1
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
2
|
Yusupova M, Ankawa R, Yosefzon Y, Meiri D, Bachelet I, Fuchs Y. Apoptotic dysregulation mediates stem cell competition and tissue regeneration. Nat Commun 2023; 14:7547. [PMID: 37985759 PMCID: PMC10662150 DOI: 10.1038/s41467-023-41684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2023] [Indexed: 11/22/2023] Open
Abstract
Since adult stem cells are responsible for replenishing tissues throughout life, it is vital to understand how failure to undergo apoptosis can dictate stem cell behavior both intrinsically and non-autonomously. Here, we report that depletion of pro-apoptotic Bax protein bestows hair follicle stem cells with the capacity to eliminate viable neighboring cells by sequestration of TNFα in their membrane. This in turn induces apoptosis in "loser" cells in a contact-dependent manner. Examining the underlying mechanism, we find that Bax loss-of-function competitive phenotype is mediated by the intrinsic activation of NFκB. Notably, winner stem cells differentially respond to TNFα, owing to their elevated expression of TNFR2. Finally, we report that in vivo depletion of Bax results in an increased stem cell pool, accelerating wound-repair and de novo hair follicle regeneration. Collectively, we establish a mechanism of mammalian cell competition, which can have broad therapeutic implications for tissue regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Marianna Yusupova
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roi Ankawa
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Augmanity, Rehovot, Israel
| | - Yahav Yosefzon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Yaron Fuchs
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Augmanity, Rehovot, Israel.
| |
Collapse
|
3
|
Koelsch N, Mirshahi F, Aqbi HF, Saneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. The crosstalking immune cells network creates a collective function beyond the function of each cellular constituent during the progression of hepatocellular carcinoma. Sci Rep 2023; 13:12630. [PMID: 37537225 PMCID: PMC10400568 DOI: 10.1038/s41598-023-39020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Abundance of data on the role of inflammatory immune responses in the progression or inhibition of hepatocellular carcinoma (HCC) has failed to offer a curative immunotherapy for HCC. This is largely because of focusing on detailed specific cell types and missing the collective function of the hepatic immune system. To discover the collective immune function, we take systems immunology approach by performing high-throughput analysis of snRNAseq data collected from the liver of DIAMOND mice during the progression of nonalcoholic fatty liver disease (NAFLD) to HCC. We report that mutual signaling interactions of the hepatic immune cells in a dominant-subdominant manner, as well as their interaction with structural cells shape the immunological pattern manifesting a collective function beyond the function of the cellular constituents. Such pattern discovery approach recognized direct role of the innate immune cells in the progression of NASH and HCC. These data suggest that discovery of the immune pattern not only detects the immunological mechanism of HCC in spite of dynamic changes in immune cells during the course of disease but also offers immune modulatory interventions for the treatment of NAFLD and HCC.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| | - Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, 23298, USA
| | - Hussein F Aqbi
- College of Science, Mustansiriyah University, P.O. Box 14022, Baghdad, Iraq
| | - Mulugeta Saneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, 23298, USA
| | - Michael O Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA, 23298, USA
- Department of Microbiology & Immunology, VCU Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, USA
| | - Amy L Olex
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Arun J Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, 23298, USA.
- Department of Microbiology & Immunology, VCU Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, USA.
| | - Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
- Department of Microbiology & Immunology, VCU Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA, 23298, USA.
| |
Collapse
|
4
|
Lim JU, Lee E, Lee SY, Cho HJ, Ahn DH, Hwang Y, Choi JY, Yeo CD, Park CK, Kim SJ. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:857-876. [PMID: 37197639 PMCID: PMC10183402 DOI: 10.21037/tlcr-22-633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
Background and Objective Immune checkpoint inhibitors (ICI) were a major clinical advancement that provided an opportunity to improve the prognosis of patients with non-small cell lung cancer (NSCLC). However, programmed death-ligand-1 (PD-L1) expression does not sufficiently predict ICI efficacy in NSCLC patients. In recent studies, the tumor immune microenvironment (TIME) was shown to have a central role in lung cancer progression and to affect clinical outcome of patients diagnosed with lung cancer. As development of new therapeutic targets to overcome ICI resistance is a priority, understanding the TIME is important. Recently, a series of studies was conducted to target each component of TIME to improve efficacy of cancer treatment. In this review, important features related to TIME, its heterogeneity and current trends in treatment targeting the component of TIME are discussed. Methods PubMed and PMC were searched from January 1st, 2012 to August 16th, 2022 using the following key words: "NSCLC", "Tumor microenvironment", "Immune", "Metastasis" and "Heterogeneity". Key Content and Findings Heterogeneity in the TIME can be either spatial or temporal. Subsequent to heterogeneous changes in the TIME, treatment of lung cancer can be more challenging because drug resistance is more likely to occur. In terms of the TIME, the main concept for increasing the chance of successful NSCLC treatment is to activate immune responses against tumor cells and inhibit immunosuppressive activities. In addition, relevant research is focused on normalizing an otherwise aberrant TIME in NSCLC patients. Potential therapeutic targets include immune cells, cytokine interactions, and non-immune cells such as fibroblasts or vessels. Conclusions In management of lung cancer, understanding TIME and its heterogeneity is significant to treatment outcomes. Ongoing trials including various treatment modalities such as radiotherapy, cytotoxic chemotherapy, and anti-angiogenic treatment and regimens inhibiting other immunoinhibitory molecules are promising.