1
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
2
|
Pepich A, Tümmler C, Abu Ajamieh S, Treis D, Boje AS, Vellema Q, Tsea I, Åkerlund E, Seashore-Ludlow B, Shirazi Fard S, Kogner P, Johnsen JI, Wickström M. The ROCK-1/2 inhibitor RKI-1447 blocks N-MYC, promotes cell death, and emerges as a synergistic partner for BET inhibitors in neuroblastoma. Cancer Lett 2024; 605:217261. [PMID: 39307412 DOI: 10.1016/j.canlet.2024.217261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Abstract
High-risk neuroblastoma has a poor prognosis despite intensive treatment, highlighting the need for new therapeutic strategies. Genetic alterations in activators and inactivators of Rho GTPase have been identified in neuroblastoma suggested to activate Rho/Rho-kinase (ROCK) signaling. ROCK has also been implicated in therapy resistance. Therefore, we have explored the efficacy of the dual ROCK inhibitor RKI-1447 in neuroblastoma, emphasizing combination strategies. Treatment with RKI-1447 resulted in decreased growth, increased cell death, and inhibition of N-MYC in vitro and in vivo. A combination screen revealed enhanced effects between RKI-1447 and BET inhibitors. Synergistic effects from RKI-1447 and the BET inhibitor, ABBV-075, were confirmed in various neuroblastoma models, including zebrafish. Interestingly, ABBV-075 increased phosphorylation of both myosin light chain 2 and cofilin, downstream effectors of ROCK, increases that were blocked by adding RKI-1447. The combination treatment also augmented an inhibitory effect on C-MYC and, less pronounced, N-MYC protein expression. BET inhibitors have shown preclinical efficacy against neuroblastoma, but acquired resistance has limited their therapeutic benefit. We reveal that the combination of ROCK and BET inhibitors offers a promising treatment approach that can potentially mitigate resistance to BET inhibitors and reduce toxicity.
Collapse
Affiliation(s)
- Adena Pepich
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| | - Conny Tümmler
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Sara Abu Ajamieh
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Diana Treis
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Ammelie Svea Boje
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden; Division of Antibody-Based Immunotherapy, Department of Internal Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Quinty Vellema
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Ioanna Tsea
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Emma Åkerlund
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Shahrzad Shirazi Fard
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Per Kogner
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - John Inge Johnsen
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Malin Wickström
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institutet, Sweden.
| |
Collapse
|
3
|
Jia W, Czabanka M, Broggini T. Cell blebbing novel therapeutic possibilities to counter metastasis. Clin Exp Metastasis 2024:10.1007/s10585-024-10308-z. [PMID: 39222238 DOI: 10.1007/s10585-024-10308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cells constantly reshape there plasma membrane and cytoskeleton during physiological and pathological processes (Hagmann et al. in J Cell Biochem 73:488-499, 1999). Cell blebbing, the formation of bulges or protrusions on the cell membrane, is related to mechanical stress, changes in intracellular pressure, chemical signals, or genetic anomalies. These membrane bulges interfere with the force balance of actin filaments, microtubules, and intermediate filaments, the basic components of the cytoskeleton (Charras in J Microsc 231:466-478, 2008). In the past, these blebs with circular structures were considered apoptotic markers (Blaser et al. in Dev Cell 11:613-627, 2006). Cell blebbing activates phagocytes and promotes the rapid removal of intrinsic compartments. However, recent studies have revealed that blebbing is associated with dynamic cell reorganization and alters the movement of cells in-vivo and in-vitro (Charras and Paluch in Nat Rev Mol Cell Biol 9:730-736, 2008). During tumor progression, blebbing promotes invasion of cancer cells into blood, and lymphatic vessels, facilitating tumor progression and metastasis (Weems et al. in Nature 615:517-525, 2023). Blebbing is a dominant feature of tumor cells generally absent in normal cells. Restricting tumor blebbing reduces anoikis resistance (survival in suspension) (Weems et al. in Nature 615:517-525, 2023). Hence, therapeutic intervention with targeting blebbing could be highly selective for proliferating pro-metastatic tumor cells, providing a novel therapeutic pathway for tumor metastasis with minimal side effects. Here, we review the association between cell blebbing and tumor cells, to uncover new research directions and strategies for metastatic cancer therapy. Finaly, we aim to identify the druggable targets of metastatic cancer in relation to cell blebbing.
Collapse
Affiliation(s)
- Weiyi Jia
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
4
|
Pala D, Clark DE. Caught between a ROCK and a hard place: current challenges in structure-based drug design. Drug Discov Today 2024; 29:104106. [PMID: 39029868 DOI: 10.1016/j.drudis.2024.104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The discipline of structure-based drug design (SBDD) is several decades old and it is tempting to think that the proliferation of experimental structures for many drug targets might make computer-aided drug design (CADD) straightforward. However, this is far from true. In this review, we illustrate some of the challenges that CADD scientists face every day in their work, even now. We use Rho-associated protein kinase (ROCK), and public domain structures and data, as an example to illustrate some of the challenges we have experienced during our project targeting this protein. We hope that this will help to prevent unrealistic expectations of what CADD can accomplish and to educate non-CADD scientists regarding the challenges still facing their CADD colleagues.
Collapse
Affiliation(s)
- Daniele Pala
- Medicinal Chemistry and Drug Design Technologies Department, Chiesi Farmaceutici S.p.A, Research Center, Largo Belloli 11/a, 43122 Parma, Italy
| | - David E Clark
- Charles River, 6-9 Spire Green Centre, Flex Meadow, Harlow CM19 5TR, UK.
| |
Collapse
|
5
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| | - Joan T Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Weller J, Rohs R. Structure-Based Drug Design with a Deep Hierarchical Generative Model. J Chem Inf Model 2024; 64:6450-6463. [PMID: 39058534 PMCID: PMC11350878 DOI: 10.1021/acs.jcim.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Recently, the remarkable growth of available crystal structure data and libraries of commercially available or readily synthesizable molecules have unlocked previously inaccessible regions of chemical space for drug development. Paired with improvements in virtual ligand screening methods, these expanded libraries are having a notable impact on early drug design efforts. Yet screening-based methods still face scalability limits, due to computational constraints and the sheer scale of drug-like space. Machine learning approaches are overcoming these limitations by learning the fundamental intra- and intermolecular relationships in drug-target systems from existing data. Here, we introduce DrugHIVE, a deep hierarchical variational autoencoder that outperforms state-of-the-art autoregressive and diffusion-based methods in both speed and performance on common generative benchmarks. DrugHIVE's hierarchical design enables improved control over molecular generation. Its capabilities include dramatically increasing virtual screening efficiency and accelerating a wide range of common drug design tasks, including de novo generation, molecular optimization, scaffold hopping, linker design, and high-throughput pattern replacement. Our highly scalable method can even be applied to receptors with high-confidence AlphaFold-predicted structures, extending the ability to generate high-quality drug-like molecules to a majority of the unsolved human proteome.
Collapse
Affiliation(s)
- Jesse
A. Weller
- Department
of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Remo Rohs
- Department
of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Thomas
Lord Department of Computer Science, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Su M, Fleischer T, Grosheva I, Horev MB, Olszewska M, Mattioli CC, Barr H, Plotnikov A, Carvalho S, Moskovich Y, Minden MD, Chapal-Ilani N, Wainstein A, Papapetrou EP, Dezorella N, Cheng T, Kaushansky N, Geiger B, Shlush LI. Targeting SRSF2 mutations in leukemia with RKI-1447: A strategy to impair cellular division and nuclear structure. iScience 2024; 27:109443. [PMID: 38558935 PMCID: PMC10981050 DOI: 10.1016/j.isci.2024.109443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Spliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an in vitro high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of SRSF2 mutant cells. RKI-1447 targeted SRSF2 mutated primary human samples in xenografts models. RKI-1447 induced mitotic catastrophe and induced major reorganization of the microtubule system and severe nuclear deformation. Transmission electron microscopy and 3D light microscopy revealed that SRSF2 mutations induce deep nuclear indentation and segmentation that are apparently driven by microtubule-rich cytoplasmic intrusions, which are exacerbated by RKI-1447. The severe nuclear deformation in RKI-1447-treated SRSF2 mutant cells prevents cells from completing mitosis. These findings shed new light on the interplay between microtubules and the nucleus and offers new ways for targeting pre-leukemic SRSF2 mutant cells.
