactate load in the circulation at rest.
Collapse
Affiliation(s)
- Lu Cao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Xue Zhang
- Xuhui Campus, Shanghai University of Sports, Shanghai, China
| | - Benlong Ji
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Physical Education & Health Care, East China Normal University, Shanghai, China
| |
Collapse
|
41
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|
42
|
Liu X, Zheng H. Modulation of Sirt1 and FoxO1 on Hypothalamic Leptin-Mediated Sympathetic Activation and Inflammation in Diet-Induced Obese Rats. J Am Heart Assoc 2021; 10:e020667. [PMID: 34259031 PMCID: PMC8483493 DOI: 10.1161/jaha.120.020667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Hypothalamic leptin-mediated signaling contributes to the exaggerated sympatho-excitation and increased blood pressure in obesity-associated hypertension. The aim of the study was to investigate the roles of energy-sensing enzyme sirtuin1 (Sirt1) and forkhead box protein O1 (FoxO1) on the hypothalamic leptin-mediated high sympathetic nerve activity and inflammation in obesity. Methods and Results Sprague Dawley rats were fed with high-fat diet (HFD) for 12 weeks. In vivo, the potential of Srit1 and FoxO1 in the sympathetic effects of leptin was investigated via siRNA injection to knockdown Sirt1 or FoxO1 gene in the arcuate nucleus (ARCN) of hypothalamus in rats. In vitro, the effects of Sirt1 or FoxO1 on leptin-mediated inflammation were observed in proopiomelanocortin (POMC) and microglial cells. Knockdown Sirt1 by siRNA significantly reduced the renal sympathetic nerve activity (RSNA) and blood pressure responses to leptin injection in the ARCN in the HFD rats. Conversely, knockdown FoxO1 significantly enhanced the RSNA and blood pressure responses to leptin injection in the HFD rats. Knockdown Sirt1 reduced the levels of pro-inflammatory cytokines interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), C1q/TNF-related protein-1 (CTRP1), and immune cell infiltration in the ARCN in the HFD rats. Knockdown FoxO1 significantly increased the level of IL-6 in the ARCN of HFD rats. In cultured hypothalamic POMC and microglial cells, knockdown Sirt1 significantly reduced leptin-induced IL-6 expression, affected the levels of AMP-activated protein kinase (AMPK) and serine/threonine-specific protein kinase (Akt). Knockdown FoxO1 significantly increased leptin-induced IL-6 in both POMC cells and microglial cells. Conclusions These data suggest that both Sirt1 and FoxO1 are the key modulators of leptin signaling in the hypothalamus contributed to the over sympathetic activation and inflammation in obesity.
Collapse
Affiliation(s)
- Xuefei Liu
- Division of Basic Biomedical Sciences Sanford School of Medicine of the University of South Dakota Vermillion SD
| | - Hong Zheng
- Division of Basic Biomedical Sciences Sanford School of Medicine of the University of South Dakota Vermillion SD
| |
Collapse
|
43
|
Cheval L, Viollet B, Klein C, Rafael C, Figueres L, Devevre E, Zadigue G, Azroyan A, Crambert G, Vogt B, Doucet A. Acidosis-induced activation of distal nephron principal cells triggers Gdf15 secretion and adaptive proliferation of intercalated cells. Acta Physiol (Oxf) 2021; 232:e13661. [PMID: 33840159 DOI: 10.1111/apha.13661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
AIM Type A intercalated cells of the renal collecting duct participate in the maintenance of the acid/base balance through their capacity to adapt proton secretion to homeostatic requirements. We previously showed that increased proton secretion stems in part from the enlargement of the population of proton secreting cells in the outer medullary collecting duct through division of fully differentiated cells, and that this response is triggered by growth/differentiation factor 15. This study aimed at deciphering the mechanism of acid load-induced secretion of Gdf15 and its mechanism of action. METHODS We developed an original method to evaluate the proliferation of intercalated cells and applied it to genetically modified or pharmacologically treated mice under basal and acid-loaded conditions. RESULTS Gdf15 is secreted by principal cells of the collecting duct in response to the stimulation of vasopressin receptors. Vasopressin-induced production of cAMP triggers activation of AMP-stimulated kinases and of Na,K-ATPase, and induction of p53 and Gdf15. Gdf15 action on intercalated cells is mediated by ErbB2 receptors, the activation of which triggers the expression of cyclin d1, of p53 and anti-proliferative genes, and of Egr1. CONCLUSION Acidosis-induced proliferation of intercalated cells results from a cross talk with principal cells which secrete Gdf15 in response to their stimulation by vasopressin. Thus, vasopressin is a major determinant of the collecting duct cellular homeostasis as it promotes proliferation of intercalated cells under acidosis conditions and of principal cells under normal acid-base status.