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Manjili MH. The adaptation model of immunity: A new insight into aetiology and treatment of multiple sclerosis. Scand J Immunol 2023; 97:e13255. [PMID: 36680379 DOI: 10.1111/sji.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Current research and drug development for multiple sclerosis (MS) is fully influenced by the self-nonself (SNS) model of immunity, suggesting that breakage of immunological tolerance towards self-antigens expressed in the central nervous system (CNS) is responsible for pathogenesis of MS; thus, immune suppressive drugs are recommended for the management of the disease. However, this model provides incomplete understanding of the causes and pathways involved in the onset and progression of MS and limits our ability to effectively treat this neurological disease. Some pre-clinical and clinical reports have been misunderstood; some others have been underappreciated because of the lack of a theoretical model that can explain them. Also, current immunotherapies are guided according to the models that are not designed to explain the functional outcomes of an immune response. The adaptation model of immunity is proposed to offer a new understanding of the existing data and galvanize a new direction for the treatment of MS. According to this model, the immune system continuously communicates with the CNS through the adaptation receptors (AdRs) and adaptation ligands (AdLs) or co-receptors, signal IV, to support cell growth and neuroplasticity. Alterations in the expression of the neuronal AdRs results in MS by shifting the cerebral inflammatory immune responses from remyelination to demyelination. Therefore, novel therapeutics for MS should be focused on the discovery and targeting of the AdR/AdL axis in the CNS rather than carrying on with immune suppressive interventions.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
6
|
Yang P, Zeng Y, Yang F, Peng X, Hu Y, Tan X, Zhang R. Transmembrane TNF-α as a Novel Biomarker for the Diagnosis of Cytokine Storms in a Mouse Model of Multiple Organ Failure. Inflammation 2023; 46:359-369. [PMID: 36104516 PMCID: PMC9473472 DOI: 10.1007/s10753-022-01738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
A cytokine storm (CS) is an out-of-control inflammatory response closely associated with the progression of diseases, such as multiple organ failure (MOF), severe sepsis, and severe or critical COVID-19. However, there is currently a lack of reliable diagnostic markers to distinguish CS from normal inflammatory responses. Tumor necrosis factor-α (TNF-α) includes transmembrane TNF-α (tmTNF-α) and secreted TNF-α (sTNF-α). The MOF mouse model in this study showed that the tmTNF-α expression changes in the neutrophils differed from the serum TNF-α and serum IL-18, INF-γ, IL-4, and IL-6. Furthermore, tmTNF-α, instead of serum TNF-α, IL-18, INF-γ, IL-4, and IL-6, reflected liver and kidney tissue damage and increased with the aggravation of these injuries. Analysis of the ROC results showed that tmTNF-α effectively distinguished between inflammatory responses and CS and efficiently differentiated between surviving and dead mice. It also significantly improved the diagnostic value of the traditional CRP marker for CS. These results indicated that the tmTNF-α expressed in the neutrophils could be used to diagnose CS in MOF mice, providing an experimental basis to further develop tmTNF-α for diagnosing CS patients.
Collapse
Affiliation(s)
- Peng Yang
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Yimin Zeng
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Fang Yang
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Xin Peng
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Yongsheng Hu
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Xuhong Tan
- grid.443382.a0000 0004 1804 268XDepartment of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001 China
| | - Ruping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, China.
| |
Collapse
|
7
|
Ghods A, Mehdipour F, Rasolmali R, Talei AR, Ghaderi A. The expression pattern of membranous TNF-α is distinct from its intracellular form in the breast cancer draining lymph nodes. Clin Immunol 2022; 238:109026. [PMID: 35489644 DOI: 10.1016/j.clim.2022.109026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/03/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is mostly known as a soluble cytokine. However, this study focused on its membranous form whose significance is rarely investigated in antitumor immunity. Herein, we assessed the expression of both membranous and intracellular forms of TNF-α (m/icTNF-α) in the lymphocytes derived from breast cancer-draining lymph nodes. CD4+T cells were the main subset expressing mTNF-α with the highest intensity, whereas icTNF-α expression was most intense in CD8+T cells. An inverse correlation was seen between the frequency of mTNF-α and the expression intensity of this cytokine in B cells. In the clinical context, the higher intensity of mTNF-α expression in CD19+ cells correlated with poor prognosticators, while the frequency of mTNF-α+CD19+ cells showed a reverse correlation with the number of involved lymph nodes. The two forms of TNF-α did not show similar associations with cancer parameters, which highlights the complex role of this cytokine in breast cancer immunity.