Collapse
Affiliation(s)
- Minhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Fleischer
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Grosheva
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Melanie Bokstad Horev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Carvalho
- Wohl Institute for Drug Discovery, Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovich
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON Canada
| | - Noa Chapal-Ilani
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Wainstein
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nili Dezorella
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Nathali Kaushansky
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I. Shlush
- Department of Molecular and Cellular Biology, Weizmann Institute of Science, Rehovot, Israel
- Molecular Hematology Clinic, Maccabi Healthcare, Tel Aviv, Israel
- Division of Hematology, Rambam Healthcare Campus, Haifa, Israel
| |
Collapse
|
8
|
Zhang C, Liu YC, Wang D, Wang Y. Discovery of a novel ROCK2 ATP competitive inhibitor by DNA-encoded library selection. Biochem Biophys Res Commun 2024; 699:149537. [PMID: 38280309 DOI: 10.1016/j.bbrc.2024.149537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Neurodegeneration disorders, such as Alzheimer's disease (AD), have garnered significant attention due to their impact on individuals and society as a whole. Understanding the mechanisms behind these disorders and developing effective therapy strategies is of utmost importance. One potential therapeutic target that has emerged is Rho-associated coiled-coil containing protein kinase 2 (ROCK2), as its accumulation and activity have been closely linked to memory loss. In this report, we present the findings of a recent discovery involving a new molecule that has the ability to competitively inhibit ROCK2 activity. This molecule was identified through the utilization of a DNA-encoded library (DEL) screening platform. Following selection against ROCK2, an off-DNA compound was synthesized and examined to ascertain its inhibitory properties, selectivity, mechanism of action, and binding mode analysis. From the screening, compound CH-2 has demonstrated an IC50 value of 28 nM against ROCK2, while exhibiting a 5-fold selectivity over ROCK1. Further analysis through molecular docking has provided insights into the specific binding modes of this compound. Our findings suggest that DEL selection offers a rapid method for identifying new inhibitors. Among these, the CH-2 compound shows promise as a potential ROCK2 inhibitor and warrants further investigation.
Collapse
Affiliation(s)
- Chenhua Zhang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, 76 YanTa XiLu, Xi'an, Shaanxi, 710061, China
| | - Yu-Chih Liu
- TandemAI Technology Shanghai Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Depu Wang
- Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, 76 YanTa XiLu, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
9
|
Xiong J, Xiao R, Zhao J, Zhao Q, Luo M, Li F, Zhang W, Wu M. Matrix stiffness affects tumor-associated macrophage functional polarization and its potential in tumor therapy. J Transl Med 2024; 22:85. [PMID: 38246995 PMCID: PMC10800063 DOI: 10.1186/s12967-023-04810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
The extracellular matrix (ECM) plays critical roles in cytoskeletal support, biomechanical transduction and biochemical signal transformation. Tumor-associated macrophage (TAM) function is regulated by matrix stiffness in solid tumors and is often associated with poor prognosis. ECM stiffness-induced mechanical cues can activate cell membrane mechanoreceptors and corresponding mechanotransducers in the cytoplasm, modulating the phenotype of TAMs. Currently, tuning TAM polarization through matrix stiffness-induced mechanical stimulation has received increasing attention, whereas its effect on TAM fate has rarely been summarized. A better understanding of the relationship between matrix stiffness and macrophage function will contribute to the development of new strategies for cancer therapy. In this review, we first introduced the overall relationship between macrophage polarization and matrix stiffness, analyzed the changes in mechanoreceptors and mechanotransducers mediated by matrix stiffness on macrophage function and tumor progression, and finally summarized the effects of targeting ECM stiffness on tumor prognosis to provide insight into this new field.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiahui Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiuyan Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Manwen Luo
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, China.
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China.
| |
Collapse
|
10
|
Wang C, Wang YJ, Ying L, Wong RJ, Quaintance CC, Hong X, Neff N, Wang X, Biggio JR, Mesiano S, Quake SR, Alvira CM, Cornfield DN, Stevenson DK, Shaw GM, Li J. Integrative analysis of noncoding mutations identifies the druggable genome in preterm birth. SCIENCE ADVANCES 2024; 10:eadk1057. [PMID: 38241369 PMCID: PMC10798565 DOI: 10.1126/sciadv.adk1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Preterm birth affects ~10% of pregnancies in the US. Despite familial associations, identifying at-risk genetic loci has been challenging. We built deep learning and graphical models to score mutational effects at base resolution via integrating the pregnant myometrial epigenome and large-scale patient genomes with spontaneous preterm birth (sPTB) from European and African American cohorts. We uncovered previously unidentified sPTB genes that are involved in myometrial muscle relaxation and inflammatory responses and that are regulated by the progesterone receptor near labor onset. We studied genomic variants in these genes in our recruited pregnant women administered progestin prophylaxis. We observed that mutation burden in these genes was predictive of responses to progestin treatment for preterm birth. To advance therapeutic development, we screened ~4000 compounds, identified candidate molecules that affect our identified genes, and experimentally validated their therapeutic effects on regulating labor. Together, our integrative approach revealed the druggable genome in preterm birth and provided a generalizable framework for studying complex diseases.
Collapse
Affiliation(s)
- Cheng Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yuejun Jessie Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald J. Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cecele C. Quaintance
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph R. Biggio
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Obstetrics and Gynecology, Ochsner Health, New Orleans, LA, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Stephen R. Quake
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina M. Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David K. Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jingjing Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Bakar Computational Health Sciences Institute, Parker Institute for Cancer Immunotherapy, and Department of Neurology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
11
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
12
|
Godara P, Reddy KS, Sahu W, Naik B, Srivastava V, Das R, Mahor A, Kumar P, Giri R, Anirudh J, Tak H, Banavath HN, Bhatt TK, Goyal AK, Prusty D. Structure-based virtual screening against multiple Plasmodium falciparum kinases reveals antimalarial compounds. Mol Divers 2023:10.1007/s11030-023-10770-z. [PMID: 38127294 DOI: 10.1007/s11030-023-10770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
The continuous emergence of resistance against most frontline antimalarial drugs has led to countless deaths in malaria-endemic countries, counting 619,000 deaths in 2021, with mutation in drug targets being the sole cause. As mutation is correlated frequently with fitness cost, the likelihood of mutation emergence in multiple targets at a time is extremely low. Hence, multitargeting compounds may seem promising to address drug resistance issues with additional benefits like increased efficacy, improved safety profile, and the requirement of fewer pills compared to traditional single and combinational drugs. In this study, we attempted to use the High Throughput Virtual Screening approach to predict multitarget inhibitors against six chemically validated Plasmodium falciparum (Pf) kinases (PfPKG, PfMAP2, PfCDPK4, PfTMK, PfPK5, PfPI4K), resulting in 21 multitargeting hits. The molecular dynamic simulation of the top six complexes (Myricetin-MAP2, Quercetin-CDPK4, Myricetin-TMK, Quercetin-PKG, Salidroside-PK5, and Salidroside-PI4K) showed stable interactions. Moreover, hierarchical clustering reveals the structural divergence of the compounds from the existing antimalarials, indicating less chance of cross-resistance. Additionally, the top three hits were validated through parasite growth inhibition assays, with quercetin and myricetin exhibiting an IC50 value of 1.84 and 3.93 µM, respectively.
Collapse
Affiliation(s)
- Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar, 751024, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rusham Das
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ajay Mahor
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Jivanage Anirudh
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Biosciences, School of Sport Sciences, Central University of Rajasthan, Ajmer, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
13
|
Miller CP, Fung M, Jaeger-Ruckstuhl CA, Xu Y, Warren EH, Akilesh S, Tykodi SS. Therapeutic targeting of tumor spheroids in a 3D microphysiological renal cell carcinoma-on-a-chip system. Neoplasia 2023; 46:100948. [PMID: 37944353 PMCID: PMC10663960 DOI: 10.1016/j.neo.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Metastatic renal cell carcinoma (RCC) remains an incurable disease for most patients highlighting an urgent need for new treatments. However, the preclinical investigation of new therapies is limited by traditional two-dimensional (2D) cultures which do not recapitulate the properties of tumor cells within a collagen extracellular matrix (ECM), while human tumor xenografts are time-consuming, expensive and lack adaptive immune cells. We report a rapid and economical human microphysiological system ("RCC-on-a-chip") to investigate therapies targeting RCC spheroids in a 3D collagen ECM. We first demonstrate that culture of RCC cell lines A498 and RCC4 in a 3D collagen ECM more faithfully reproduces the gene expression program of primary RCC tumors compared to 2D culture. We next used bortezomib as a cytotoxin to develop automated quantification of dose-dependent tumor spheroid killing. We observed that viable RCC spheroids exhibited collective migration within the ECM and demonstrated that our 3D system can be used to identify compounds that inhibit spheroid collective migration without inducing cell death. Finally, we demonstrate the RCC-on-a-chip as a platform to model the trafficking of tumor-reactive T cells into the ECM and observed antigen-specific A498 spheroid killing by engineered human CD8+ T cells expressing an ROR1-specific chimeric antigen receptor. In summary, the phenotypic differences between the 3D versus 2D environments, rapid imaging-based readout, and the ability to carefully study the impact of individual variables with quantitative rigor will encourage adoption of the RCC-on-a-chip system for testing a wide range of emerging therapies for RCC.
