1
|
Man KH, Wu Y, Gao Z, Spreng AS, Keding J, Mangei J, Boskovic P, Mallm JP, Liu HK, Imbusch CD, Lichter P, Radlwimmer B. SOX10 mediates glioblastoma cell-state plasticity. EMBO Rep 2024; 25:5113-5140. [PMID: 39285246 PMCID: PMC11549307 DOI: 10.1038/s44319-024-00258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 11/10/2024] Open
Abstract
Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design. We show that low SOX10 expression is linked to neural stem-cell (NSC)-like glioblastoma cell states and is a consequence of temozolomide treatment in animal and cell line models. Single-cell transcriptome profiling of Sox10-KD tumors indicates that Sox10 suppression is sufficient to induce tumor progression to an aggressive NSC/developmental-like phenotype, including a quiescent NSC-like cell population. The quiescent NSC state is induced by temozolomide and Sox10-KD and reduced by Notch pathway inhibition in cell line models. Combination treatment using Notch and HDAC/PI3K inhibitors extends the survival of mice carrying Sox10-KD tumors, validating our experimental therapy approach. In summary, SOX10 suppression mediates glioblastoma progression through NSC/developmental cell-state transition, including the induction of a targetable quiescent NSC state. This work provides a rationale for the design of tumor therapies based on single-cell phenotypic plasticity analysis.
Collapse
Affiliation(s)
- Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China
| | - Zhenjiang Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Anna-Sophie Spreng
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johanna Keding
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Mangei
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hai-Kun Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
King E, Cook M, Wittorff H, Dirksen W, Kisseberth WC, Jennings RN. Evaluation of SOX-10 immunohistochemical expression in canine melanoma and non-melanocytic tumors by tissue microarray. Vet Pathol 2024; 61:896-903. [PMID: 39239974 DOI: 10.1177/03009858241273318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Melanoma is the most common malignant oral tumor in dogs. It frequently presents a diagnostic challenge as many melanomas lack or contain scant melanin and may have a variable microscopic phenotype. Previous studies evaluating immunohistochemical markers for diagnosing melanoma have shown limited sensitivity and/or specificity for S-100, PNL2, melan A, TRP-1, TRP-2, and HMB-45. Sry-related HMG-box gene 10 (SOX-10) is a transcription factor associated with melanocytic, peripheral neural crest, and peripheral nervous system development. In humans, SOX-10 expression has been demonstrated in melanoma, breast carcinoma, glioma, and schwannoma, but has only recently been explored in veterinary species. In this study, 198 tumors comprised of 147 melanocytic neoplasms and 51 non-melanocytic neoplasms were evaluated by immunohistochemistry using a tissue microarray for SOX-10, PNL2, melan A, TRP-1, and TRP-2 expressions. The SOX-10 had the highest diagnostic sensitivity (96.7%) in melanomas. In addition, SOX-10 had the highest percentage (91.5%; 130/142) of melanomas label at least 75% of neoplastic cells. Of the 51 selected non-melanocytic tumors examined, SOX-10 labeling was observed in mammary carcinomas (6/6), gliomas (4/4), and oral soft tissue sarcomas (4/18). Of the 41 non-melanocytic oral neoplasms evaluated, SOX-10 had a specificity of 92.7%. Therefore, SOX-10 represents a useful immunohistochemical screening marker for the diagnosis of canine melanoma given its extremely high sensitivity and robust labeling intensity. The SOX-10 may have utility in diagnosing some non-melanocytic neoplasms in the dog, although this requires further investigation.
Collapse
Affiliation(s)
| | - Matthew Cook
- Metropolitan Veterinary Hospital, Highland Heights, OH
| | | | | | | | | |
Collapse
|
3
|
Li B, Sadagopan A, Li J, Wu Y, Cui Y, Konda P, Weiss CN, Choueiri TK, Doench JG, Viswanathan SR. A framework for target discovery in rare cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620074. [PMID: 39484513 PMCID: PMC11527139 DOI: 10.1101/2024.10.24.620074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To generalize to other rare cancers in which experimental models may not be readily available, we employed machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets.
Collapse
Affiliation(s)
- Bingchen Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Ananthan Sadagopan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Jiao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yuqianxun Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Yantong Cui
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Cary N. Weiss
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
| | - Toni K. Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
| | - John G. Doench
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Srinivas R. Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School; Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02215, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Cai S, Yin N. Single-cell transcriptome and chromatin accessibility mapping of upper lip and primary palate fusion. J Cell Mol Med 2024; 28:e70128. [PMID: 39392189 PMCID: PMC11467802 DOI: 10.1111/jcmm.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/17/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Cleft lip and/or primary palate (CL/P) represent a prevalent congenital malformation, the aetiology of which is highly intricate. Although it is generally accepted that the condition arises from failed fusion between the upper lip and primary palate, the precise mechanism underlying this fusion process remains enigmatic. In this study, we utilized transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) to interrogate lambdoidal junction tissue derived from C57BL/6J mouse embryos at critical stages of embryogenesis (10.5, 11.5 and 12.5 embryonic days). We successfully identified distinct subgroups of mesenchymal and ectodermal cells involved in the fusion process and characterized their unique transcriptional profiles. Furthermore, we conducted cell differentiation trajectory analysis, revealing a dynamic repertoire of genes that are sequentially activated or repressed during pseudotime, facilitating the transition of relevant cell types. Additionally, we employed scATAC data to identify key genes associated with the fusion process and demonstrated differential chromatin accessibility across major cell types. Finally, we constructed a dynamic intercellular communication network and predicted upstream transcriptional regulators of critical genes involved in important signalling pathways. Our findings provide a valuable resource for future studies on upper lip and primary palate development, as well as congenital defects.
Collapse
Affiliation(s)
- Sini Cai
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Medical Cosmetic Center of Dermatology Hospital of Southern Medical UniversityGuangdong Provincial Dermatology HospitalGuangzhouChina
| | - Ningbei Yin
- The Department of Cleft Lip and Palate of Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
5
|
Avila JA, Benthal JT, Schafer JC, Southard-Smith EM. Single Cell Profiling in the Sox10 Dom/+ Hirschsprung Mouse Implicates Hoxa6 in Enteric Neuron Lineage Allocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613729. [PMID: 39345473 PMCID: PMC11429920 DOI: 10.1101/2024.09.18.613729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background & Aims Enteric nervous system (ENS) development requires migration, proliferation, and appropriate neuronal diversification from progenitors to enable normal gastrointestinal (GI) motility. Sox10 deficit causes aganglionosis, modeling Hirschsprung disease, and disrupts ratios of postnatal enteric neurons in proximal ganglionated bowel. How Sox10 deficiency alters ratios of enteric neuron subtypes is unclear. Sox10's prominent expression in enteric neural crest-derived progenitors (ENCP) and lack of this gene in enteric neurons led us to examine Sox10 Dom effects ENS progenitors and early differentiating enteric neurons. Methods ENS progenitors, developing neurons, and enteric glia were isolated from Sox10 +/+ and Sox10 Dom/+ littermates for single-cell RNA sequencing (scRNA-seq). scRNA-seq data was processed to identify cell type-specific markers, differentially expressed genes, cell fate trajectories, and gene regulatory network activity between genotypes. Hybridization chain reaction (HCR) validated expression changes detected in scRNA-seq. Results scRNA-seq profiles revealed three neuronal lineages emerging from cycling progenitors via two transition pathways accompanied by elevated activity of Hox gene regulatory networks (GRN) as progenitors transition to neuronal fates. Sox10 Dom/+ scRNA-seq profiles exhibited a novel progenitor cluster, decreased abundance of cells in transitional states, and shifts in cell distributions between two neuronal trajectories. Hoxa6 was differentially expressed in the neuronal lineages impacted in Sox10 Dom/+ mutants and HCR identified altered Hoxa6 expression in early developing neurons of Sox10 Dom/+ ENS. Conclusions Sox10 Dom/+ mutation shifts enteric neuron types by altering neuronal trajectories during early ENS lineage segregation. Multiple neurogenic transcription factors are reduced in Sox10 Dom/+ scRNA-seq profiles including multiple Hox genes. This is the first report that implicates Hox genes in lineage diversification of enteric neurons.