Collapse
Affiliation(s)
- Atri Ghods
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Rasolmali
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdol-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Neuenfeldt F, Schumacher JC, Grieshaber-Bouyer R, Habicht J, Schröder-Braunstein J, Gauss A, Merle U, Niesler B, Heineken N, Dalpke A, Gaida MM, Giese T, Meuer S, Samstag Y, Wabnitz G. Inflammation induces pro-NETotic neutrophils via TNFR2 signaling. Cell Rep 2022; 39:110710. [PMID: 35443164 DOI: 10.1016/j.celrep.2022.110710] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/24/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Cytokines released during chronic inflammatory diseases induce pro-inflammatory properties in polymorphonuclear neutrophils (PMNs). Here, we describe the development of a subgroup of human PMNs expressing CCR5, termed CCR5+ PMNs. Auto- and paracrine tumor necrosis factor (TNF) signaling increases intracellular neutrophil elastase (ELANE) abundance and induces neutrophil extracellular traps formation (NETosis) in CCR5+ PMNs, and triggering of CCR5 amplifies NETosis. Membranous TNF (mTNF) outside-in signaling induces the formation of reactive oxygen species, known activators of NETosis. In vivo, we find an increased number of CCR5+ PMNs in the peripheral blood and inflamed lamina propria of patients with ulcerative colitis (UC). Notably, failure of anti-TNF therapy is associated with higher frequencies of CCR5+ PMNs. In conclusion, we identify a phenotype of pro-NETotic, CCR5+ PMNs present in inflamed tissue in vivo and inducible in vitro. These cells may reflect an important component of tissue damage during chronic inflammation and could be of diagnostic value.
Collapse
Affiliation(s)
- Friederike Neuenfeldt
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Jan Christoph Schumacher
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Ricardo Grieshaber-Bouyer
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jüri Habicht
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | | | - Annika Gauss
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Niko Heineken
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, TU Dresden, 01069 Dresden, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Thomas Giese
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Stefan Meuer
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Guido Wabnitz
- Institute of Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Alizadeh AA, Morris MB, Church WB, Yaqoubi S, Dastmalchi S. A mechanistic perspective, clinical applications, and phage-display-assisted discovery of TNFα inhibitors. Drug Discov Today 2021; 27:503-518. [PMID: 34628042 DOI: 10.1016/j.drudis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/20/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
TNFα participates in a variety of physiological processes, but at supra-physiological concentrations it has been implicated in the pathology of inflammatory and autoimmune diseases. Therefore, much attention has been devoted to the development of strategies that overcome the effects of aberrant TNFα concentration. Promising strategies include drugs that destabilize the active (trimeric) form of TNFα and antagonists of TNFα receptor type I. Underpinning these strategies is the successful application of phage-display technology to identify anti-TNFα peptides and antibodies. Here, we review the development of inhibitors of the TNFα-TNF receptor system, with particular focus on the phage-display-assisted identification of molecules that interfere with this system by acting as inhibitors of TNFα or by sequestering TNFα away from its receptor.
Collapse
Affiliation(s)
- Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| | - Shadi Yaqoubi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO Box 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
10
|
Miao X, Mao R, You Y, Zhou H, Qiu C, Li X, Chen Z, Ren J, Chen M, Wang P, Zheng R, Yin T. Intracolic ultrasound molecular imaging: a novel method for assessing colonic tumor necrosis factor-α expression in inflammatory bowel disease. Mol Med 2021; 27:119. [PMID: 34556023 PMCID: PMC8461918 DOI: 10.1186/s10020-021-00379-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While anti-tumor necrosis factor alpha (TNF-α) therapy has been proven effective in inflammatory bowel disease (IBD), approximately 40% of patients lose the response. Transmembrane TNF-α (mTNF-α) expression in the intestinal mucosa is correlated with therapeutic efficacy, and quantification of mTNF-α expression is significant for predicting response. However, conventional intravenous application of microbubbles is unable to assess mTNF-α expression in intestinal mucosa. Herein, we proposed intracolic ultrasound molecular imaging with TNF-α-targeted microbubbles (MBTNF-α) to quantitatively detect mTNF-α expression in the intestinal mucosa. METHODS MBTNF-α was synthesized via a biotin-streptavidin bridging method. TNF-α-targeted ultrasound imaging was performed by intracolic application of MBTNF-α to detect mTNF-α expression in surgical specimens from a murine model and patients with IBD. Linear regression analyses were performed to confirm the accuracy of quantitative targeted ultrasound imaging. RESULTS On quantitative TNF-α-targeted ultrasound images, a greater signal intensity was observed in the mouse colons with colitis ([1.96 ± 0.45] × 106 a.u.) compared to that of the controls ([0.56 ± 0.21] × 106 a.u., P < 0.001). Targeted US signal intensities and inflammatory lesions were topographically coupled in mouse colons. Linear regression analyses in specimens of mice and patients demonstrated significant correlations between the targeted ultrasound signal intensity and mTNF-α expression (both P < 0.001). Furthermore, TNF-α-targeted ultrasound imaging qualitatively distinguished the varying inflammatory severity in intestinal specimens from IBD patients. CONCLUSION Intracolic ultrasound molecular imaging with MBTNF-α enables quantitative assessment of mTNF-α expression. It may be a potential tool for facilitating the implementation of personalized medicine in IBD.