Collapse
Affiliation(s)
- Lydie Cheval
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Benoit Viollet
- Université de ParisInstitut CochinINSERMCNRS Paris France
| | - Christophe Klein
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
| | - Chloé Rafael
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Lucile Figueres
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Estelle Devevre
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
| | - Georges Zadigue
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
| | - Anie Azroyan
- Program in Membrane Biology Nephrology Division Center for Systems Biology Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Gilles Crambert
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital Bern University Hospital Bern Switzerland
| | - Alain Doucet
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| |
Collapse
|
44
|
Chen X, Wang Y, Jiang S. The Effect of Sirtuin 2 (Sirt2) Overexpressing Bone Marrow Mesenchymal Stem Cells on the Growth of Human Epidermal Growth Factor Receptor 2 (Her-2) Breast Cancer Cells and Its Mechanism. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our study investigates the effect of high expression of Sirt2 in MSCs (MSCs-Sirt2) on Her-2 breast cancer cell proliferation. A mouse subcutaneous xenograft tumor model was established and MSCssirt2 analysis was performed on nude mice. TUNEL staining, flow cytometry, western-blot, real-time
PCR and immunohistochemistry were used to detect cancer cell apoptosis. The number of NK cells infiltrated by flow cytometry detected the tumor tissue of tumor-bearing mice, and its killing activity on tumor-bearing mice was detected by isotope labeling and release method. The levels of TNF-α,
IFN-γ, IL-8, IL-6 and IL-10 were detected by ELISA. Caspase-3 level was decreased in the MSCs group (P <0.01) while increased in the MSCs-sirt2 group (P <0.001). However, PCNA expression showed an opposite profile in the Her-2 group and MSCs-sirt2 group compared to
Caspase-3 level (P <0.01). The tumor volume and weight in the MSCs-sirt2 group was significantly reduced (P < 0.01), while increased in the MSCs group significantly (P < 0.05). The number of Ki-67-positive tumor cells in MSCs-sirt2 group was significantly reduced
(P <0.01) and increased in MSCs group (P < 0.001) with oppositive number of TUNEL-positive tumor cells in the MSCs-sirt2 group and MSCs group (P <0.01). IFN-γ level showed an upward trend (P <0.001). The NK cell toxicity of MSCs-Sirt2 group was
significantly higher (P <0.001). MSCs-Sirt2 has an inhibitory effect on Her-2 breast cancer cell growth by enhancing the local inflammatory response of NK cells.
Collapse
Affiliation(s)
- Xiaolin Chen
- Department of Pharmacy, Chongqing Jiangjin District Central Hospital, Chingqing, 402260, China
| | - Yan Wang
- Department of Cardiothoracic Surgery, Chongqing Jiangjin District Central Hospital, Chingqing, 402260, China
| | - Sunlu Jiang
- Minimally Invasive Interventional Center, Hubei Cancer Hospital, Wuhan, Hubei, 430000, China
| |
Collapse
|
45
|
Böttcher K, Longato L, Marrone G, Mazza G, Ghemtio L, Hall A, Luong TV, Caruso S, Viollet B, Zucman-Rossi J, Pinzani M, Rombouts K. AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. Am J Physiol Gastrointest Liver Physiol 2021; 320:G543-G556. [PMID: 33406006 DOI: 10.1152/ajpgi.00262.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation, and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hepatic stellate cell (hHSC) proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Data mining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumor grading, and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumor-promoting interactions between hHSC and HCC.NEW & NOTEWORTHY HCC is marked by genetic heterogeneity and activated hepatic stellate cells (HSC) are considered key players during HCC development. The paracrine effect of different HCC cell lines on the activation of primary hHSC was accompanied by differential AMPK activation depending on the HCC line used. Pharmacological treatment inhibited the HCC-induced hHSC activation through AMPK-dependent and AMPK-independent mechanisms. This heterogenic effect on HCC-induced AMPK activation was confirmed by data mining TCGA and LICA-FR databases.