Collapse
|
6
|
Martinkova L, Zatloukalova P, Kucerikova M, Friedlova N, Tylichova Z, Zavadil-Kokas F, Hupp TR, Coates PJ, Vojtesek B. Inverse correlation between TP53 gene status and PD-L1 protein levels in a melanoma cell model depends on an IRF1/SOX10 regulatory axis. Cell Mol Biol Lett 2024; 29:117. [PMID: 39237877 PMCID: PMC11378555 DOI: 10.1186/s11658-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.
Collapse
Affiliation(s)
- Lucia Martinkova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| | | | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Nela Friedlova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Zuzana Tylichova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
| | | | - Ted Robert Hupp
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, EH4 2XR, UK
| | | | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Brombin A, Patton EE. Melanocyte lineage dynamics in development, growth and disease. Development 2024; 151:dev201266. [PMID: 39092608 DOI: 10.1242/dev.201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.
Collapse
Affiliation(s)
- Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
8
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA, Alani RM. p300 KAT Regulates SOX10 Stability and Function in Human Melanoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1894-1907. [PMID: 38994683 PMCID: PMC11293458 DOI: 10.1158/2767-9764.crc-24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth; on the other hand, SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation while preventing a concomitant increase in tumor cell invasion. In this study, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor A-485 downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors. SIGNIFICANCE The p300 KAT inhibitor A-485 blocks SOX10-dependent proliferation and SOX10-independent invasion in hard-to-treat melanoma cells.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Nicole Grbic
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - William Austin Wyant
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Sabah Choudhury
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Kihyun Park
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Marianne Collard
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts.
| | - Rhoda M. Alani
- Department of Dermatology, Boston University Aram V. Chobanian and Edward Avedisian School of Medicine, Boston, Massachusetts.
| |
Collapse
|
9
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Waddell A, Grbic N, Leibowitz K, Wyant WA, Choudhury S, Park K, Collard M, Cole PA, Alani RM. p300 KAT regulates SOX10 stability and function in human melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581224. [PMID: 38469149 PMCID: PMC10926666 DOI: 10.1101/2024.02.20.581224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
SOX10 is a lineage-specific transcription factor critical for melanoma tumor growth, while SOX10 loss-of-function drives the emergence of therapy-resistant, invasive melanoma phenotypes. A major challenge has been developing therapeutic strategies targeting SOX10's role in melanoma proliferation, while preventing a concomitant increase in tumor cell invasion. Here, we report that the lysine acetyltransferase (KAT) EP300 and SOX10 gene loci on Chromosome 22 are frequently co-amplified in melanomas, including UV-associated and acral tumors. We further show that p300 KAT activity mediates SOX10 protein stability and that the p300 inhibitor, A-485, downregulates SOX10 protein levels in melanoma cells via proteasome-mediated degradation. Additionally, A-485 potently inhibits proliferation of SOX10+ melanoma cells while decreasing invasion in AXLhigh/MITFlow melanoma cells through downregulation of metastasis-related genes. We conclude that the SOX10/p300 axis is critical to melanoma growth and invasion, and that inhibition of p300 KAT activity through A-485 may be a worthwhile therapeutic approach for SOX10-reliant tumors.
Collapse
Affiliation(s)
- Aaron Waddell
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Nicole Grbic
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - W. Austin Wyant
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Sabah Choudhury
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Kihyun Park
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Marianne Collard
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| | - Philip A. Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Rhoda M. Alani
- Department of Dermatology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, 609 Albany Street, Boston, MA, USA 02118
| |
Collapse
|
11
|
Rosenbaum SR, Caksa S, Stefanski CD, Trachtenberg IV, Wilson HP, Wilski NA, Ott CA, Purwin TJ, Haj JI, Pomante D, Kotas D, Chervoneva I, Capparelli C, Aplin AE. SOX10 Loss Sensitizes Melanoma Cells to Cytokine-Mediated Inflammatory Cell Death. Mol Cancer Res 2024; 22:209-220. [PMID: 37847239 PMCID: PMC10842433 DOI: 10.1158/1541-7786.mcr-23-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Signe Caksa
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Casey D. Stefanski
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Isabella V. Trachtenberg
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Haley P. Wilson
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicole A. Wilski
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Connor A. Ott
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jelan I. Haj
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Danielle Pomante
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Kotas
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Bahmad HF, Thiravialingam A, Sriganeshan K, Gonzalez J, Alvarez V, Ocejo S, Abreu AR, Avellan R, Arzola AH, Hachem S, Poppiti R. Clinical Significance of SOX10 Expression in Human Pathology. Curr Issues Mol Biol 2023; 45:10131-10158. [PMID: 38132479 PMCID: PMC10742133 DOI: 10.3390/cimb45120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The embryonic development of neural crest cells and subsequent tissue differentiation are intricately regulated by specific transcription factors. Among these, SOX10, a member of the SOX gene family, stands out. Located on chromosome 22q13, the SOX10 gene encodes a transcription factor crucial for the differentiation, migration, and maintenance of tissues derived from neural crest cells. It plays a pivotal role in developing various tissues, including the central and peripheral nervous systems, melanocytes, chondrocytes, and odontoblasts. Mutations in SOX10 have been associated with congenital disorders such as Waardenburg-Shah Syndrome, PCWH syndrome, and Kallman syndrome, underscoring its clinical significance. Furthermore, SOX10 is implicated in neural and neuroectodermal tumors, such as melanoma, malignant peripheral nerve sheath tumors (MPNSTs), and schwannomas, influencing processes like proliferation, migration, and differentiation. In mesenchymal tumors, SOX10 expression serves as a valuable marker for distinguishing between different tumor types. Additionally, SOX10 has been identified in various epithelial neoplasms, including breast, ovarian, salivary gland, nasopharyngeal, and bladder cancers, presenting itself as a potential diagnostic and prognostic marker. However, despite these associations, further research is imperative to elucidate its precise role in these malignancies.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Aran Thiravialingam
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Karthik Sriganeshan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Jeffrey Gonzalez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Veronica Alvarez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Stephanie Ocejo
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alvaro R. Abreu
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Rima Avellan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alejandro H. Arzola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
13
|
Manicardi V, Gugnoni M, Sauta E, Donati B, Vitale E, Torricelli F, Manzotti G, Piana S, Longo C, Ghini F, Ciarrocchi A. Ex vivo mapping of enhancer networks that define the transcriptional program driving melanoma metastasis. Mol Oncol 2023; 17:2728-2742. [PMID: 37408506 DOI: 10.1002/1878-0261.13485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Mortality from vmelanoma is associated with metastatic disease, but the mechanisms leading to spreading of the cancer cells remain obscure. Spatial profiling revealed that melanoma is characterized by a high degree of heterogeneity, which is established by the ability of melanoma cells to switch between different phenotypical stages. This plasticity, likely a heritage from embryonic pathways, accounts for a relevant part of the metastatic potential of these lesions, and requires the rapid and efficient reorganization of the transcriptional landscape of melanoma cells. A large part of the non-coding genome cooperates to control gene expression, specifically through the activity of enhancers (ENHs). In this study, we aimed to identify ex vivo the network of active ENHs and to outline their cooperative interactions in supporting transcriptional adaptation during melanoma metastatic progression. We conducted a genome-wide analysis to map active ENHs distribution in a retrospective cohort of 39 melanoma patients, comparing the profiles obtained in primary (N = 19) and metastatic (N = 20) melanoma lesions. Unsupervised clustering showed that the profile for acetylated histone H3 at lysine 27 (H3K27ac) efficiently segregates lesions into three different clusters corresponding to progressive stages of the disease. We reconstructed the map of super-ENHs (SEs) and cooperative ENHs that associate with metastatic progression in melanoma, which showed that cooperation among regulatory elements is a mandatory requirement for transcriptional plasticity. We also showed that these elements carry out specialized and non-redundant functions, and indicated the existence of a hierarchical organization, with SEs on top as masterminds of the entire transcriptional program and classical ENHs as executors. By providing an innovative vision of how the chromatin landscape of melanoma works during metastatic spreading, our data also point out the need to integrate functional profiling in the analysis of cancer lesions to increase definition and improve interpretation of tumor heterogeneity.