Collapse
Affiliation(s)
- Chris P Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.
| | - Megan Fung
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Carla A Jaeger-Ruckstuhl
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Edus H Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States; Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Scott S Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
14
|
Xue M, Tong Y, Xiong Y, Yu C. Role of cancer-associated fibroblasts in the progression, therapeutic resistance and targeted therapy of oesophageal squamous cell carcinoma. Front Oncol 2023; 13:1257266. [PMID: 37927475 PMCID: PMC10623436 DOI: 10.3389/fonc.2023.1257266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Oesophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumours with high morbidity and mortality. Although surgery, radiotherapy and chemotherapy are common treatment options available for oesophageal cancer, the 5-year survival rate remains low after treatment. On the one hand, many oesophageal cancers are are discovered at an advanced stage and, on the other hand, treatment resistance is a major obstacle to treating locally advanced ESCC. Cancer-associated fibroblasts (CAFs), the main type of stromal cell in the tumour microenvironment, enhance tumour progression and treatment resistance and have emerged as a major focus of study on targeted therapy of oesophageal cancer.With the aim of providing potential, prospective targets for improving therapeutic efficacy, this review summarises the origin and activation of CAFs and their specific role in regulating tumour progression and treatment resistance in ESCC. We also emphasize the clinical potential and emerging trends of ESCC CAFs-targeted treatments.
Collapse
Affiliation(s)
| | | | | | - Changhua Yu
- Department of Radiotherapy, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
15
|
Zhao Z, Li T, Sun L, Yuan Y, Zhu Y. Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother 2023; 166:115425. [PMID: 37660643 DOI: 10.1016/j.biopha.2023.115425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Despite continuous improvements in research and new cancer therapeutics, the goal of eradicating cancer remains elusive because of drug resistance. For a long time, drug resistance research has been focused on tumor cells themselves; however, recent studies have found that the tumor microenvironment also plays an important role in inducing drug resistance. Cancer-associated fibroblasts (CAFs) are a main component of the tumor microenvironment. They cross-talk with cancer cells to support their survival in the presence of anticancer drugs. This review summarizes the current knowledge of the role of CAFs in tumor drug resistance. An in-depth understanding of the mechanisms underlying the cross-talk between CAFs and cancer cells and insight into the importance of CAFs in drug resistance can guide the development of new anticancer strategies.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
16
|
Glotfelty EJ, Tovar-y-Romo LB, Hsueh SC, Tweedie D, Li Y, Harvey BK, Hoffer BJ, Karlsson TE, Olson L, Greig NH. The RhoA-ROCK1/ROCK2 Pathway Exacerbates Inflammatory Signaling in Immortalized and Primary Microglia. Cells 2023; 12:1367. [PMID: 37408199 PMCID: PMC10216802 DOI: 10.3390/cells12101367] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luis B. Tovar-y-Romo
- Division of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brandon K. Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tobias E. Karlsson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Peh GSL, Bandeira F, Neo D, Adnan K, Hartono Y, Ong HS, Naso S, Venkatraman A, Gomes JAP, Kocaba V, Mehta JS. Effects of Rho-Associated Kinase (Rock) Inhibitors (Alternative to Y-27632) on Primary Human Corneal Endothelial Cells. Cells 2023; 12:cells12091307. [PMID: 37174707 PMCID: PMC10177577 DOI: 10.3390/cells12091307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Rho-associated coiled-coil protein kinase (ROCK) signaling cascade impacts a wide array of cellular events. For cellular therapeutics, scalable expansion of primary human corneal endothelial cells (CECs) is crucial, and the inhibition of ROCK signaling using a well characterized ROCK inhibitor (ROCKi) Y-27632 had been shown to enhance overall endothelial cell yield. (2) In this study, we compared several classes of ROCK inhibitors to both ROCK-I and ROCK-II, using in silico binding simulation. We then evaluated nine ROCK inhibitors for their effects on primary CECs, before narrowing it down to the two most efficacious compounds-AR-13324 (Netarsudil) and its active metabolite, AR-13503-and assessed their impact on cellular proliferation in vitro. Finally, we evaluated the use of AR-13324 on the regenerative capacity of donor cornea with an ex vivo corneal wound closure model. Donor-matched control groups supplemented with Y-27632 were used for comparative analyses. (3) Our in silico simulation revealed that most of the compounds had stronger binding strength than Y-27632. Most of the nine ROCK inhibitors assessed worked within the concentrations of between 100 nM to 30 µM, with comparable adherence to that of Y-27632. Of note, both AR-13324 and AR-13503 showed better cellular adherence when compared to Y-27632. Similarly, the proliferation rates of CECs exposed to AR-13324 were comparable to those of Y-27632. Interestingly, CECs expanded in a medium supplemented with AR-13503 were significantly more proliferative in (i) untreated vs. AR-13503 (1 μM; * p < 0.05); (ii) untreated vs. AR-13503 (10 μM; *** p < 0.001); (iii) Y-27632 vs. AR-13503 (10 μM; ** p < 0.005); (iv) AR-13324 (1 μM) vs. AR-13503 (10 μM; ** p < 0.005); and (v) AR-13324 (0.1 μM) vs. AR-13503 (10 μM; * p < 0.05). Lastly, an ex vivo corneal wound healing study showed a comparable wound healing rate for the final healed area in corneas exposed to Y-27632 or AR-13324. (4) In conclusion, we were able to demonstrate that various classes of ROCKi compounds other than Y-27632 were able to exert positive effects on primary CECs, and systematic donor-match controlled comparisons revealed that the FDA-approved ROCK inhibitor, AR-13324, is a potential candidate for cellular therapeutics or as an adjunct drug in regenerative treatment for corneal endothelial diseases in humans.
Collapse
Affiliation(s)
- Gary S L Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singhealth Duke-NUS Ophthalmology & Visual Sciences Academic Clinical Programme , Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Francisco Bandeira
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Corneal and External Diseases Department, São Gonçalo Eye Hospital, Rio de Janeiro 24421-005, Brazil
| | - Dawn Neo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Khadijah Adnan
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yossa Hartono
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singhealth Duke-NUS Ophthalmology & Visual Sciences Academic Clinical Programme , Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Sacha Naso
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Anandalakshmi Venkatraman
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - José A P Gomes
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Netherlands Institute for Innovative Ocular Surgery, 3071AA Rotterdam, The Netherlands
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singhealth Duke-NUS Ophthalmology & Visual Sciences Academic Clinical Programme , Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
18
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
19
|
Discovery of unglycosylated indolocarbazoles as ROCK2 isoform-selective inhibitors for the treatment of breast cancer metastasis. Eur J Med Chem 2023; 250:115181. [PMID: 36764122 DOI: 10.1016/j.ejmech.2023.115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Breast cancer metastasis is a major challenge in clinical therapy because of the absence of effective treatments. Rho-associated coiled-coil kinase (ROCK), which is essential for cell invasion and migration, has recently been suggested as a potential target for the treatment of cancer metastasis. Herein, we report the structure-activity relationships (SAR) of indolocarbazoles against ROCK2 and reveal the crucial role of the C-3 hydroxyl for ROCK2 inhibition. The most potent unglycosylated aglycone THK01 was demonstrated to bind to and stabilize ROCK2 with potent anti-metastatic effects in breast cancer in vitro and in vivo with no obvious toxicities. Further mechanistic studies revealed that the anti-metastatic effect of THK01 was closely related to the suppression of STAT3Y705 activation. Moreover, THK01 exhibited excellent selectivity over the isoform protein ROCK1 (>100-fold). Taken together, with low toxicity, the ROCK2 inhibitor THK01 potently inhibited breast cancer metastasis through the ROCK2-STAT3 signaling pathway, which offers a new opportunity for the treatment of metastatic breast cancer.