Collapse
Affiliation(s)
- Xiaoyan Miao
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujia You
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huichao Zhou
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Chen Qiu
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuehua Li
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Ren
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ping Wang
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Rongqin Zheng
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Tinghui Yin
- Department of Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
11
|
Benoot T, Piccioni E, De Ridder K, Goyvaerts C. TNFα and Immune Checkpoint Inhibition: Friend or Foe for Lung Cancer? Int J Mol Sci 2021; 22:ijms22168691. [PMID: 34445397 PMCID: PMC8395431 DOI: 10.3390/ijms22168691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-alpha (TNFα) can bind two distinct receptors (TNFR1/2). The transmembrane form (tmTNFα) preferentially binds to TNFR2. Upon tmTNFα cleavage by the TNF-alpha-converting enzyme (TACE), its soluble (sTNFα) form is released with higher affinity for TNFR1. This assortment empowers TNFα with a plethora of opposing roles in the processes of tumor cell survival (and apoptosis) and anti-tumor immune stimulation (and suppression), in addition to angiogenesis and metastases. Its functions and biomarker potential to predict cancer progression and response to immunotherapy are reviewed here, with a focus on lung cancer. By mining existing sequencing data, we further demonstrate that the expression levels of TNF and TACE are significantly decreased in lung adenocarcinoma patients, while the TNFR1/TNFR2 balance are increased. We conclude that the biomarker potential of TNFα alone will most likely not provide conclusive findings, but that TACE could have a key role along with the delicate balance of sTNFα/tmTNFα as well as TNFR1/TNFR2, hence stressing the importance of more research into the potential of rationalized treatments that combine TNFα pathway modulators with immunotherapy for lung cancer patients.
Collapse
|
12
|
Majid DSA, Castillo A. Angiotensin II-induced natriuresis is attenuated in knockout mice lacking the receptors for tumor necrosis factor-α. Physiol Rep 2021; 9:e14942. [PMID: 34337896 PMCID: PMC8326895 DOI: 10.14814/phy2.14942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Intravenous infusion of relatively higher doses of angiotensin II (AngII) elicits natriuresis as opposed to its usual anti-natruretic response. As AngII can induce tumor necrosis factor-α (TNFα) production which elicits natriuresis via its action on TNFα receptor type 1 (TNFR1), we hypothesize that the concomitant release of TNFα contributes to the natriuretic response to AngII. Responses to AngII infusion (1 ng min-1 g-1 for 75 min, iv) were evaluated in anesthetized knockout (KO) mice lacking TNFR1 (n = 6) and TNFR2 (TNFα receptor type 2; n = 6) and compared these responses with those in wild type (WT; n = 6) mice. Arterial pressure (AP) was recorded from a cannula placed in the carotid artery. Renal blood flow (RBF) and glomerular filtration rate (GFR) were measured by PAH and inulin clearances, respectively. Urine was collected from a catheter placed in the bladder. AngII caused similar increases (p < 0.05 vs basal values) in AP (WT, 37 ± 5%; TNFR1KO, 35 ± 4%; TNFR2KO, 30 ± 4%) and decreases (p < 0.05) in RBF (WT, -39 ± 5%; TNFR1KO, -28 ± 6%; TNFR2KO, -31 ± 4%) without significant changes in GFR (WT, -17 ± 7%; TNFR1KO, -18 ± 7%; TNFR2KO, -12 ± 7%). However, despite similar changes in AP and renal hemodynamics, AngII induced increases (p < 0.05) in urinary sodium excretion in WT (3916 ± 942%) were less in the KO strains, more or less in TNFR1KO (473 ± 170%) than in TNFR2KO (1176 ± 168%). These data indicate that TNF-α receptors, particularly TNFR1 are involved in the natriuretic response that occur during acute infusion of AngII and thus, plays a protective role in preventing excessive salt retention at clinical conditions associated with elevated AngII level.