Collapse
Affiliation(s)
- Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | | | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | | | - Caterina Longo
- Skin Cancer Unit, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Francesco Ghini
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Italy
| |
Collapse
|
14
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
15
|
Xu X, Zhang DD, Kong P, Gao YK, Huang XF, Song Y, Zhang WD, Guo RJ, Li CL, Chen BW, Sun Y, Zhao YB, Jia FY, Wang X, Zhang F, Han M. Sox10 escalates vascular inflammation by mediating vascular smooth muscle cell transdifferentiation and pyroptosis in neointimal hyperplasia. Cell Rep 2023; 42:112869. [PMID: 37481722 DOI: 10.1016/j.celrep.2023.112869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can transdifferentiate into macrophage-like cells in the context of sustained inflammatory injury, which drives vascular hyperplasia and atherosclerotic complications. Using single-cell RNA sequencing, we identify that macrophage-like VSMCs are the key cell population in mouse neointimal hyperplasia. Sex-determining region Y (SRY)-related HMG-box gene 10 (Sox10) upregulation is associated with macrophage-like VSMC accumulation and pyroptosis in vitro and in the neointimal hyperplasia of mice. Tumor necrosis factor α (TNF-α)-induced Sox10 lactylation in a phosphorylation-dependent manner by PI3K/AKT signaling drives transcriptional programs of VSMC transdifferentiation, contributing to pyroptosis. The regulator of G protein signaling 5 (RGS5) interacts with AKT and blocks PI3K/AKT signaling and Sox10 phosphorylation at S24. Sox10 silencing mitigates vascular inflammation and forestalls neointimal hyperplasia in RGS5 knockout mice. Collectively, this study shows that Sox10 is a regulator of vascular inflammation and a potential control point in inflammation-related vascular disease.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Ya-Kun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang-Lin Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Bo-Wen Chen
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Sun
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yong-Bo Zhao
- Department of Cardiac Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
16
|
Casalou C, Mayatra JM, Tobin DJ. Beyond the Epidermal-Melanin-Unit: The Human Scalp Anagen Hair Bulb Is Home to Multiple Melanocyte Subpopulations of Variable Melanogenic Capacity. Int J Mol Sci 2023; 24:12809. [PMID: 37628992 PMCID: PMC10454394 DOI: 10.3390/ijms241612809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The visual appearance of humans is derived significantly from our skin and hair color. While melanin from epidermal melanocytes protects our skin from the damaging effects of ultraviolet radiation, the biological value of pigmentation in the hair follicle, particularly on the scalp, is less clear. In this study, we explore the heterogeneity of pigment cells in the human scalp anagen hair follicle bulb, a site conventionally viewed to be focused solely on pigment production for transfer to the hair shaft. Using c-KIT/CD117 microbeads, we isolated bulbar c-KIT-positive and c-KIT-negative melanocytes. While both subpopulations expressed MITF, only the c-KIT-positive fraction expressed SOX10. We further localized bulbar melanocyte subpopulations (expressing c-KIT, SOX10, MITF, and DCT) that exhibited distinct/variable expression of downstream differentiation-associated melanosome markers (e.g., gp100 and Melan-A). The localization of a second 'immature' SOX10 negative melanocyte population, which was c-KIT/MITF double-positive, was identified outside of the melanogenic zone in the most peripheral/proximal matrix. This study describes an approach to purifying human scalp anagen hair bulb melanocytes, allowing us to identify unexpected levels of melanocyte heterogeneity. The function of the more immature melanocytes in this part of the hair follicle remains to be elucidated. Could they be in-transit migratory cells ultimately destined to synthesize melanin, or could they contribute to the hair follicle in non-melanogenic ways?
Collapse
Affiliation(s)
- Cristina Casalou
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jay M. Mayatra
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Desmond J. Tobin
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
17
|
Xu X, Liu XQ, Liu XL, Wang X, Zhang WD, Huang XF, Jia FY, Kong P, Han M. SM22α Deletion Contributes to Neurocognitive Impairment in Mice through Modulating Vascular Smooth Muscle Cell Phenotypes. Int J Mol Sci 2023; 24:ijms24087117. [PMID: 37108281 PMCID: PMC10138350 DOI: 10.3390/ijms24087117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Considerable evidence now indicates that cognitive impairment is primarily a vascular disorder. The depletion of smooth muscle 22 alpha (SM22α) contributes to vascular smooth muscle cells (VSMCs) switching from contractile to synthetic and proinflammatory phenotypes in the context of inflammation. However, the role of VSMCs in the pathogenesis of cognitive impairment remains undetermined. Herein, we showed a possible link between VSMC phenotypic switching and neurodegenerative diseases via the integration of multi-omics data. SM22α knockout (Sm22α-/-) mice exhibited obvious cognitive impairment and cerebral pathological changes, which were visibly ameliorated by the administration of AAV-SM22α. Finally, we confirmed that SM22α disruption promotes the expression of SRY-related HMG-box gene 10 (Sox10) in VSMCs, thereby aggravating the systemic vascular inflammatory response and ultimately leading to cognitive impairment in the brain. Therefore, this study supports the idea of VSMCs and SM22α as promising therapeutic targets in cognitive impairment to improve memory and cognitive decline.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Qin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xin-Long Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
18
|
Cheng X, He Y, Bao W, Zhang Z, Chen L, Song G, Lan J, Xu F, Jia C, Dai T. Transcriptomic analysis of mRNA expression in giant congenital melanocytic nevi. Gene 2022; 850:146894. [PMID: 36174903 DOI: 10.1016/j.gene.2022.146894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVE GCMN is a sporadic disease with an incidence ranging from 1/20,000 to 1/500000. So far, several studies have found that GCMN is related to somatic mutations, but most of them have focused on known pathogenic genes, and transcriptome sequencing based on large datasets is relatively uncommon. At present, the use of next-generation sequencing technologies and bioinformatics platforms makes genomic information study more comprehensive and efficient. In this study, the transcriptome differences between GCMN lesions and surrounding normal skin tissues were investigated using high-throughput transcriptome sequencing, and hub genes and pathways related to pathogenesis were identified, providing a theoretical foundation for further research into the pathogenesis of GCMN. METHODS Pathological skin tissue and surrounding normal skin tissue from GCMN patients, namely the pathological group (PG) and the control group (CG), were obtained. 1. All specimens were stained with HE to ensure that the samples met the experimental requirements. 2. Ten pairs of specimens were selected for high-throughput transcriptome sequencing, and the differentially expressed genes (DEGs) between the PG and the CG were obtained. The DEGs were analyzed by clusterProfiler R software for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The function of the subnetwork was analyzed and the hub genes were identified by the STRING database and Cytoscape software. 3. The expression differences of hub genes PTGS2, EGF, and SOX10 in pathological skin tissues and normal skin tissues were verified by qRT-PCR and immunofluorescence staining. RESULTS 1. HE staining revealed a lot of melanocytes in the dermis and subcutaneous tissues. They were found around the hair follicles, sweat glands, sebaceous glands, and blood vessel walls, or in a specific pattern. 2. The screening threshold was set at p<0.01 and |log2fc|<1, and a total of 1163 DEGs were discovered between the PG and CG, with 519 genes up-regulated and 644 genes down-regulated in the pathological tissues. According to the GO functional analysis, 29 biological processes, 18 cell compositions, and 17 molecular functions were significantly enriched, with the majority of them being related to keratinocytes and the extracellular matrix. There were 779 nodes and 2359 interactions in the protein interaction network. Using the MCODE plug-in, the network was divided into 25 functional clusters. According to ClueGO results, Cluster5 was involved in melanin biosynthesis and melanocyte proliferation. Using 11 operation methods in the Cytohubba plug-in, PTGS2, EGF, and SOX10 in Cluster5 were chosen as hub genes. 3. qRT-PCR and immunofluorescent staining revealed that compared to normal skin tissue, the expression of SOX10 was significantly up-regulated, and the expression of PTGS2 and EGF was significantly down-regulated in pathological skin tissue(P<0.001). CONCLUSIONS In GCMN, keratinocytes and extracellular matrix may directly and indirectly affect melanocyte activity. PTGS2, EGF, and SOX10 are important genes and significantly differentially expressed in pathological and normal skin tissues. These findings may serve as a springboard for future research.