Collapse
|
20
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
21
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Liu Z, Wan R, Bai H, Wang J. Damage-associated molecular patterns and sensing receptors based molecular subtypes in malignant pleural mesothelioma and implications for immunotherapy. Front Immunol 2023; 14:1104560. [PMID: 37033966 PMCID: PMC10079989 DOI: 10.3389/fimmu.2023.1104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives Malignant pleural mesothelioma (MPM) is characterized as an incredibly aggressive form of cancer with a dismal diagnosis and a dearth of specific biomarkers and therapeutic options. For MPM patients, the effectiveness of immunotherapy may be influenced by damage-associated molecular pattern (DAMP)-induced immunogenic cell death (ICD).The objective of this work is to create a molecular profile associated with DAMPs to categorize MPM patients and predict their prognosis and response to immunotherapy. Methods The RNA-seq of 397 patients (263 patients with clinical data, 57.2% male, 73.0% over 60 yrs.) were gathered from eight public datasets as a training cohort to identify the DAMPs-associated subgroups of MPMs using K-means analysis. Three validation cohorts of patients or murine were established from TCGA and GEO databases. Comparisons were made across each subtype's immune status, gene mutations, survival prognosis, and predicted response to therapy. Results Based on the DAMPs gene expression, MPMs were categorized into two subtypes: the nuclear DAMPs subtype, which is classified by the upregulation of immune-suppressed pathways, and the inflammatory DAMPs subtype, which is distinguished by the enrichment of proinflammatory cytokine signaling. The inflammatory DAMPs subgroup had a better prognosis, while the nuclear DAMPs subgroup exhibited a worse outcome. In validation cohorts, the subtyping system was effectively verified. We further identified the genetic differences between the two DAMPs subtypes. It was projected that the inflammatory DAMPs subtype will respond to immunotherapy more favorably, suggesting that the developed clustering method may be implemented to predict the effectiveness of immunotherapy. Conclusion We constructed a subtyping model based on ICD-associated DAMPs in MPM, which might serve as a signature to gauge the outcomes of immune checkpoint blockades. Our research may aid in the development of innovative immunomodulators as well as the advancement of precision immunotherapy for MPM.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Li H, Wang C, Jin Y, Cai Y, Sun H, Liu M. The integrative analysis of competitive endogenous RNA regulatory networks in osteoporosis. Sci Rep 2022; 12:9549. [PMID: 35680981 PMCID: PMC9184474 DOI: 10.1038/s41598-022-13791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis (OP) is a common bone disease of old age resulting from the imbalance between bone resorption and bone formation. CircRNAs are a class of endogenous non-coding RNAs (ncRNAs) involved in gene regulation and may play important roles in the development of OP. Here, we aimed to discover the OP‑related circRNA-miRNA-mRNA (ceRNA) network and the potential mechanisms. Six microarray datasets were obtained from the GEO database and the OP‑related differentially expressed genes (DEGs), circRNAs (DECs), and miRNAs (DEMs) were screened out from these datasets. Then, combined with the prediction of the relationships between DEGs, DEMs, and DECs, a ceRNA network containing 7 target circRNAs, 5 target miRNAs, and 38 target genes was constructed. Then the RNA-seq verification by using total RNAs isolated from the femurs of normal and ovariectomized Wistar rats indicated that MFAP5, CAMK2A, and RGS4 in the ceRNA network were closely associated with osteoporosis. Function enrichment analysis indicated that the target circRNAs, miRNAs, and genes were involved in the process of MAPK cascade, hormone stimulus, cadherin binding, rRNA methyltransferase, PI3K-Akt signaling pathway, and Vitamin digestion and absorption, etc. Then a circRNA-miRNA-hub gene subnetwork was constructed and the qRT-PCR analysis of human bone tissues from the femoral head was used to confirm that the transcription of hsa_circR_0028877, hsa_circR_0082916, DIRAS2, CAMK2A, and MAPK4 showed a significant correlation with osteogenic genes. Besides, the two axes of hsa_circR_0028877/hsa-miR-1273f/CAMK2A and hsa_circR_0028877/hsa-miR-1273f/DIRAS2 conformed to be closely associated with OP. Additionally, by constructing a drug-target gene network, RKI-1447, FRAX486, Hyaluronic, and Fostamatinib were identified as therapeutic options for OP. Our study revealed the potential links between circRNAs, miRNAs, and mRNAs in OP, suggesting that the ceRNA mechanism might contribute to the occurrence of OP.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yuanqing Cai
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
24
|
Vidimar V, Park M, Stubbs CK, Ingram NK, Qiang W, Zhang S, Gursel D, Melnyk RA, Satchell KJF. Proteolytic pan-RAS Cleavage Leads to Tumor Regression in Patient-derived Pancreatic Cancer Xenografts. Mol Cancer Ther 2022; 21:810-820. [PMID: 35247912 PMCID: PMC9933180 DOI: 10.1158/1535-7163.mct-21-0550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
The lack of effective RAS inhibition represents a major unmet medical need in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we investigate the anticancer activity of RRSP-DTB, an engineered biologic that cleaves the Switch I of all RAS isoforms, in KRAS-mutant PDAC cell lines and patient-derived xenografts (PDX). We first demonstrate that RRSP-DTB effectively engages RAS and impacts downstream ERK signaling in multiple KRAS-mutant PDAC cell lines inhibiting cell proliferation at picomolar concentrations. We next tested RRSP-DTB in immunodeficient mice bearing KRAS-mutant PDAC PDXs. Treatment with RRSP-DTB led to ≥95% tumor regression after 29 days. Residual tumors exhibited disrupted tissue architecture, increased fibrosis and fewer proliferating cells compared with controls. Intratumoral levels of phospho-ERK were also significantly lower, indicating in vivo target engagement. Importantly, tumors that started to regrow without RRSP-DTB shrank when treatment resumed, demonstrating resistance to RRSP-DTB had not developed. Tracking persistence of the toxin activity following intraperitoneal injection showed that RRSP-DTB is active in sera from immunocompetent mice for at least 1 hour, but absent after 16 hours, justifying use of daily dosing. Overall, we report that RRSP-DTB strongly regresses hard-to-treat KRAS-mutant PDX models of pancreatic cancer, warranting further development of this pan-RAS biologic for the management of RAS-addicted tumors.
Collapse
Affiliation(s)
- Vania Vidimar
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Minyoung Park
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Caleb K Stubbs
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Nana K Ingram
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Wenan Qiang
- Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
- Department of Obstetrics and Gynecology (Reproductive Science in Medicine), Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Shanshan Zhang
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Demirkan Gursel
- Pathology Core Facility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Roman A Melnyk
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Karla J F Satchell
- Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Research Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
25
|
Ali F, Ilyas A. Belumosudil with ROCK-2 inhibition: chemical and therapeutic development to FDA approval for the treatment of chronic graft-versus-host disease. Curr Res Transl Med 2022; 70:103343. [PMID: 35339032 DOI: 10.1016/j.retram.2022.103343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023]
Abstract
Belumosudil (BLM) is a ROCK inhibitor that has been firstly developed by Surface Logix, later acquired by Kadmon Pharmaceuticals for the treatment of chronic graft-versus-host disease (cGVHD), Psoriasis Vulgaris (PV), idiopathic pulmonary fibrosis (IPF), hepatic impairment (HI), diffuse cutaneous systemic sclerosis (dcSSc). BLM received a breakthrough therapy designation and priority review from the FDA, which reviewed the NDA under the real-time oncology review (RTOR) pilot programme and approved it six weeks ahead of the PDUFA deadline of August 30, 2021. On July 16th, 2021, The USFDA authorized BLM under the brand name REZUROCKTM for the treatment of cGVHD in adults and pediatric patients aged ≥ 12 years after the failure of at least two prior lines of systemic therapy. It has been granted orphan drug status by the FDA on August 9, 2020, for the treatment of systemic sclerosis. The European Union (EU) granted Quality Regulatory Clinical Ireland Limited, Ireland, orphan drug status for BLM (KD025) for the treatment of cGVHD on October 17, 2019. BLM is under regulatory assessment by Therapeutic Good Administration (TGA) Australia, Health Canada, MHRA (UK), and The Swiss Agency for Therapeutic Products (Swissmedic), Switzerland for cGVHD. A clinical trial is ongoing in the United States for cutaneous systemic sclerosis. This review article summarizes the milestones in the development of BLM chemistry, Chemical synthesis and development, mechanism of action, pharmacokinetics (PK), pharmacodynamics (PD), adverse effects, regulatory status, and ongoing clinical trials (CT) of BLM.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority, Plot 112, International Finance Park, Gaborone, Botswana.
| | | |
Collapse
|
26
|
Liang J, Tang M, Wang L, Huang R, Fu A, Zhou J. Design and development of novel fasudil derivatives as potent antibreast cancer agent that improves intestinal flora and intestinal barrier function in rats. Chem Biol Drug Des 2021; 98:1065-1078. [PMID: 34587363 DOI: 10.1111/cbdd.13963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 11/28/2022]
Abstract
This study was conducted to develop novel fasudil derivatives after incorporation of substituted thiazoles as potent anti-breast cancer (BC) agents. The compounds were developed using a facile synthetic route in excellent yields. The entire set of developed compounds was tested for inhibitory activity against rho-associated coiled-coil kinase (ROCK; ROCK1 and ROCK2) kinase, where they exhibit potent and selective inhibition of ROCK1 as compared to ROCK2. The most potent ROCK2 inhibitor, compound 6h significantly inhibited the viability of BC cells (MCF-7). It also causes inhibition of migration and invasion of MCF-7 cells. Moreover, the anti-BC activity of compound 6h was studied in 7,12 dimethyl Benz(a)anthracene (DMBA)-induced BC in female Sprague Dawley rats. Results suggest that it causes significant improvement in the bodyweight of the animals with a reduction in oxidative stress in the liver and mammary tissues of rats. It showed improvement in the intestinal barrier function of rats by restoring the level of Diamine oxidase, d-lactate, and endotoxin. In western blot analysis, it showed improvement in (ZO-1), occludin, and claudin-1 in the colon tissue of the rat as compared to the DMBA group. Our study demonstrated the development of the novel class of fasudil derivatives potent anti-BC agent that improves intestinal flora and intestinal barrier function in rats.