Collapse
Affiliation(s)
- Dewan S. A. Majid
- Department of PhysiologyTulane Hypertension & Renal Center of ExcellenceTulane University Health Sciences CenterNew OrleansLAUSA
| | - Alexander Castillo
- Department of PhysiologyTulane Hypertension & Renal Center of ExcellenceTulane University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
13
|
Pandey P, Karupiah G. Targeting tumour necrosis factor to ameliorate viral pneumonia. FEBS J 2021; 289:883-900. [PMID: 33624419 DOI: 10.1111/febs.15782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023]
Abstract
Pneumonia is a serious complication associated with inflammation of the lungs due to infection with viral pathogens. Seasonal and pandemic influenza viruses, variola virus (agent of smallpox) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; agent of COVID-19) are some leading examples. Viral pneumonia is triggered by excessive inflammation associated with dysregulated cytokine production, termed 'cytokine storm'. Several cytokines have been implicated but tumour necrosis factor (TNF) plays a critical role in driving lung inflammation, severe lung pathology and death. Despite this, the exact role TNF plays in the aetiology and pathogenesis of virus infection-induced respiratory complications is not well understood. In this review, we discuss the pathological and immunomodulatory roles of TNF in contributing to immunopathology and resolution of lung inflammation, respectively, in mouse models of influenza- and smallpox (mousepox)-induced pneumonia. We review studies that have investigated dampening of inflammation on the outcome of severe influenza and orthopoxvirus infections. Most studies on the influenza model have evaluated the efficacy of treatment with anti-inflammatory drugs, including anti-TNF agents, in animal models on the day of viral infection. We question the merits of those studies as they are not transferable to the clinic given that individuals generally present at a hospital only after the onset of disease symptoms and not on the day of infection. We propose that research should be directed at determining whether dampening lung inflammation after the onset of disease symptoms will reduce morbidity and mortality. Such a treatment strategy will be more relevant clinically.
Collapse
Affiliation(s)
- Pratikshya Pandey
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gunasegaran Karupiah
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Höpner SS, Raykova A, Radpour R, Amrein MA, Koller D, Baerlocher GM, Riether C, Ochsenbein AF. LIGHT/LTβR signaling regulates self-renewal and differentiation of hematopoietic and leukemia stem cells. Nat Commun 2021; 12:1065. [PMID: 33594067 PMCID: PMC7887212 DOI: 10.1038/s41467-021-21317-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/17/2021] [Indexed: 12/30/2022] Open
Abstract
The production of blood cells during steady-state and increased demand depends on the regulation of hematopoietic stem cell (HSC) self-renewal and differentiation. Similarly, the balance between self-renewal and differentiation of leukemia stem cells (LSCs) is crucial in the pathogenesis of leukemia. Here, we document that the TNF receptor superfamily member lymphotoxin-β receptor (LTβR) and its ligand LIGHT regulate quiescence and self-renewal of murine and human HSCs and LSCs. Cell-autonomous LIGHT/LTβR signaling on HSCs reduces cell cycling, promotes symmetric cell division and prevents primitive HSCs from exhaustion in serial re-transplantation experiments and genotoxic stress. LTβR deficiency reduces the numbers of LSCs and prolongs survival in a murine chronic myeloid leukemia (CML) model. Similarly, LIGHT/LTβR signaling in human G-CSF mobilized HSCs and human LSCs results in increased colony forming capacity in vitro. Thus, our results define LIGHT/LTβR signaling as an important pathway in the regulation of the self-renewal of HSCs and LSCs.
Collapse
MESH Headings
- Animals
- Antigens, CD34/metabolism
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cell Self Renewal/drug effects
- Cell Self Renewal/genetics
- DNA Damage
- Fluorouracil/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lymphotoxin beta Receptor/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Mice
Collapse
Affiliation(s)
- S S Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ana Raykova
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - R Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - M A Amrein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - D Koller
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - G M Baerlocher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - C Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - A F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Huang J, Wang L, Yu C, Fu Z, Liu C, Wu G, Guo L, Guo X, Chen S, Liu X, Wang J. Development of a robust bioassay of monoclonal antibodies and biosimilars against TNF-α by NF-κB-inducible lentiviral reporter gene. Int Immunopharmacol 2021; 93:107418. [PMID: 33540248 DOI: 10.1016/j.intimp.2021.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The tumor necrosis factor alpha (TNF-α)/nuclear factor-kappa B (NF-κB) signaling pathway plays a crucial role in the pathogenesis of inflammatory diseases. Several therapeutic monoclonal antibodies (mAbs) and biosimilars against TNF-α have been developed to treat patients who suffer from inflammatory diseases caused by disordered expression of TNF-α. Hence, quality control of biopharmaceuticals is crucial during research and development. The high-order structure of these complex molecules cannot be entirely identified by physiochemical attributes; however, they can be inferred by observing biological activities. Thus, we developed a U937-based bioassay to determine the biological activities of mAbs and biosimilars against TNF-α using a low-basal NF-κB-inducible lentiviral reporter gene. The reporter gene assay (RGA) can be induced with a high signal-to-noise ratio (SNR) in a short time by TNF-α. Validation of the RGA showed accuracy (% relative standard deviation [RSD] = 4.64%), linearity (r2 = 0.9856), and precision (Interday RSD = 4.6%, between analysts RSD = 3.51%) as well as reasonable specificity and robustness. The measured potency values of a biosimilar to adalimumab were between 90% and 110%. Results showed our RGA is suitable for mAb quality control and lot release, and for evaluation of the biological activity similarity of the biosimilar.