Collapse
Affiliation(s)
- Xialin Cheng
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Yan He
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Wu Bao
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Zexin Zhang
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Lingxi Chen
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Ge Song
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology 24 Jinghua Road, Jianxi District, Luoyang city, Henan Province.
| | - Junhong Lan
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Fangfang Xu
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Chiyu Jia
- Department of Burns and Plastic Surgery, Xiang'an Hospital of Xiamen University, Xiamen, China, 2000 East Xiang 'an Road, Xiang 'an District, Xiamen city, China.
| | - Tao Dai
- Department of Plastic Surgery, the Third Affiliated Hospital, Henan University of Science and Technology, Luoyang, China 36 Xiyuan Road, Jianxi District, Luoyang city, Henan Province.
| |
Collapse
|
19
|
Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022; 11:cells11182857. [PMID: 36139432 PMCID: PMC9496915 DOI: 10.3390/cells11182857] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death, and incidences are increasing globally. Simply defined, cancer is the uncontrolled proliferation of a cell, and depending on the tissue of origin, the cancer etiology, biology, progression, prognosis, and treatment will differ. Carcinogenesis and its progression are associated with genetic factors that can either be inherited and/or acquired and are classified as an oncogene or tumor suppressor. Many of these genetic factors converge on common signaling pathway(s), such as the MAPK and PI3K/AKT pathways. In this review, we will focus on the metabotropic glutamate receptor (mGluR) family, an upstream protein that transmits extracellular signals into the cell and has been shown to regulate many aspects of tumor development and progression. We explore the involvement of members of this receptor family in various cancers that include breast cancer, colorectal cancer, glioma, kidney cancer, melanoma, oral cancer, osteosarcoma, pancreatic cancer, prostate cancer, and T-cell cancers. Intriguingly, depending on the member, mGluRs can either be classified as oncogenes or tumor suppressors, although in general most act as an oncogene. The extensive work done to elucidate the role of mGluRs in various cancers suggests that it might be a viable strategy to therapeutically target glutamatergic signaling.
Collapse
|
20
|
FOXA1, FOXA2, SOX10 and GAS2 Gene Expression in Oral Squamous Cell Carcinoma and Their Relationship with Clinicopathological Indices. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: The use of molecular methods in cancer diagnosis has led to a better prognosis. One of the important gene families in the carcinogenic pathways of various cancers is the forkhead box (FOX) family genes. Moreover, developmental transcription factors and proapoptotic proteins play critical roles in cell function and carcinogenesis. Objectives: The current study aimed to evaluate the expression of A1 FOXA1, FOXA2, SOX10, and growth arrest specific 2 (GAS2) genes in oral squamous cell carcinoma (OSCC) tumors due to biomarker discovery and early diagnosis of cancer. Methods: To evaluate the expression of FOXA1, FOXA2, SOX10, and GAS2 genes, 30 OSCC samples and 30 normal specimens were obtained from Imam Khomeini Hospital Cancer Institute. RNA extraction and cDNA synthesis were done by relevant kits. After a specific primer design for FOXA1, FOXA2, SOX10, and GAS2 genes, real-time PCR was done to evaluate the genes’ expression for molecular biomarker discovery and validation. ANOVA and independent t-test were used to analyze the data. Results: Significant differences were observed in the expression of the studied genes in tumor and control tissues (P < 0.001). The results showed that FOXA1, GAS2, and SOX10 expressions in tumor and normal cells have significant differences (P < 0.001). Regardless of FOXA1, FOXA2 and SOX10, there was a significant difference in the expression of GAS2 genes in term patients’ age (P < 0.05) and overexpressed in patients over 55 years. SOX10 gene is upregulated in grade II OSCC tumors but there is no significant difference in expression of FOXA1, FOXA2, and GAS2 in different stages and grades. The ROC curve analysis, FOXA1, and FOXA2 showed AUC = 0.66 and AUC = 0.57 respectively. Meanwhile, SOX10 and GAS2 showed AUC = 0.9 and AUC = 1 respectively. Conclusions: In general, the expression of FOXA1, GAS2, and SOX10 genes in cancer and control tissues were different, and therefore the role of these genes in OSCC is confirmed. Also, in the present study, the biomarker potential of SOX10 and GAS2 genes for OSCC diagnosis was demonstrated. In the current study, the important role of the studied genes in OSCC diagnosis was shown. However, further studies are needed to confirm this.
Collapse
|
21
|
Hu F, Fong KO, Cheung MPL, Liu JA, Liang R, Li TW, Sharma R, IP PP, Yang X, Cheung M. DEPDC1B Promotes Melanoma Angiogenesis and Metastasis through Sequestration of Ubiquitin Ligase CDC16 to Stabilize Secreted SCUBE3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105226. [PMID: 35088579 PMCID: PMC8981904 DOI: 10.1002/advs.202105226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Indexed: 05/28/2023]
Abstract
The ability of melanoma to acquire metastasis through the induction of angiogenesis is one of the major causes of skin cancer death. Here, it is found that high transcript levels of DEP domain containing 1B (DEPDC1B) in cutaneous melanomas are significantly associated with a poor prognosis. Tissue microarray analysis indicates that DEPDC1B expression is positively correlated with SOX10 in the different stages of melanoma. Consistently, DEPDC1B is both required and sufficient for melanoma growth, metastasis, angiogenesis, and functions as a direct downstream target of SOX10 to partly mediate its oncogenic activity. In contrast to other tumor types, the DEPDC1B-mediated enhancement of melanoma metastatic potential is not dependent on the activities of RHO GTPase signaling and canonical Wnt signaling, but is acquired through secretion of signal peptide, CUB domain and EGF like domain containing 3 (SCUBE3), which is crucial for promoting angiogenesis in vitro and in vivo. Mechanistically, DEPDC1B regulates SCUBE3 protein stability through the competitive association with ubiquitin ligase cell division cycle 16 (CDC16) to prevent SCUBE3 from undergoing degradation via the ubiquitin-proteasome pathway. Importantly, expression of SOX10, DEPDC1B, and SCUBE3 are positively correlated with microvessel density in the advanced stage of melanomas. In conclusion, it is revealed that a SOX10-DEPDC1B-SCUBE3 regulatory axis promotes melanoma angiogenesis and metastasis, which suggests that targeting secreted SCUBE3 can be a therapeutic strategy against metastatic melanoma.
Collapse
Affiliation(s)
- Feng Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Ki On Fong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - May Pui Lai Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jessica Aijia Liu
- Department of NeuroscienceCity University of Hong KongTat Chee AvenueHong KongChina
| | - Rui Liang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tsz Wai Li
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Rakesh Sharma
- Centre for PanorOmic SciencesProteomics and Metabolomics Core FacilityLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Philip Pun‐Ching IP
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xintao Yang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Martin Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| |
Collapse
|
22
|
Dreier MR, de la Serna IL. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. EPIGENOMES 2022; 6:epigenomes6010010. [PMID: 35323214 PMCID: PMC8947417 DOI: 10.3390/epigenomes6010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive malignancy that arises from the transformation of melanocytes on the skin, mucosal membranes, and uvea of the eye. SWI/SNF chromatin remodeling enzymes are multi-subunit complexes that play important roles in the development of the melanocyte lineage and in the response to ultraviolet radiation, a key environmental risk factor for developing cutaneous melanoma. Exome sequencing has revealed frequent loss of function mutations in genes encoding SWI/SNF subunits in melanoma. However, some SWI/SNF subunits have also been demonstrated to have pro-tumorigenic roles in melanoma and to affect sensitivity to therapeutics. This review summarizes studies that have implicated SWI/SNF components in melanomagenesis and have evaluated how SWI/SNF subunits modulate the response to current therapeutics.