Collapse
Affiliation(s)
- Jinghui Liang
- Oncology Radiotherapy Department, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mu Tang
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Lieliang Wang
- Department of Breast Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Rui Huang
- Department of Clinical Laboratory, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Ailong Fu
- Department of Pathology, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Juying Zhou
- Oncology Radiotherapy Department, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
27
|
Garrido MM, Bernardino RM, Marta JC, Holdenrieder S, Guimarães JT. Tumour markers of prostate cancer: The post-PSA era. Ann Clin Biochem 2021; 59:46-58. [PMID: 34463154 DOI: 10.1177/00045632211041890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although PSA-based prostate cancer (PCa) screening had a positive impact in reducing PCa mortality, it also led to overdiagnosis, overtreatment and to a significant number of unnecessary biopsies. In the post-PSA era, new biomarkers have emerged that can complement the information given by PSA, towards a better cancer diagnostic specificity, and also allow a better estimate of the aggressiveness of the disease and its clinical outcome. That means those markers have the potential to assist the clinician in the decision-making processes, such as whether or not to perform a biopsy, and to make the best treatment choice among the new therapeutic options available, including active surveillance (AS) in lower risk disease. In this article, we will review several of those more recent diagnostic markers (4Kscore®, [-2]proPSA and Prostate Health Index (PHI), SelectMDx®, ConfirmMDx®, Progensa® Prostate Cancer Antigen 3, Mi-Prostate Score, ExoDx™ Prostate Test, the Stockholm-3 test and ERSPC risk calculators) and prognostic markers (OncotypeDX® Genomic Prostate Score, Prolaris®, Decipher® and ProMark®). We will also address some new liquid biopsy approaches - circulating tumour cells and cell-free DNA (cfDNA) - with a potential role in metastatic castration-resistant PCa and will briefly give some future perspectives, mostly outlooking epigenetic markers.
Collapse
Affiliation(s)
- Manuel M Garrido
- Department of Clinical Pathology, 90463Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal.,Department of Laboratory Medicine, 37811Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rui M Bernardino
- Department of Urology, 90463Centro Hospitalar Universitário de Lisboa central, Lisbon, Portugal
| | - José C Marta
- Department of Clinical Pathology, 90463Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, Munich Biomarker Research Center, 14924Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - João T Guimarães
- Department of Clinical Pathology, Centro Hospitalar Universitário de São João, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Othman IMM, Gad‐Elkareem MAM, Radwan HA, Badraoui R, Aouadi K, Snoussi M, Kadri A. Synthesis, Structure‐Activity Relationship and in silico Studies of Novel Pyrazolothiazole and Thiazolopyridine Derivatives as Prospective Antimicrobial and Anticancer Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202101622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ismail M. M. Othman
- Department of Chemistry Faculty of Science Al-Azhar University Assiut 71524 Egypt
| | | | - Hyam A. Radwan
- Department of Chemistry Faculty of Women for Arts, Sciences and, Education Ain Shams University Cairo Egypt
| | - Riadh Badraoui
- Department of Biology College of Science University of Ha'il City 2440 Hail, P.O. 2440 Saudi Arabia
- Section of Histology-Cytology Medicine Faculty of Tunis El Manar University 1007 La Rabta-Tunis Tunisia
- Laboratory of Histo-Embryology and Cytogenetics Medicine Faculty of Sfax University 3029 Sfax Tunisia
| | - Kaïss Aouadi
- Department of Chemistry College of Science Qassim University Buraidah 51452 Saudi Arabia
- University of Monastir Faculty of Sciences of Monastir Avenue of the Environment 5019 Monastir Tunisia
| | - Mejdi Snoussi
- Department of Biology College of Science University of Ha'il City 2440 Hail, P.O. 2440 Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-resources (LR11ES41) University of Monastir Higher Institute of Biotechnology of Monastir Avenue Tahar Haddad, BP74 5000 Monastir Tunisia
| | - Adel Kadri
- Faculty of Science of Sfax Department of Chemistry University of Sfax B.P. 1171, 3000 Sfax Tunisia
- Department of Chemistry Faculty of Science and Arts of Baljurashi Albaha University Saudi Arabia
| |
Collapse
|
29
|
Ziegler R, Häusermann F, Kirchner S, Polonchuk L. Cardiac Safety of Kinase Inhibitors - Improving Understanding and Prediction of Liabilities in Drug Discovery Using Human Stem Cell-Derived Models. Front Cardiovasc Med 2021; 8:639824. [PMID: 34222360 PMCID: PMC8242589 DOI: 10.3389/fcvm.2021.639824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Many small molecule kinase inhibitors (SMKIs) used to fight cancer have been associated with cardiotoxicity in the clinic. Therefore, preventing their failure in clinical development is a priority for preclinical discovery. Our study focused on the integration and concurrent measurement of ATP, apoptosis dynamics and functional cardiac indexes in human stem cell-derived cardiomyocytes (hSC-CMs) to provide further insights into molecular determinants of compromised cardiac function. Ten out of the fourteen tested SMKIs resulted in a biologically relevant decrease in either beating rate or base impedance (cell number index), illustrating cardiotoxicity as one of the major safety liabilities of SMKIs, in particular of those involved in the PI3K–AKT pathway. Pearson's correlation analysis indicated a good correlation between the different read-outs of functional importance. Therefore, measurement of ATP concentrations and apoptosis in vitro could provide important insight into mechanisms of cardiotoxicity. Detailed investigation of the cellular signals facilitated multi-parameter evaluation allowing integrative assessment of cardiomyocyte behavior. The resulting correlation can be used as a tool to highlight changes in cardiac function and potentially to categorize drugs based on their mechanisms of action.
Collapse
Affiliation(s)
- Ricarda Ziegler
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabian Häusermann
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Kirchner
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Liudmila Polonchuk
- Pharmaceutical Sciences, Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
30
|
Jing H, Chen P, Hui T, Yu Z, Zhou J, Fei E, Wang S, Ren D, Lai X, Li B. Synapse-specific Lrp4 mRNA enrichment requires Lrp4/MuSK signaling, muscle activity and Wnt non-canonical pathway. Cell Biosci 2021; 11:105. [PMID: 34090516 PMCID: PMC8180081 DOI: 10.1186/s13578-021-00619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background The neuromuscular junction (NMJ) is a peripheral synapse critical to muscle contraction. Like acetylcholine receptors (AChRs), many essential proteins of NMJ are extremely concentrated at the postjunctional membrane. However, the mechanisms of synapse-specific concentration are not well understood; furthermore, it is unclear whether signaling molecules critical to NMJ formation and maintenance are also locally transcribed. Results We studied the β-gal activity encoded by a lacZ cassette driven by the promoter of the Lrp4 gene. As reported for Lrp4 mRNA, β-gal was in the central region in embryonic muscles and at the NMJ after its formation. However, β-gal was no longer in the central areas of muscle fibers in Lrp4 or MuSK mutant mice, indicating a requirement of Lrp4/MuSK signaling. This phenotype could be rescued by transgenic expression of LRP4 with a transmembrane domain but not soluble ECD in Lrp4 mutant mice. β-gal and AChR clusters were distributed in a broader region in lacZ/ECD than that of heterozygous lacZ/+ mice, indicating an important role of the transmembrane domain in Lrp4 signaling. Synaptic β-gal activity became diffused after denervation or treatment with µ-conotoxin, despite its mRNA was increased, indicating synaptic Lrp4 mRNA enrichment requires muscle activity. β-gal was also diffused in aged mice but became re-concentrated after muscle stimulation. Finally, Lrp4 mRNA was increased in C2C12 myotubes by Wnt ligands in a manner that could be inhibited by RKI-1447, an inhibitor of ROCK in Wnt non-canonical signaling. Injecting RKI-1447 into muscles of adult mice diminished Lrp4 synaptic expression. Conclusions This study demonstrates that synapse-specific enrichment of Lrp4 mRNA requires a coordinated interaction between Lrp4/MuSK signaling, muscle activity, and Wnt non-canonical signaling. Thus, the study provides a new mechanism for Lrp4 mRNA enrichment. It also provides a potential target for the treatment of NMJ aging and other NMJ-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00619-z.