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Lisa Longato
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giusi Marrone
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Leo Ghemtio
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free Hospital, London, United Kingdom
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Functional Genomics of Solid Tumors Laboratory, Sorbonne Université, Université de Paris, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
46
|
Wang C, Zhang T, Liao Q, Dai M, Guo J, Yang X, Tan W, Lin D, Wu C, Zhao Y. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation. Protein Cell 2021; 12:128-144. [PMID: 32737864 PMCID: PMC7862466 DOI: 10.1007/s13238-020-00760-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis due to limited therapeutic options. This study examines the roles of genome-wide association study identified PDAC-associated genes as therapeutic targets. We have identified HNF4G gene whose silencing most effectively repressed PDAC cell invasiveness. HNF4G overexpression is induced by the deficiency of transcriptional factor and tumor suppressor SMAD4. Increased HNF4G are correlated with SMAD4 deficiency in PDAC tumor samples and associated with metastasis and poor survival time in xenograft animal model and in patients with PDAC (log-rank P = 0.036; HR = 1.60, 95% CI = 1.03-2.47). We have found that Metformin suppresses HNF4G activity via AMPK-mediated phosphorylation-coupled ubiquitination degradation and inhibits in vitro invasion and in vivo metastasis of PDAC cells with SMAD4 deficiency. Furthermore, Metformin treatment significantly improve clinical outcomes and survival in patients with SMAD4-deficient PDAC (log-rank P = 0.022; HR = 0.31, 95% CI = 0.14-0.68) but not in patients with SMAD4-normal PDAC. Pathway analysis shows that HNF4G may act in PDAC through the cell-cell junction pathway. These results indicate that SMAD4 deficiency-induced overexpression of HNF4G plays a critical oncogenic role in PDAC progression and metastasis but may form a druggable target for Metformin treatment.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute (COI), Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
47
|
Hwang KE, Kim HJ, Song IS, Park C, Jung JW, Park DS, Oh SH, Kim YS, Kim HR. Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci 2021; 18:715-726. [PMID: 33437206 PMCID: PMC7797542 DOI: 10.7150/ijms.50080] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Salinomycin (Sal) is a recently identified anti-tumor drug for treating several types of solid tumor; however, its effects on the migratory and invasive properties of non-small cell lung cancer (NSCLC) remain unclear. This study investigated the inhibitory effect underlying mechanisms of Salon transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) and cell migration. Sal solidly blocked cell migration and invasion enhancement by TGF-β1-induced EMT, through recovering E-cadherin loss and suppressing mesenchymal markers induction, as well as TGF-β1-mediated AMPK/SIRT signaling activity upregulation. The pharmacologic inhibition or knockdown of AMPK or SIRT1 can act synergistically with Sal to inhibit TGF-β1-induced MMP-2 and MMP-9. In contrast, AMPK or SIRT1 upregulation can protect against TGF-β1-induced MMP-2 and MMP-9 inhibition by Sal. Next we demonstrated that the MMP-2 and MMP-9 knockdown can act synergistically with Sal to inhibit TGF-β1-induced EMT. Moreover, treatment of PMA of MMP activator increased TGF-β1-induced MMP-2 and MMP-9, even with Sal. Our results demonstrate that Sal suppresses TGF-β1-induced EMT by downregulating MMP-2 and MMP-9 through the AMPK/SIRT pathway, thereby inhibiting lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Ki-Eun Hwang
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyo-Jin Kim
- Medical Convergence Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - In-Sol Song
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chul Park
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae Wan Jung
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Do-Sim Park
- Department of Laboratory Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seon-Hee Oh
- Department of Premedicine, Chosun University, School of Medicine, Gwangju 61452, Republic of Korea
| | - Young-Suk Kim
- Medical Convergence Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hak-Ryul Kim