Collapse
|
23
|
Capparelli C, Purwin TJ, Glasheen M, Caksa S, Tiago M, Wilski N, Pomante D, Rosenbaum S, Nguyen MQ, Cai W, Franco-Barraza J, Zheng R, Kumar G, Chervoneva I, Shimada A, Rebecca VW, Snook AE, Hookim K, Xu X, Cukierman E, Herlyn M, Aplin AE. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun 2022; 13:1381. [PMID: 35296667 PMCID: PMC8927161 DOI: 10.1038/s41467-022-28801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.
Collapse
Affiliation(s)
- Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Timothy J. Purwin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - McKenna Glasheen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Signe Caksa
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Manoela Tiago
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Nicole Wilski
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Danielle Pomante
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sheera Rosenbaum
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Mai Q. Nguyen
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Weijia Cai
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Janusz Franco-Barraza
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Richard Zheng
- grid.265008.90000 0001 2166 5843Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Gaurav Kumar
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Inna Chervoneva
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Ayako Shimada
- grid.265008.90000 0001 2166 5843Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA ,grid.21107.350000 0001 2171 9311Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Adam E. Snook
- grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kim Hookim
- grid.265008.90000 0001 2166 5843Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Xiaowei Xu
- grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Edna Cukierman
- grid.249335.a0000 0001 2218 7820Cancer Signaling and Epigenetics Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA 19111 USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104 USA
| | - Andrew E. Aplin
- grid.265008.90000 0001 2166 5843Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA ,grid.265008.90000 0001 2166 5843Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
24
|
Kramer ET, Godoy PM, Kaufman CK. Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors. G3 (BETHESDA, MD.) 2022; 12:jkab379. [PMID: 34791221 PMCID: PMC8727958 DOI: 10.1093/g3journal/jkab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/02/2021] [Indexed: 11/14/2022]
Abstract
Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant (BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using fluorescence-activated cell sorting to isolate these populations, we performed high-quality RNA- and ATAC-seq on sorted zebrafish melanocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as did melanoma cells. Comparing melanocytes and melanoma, we note 4128 differentially expressed genes and 56,936 differentially accessible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining the RNA- and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more refined gene expression program driving cancerous melanoma. These data serve as a resource to identify candidate regulators of the normal vs. diseased states in a genetically controlled in vivo context.
Collapse
Affiliation(s)
- Eva T Kramer
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Paula M Godoy
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| |
Collapse
|
25
|
Gene Expression and Mutational Profile in BAP-1 Inactivated Melanocytic Lesions of Progressive Malignancy from a Patient with Multiple Lesions. Genes (Basel) 2021; 13:genes13010010. [PMID: 35052351 PMCID: PMC8774463 DOI: 10.3390/genes13010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
BAP-1 (BRCA1-associated protein 1) inactivated melanocytic lesions are a group of familial or sporadic lesions with unique histology and molecular features. They are of great clinical interest, at least in part due to the potential for malignant transformation and association with a familial cancer predisposition syndrome. Here, we describe a patient with multiple spatially and temporally distinct melanocytic lesions with loss of BAP1 expression by immunohistochemistry. RNA sequencing was performed on three independent lesions spanning the morphologic spectrum: a benign nevus, an atypical tumor, and a melanoma arising from a pre-existing BAP1-inactivated nevus. The three lesions demonstrated largely distinct gene expression and mutational profiles. Gene expression analysis revealed that genes involved in receptor protein kinase pathways were progressively upregulated from nevus to melanoma. Moreover, a clear enrichment of genes regulated in response to UV radiation was found in the melanoma from this patient, as well as upregulation of MAPK pathway-related genes and several transcription factors related to melanomagenesis.
Collapse
|
26
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Mauduit D, Taskiran II, Minnoye L, de Waegeneer M, Christiaens V, Hulselmans G, Demeulemeester J, Wouters J, Aerts S. Analysis of long and short enhancers in melanoma cell states. eLife 2021; 10:e71735. [PMID: 34874265 PMCID: PMC8691835 DOI: 10.7554/elife.71735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding how enhancers drive cell-type specificity and efficiently identifying them is essential for the development of innovative therapeutic strategies. In melanoma, the melanocytic (MEL) and the mesenchymal-like (MES) states present themselves with different responses to therapy, making the identification of specific enhancers highly relevant. Using massively parallel reporter assays (MPRAs) in a panel of patient-derived melanoma lines (MM lines), we set to identify and decipher melanoma enhancers by first focusing on regions with state-specific H3K27 acetylation close to differentially expressed genes. An in-depth evaluation of those regions was then pursued by investigating the activity of overlapping ATAC-seq peaks along with a full tiling of the acetylated regions with 190 bp sequences. Activity was observed in more than 60% of the selected regions, and we were able to precisely locate the active enhancers within ATAC-seq peaks. Comparison of sequence content with activity, using the deep learning model DeepMEL2, revealed that AP-1 alone is responsible for the MES enhancer activity. In contrast, SOX10 and MITF both influence MEL enhancer function with SOX10 being required to achieve high levels of activity. Overall, our MPRAs shed light on the relationship between long and short sequences in terms of their sequence content, enhancer activity, and specificity across melanoma cell states.
Collapse
Affiliation(s)
- David Mauduit
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Liesbeth Minnoye
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Maxime de Waegeneer
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Jonas Demeulemeester
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
- Cancer Genomics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| |
Collapse
|
28
|
Rosenbaum SR, Tiago M, Caksa S, Capparelli C, Purwin TJ, Kumar G, Glasheen M, Pomante D, Kotas D, Chervoneva I, Aplin AE. SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects. Cell Rep 2021; 37:110085. [PMID: 34879275 PMCID: PMC8720266 DOI: 10.1016/j.celrep.2021.110085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Developmental factors may regulate the expression of immune modulatory proteins in cancer, linking embryonic development and cancer cell immune evasion. This is particularly relevant in melanoma because immune checkpoint inhibitors are commonly used in the clinic. SRY-box transcription factor 10 (SOX10) mediates neural crest development and is required for melanoma cell growth. In this study, we investigate immune-related targets of SOX10 and observe positive regulation of herpesvirus entry mediator (HVEM) and carcinoembryonic-antigen cell-adhesion molecule 1 (CEACAM1). Sox10 knockout reduces tumor growth in vivo, and this effect is exacerbated in immune-competent models. Modulation of CEACAM1 expression but not HVEM elicits modest effects on tumor growth. Importantly, Sox10 knockout effects on tumor growth are dependent, in part, on CD8+ T cells. Extending this analysis to samples from patients with cutaneous melanoma, we observe a negative correlation with SOX10 and immune-related pathways. These data demonstrate a role for SOX10 in regulating immune checkpoint protein expression and anti-tumor immunity in melanoma.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Databases, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- SOXE Transcription Factors/genetics
- SOXE Transcription Factors/metabolism
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Tumor Burden
- Mice
Collapse
Affiliation(s)
- Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - McKenna Glasheen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Danielle Pomante
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Kotas
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Division of Biostatistics in the Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
29
|
Bogusławska-Duch J, Ducher-Hanaka M, Zajkowska A, Czajka M, Małecki M. Therapeutic combination silencing VEGF and SOX10 increases the antiangiogenic effect in the mouse melanoma model B16-F10 - in vitro and in vivo studies. Postepy Dermatol Alergol 2021; 38:887-898. [PMID: 34849139 PMCID: PMC8610042 DOI: 10.5114/ada.2021.110461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/24/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Gene therapy is an innovative form of treatment of genetic diseases, in which psiRNA molecules silencing specific genes are applied. AIM The study evaluated the anti-tumour effect of psiRNA silencing preparations of the vascular endothelial growth factor (VEGF) and Sry-related HMG-Box gene 10 (SOX10) on melanoma (B16-F10) by inhibiting angiogenesis. MATERIAL AND METHODS The preparations based on plasmid vectors psiRNA silencing the gene SOX10 and VEGF that form complexes with cationic lipid (psiRNA/carrier) have been developed. psiRNA preparations were tested on the mouse melanoma cell line B16-F10, both in vitro and in vivo. The silencing activity of transfected melanoma cells with the obtained psiRNA preparations was examined using the qPCR and Western blot methods. The anti-tumour activity of psiRNA preparations on melanoma tumour cells was then evaluated in a mouse in vivo model. RESULTS In vitro studies have shown that the B16-F10 cells efficiently transfect non-viral preparations - psiRNA: Lyovec (74-89%). Worth mentioning is the fact that silencing SOX10 in B16-F10 melanoma cells increases the expression of the COL18A1 gene (compared to the preparation inhibiting only VEGF), which codes the endostatin to stop angiogenesis. In vivo results show that the level of haemoglobin in tumours of mice treated with psiRNA formulations was over 6 times lower than controls and tumour mass was 60-80% lower. CONCLUSIONS The novel study proves that simultaneous inhibition of SOX10 and VEGF enhances the antiangiogenic action and thus contributes to a significant halt of disease development. In addition, these data expand knowledge about SOX10 regulation and functions.