Collapse
Affiliation(s)
- Hongyang Jing
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Peng Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tiankun Hui
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zheng Yu
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jin Zhou
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Human Aging Research Institute, Nanchang University, Nanchang, 330031, China
| | - Erkang Fei
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shunqi Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongyan Ren
- School of Life Science, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xinsheng Lai
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Baoming Li
- School of Life Science, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China. .,Department of Psychology and Institute of Brain Science, School of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
31
|
Al-Humimat G, Marashdeh I, Daradkeh D, Kooner K. Investigational Rho Kinase Inhibitors for the Treatment of Glaucoma. J Exp Pharmacol 2021; 13:197-212. [PMID: 33664600 PMCID: PMC7921633 DOI: 10.2147/jep.s259297] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
This review provides a comprehensive update on emerging ROCK inhibitors as an innovative treatment option for lowering intraocular pressure (IOP) in glaucoma and aims to describe the structure, mechanism of action, pharmaceutical characteristics, desirable ocular effects, including side effects for each agent. A literature review was conducted using PubMed, Scopus, clinicaltrials.gov, ARVO journals, Cochrane library and Selleckchem. Databases were searched using "investigational Rho kinase inhibitors," and "glaucoma" as keywords. In addition to this building block strategy, successive fractions were employed to further refine the results. Of the several ROCK inhibitors discovered, only two drugs are currently approved for glaucoma treatment; Netarsudil in the USA and Ripasudil in Japan and China. We identified and reviewed 15 agents currently in laboratory or clinical trials. These agents lower IOP mainly by decreasing outflow resistance through pharmacologic relaxation of the trabecular meshwork (TM) cells and reducing episcleral venous pressure. They have an optimistic safety profile; however, conjunctival hyperemia, conjunctival hemorrhage, pain on instillation, and corneal verticillata are common. Other properties such as neuroprotection (enhancing optic nerve blood flow and promoting axonal regeneration), anti-fibrotic activity, and endothelial cell proliferation may improve the visual prognosis and surgical outcomes in glaucoma. In addition, these agents have the potential to work synergistically with other topical glaucoma medications.
Collapse
Affiliation(s)
- Ghadeer Al-Humimat
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Ibtisam Marashdeh
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Duaa Daradkeh
- Department of Ophthalmology, King Hussein Medical Center, Amman, Jordan
| | - Karanjit Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Ophthalmology, Veteran Affairs North Texas Health Care System Medical Center Dallas, Dallas, TX, USA
| |
Collapse
|
32
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
33
|
Alqahtani AM, Bayazeed AA. Synthesis and antiproliferative activity studies of new functionalized pyridine linked thiazole derivatives. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Yang H, Wang Z, Wang Z. Long Noncoding RNA KCNMB2-AS1 Increases ROCK1 Expression by Sponging microRNA-374a-3p to Facilitate the Progression of Non-Small-Cell Lung Cancer. Cancer Manag Res 2020; 12:12679-12695. [PMID: 33335424 PMCID: PMC7737946 DOI: 10.2147/cmar.s270646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The expression and roles of most long noncoding RNAs (lncRNAs) in non–small-cell lung cancer (NSCLC) remain poorly understood. Thus, this study investigated KCNMB2 antisense RNA 1 (KCNMB2-AS1) expression in NSCLC and determined the roles and mechanisms of KCNMB2-AS1 in regulating NSCLC progression. Methods KCNMB2-AS1 expression in NSCLC tissues and cells was detected using reverse transcription-quantitative polymerase chain reaction. Cell proliferation, apoptosis, migration, and invasion were evaluated using Cell Counting Kit-8, flow cytometry, Transwell migration, and Transwell invasion assays, respectively. In vivo tumor xenograft models were constructed to assess tumorigenicity. Bioinformatics predictions were performed to identify microRNAs targeting KCNMB2-AS1. Interactions between KCNMB2-AS1 and miR-374a-3p were analyzed using RNA immunoprecipitation, luciferase reporter, and rescue experiments. Results KCNMB2-AS1 levels were increased in NSCLC tissues and cells. KCNMB2-AS1 silencing hindered NSCLC cell proliferation, migration, and invasion and promoted apoptosis in vitro. Additionally, KCNMB2-AS1 knockdown decreased tumor growth in vivo. Mechanistically, KCNMB2-AS1 functioned as an endogenous miR-374a-3p sponge and increased ρ-associated coiled-coil–containing protein kinase 1 (ROCK1) expression. Furthermore, increased miR-374a-3p/ROCK1 output attenuated KCNMB2-AS1 silencing-induced inhibition of NSCLC progression. Conclusion The KCNMB2-AS1/miR-374a-3p/ROCK1 pathway drives NSCLC progression, suggesting that this pathway can be targeted to reduce NSCLC progression.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Thoracic Surgery, The People's Hospital of Liaoning Province, Liaoning 110015, People's Republic of China
| | - Ziyi Wang
- Department of Thoracic Surgery, The Tenth People's Hospital of Shenyang, Liaoning 110044, People's Republic of China
| | - Zhenyuan Wang
- Department of Thoracic Surgery, The People's Hospital of Liaoning Province, Liaoning 110015, People's Republic of China
| |
Collapse
|
35
|
Wegwitz F, Prokakis E, Pejkovska A, Kosinsky RL, Glatzel M, Pantel K, Wikman H, Johnsen SA. The histone H2B ubiquitin ligase RNF40 is required for HER2-driven mammary tumorigenesis. Cell Death Dis 2020; 11:873. [PMID: 33070155 PMCID: PMC7568723 DOI: 10.1038/s41419-020-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
The HER2-positive breast cancer subtype (HER2+-BC) displays a particularly aggressive behavior. Anti-HER2 therapies have significantly improved the survival of patients with HER2+-BC. However, a large number of patients become refractory to current targeted therapies, necessitating the development of new treatment strategies. Epigenetic regulators are commonly misregulated in cancer and represent attractive molecular therapeutic targets. Monoubiquitination of histone 2B (H2Bub1) by the heterodimeric ubiquitin ligase complex RNF20/RNF40 has been described to have tumor suppressor functions and loss of H2Bub1 has been associated with cancer progression. In this study, we utilized human tumor samples, cell culture models, and a mammary carcinoma mouse model with tissue-specific Rnf40 deletion and identified an unexpected tumor-supportive role of RNF40 in HER2+-BC. We demonstrate that RNF40-driven H2B monoubiquitination is essential for transcriptional activation of RHO/ROCK/LIMK pathway components and proper actin-cytoskeleton dynamics through a trans-histone crosstalk with histone 3 lysine 4 trimethylation (H3K4me3). Collectively, this work demonstrates a previously unknown essential role of RNF40 in HER2+-BC, revealing the H2B monoubiquitination axis as a possible tumor context-dependent therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anastasija Pejkovska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute for Neuropathology, University of Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Wang C, Dang Y, Waxman S, Hong Y, Shah P, Loewen RT, Xia X, Loewen NA. Ripasudil in a Model of Pigmentary Glaucoma. Transl Vis Sci Technol 2020; 9:27. [PMID: 33024620 PMCID: PMC7521183 DOI: 10.1167/tvst.9.10.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/16/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose To investigate the effects of Ripasudil (K-115), a Rho-kinase inhibitor, in a porcine model of pigmentary glaucoma. Methods In vitro trabecular meshwork (TM) cells and ex vivo perfused eyes were subjected to pigment dispersion followed by K-115 treatment (PK115). PK115 was compared to controls (C) and pigment (P). Cytoskeletal alterations were assessed by F-actin labeling. TM cell phagocytosis of fluorescent targets was evaluated by flow cytometry. Cell migration was studied with a wound-healing assay. Intraocular pressure was continuously monitored and compared to after the establishment of the pigmentary glaucoma model and after treatment with K-115. Results The percentage of cells with stress fibers increased in response to pigment but declined sharply after treatment with K-115 (P: 32.8% ± 2.9%; PK115: 11.6% ± 3.3%, P < 0.001). Phagocytosis first declined but recovered after K-115 (P: 25.7% ± 2.1%, PK115: 33.4% ± 0.8%, P <0.01). Migration recuperated at 12 hours with K-115 treatment (P: 19.1 ± 4.6 cells/high-power field, PK115: 42.5 ± 1.6 cells/high-power field, P < 0.001). Ex vivo, eyes became hypertensive from pigment dispersion but were normotensive after treatment with K-115 (P: 20.3 ± 1.2 mm Hg, PK115: 8.9 ± 1.7 mm Hg; P < 0.005). Conclusions In vitro, K-115 reduced TM stress fibers, restored phagocytosis, and restored migration of TM cells. Ex vivo, K-115 normalized intraocular pressure. Translational Relevance This ex vivo pigmentary glaucoma model provides a readily available basis to investigate new drugs such as the rho-kinase inhibitor studied here.