Collapse
Affiliation(s)
- Jing Huang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Zhihao Fu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Chunyu Liu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Luyun Guo
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Xiao Guo
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Shiyu Chen
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Xumei Liu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China
| | - Junzhi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, China; Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 100050, China.
| |
Collapse
|
16
|
Covarrubias S, Vollmers AC, Capili A, Boettcher M, Shulkin A, Correa MR, Halasz H, Robinson EK, O'Briain L, Vollmers C, Blau J, Katzman S, McManus MT, Carpenter S. High-Throughput CRISPR Screening Identifies Genes Involved in Macrophage Viability and Inflammatory Pathways. Cell Rep 2020; 33:108541. [PMID: 33378675 PMCID: PMC7901356 DOI: 10.1016/j.celrep.2020.108541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages are critical effector cells of the immune system, and understanding genes involved in their viability and function is essential for gaining insights into immune system dysregulation during disease. We use a high-throughput, pooled-based CRISPR-Cas screening approach to identify essential genes required for macrophage viability. In addition, we target 3' UTRs to gain insights into previously unidentified cis-regulatory regions that control these essential genes. Next, using our recently generated nuclear factor κB (NF-κB) reporter line, we perform a fluorescence-activated cell sorting (FACS)-based high-throughput genetic screen and discover a number of previously unidentified positive and negative regulators of the NF-κB pathway. We unravel complexities of the TNF signaling cascade, showing that it can function in an autocrine manner in macrophages to negatively regulate the pathway. Utilizing a single complex library design, we are capable of interrogating various aspects of macrophage biology, thus generating a resource for future studies.
Collapse
Affiliation(s)
- Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Apple Cortez Vollmers
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Allyson Capili
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Michael Boettcher
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; W.M. Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA, USA; Institute for Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Aaron Shulkin
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Michele Ramos Correa
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Haley Halasz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Laura O'Briain
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - James Blau
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; W.M. Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA; W.M. Keck Center for Noncoding RNAs, University of California, San Francisco, San Francisco, CA, USA
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
17
|
Bhattacharyya S, Ghosh SS. Unfolding transmembrane TNFα dynamics in cancer therapeutics. Cytokine 2020; 137:155303. [PMID: 33002738 DOI: 10.1016/j.cyto.2020.155303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Cytokines are a group of glycoprotein signaling mediators, which play essential roles in maintaining several complex physiological functions of our body. TNFα is such a pleiotropic cytokine, which involves maintaining a plethora of immune responses. Initially, TNFα is synthesized as a 26 kDa full-length transmembrane form, which is enzymatically cleaved to produce the soluble circulating 17 kDa TNFα. Although the anti-cancer potential of soluble TNFα was discovered more than a century back, its dual ability to promote tumor, posed a major hindrance in finding its acceptance as a proper anti-cancer molecule. In contrast, the membrane-tethered tmTNFα holds the potential of tumor regression without initiating cell proliferation. The membrane-tethered form of TNFα is the physiological precursor of soluble TNFα that remains biologically active and is capable of initiating signaling cascades after binding with the TNFα receptors- TNFR I and TNFR II. In this review, we emphasize on the basic biology and molecular aspects of tmTNFα for its anti-cancer potential.
Collapse
Affiliation(s)
- Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India.