Collapse
Affiliation(s)
| | | | - Agnieszka Zajkowska
- Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Milena Czajka
- Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Tang Y, Cao Y. SOX10 Knockdown Inhibits Melanoma Cell Proliferation via Notch Signaling Pathway. Cancer Manag Res 2021; 13:7225-7234. [PMID: 34557039 PMCID: PMC8455513 DOI: 10.2147/cmar.s329331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Melanoma is a serious and malignant disease worldwide. Seeking diagnostic markers and potential therapeutic targets is urgent for melanoma treatment. SOX10, a member of the SoxE family of genes, is a transcription factor which can regulate the transcription of a wide variety of genes in multiple cellular processes. Methods The mRNA level and protein expression of SOX10 is confirmed by bioinformatic analysis and IHC staining. MTT, clone formation and EdU analysis showed that SOX10 knockdown (KD) could significantly inhibit melanoma cell proliferation. FACS analysis showed that SOX10 KD could markedly enhance the level of cell apoptosis. The downstream target signaling pathway is predicted by RNA-seq based on the public GEO database. The activation of Notch signaling mediated by SOX10 is tested by qPCR and Western blot. Results Ectopic upregulation of SOX10 was found in melanoma patient tissues compared to normal nevus tissues in mRNA and protein levels. Furthermore, both mRNA and protein level of SOX10 were negatively correlated with melanoma patient's prognosis. SOX10 knockdown could obviously suppress the proliferation ability of melanoma cells by inactivating Notch signaling pathway. Conclusion Our study confirmed that SOX10 is an oncogene and activate Notch signaling pathway, which suggests the potential treatment for melanoma patients by target SOX10/Notch axis.
Collapse
Affiliation(s)
- Youqun Tang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yanming Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| |
Collapse
|
31
|
PITX1 inhibits the growth and proliferation of melanoma cells through regulation of SOX family genes. Sci Rep 2021; 11:18405. [PMID: 34526609 PMCID: PMC8443576 DOI: 10.1038/s41598-021-97791-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Melanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.
Collapse
|
32
|
Li G, Zheng T, Wu L, Han Q, Lei Y, Xue L, Zhang L, Gu X, Yang Y. Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. SCIENCE ADVANCES 2021; 7:7/28/eabi5812. [PMID: 34233882 PMCID: PMC8262819 DOI: 10.1126/sciadv.abi5812] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 06/02/2023]
Abstract
Anisotropic topographies and biological cues can simulate the regenerative microenvironment of nerve from physical and biological aspects, which show promising application in nerve regeneration. However, their synergetic influence on injured peripheral nerve is rarely reported. In the present study, we constructed a bionic microenvironment-inspired scaffold integrated with both anisotropic micro-nanocomposite topographies and IKVAV peptide. The results showed that both the topographies and peptide displayed good stability. The scaffolds could effectively induce the orientation growth of Schwann cells and up-regulate the genes and proteins relevant to myelination. Last, three signal pathways including the Wnt/β-catenin pathway, the extracellular signal-regulated kinase/mitogen-activated protein pathway, and the transforming growth factor-β pathway were put forward, revealing the main path of synergistic effects of anisotropic micro-nanocomposite topographies and biological cues on neuroregeneration. The present study may supply an important strategy for developing functional of artificial nerve implants.
Collapse
Affiliation(s)
- Guicai Li
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Jilin University, 130061 Changchun, P.R. China
| | - Tiantian Zheng
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Linliang Wu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Qi Han
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Yifeng Lei
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, 430072 Wuhan, P.R. China
| | - Longjian Xue
- School of Power and Mechanical Engineering and The Institute of Technological Science, Wuhan University, 430072 Wuhan, P.R. China
| | - Luzhong Zhang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Xiaosong Gu
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| | - Yumin Yang
- Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P.R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, P.R. China
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001 Nantong, P.R. China
| |
Collapse
|
33
|
Cunningham RL, Kramer ET, DeGeorgia SK, Godoy PM, Zarov AP, Seneviratne S, Grigura V, Kaufman CK. Functional in vivo characterization of sox10 enhancers in neural crest and melanoma development. Commun Biol 2021; 4:695. [PMID: 34099848 PMCID: PMC8184803 DOI: 10.1038/s42003-021-02211-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The role of a neural crest developmental transcriptional program, which critically involves Sox10 upregulation, is a key conserved aspect of melanoma initiation in both humans and zebrafish, yet transcriptional regulation of sox10 expression is incompletely understood. Here we used ATAC-Seq analysis of multiple zebrafish melanoma tumors to identify recurrently open chromatin domains as putative melanoma-specific sox10 enhancers. Screening in vivo with EGFP reporter constructs revealed 9 of 11 putative sox10 enhancers with embryonic activity in zebrafish. Focusing on the most active enhancer region in melanoma, we identified a region 23 kilobases upstream of sox10, termed peak5, that drives EGFP reporter expression in a subset of neural crest cells, Kolmer-Agduhr neurons, and early melanoma patches and tumors with high specificity. A ~200 base pair region, conserved in Cyprinidae, within peak5 is required for transgenic reporter activity in neural crest and melanoma. This region contains dimeric SoxE/Sox10 dimeric binding sites essential for peak5 neural crest and melanoma activity. We show that deletion of the endogenous peak5 conserved genomic locus decreases embryonic sox10 expression and disrupts adult stripe patterning in our melanoma model background. Our work demonstrates the power of linking developmental and cancer models to better understand neural crest identity in melanoma.