Collapse
Affiliation(s)
- Chao Wang
- University of Würzburg, Department of Ophthalmology, Würzburg, Germany.,University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA.,Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Yalong Dang
- University of Würzburg, Department of Ophthalmology, Würzburg, Germany.,University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA.,Sanmenxia Central Hospital, Sanmenxia, Henan, China
| | - Susannah Waxman
- University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA
| | - Ying Hong
- University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA
| | - Priyal Shah
- University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA
| | - Ralitsa T Loewen
- University of Würzburg, Department of Ophthalmology, Würzburg, Germany.,University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China
| | - Nils A Loewen
- University of Würzburg, Department of Ophthalmology, Würzburg, Germany.,University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Arya H, Coumar MS. Design of novel ROCK inhibitors using fragment-based de novo drug design approach. J Mol Model 2020; 26:249. [PMID: 32829478 DOI: 10.1007/s00894-020-04493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/01/2022]
Abstract
Rho-associated coiled-coil protein kinase (ROCK) is playing a vital role in the regulation of key cellular events and also responsible for causing several pathological conditions such as cancer, hypertension, Alzheimer's, cerebral vasospasm, and cardiac stroke. Therefore, it has attracted us to target ROCK protein as a potential therapeutic target for combating various diseases. Consequently, we investigated the active site of ROCK I protein and designed novel leads against the target using the de novo evolution drug design approach. Caffeic acid (an aglycone of acteoside) as a scaffold and fragments from 336 reported ROCK inhibitors were used for the design of novel leads. Multiple copy simultaneous search docking was used to identify the suitable fragments to be linked with the scaffold. Basic medicinal chemistry rules, coupled with structural insights generated by docking, led to the design of 7a, 8a, 9a, and 10a as potential ROCK I inhibitors. The designed leads showed better binding than the approved drug fasudil and also interacted with the key hinge region residue Met156 of ROCK I. Further, molecular dynamics (MD) simulation revealed that the protein-ligand complexes were stable and maintained the hydrogen bond with Met156 throughout the MD run. The promising in silico outcomes suggest that the designed compounds could be suitable anti-cancer leads that need to be synthesized and tested in various cancer cell lines. Graphical abstract.
Collapse
Affiliation(s)
- Hemant Arya
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
38
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
39
|
Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020; 12:cancers12051179. [PMID: 32392742 PMCID: PMC7281333 DOI: 10.3390/cancers12051179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Collapse
|
40
|
Mhaidly R, Mechta-Grigoriou F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin Immunol 2020; 48:101417. [DOI: 10.1016/j.smim.2020.101417] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
|
41
|
Porazinski S, Parkin A, Pajic M. Rho-ROCK Signaling in Normal Physiology and as a Key Player in Shaping the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:99-127. [PMID: 32030687 DOI: 10.1007/978-3-030-35582-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Rho-ROCK signaling network has a range of specialized functions of key biological importance, including control of essential developmental processes such as morphogenesis and physiological processes including homeostasis, immunity, and wound healing. Deregulation of Rho-ROCK signaling actively contributes to multiple pathological conditions, and plays a major role in cancer development and progression. This dynamic network is critical in modulating the intricate communication between tumor cells, surrounding diverse stromal cells and the matrix, shaping the ever-changing microenvironment of aggressive tumors. In this chapter, we overview the complex regulation of the Rho-ROCK signaling axis, its role in health and disease, and analyze progress made with key approaches targeting the Rho-ROCK pathway for therapeutic benefit. Finally, we conclude by outlining likely future trends and key questions in the field of Rho-ROCK research, in particular surrounding Rho-ROCK signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Sean Porazinski
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Ashleigh Parkin
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Marina Pajic
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Wang J, Jiang W. The Effects of RKI-1447 in a Mouse Model of Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet and in HepG2 Human Hepatocellular Carcinoma Cells Treated with Oleic Acid. Med Sci Monit 2020; 26:e919220. [PMID: 32026851 PMCID: PMC7020744 DOI: 10.12659/msm.919220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background This study aimed to investigate the effects of RKI-1447, a selective inhibitor of Rho-associated ROCK kinases, in a mouse model of nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet, and in oleic acid-treated HepG2 human hepatocellular carcinoma cells in vitro. Material/Methods Four study groups of mice included: the control group; the high-fat diet (HFD) group; the HFD+RKI-1447 (2 mg/kg) group; and the HFD+RKI-1447 (8 mg/kg) group. Mice were fed a high-fat diet for 12 weeks. Mice in the HFD+RKI-1447 groups were fed a high-fat diet for 12 weeks and treated with RKI-1447 twice weekly for three weeks. The HepG2 human hepatocellular carcinoma cells were treated with or without RKI-1447 for 2 h and treated with oleic acid for 24 h. Results In the mouse model of NAFLD, RKI-1447 reduced insulin resistance and the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total cholesterol, triglyceride, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and superoxide dismutase (SOD). RKI-1447 reduced the histological changes in the mouse model of NAFLD in mice fed a high-fat diet and significantly inhibited the generations of triglyceride, IL-6, and TNF-α. RKI-1447 reduced the levels of oxidative stress in HepG2 cells treated with oleic acid and significantly down-regulated the expression of RhoA, ROCK1, ROCK2, toll-like receptor 4 (TLR4), p-TBK1, and p-IRF3. RKI-1447 treatment also inhibited RhoA expression. Conclusions In a mouse model of NAFLD, RKI-1447 inhibited ROCK and modulated insulin resistance, oxidative stress, and inflammation through the ROCK/TLR4/TBK1/IRF3 pathway.
Collapse
Affiliation(s)
- Jinshan Wang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Wentao Jiang
- Department of Transplantation, Tianjin First Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
43
|
Thompson JM, Landman J, Razorenova OV. Targeting the RhoGTPase/ROCK pathway for the treatment of VHL/HIF pathway-driven cancers. Small GTPases 2020; 11:32-38. [PMID: 28632992 PMCID: PMC6959287 DOI: 10.1080/21541248.2017.1336193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
The loss of the von Hippel-Lindau (VHL) tumor-suppressor is a major driver of Clear Cell Renal Cell Carcinoma (CC-RCC) resulting in the stabilization and overactivation of hypoxia inducible factors (HIFs). ROCK1 is a well-known protein serine/threonine kinase which is recognized as having a role in cancer including alterations in cell motility, metastasis and angiogenesis. We recently investigated and identified a synthetic lethal interaction between VHL loss and ROCK1 inhibition in CC-RCC that is dependent on HIF overactivation. Increased expression and activity of both HIFs and ROCK1 occurs in many types of cancer supporting the potential therapeutic role of ROCK inhibitors beyond CC-RCC. We also discuss future research required to establish prognostic markers to predict tumor response to ROCK inhibitors.
Collapse
Affiliation(s)
- Jordan M. Thompson
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, CA, USA
| | - Jaime Landman
- Urology Department, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Olga V. Razorenova
- Molecular Biology and Biochemistry Department, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
44
|
Inhibition of Rho-Associated Kinase Suppresses Medulloblastoma Growth. Cancers (Basel) 2019; 12:cancers12010073. [PMID: 31888022 PMCID: PMC7016943 DOI: 10.3390/cancers12010073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is one of the most common malignant brain tumor types in children, with an overall survival of 70%. Mortality is associated with metastatic relapsed tumors. Rho-associated kinases (ROCKs), important for epithelial-mesenchymal transition (EMT) and proper nervous system development, have previously been identified as a promising drug target to inhibit cancer growth and metastatic spread. Here, we show that ROCKs are expressed in medulloblastoma, with higher ROCK2 mRNA expression in metastatic compared to non-metastatic tumors. By evaluating three ROCK inhibitors in a panel of medulloblastoma cell lines we demonstrated that medulloblastoma cells were sensitive for pharmacological ROCK inhibition. The specific ROCK inhibitor RKI-1447 inhibited the tumorigenicity in medulloblastoma cells as well as impeded cell migration and invasion. Differential gene expression analysis suggested that ROCK inhibition was associated with the downregulation of signaling pathways important in proliferation and metastasis e.g., TNFα via NFκβ, TGFβ, and EMT. Expression of key proteins in these pathways such as RHOA, RHOB, JUN, and vimentin was downregulated in ROCK inhibited cells. Finally, we showed that ROCK inhibition by RKI-1447 suppressed medulloblastoma growth and proliferation in vivo. Collectively, our results suggest that ROCK inhibition presents a potential new therapeutic option in medulloblastoma, especially for children with metastatic disease.