| |
Collapse
|
18
|
Liu Y, Zhu M, Gong R, Wang X, Li L, Xu G. Pre-treatment With Ranibizumab Aggravates PDT Injury and Alleviates Inflammatory Response in Choroid-Retinal Endothelial Cells. Front Cell Dev Biol 2020; 8:608. [PMID: 32733897 PMCID: PMC7363772 DOI: 10.3389/fcell.2020.00608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022] Open
Abstract
Polypoidal choroidal vasculopathy (PCV) is the predominant subtype of exudative age-related macular degeneration in Asians. Although photodynamic therapy (PDT) is widely used for PCV treatment, its long-term beneficial effects are unsatisfactory. Accumulating clinical investigations suggest that combined therapy with anti-vascular endothelial growth factor (anti-VEGF) and PDT is superior to PDT monotherapy. However, the optimal time of anti-VEGF before or after PDT remains controversial, hence it needs to further explore the mechanism underlying combined therapy. PDT causes selective damage to endothelial cells, which determines its angio-occlusive efficiency, yet the impact of anti-VEGF on PDT-induced endothelial injury is unclear. Here, we found that pre- compared to post-treatment with anti-VEGF ranibizumab (rani) significantly aggravates PDT injury in the rhesus macaque choroid-retinal endothelial (RF/6A) cell line. PDT activates apoptosis, necroptosis and NLRP3 inflammasome in RF/6A cells. Pre-treatment with rani promotes PDT-caused apoptosis via triggering caspase 8-mediated extrinsic apoptosis, and caspase 8 might also play a pivotal role in the rani’s function of suppressing PDT-induced necroptosis and NLRP3 inflammasome activation. Our results implicate that pre-treatment with rani may enhance the angio-occlusive efficiency of PDT and alleviate endothelial inflammatory response, which gives it a great advantage over post-treatment.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Min Zhu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Ruowen Gong
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lei Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Gezhi Xu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
19
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
20
|
Bounder G, Jouimyi MR, Boura H, Touati E, Michel V, Badre W, Jouhadi H, Kadi M, Eljihad M, Benomar H, Kettani A, Lebrazi H, Maachi F. Associations of the -238(G/A) and -308(G/A) TNF-α Promoter Polymorphisms and TNF-α Serum Levels with the Susceptibility to Gastric Precancerous Lesions and Gastric Cancer Related to Helicobacter pylori Infection in a Moroccan Population. Asian Pac J Cancer Prev 2020; 21:1623-1629. [PMID: 32592356 PMCID: PMC7568906 DOI: 10.31557/apjcp.2020.21.6.1623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 01/08/2023] Open
Abstract
Objective: Helicobacter pylori (H. pylori) induces the production of tumor necrosis factor-alpha (TNF-α), which is closely related to a gastric epithelial injury. TNF-α gene polymorphism and TNF-α serum levels are associated with various malignant conditions. Identification of the ideal marker for gastric cancer (GC) is still the leading aim of several trials. Physio-pathological considerations of GC led us to investigate the association of two TNF-α promoter polymorphisms (-308G>A and -238G>A), and TNF-α serum levels with the susceptibility to gastric precancerous (PL) and GC. Methods: Patients suffering from gastric lesions (65 chronic gastritis, 50 PL, 40 GC) related to H. pylori infection , and 63 healthy controls (HC) were involved in this study. Individuals are genotyped by TNF-α gene promoter sequencing and TNF-α serum levels are measured by ELISA quantitative method. Results: Regarding TNF-α-308 G/A locus, we noticed higher risk for GC (OR=4.3, CI 1.5-11.9, p-value=0.005) and PL (OR=3.4, CI 1.2-9.2, p-value=0.01) for individuals with AA/GA genotypes compared to GG genotype. Concerning TNF-α-238 G/A locus, we noticed higher risk for GC (OR=5.9, CI 1.2-27.5, p-value=0.01) and PL (OR=4.8, CI 1.3-18, p-value=0.01) for individuals with GG genotype compared to AA/GA genotypes. We noticed that TNF-α serum levels have been increased together with gastric lesions severity. Moreover, TNF-α-308 and TNF-α-238 A alleles seemed to, respectively, upregulate and downregulate TNF-α serum levels. Conclusion: The TNF-α -308 A allele has a promotive effect for GC progression, whereas the TNF-α -238 A allele has a protective function against GC progression. High levels of TNF-α seemed to be associated with the aggressiveness of gastric lesions. TNF-α gene polymorphisms and TNF-α serum levels might be helpful to select those patients who are at high risk for GC.