Collapse
Affiliation(s)
- Rebecca L Cunningham
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva T Kramer
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sophia K DeGeorgia
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Paula M Godoy
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Anna P Zarov
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Shayana Seneviratne
- School of Arts and Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Vadim Grigura
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
34
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
35
|
Ma Y, Wang L, He F, Yang J, Ding Y, Ge S, Fan X, Zhou Y, Xu X, Jia R. LACTB suppresses melanoma progression by attenuating PP1A and YAP interaction. Cancer Lett 2021; 506:67-82. [PMID: 33675985 DOI: 10.1016/j.canlet.2021.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 02/03/2023]
Abstract
Very limited progress has been made in the management of advanced melanoma, especially melanoma of uveal origin. Lactamase β (LACTB) is a novel tumor suppressor; however, its biological function in melanoma remains unknown. Herein we demonstrated markedly lower LACTB expression levels in melanoma tissues and cell lines. Overexpression of LACTB suppressed the proliferation, migration and invasion of melanoma cells in vitro. Mechanistically, LACTB inhibited the activity of yes-associated protein (YAP). We showed that the level of phospho-YAP (Serine 127) was increased upon LACTB overexpression, which prevented the translocation of YAP to the nucleus. Further, LACTB could directly bind to PP1A and attenuate the interaction between PP1A and YAP, resulting in decreased YAP dephosphorylation and inactivation in a LATS1-independent manner. Additionally, transfection of phosphorylation-defective YAP mutants reversed LACTB-induced tumor suppression. Upstream, we demonstrated that SOX10 binds to the LACTB promoter and negatively regulates its transcription. Overexpression of LACTB also suppressed the tumorigenicity and lung metastasis of MUM2B uveal melanoma cells in vivo. Taken together, our findings indicate a novel SOX10/LACTB/PP1A signaling cascade that renders YAP inactive and modulates melanoma progression, offering a new therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Lihua Wang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Fanglin He
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yi Ding
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yixiong Zhou
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
36
|
Albuscheit N, Yazdi AS. [From genetic variants to pathophysiology?-Genome-wide association study in malignant melanoma]. Hautarzt 2021; 72:88-90. [PMID: 33140834 DOI: 10.1007/s00105-020-04713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nicole Albuscheit
- Klinik für Dermatologie und Allergologie - Hautklinik, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| | - Amir S Yazdi
- Klinik für Dermatologie und Allergologie - Hautklinik, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| |
Collapse
|
37
|
Yu L, Peng F, Dong X, Chen Y, Sun D, Jiang S, Deng C. Sex-Determining Region Y Chromosome-Related High-Mobility-Group Box 10 in Cancer: A Potential Therapeutic Target. Front Cell Dev Biol 2020; 8:564740. [PMID: 33344444 PMCID: PMC7744619 DOI: 10.3389/fcell.2020.564740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023] Open
Abstract
Sex-determining region Y-related high mobility group-box 10 (SOX10), a member of the SOX family, has recently been highlighted as an essential transcriptional factor involved in developmental biology. Recently, the functionality of SOX 10 has been increasingly revealed by researchers worldwide. It has been reported that SOX10 significantly regulates the proliferation, migration, and apoptosis of tumors and is closely associated with the progression of cancer. In this review, we first introduce the basic background of the SOX family and SOX10 and then discuss the pathophysiological roles of SOX10 in cancer. Besides, we enumerate the application of SOX10 in the pathological diagnosis and therapeutic potential of cancer. Eventually, we summarize the potential directions and perspectives of SOX10 in neoplastic theranostics. The information compiled herein may assist in additional studies and increase the potential of SOX10 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fan Peng
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Amiri R, Tafvizi F, Ghanadan A. Comparison of SOX10 gene expression in melanoma and melanocytic nevus samples using Real-time PCR and immunohistochemistry. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Landi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen WV, Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, Sanna M, Schadendorf D, Schulze HJ, Simms LA, Smithers M, Song F, Swerdlow AJ, van der Stoep N, Kukutsch NA, Visconti A, Wallace L, Ward SV, Wheeler L, Sturm RA, Hutchinson A, Jones K, Malasky M, Vogt A, Zhou W, Pooley KA, Elder DE, Han J, Hicks B, Hayward NK, Kanetsky PA, Brummett C, Montgomery GW, Olsen CM, Hayward C, Dunning AM, Martin NG, Evangelou E, Mann GJ, Long G, Pharoah PDP, Easton DF, Barrett JH, Cust AE, Abecasis G, Duffy DL, Whiteman DC, Gogas H, De Nicolo A, Tucker MA, Newton-Bishop JA, Peris K, Chanock SJ, Demenais F, Brown KM, Puig S, Nagore E, Shi J, Iles MM, Law MH. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet 2020; 52:494-504. [PMID: 32341527 PMCID: PMC7255059 DOI: 10.1038/s41588-020-0611-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10-8) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.
Collapse
Affiliation(s)
- Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander J Stratigos
- Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Myriam Brossard
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Donato Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Concetta Fargnoli
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Adam J Trower
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Andreas Hadjisavvas
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Stefanaki
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Richard Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Rose Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Katerina P Kypreou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Lorenza Pastorino
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Paola Queirolo
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Pellegrini
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Cattaneo
- Pathology Unit, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pol Gimenez-Xavier
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Arantxa Rodriguez
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Maria A Loizidou
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Laura Del Regno
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Mario Mandala
- Department of Oncology, Giovanni XXIII Hospital, Bergamo, Italy
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Christopher I Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Per A Andresen
- Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France
| | - Esther Azizi
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Peter Soyer
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Lisa M Bowdler
- Sample Processing, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Wei V Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eitan Friedman
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Simi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pilar Galan
- Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, Bobigny, France
| | - Zaida Garcia-Casado
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Elizabeth M Gillanders
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Adele Green
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- CRUK Manchester Institute, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jessica Harris
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Per Helsing
- Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anjali Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marko Hočevar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Julie Lang
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
| | - G Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jan Lubiński
- International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rona M Mackie
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
- Department of Public Health, University of Glasgow, Glasgow, UK
| | - Maryrose Malt
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Kerrie McAloney
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hamida Mohamdi
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Anders Molven
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eric K Moses
- Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rachel E Neale
- Cancer Aetiology & Prevention, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Dale R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Håkan Olsson
- Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund, Sweden
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nicholas Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Joan Anton Puig-Butille
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona,CIBERER, Barcelona, Spain
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Graham L Radford-Smith
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- University of Queensland School of Medicine, Herston Campus, Brisbane, Queensland, Australia
| | | | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Casey Rowe
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marianna Sanna
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Hans-Joachim Schulze
- Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin, University of Münster, Münster, Germany
| | - Lisa A Simms
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Smithers
- Queensland Melanoma Project, Princess Alexandra Hospital, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Fengju Song
- Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Nienke van der Stoep
- Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicole A Kukutsch
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah V Ward
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrie Wheeler
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Michael Malasky
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Karen A Pooley
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chad Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, Sydney, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, Australia
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | | | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Epidemiology and Prevention Research, Sydney School of Public Health, Sydney, Australia
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - David L Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital Greece, National and Kapodistrian University of Athens, Athens, Greece
| | - Arcangela De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Florence Demenais
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK.
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
40
|
Yang X, Hu F, Liu JA, Yu S, Cheung MPL, Liu X, Ng IOL, Guan XY, Wong KKW, Sharma R, Lung HL, Jiao Y, Lee LTO, Cheung M. Nuclear DLC1 exerts oncogenic function through association with FOXK1 for cooperative activation of MMP9 expression in melanoma. Oncogene 2020; 39:4061-4076. [PMID: 32214200 PMCID: PMC7220869 DOI: 10.1038/s41388-020-1274-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022]
Abstract
A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1–FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients’ samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.
Collapse
Affiliation(s)
- Xintao Yang
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feng Hu
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jessica Aijia Liu
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan Yu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - May Pui Lai Cheung
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kelvin K W Wong
- Centre for PanorOmic Sciences, Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rakesh Sharma
- Centre for PanorOmic Sciences, Proteomics and Metabolomics Core Facility, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Yufei Jiao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Martin Cheung
- Shenzhen Institute of Research and Innovation (HKU-SIRI), The University of Hong Kong, Shenzhen, China. .,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
41
|
Adaptive Responses as Mechanisms of Resistance to BRAF Inhibitors in Melanoma. Cancers (Basel) 2019; 11:cancers11081176. [PMID: 31416288 PMCID: PMC6721815 DOI: 10.3390/cancers11081176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
: The introduction of v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors in melanoma patients with BRAF (V600E) mutations has demonstrated significant clinical benefits. However, rarely do tumours regress completely. Frequently, the reason for this is that therapies targeting specific oncogenic mutations induce a number of intrinsic compensatory mechanisms, also known as adaptive responses or feedback loops, that enhance the pro-survival and pro-proliferative capacity of a proportion of the original tumour population, thereby resulting in tumour progression. In this review we will summarize the known adaptive responses that limit BRAF mutant therapy and discuss potential novel combinatorial therapies to overcome resistance.
Collapse
|
42
|
Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics Chromatin 2019; 12:50. [PMID: 31399133 PMCID: PMC6688322 DOI: 10.1186/s13072-019-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Background The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. Results This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein–DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. Conclusions These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Wedel
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
44
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
45
|
Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res 2019; 38:17. [PMID: 30642390 PMCID: PMC6330758 DOI: 10.1186/s13046-018-0998-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022] Open
Abstract
Background In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. Methods Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. Results High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. Conclusions These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma. Electronic supplementary material The online version of this article (10.1186/s13046-018-0998-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xintao Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Rui Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Chunxi Liu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - On Ying Man
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
46
|
Graf SA, Heppt MV, Wessely A, Krebs S, Kammerbauer C, Hornig E, Strieder A, Blum H, Bosserhoff AK, Berking C. The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell Melanoma Res 2018; 32:424-434. [PMID: 30506895 DOI: 10.1111/pcmr.12760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Abstract
The transcription factor sex determining region Y-box 10 (SOX10) plays a key role in the development of melanocytes and glial cells from neural crest precursors. SOX10 is involved in melanoma initiation, proliferation, invasion, and survival. However, specific mediators which impart its oncogenic properties remain widely unknown. To identify target genes of SOX10, we performed RNA sequencing after ectopic expression of SOX10 in human melanoma cells. Among nine differentially regulated genes, peripheral myelin protein 2 (PMP2) was consistently upregulated in several cell lines. Direct regulation of PMP2 by SOX10 was shown by chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Moreover, a coregulation of PMP2 by SOX10 and early growth response 2 in melanoma cells was found. Phenotypical investigation demonstrated that PMP2 expression can increase melanoma cell invasion. As PMP2 protein was detected only in a subset of melanoma cell lines, it might contribute to melanoma heterogeneity.