- Department of Internal Medicine, Wonkwang University, School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
48
|
Shi Z, Liu R, Lu Q, Zeng Z, Liu Y, Zhao J, Liu X, Li L, Huang H, Yao Y, Huang D, Xu Q. UBE2O promotes hepatocellular carcinoma cell proliferation and invasion by regulating the AMPKα2/mTOR pathway. Int J Med Sci 2021; 18:3749-3758. [PMID: 34790050 PMCID: PMC8579295 DOI: 10.7150/ijms.63220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
The ubiquitin-conjugating enzyme (E2) is a critical component of the ubiquitin-proteasome system and regulates hepatocarcinogenesis by controlling protein degradation. Ubiquitin-conjugating enzyme E2 O (UBE2O), a member of the E2 family, functions as an oncogene in human cancers. Nevertheless, the role of UBE2O in hepatocellular carcinoma (HCC) remains unknown yet. Here, we demonstrated that the UBE2O level was markedly upregulated in HCC compared with adjacent noncancerous tissues. UBE2O overexpression was also confirmed in HCC cell lines. UBE2O overexpression was prominently associated with advanced tumor stage, high tumor grade, venous infiltration, and reduced HCC patients' survivals. UBE2O knockdown inhibited the migration, invasion, and proliferation of HCCLM3 cells. UBE2O overexpression enhanced the proliferation and mobility of Huh7 cells. Mechanistically, UBE2O mediated the ubiquitination and degradation of AMP-activated protein kinase α2 (AMPKα2) in HCC cells. UBE2O silencing prominently increased AMPKα2 level and reduced phosphorylated mechanistic target of rapamycin kinase (p-mTOR), MYC, Cyclin D1, HIF1α, and SREBP1 levels in HCCLM3 cells. UBE2O depletion markedly activated the AMPKα2/mTOR pathway in Huh7 cells. Moreover, AMPKα2 silencing reversed UBE2O downregulation-induced mTOR pathway inactivation. Rapamycin, an inhibitor of mTOR, remarkably abolished UBE2O-induced mTOR phosphorylation and HCC cell proliferation and mobility. To conclude, UBE2O was highly expressed in HCC and its overexpression conferred to the poor clinical outcomes of patients. UBE2O contributed to the malignant behaviors of HCC cells, including cell proliferation, migration, and invasion, by reducing AMPKα2 stability and activating the mTOR pathway.
Collapse
Affiliation(s)
- Zhan Shi
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Zhi Zeng
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, 266071, China
| | - Junjun Zhao
- Graduate Department, Bengbu Medical College, Bengbu 233030, China
| | - Xin Liu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Lijie Li
- Department of Obstetrics and Gynaecology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Hui Huang
- Affiliated Quzhou People's Hospital, Zhejiang Chinese Medical University, Quzhou 324002, China
| | - Yingmin Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
49
|
Kinetic Studies of Sodium and Metforminium Decavanadates Decomposition and In Vitro Cytotoxicity and Insulin- Like Activity. INORGANICS 2020. [DOI: 10.3390/inorganics8120067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The kinetics of the decomposition of 0.5 and 1.0 mM sodium decavanadate (NaDeca) and metforminium decavanadate (MetfDeca) solutions were studied by 51V NMR in Dulbecco’s modified Eagle’s medium (DMEM) medium (pH 7.4) at 25 °C. The results showed that decomposition products are orthovanadate [H2VO4]− (V1) and metavanadate species like [H2V2O7]2− (V2), [V4O12]4− (V4) and [V5O15]5− (V5) for both compounds. The calculated half-life times of the decomposition reaction were 9 and 11 h for NaDeca and MetfDeca, respectively, at 1 mM concentration. The hydrolysis products that presented the highest rate constants were V1 and V4 for both compounds. Cytotoxic activity studies using non-tumorigenic HEK293 cell line and human liver cancer HEPG2 cells showed that decavanadates compounds exhibit selectivity action toward HEPG2 cells after 24 h. The effect of vanadium compounds (8–30 μM concentration) on the protein expression of AKT and AMPK were investigated in HEPG2 cell lines, showing that NaDeca and MetfDeca compounds exhibit a dose-dependence increase in phosphorylated AKT. Additionally, NaDeca at 30 µM concentration stimulated the glucose cell uptake moderately (62%) in 3T3-L1 adipocytes. Finally, an insulin release assay in βTC-6 cells (30 µM concentration) showed that sodium orthovanadate (MetV) and MetfDeca enhanced insulin release by 0.7 and 1-fold, respectively.
Collapse
|
50
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|