Collapse
|
45
|
ZeOncoTest: Refining and Automating the Zebrafish Xenograft Model for Drug Discovery in Cancer. Pharmaceuticals (Basel) 2019; 13:ph13010001. [PMID: 31878274 PMCID: PMC7169390 DOI: 10.3390/ph13010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The xenograft of human cancer cells in model animals is a powerful tool for understanding tumor progression and metastatic potential. Mice represent a validated host, but their use is limited by the elevated experimental costs and low throughput. To overcome these restrictions, zebrafish larvae might represent a valuable alternative. Their small size and transparency allow the tracking of transplanted cells. Therefore, tumor growth and early steps of metastasis, which are difficult to evaluate in mice, can be addressed. In spite of its advantages, the use of this model has been hindered by lack of experimental homogeneity and validation. Considering these facts, the aim of our work was to standardize, automate, and validate a zebrafish larvae xenograft assay with increased translatability and higher drug screening throughput. The ZeOncoTest reliability is based on the optimization of different experimental parameters, such as cell labeling, injection site, automated individual sample image acquisition, and analysis. This workflow implementation finally allows a higher precision and experimental throughput increase, when compared to previous reports. The approach was validated with the breast cancer cell line MDA-MB-231, the colorectal cancer cells HCT116, and the prostate cancer cells PC3; and known drugs, respectively RKI-1447, Docetaxel, and Mitoxantrone. The results recapitulate growth and invasion for all tested tumor cells, along with expected efficacy of the compounds. Finally, the methodology has proven useful for understanding specific drugs mode of action. The insights gained bring a step further for zebrafish larvae xenografts to enter the regulated preclinical drug discovery path.
Collapse
|
46
|
Zhou Y, Zhou Y, Wang K, Li T, Zhang M, Yang Y, Wang R, Hu R. ROCK2 Confers Acquired Gemcitabine Resistance in Pancreatic Cancer Cells by Upregulating Transcription Factor ZEB1. Cancers (Basel) 2019; 11:cancers11121881. [PMID: 31783584 PMCID: PMC6966455 DOI: 10.3390/cancers11121881] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to chemotherapy is a major clinical challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we provide evidence that Rho associated coiled-coil containing protein kinase 2 (ROCK2) maintains gemcitabine resistance in gemcitabine resistant pancreatic cancer cells (GR cells). Pharmacological inhibition or gene silencing of ROCK2 markedly sensitized GR cells to gemcitabine by suppressing the expression of zinc-finger-enhancer binding protein 1 (ZEB1). Mechanically, ROCK2-induced sp1 phosphorylation at Thr-453 enhanced the ability of sp1 binding to ZEB1 promoter regions in a p38-dependent manner. Moreover, transcriptional activation of ZEB1 facilitated GR cells to repair gemcitabine-mediated DNA damage via ATM/p-CHK1 signaling pathway. Our findings demonstrate the essential role of ROCK2 in EMT-induced gemcitabine resistance in pancreatic cancer cells and provide strong evidence for the clinical application of fasudil, a ROCK2 inhibitor, in gemcitabine-refractory PDAC.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Keke Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Tao Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Minda Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Yunjia Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Y.Z.); (K.W.); (T.L.); (M.Z.); (Y.Y.); (R.W.)
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-25-8327-1126; Fax: +86-25-8332-1714
| |
Collapse
|
47
|
Luo Y, Li L, Cai J, Ma J, Liu L, Wang X, Jin C. Determination of RKI-1447 in rat plasma by UPLC–MS/MS and investigation on its pharmacokinetics, an effective ROCK1 and ROCK2 inhibitor. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2018.00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yue Luo
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Liyi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinzhang Cai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianshe Ma
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Le Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chun Jin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
48
|
Wang L, Wang L, Li L, Zhang H, Lyu X. MicroRNA‑330 is downregulated in retinoblastoma and suppresses cell viability and invasion by directly targeting ROCK1. Mol Med Rep 2019; 20:3440-3447. [PMID: 31432120 DOI: 10.3892/mmr.2019.10545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Abnormal expression of microRNAs (miRNAs/miRs) has been previously reported in various types of human cancer, such as retinoblastoma (RB). Dysregulated miRNAs have been demonstrated to be important epigenetic regulators of numerous biological events associated with RB. Therefore, improved understanding of the precise roles of miRNAs in RB is required to develop novel therapeutic strategies for the treatment of patients with this disease. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to detect miR‑330 expression in RB tissues and cell lines. The effects of miR‑330 overexpression on the viability and invasion of RB cells were determined using MTT and Matrigel®‑based invasion assays, respectively. The mechanisms underlying the activity of miR‑330 in RB cells were investigated via bioinformatics analysis, luciferase reporter assays, and RT‑qPCR and western blot analyses. It was revealed that the levels of miR‑330 expression were significantly downregulated in RB tissues and cell lines compared with in control healthy tissues and cells, respectively. Overexpression of miR‑330 in RB cells significantly reduced the viability and invasion of cells in vitro. Additionally, ρ‑associated coiled‑coil containing protein kinase 1 (ROCK1) was identified as a putative target of miR‑330 using bioinformatics analysis. Subsequent experiments revealed that miR‑330 interacted with the 3'‑untranslated region of ROCK1 and downregulated its expression in RB cells. Furthermore, the expression levels of ROCK1 were increased in RB tissues compared with healthy controls and negatively correlated with miR‑330 expression. Finally, upregulation of ROCK1 expression reversed the miR‑330‑induced inhibition of the viability and invasion of RB cells. Collectively, these results suggested that miR‑330 exhibits tumor‑suppressor activity in the development of RB by directly targeting ROCK1, indicating that restoration of miR‑330 expression may be a promising therapeutic technique in the treatment of patients with RB.
Collapse
Affiliation(s)
- Ling Wang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lina Wang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lin Li
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hong Zhang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueman Lyu
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
49
|
Guan Z, Baty JJ, Zhang S, Remedies CE, Inscho EW. Rho kinase inhibitors reduce voltage-dependent Ca 2+ channel signaling in aortic and renal microvascular smooth muscle cells. Am J Physiol Renal Physiol 2019; 317:F1132-F1141. [PMID: 31432708 DOI: 10.1152/ajprenal.00212.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Voltage-dependent L-type Ca2+ channels (L-VDCCs) and the RhoA/Rho kinase pathway are two predominant intracellular signaling pathways that regulate renal microvascular reactivity. Traditionally, these two pathways have been thought to act independently; however, recent evidence suggests that these pathways could be convergent. We hypothesized that Rho kinase inhibitors can influence L-VDCC signaling. The effects of Rho kinase inhibitors Y-27632 or RKI-1447 on KCl-induced depolarization or the L-VDCC agonist Bay K8644 were assessed in afferent arterioles using an in vitro blood-perfused rat juxtamedullary nephron preparation. Superfusion of KCl (30-90 mM) led to concentration-dependent vasoconstriction of afferent arterioles. Administration of Y-27632 (1, 5, and 10 µM) or RKI-1447 (0.1, 1, and 10 µM) significantly increased the starting diameter by 16-65%. KCl-induced vasoconstriction was markedly attenuated with 5 and 10 µM Y-27632 and with 10 µM RKI-1447 (P < 0.05 vs. KCl alone). Y-27632 (5 µM) also significantly attenuated Bay K8644-induced vasoconstriction (P < 0.05). Changes in intracellular Ca2+ concentration ([Ca2+]i) were estimated by fura-2 fluorescence during KCl-induced depolarization in cultured A7r5 cells and in freshly isolated preglomerular microvascular smooth muscle cells. Administration of 90 mM KCl significantly increased fura-2 fluorescence in both cell types. KCl-mediated elevation of [Ca2+]i in A7r5 cells was suppressed by 1-10 µM Y-27632 (P < 0.05), but 10 µM Y-27632 was required to suppress Ca2+ responses in preglomerular microvascular smooth muscle cells. RKI-1447, however, significantly attenuated KCl-mediated elevation of [Ca2+]i. Y-27632 markedly inhibited Bay K8644-induced elevation of [Ca2+]i in both cell types. The results of the present study indicate that the Rho kinase inhibitors Y-27632 and RKI-1447 can partially inhibit L-VDCC function and participate in L-VDCC signaling.
Collapse
Affiliation(s)
- Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua J Baty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shali Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colton E Remedies
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
50
|
Li L, Chen Q, Yu Y, Chen H, Lu M, Huang Y, Li P, Chang H. RKI‐1447 suppresses colorectal carcinoma cell growth via disrupting cellular bioenergetics and mitochondrial dynamics. J Cell Physiol 2019; 235:254-266. [PMID: 31237697 DOI: 10.1002/jcp.28965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Liyi Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Qin Chen
- Department of Intensive Care First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yaojun Yu
- General Surgery Department Second Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui Chen
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Mingdong Lu
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Yingpeng Huang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Pihong Li
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| | - Hong Chang
- General Surgery Department Shandong Provincial Hospital Affiliated to Shandong University Ji'nan Shandong China
| |
Collapse
|