Collapse
Affiliation(s)
- Saskia Anna Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Markus Vincent Heppt
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Anja Wessely
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Annamarie Strieder
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Anja-Katrin Bosserhoff
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
47
|
Wang R, He Y, Robinson V, Yang Z, Hessler P, Lasko LM, Lu X, Bhathena A, Lai A, Uziel T, Lam LT. Targeting Lineage-specific MITF Pathway in Human Melanoma Cell Lines by A-485, the Selective Small-molecule Inhibitor of p300/CBP. Mol Cancer Ther 2018; 17:2543-2550. [PMID: 30266801 DOI: 10.1158/1535-7163.mct-18-0511] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/11/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Metastatic melanoma is responsible for approximately 80% of deaths from skin cancer. Microphthalmia-associated transcription factor (MITF) is a melanocyte-specific transcription factor that plays an important role in the differentiation, proliferation, and survival of melanocytes as well as in melanoma oncogenesis. MITF is amplified in approximately 15% of patients with metastatic melanoma. However, no small-molecule inhibitors of MITF currently exist. MITF was shown to associate with p300/CBP, members of the KAT3 family of histone acetyltransferase. p300 and CREB-binding protein (p300/CBP) regulate a wide range of cellular events such as senescence, apoptosis, cell cycle, DNA damage response, and cellular differentiation. p300/CBP act as transcriptional coactivators for multiple proteins in cancers, including oncogenic transcription factors such as MITF. In this study, we showed that our novel p300/CBP catalytic inhibitor, A-485, induces senescence in multiple melanoma cell lines, similar to silencing expression of EP300 (encodes p300) or MITF We did not observe apoptosis and increase invasiveness upon A-485 treatment. A-485 regulates the expression of MITF and its downstream signature genes in melanoma cell lines undergoing senescence. In addition, expression and copy number of MITF is significantly higher in melanoma cell lines that undergo A-485-induced senescence than resistant cell lines. Finally, we showed that A-485 inhibits histone-H3 acetylation but did not displace p300 at promoters of MITF and its putative downstream genes. Taken together, we provide evidence that p300/CBP inhibition suppressed the melanoma-driven transcription factor, MITF, and could be further exploited as a potential therapy for treating melanoma.
Collapse
Affiliation(s)
- Rui Wang
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | - Yupeng He
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | | | - Ziping Yang
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | - Paul Hessler
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | | | - Xin Lu
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | | | - Albert Lai
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | - Tamar Uziel
- Oncology Discovery, AbbVie, North Chicago, Illinois
| | - Lloyd T Lam
- Oncology Discovery, AbbVie, North Chicago, Illinois.
| |
Collapse
|
48
|
Eliades P, Abraham BJ, Ji Z, Miller DM, Christensen CL, Kwiatkowski N, Kumar R, Njauw CN, Taylor M, Miao B, Zhang T, Wong KK, Gray NS, Young RA, Tsao H. High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. J Invest Dermatol 2018; 138:1582-1590. [PMID: 29408204 PMCID: PMC6019629 DOI: 10.1016/j.jid.2017.09.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma is an aggressive tumor that accounts for most skin cancer deaths. Among the physiological barriers against therapeutic success is a strong survival program driven by genes such as MITF that specify melanocyte identity, a phenomenon known in melanoma biology as lineage dependency. MITF overexpression is occasionally explained by gene amplification, but here we show that super-enhancers are also important determinants of MITF overexpression in some melanoma cell lines and tumors. Although compounds that directly inhibit MITF are unavailable, a covalent CDK7 inhibitor, THZ1, has recently been shown to potently suppress the growth of various cancers through the depletion of master transcription-regulating oncogenes and the disruption of their attendant super-enhancers. We also show that melanoma cells are highly sensitive to CDK7 inhibition both in vitro and in vivo and that THZ1 can dismantle the super-enhancer apparatus at MITF and SOX10 in some cell lines, thereby extinguishing their intracellular levels. Our results show a dimension to MITF regulation in melanoma cells and point to CDK7 inhibition as a potential strategy to deprive oncogenic transcription and suppress tumor growth in melanoma.
Collapse
Affiliation(s)
- Philip Eliades
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Dermatology, Weill Cornell Medical College, New York, New York, USA; Signature Healthcare Brockton Hospital, Brockton, Massachusetts, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Miller
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Camilla L Christensen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ching Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Taylor
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benchun Miao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
49
|
Seberg HE, Van Otterloo E, Cornell RA. Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res 2018. [PMID: 28649789 DOI: 10.1111/pcmr.12611] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MITF governs multiple steps in the development of melanocytes, including specification from neural crest, growth, survival, and terminal differentiation. In addition, the level of MITF activity determines the phenotype adopted by melanoma cells, whether invasive, proliferative, or differentiated. However, MITF does not act alone. Here, we review literature on the transcription factors that co-regulate MITF-dependent genes. ChIP-seq studies have indicated that the transcription factors SOX10, YY1, and TFAP2A co-occupy subsets of regulatory elements bound by MITF in melanocytes. Analyses at single loci also support roles for LEF1, RB1, IRF4, and PAX3 acting in combination with MITF, while sequence motif analyses suggest that additional transcription factors colocalize with MITF at many melanocyte-specific regulatory elements. However, the precise biochemical functions of each of these MITF collaborators and their contributions to gene expression remain to be elucidated. Analogous to the transcriptional networks in morphogen-patterned tissues during embryogenesis, we anticipate that the level of MITF activity is controlled not only by the concentration of activated MITF, but also by additional transcription factors that either quantitatively or qualitatively influence the expression of MITF-target genes.
Collapse
Affiliation(s)
- Hannah E Seberg
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- SDM-Craniofacial Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
50
|
Cronin JC, Loftus SK, Baxter LL, Swatkoski S, Gucek M, Pavan WJ. Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS One 2018; 13:e0190834. [PMID: 29315345 PMCID: PMC5760019 DOI: 10.1371/journal.pone.0190834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
The transcription factor SOX10 plays an important role in vertebrate neural crest development, including the establishment and maintenance of the melanocyte lineage. SOX10 is also highly expressed in melanoma tumors, and SOX10 expression increases with tumor progression. The suppression of SOX10 in melanoma cells activates TGF-β signaling and can promote resistance to BRAF and MEK inhibitors. Since resistance to BRAF/MEK inhibitors is seen in the majority of melanoma patients, there is an immediate need to assess the underlying biology that mediates resistance and to identify new targets for combinatorial therapeutic approaches. Previously, we demonstrated that SOX10 protein is required for tumor initiation, maintenance and survival. Here, we present data that support phosphorylation as a mechanism employed by melanoma cells to tightly regulate SOX10 expression. Mass spectrometry identified eight phosphorylation sites contained within SOX10, three of which (S24, S45 and T240) were selected for further analysis based on their location within predicted MAPK/CDK binding motifs. SOX10 mutations were generated at these phosphorylation sites to assess their impact on SOX10 protein function in melanoma cells, including transcriptional activation on target promoters, subcellular localization, and stability. These data further our understanding of SOX10 protein regulation and provide critical information for identification of molecular pathways that modulate SOX10 protein levels in melanoma, with the ultimate goal of discovering novel targets for more effective combinatorial therapeutic approaches for melanoma patients.
Collapse
Affiliation(s)
- Julia C. Cronin
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura L. Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Steve Swatkoski
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Marjan Gucek
- Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|