Collapse
Affiliation(s)
- Ghizlane Bounder
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Mohamed Reda Jouimyi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Hasna Boura
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Eliette Touati
- Pathogenesis of Helicobacter Laboratory, Institut Pasteur, Paris, France
| | - Valerie Michel
- Pathogenesis of Helicobacter Laboratory, Institut Pasteur, Paris, France
| | - Wafaa Badre
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Hassan Jouhadi
- Department of Radiotherapy Oncology, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Maria Kadi
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Meriem Eljihad
- Gastroenterology Department, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Hakima Benomar
- Histo-Cytopathology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Halima Lebrazi
- Biology and Health Laboratory, Faculty of Sciences Ben M'sik, University Hassan II, Casablanca, Morocco
| | - Fatima Maachi
- Helicobacter Pylori and Gastric Pathologies Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
21
|
Su Z, Wu Y. A computational model for understanding the oligomerization mechanisms of TNF receptor superfamily. Comput Struct Biotechnol J 2020; 18:258-270. [PMID: 32021664 PMCID: PMC6994755 DOI: 10.1016/j.csbj.2019.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023] Open
Abstract
By recognizing members in the tumor necrosis factor (TNF) receptor superfamily, TNF ligand proteins function as extracellular cytokines to activate various signaling pathways involved in inflammation, proliferation, and apoptosis. Most ligands in TNF superfamily are trimeric and can simultaneously bind to three receptors on cell surfaces. It has been experimentally observed that the formation of these molecular complexes further triggers the oligomerization of TNF receptors, which in turn regulate the intracellular signaling processes by providing transient compartmentalization in the membrane proximal regions of cytoplasm. In order to decode the molecular mechanisms of oligomerization in TNF receptor superfamily, we developed a new computational method that can physically simulate the spatial-temporal process of binding between TNF ligands and their receptors. The simulations show that the TNF receptors can be organized into hexagonal oligomers. The formation of this spatial pattern is highly dependent not only on the molecular properties such as the affinities of trans and cis binding, but also on the cellular factors such as the concentration of TNF ligands in the extracellular area or the density of TNF receptors on cell surfaces. Moreover, our model suggests that if TNF receptors are pre-organized into dimers before ligand binding, these lateral interactions between receptor monomers can play a positive role in stabilizing the ligand-receptor interactions, as well as in regulating the kinetics of receptor oligomerization. Altogether, this method throws lights on the mechanisms of TNF ligand-receptor interactions in cellular environments.
Collapse
|
22
|
Membrane-bound TNF mediates microtubule-targeting chemotherapeutics-induced cancer cytolysis via juxtacrine inter-cancer-cell death signaling. Cell Death Differ 2019; 27:1569-1587. [PMID: 31645676 PMCID: PMC7206059 DOI: 10.1038/s41418-019-0441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are a class of most widely used chemotherapeutics and their mechanism of action has long been assumed to be mitotic arrest of rapidly dividing tumor cells. In contrast to such notion, here we show—in many cancer cell types—MTAs function by triggering membrane TNF (memTNF)-mediated cancer-cell-to-cancer-cell killing, which differs greatly from other non-MTA cell-cycle-arresting agents. The killing is through programmed cell death (PCD), either in way of necroptosis when RIP3 kinase is expressed, or of apoptosis in its absence. Mechanistically, MTAs induce memTNF transcription via the JNK-cJun signaling pathway. With respect to chemotherapy regimens, our results establish that memTNF-mediated killing is significantly augmented by IAP antagonists (Smac mimetics) in a broad spectrum of cancer types, and with their effects most prominently manifested in patient-derived xenograft (PDX) models in which cell–cell contacts are highly reminiscent of human tumors. Therefore, our finding indicates that memTNF can serve as a marker for patient responsiveness, and Smac mimetics will be effective adjuvants for MTA chemotherapeutics. The present study reframes our fundamental biochemical understanding of how MTAs take advantage of the natural tight contact of tumor cells and utilize memTNF-mediated death signaling to induce the entire tumor regression.
Collapse
|
23
|
Berguetti T, Quintaes LSP, Hancio T, Robaina MC, Cruz ALS, Maia RC, de Souza PS. TNF-α Modulates P-Glycoprotein Expression and Contributes to Cellular Proliferation via Extracellular Vesicles. Cells 2019; 8:cells8050500. [PMID: 31137684 PMCID: PMC6562596 DOI: 10.3390/cells8050500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
P-glycoprotein (Pgp/ABCB1) overexpression is associated with multidrug resistance (MDR) phenotype and, consequently, failure in cancer chemotherapy. However, molecules involved in cell death deregulation may also support MDR. Tumor necrosis factor-alpha (TNF-α) is an important cytokine that may trigger either death or tumor growth. Here, we examined the role of cancer cells in self-maintenance and promotion of cellular malignancy through the transport of Pgp and TNF-α molecules by extracellular vesicles (membrane microparticles (MP)). By using a classical MDR model in vitro, we identified a positive correlation between endogenous TNF-α and Pgp, which possibly favored a non-cytotoxic effect of recombinant TNF-α (rTNF-α). We also found a positive feedback involving rTNF-α incubation and TNF-α regulation. On the other hand, rTNF-α induced a reduction in Pgp expression levels and contributed to a reduced Pgp efflux function. Our results also showed that parental and MDR cells spontaneously released MP containing endogenous TNF-α and Pgp. However, these MP were unable to transfer their content to non-cancer recipient cells. Nevertheless, MP released from parental and MDR cells elevated the proliferation index of non-tumor cells. Collectively, our results suggest that Pgp and endogenous TNF-α positively regulate cancer cell malignancy and contribute to changes in normal cell behavior through MP.
Collapse
Affiliation(s)
- Tandressa Berguetti
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Lucas S P Quintaes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Thais Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
- Programa de Pós-Graduação Strictu Sensu em Oncologia, INCA, Rio de Janeiro 20231-050, Brazil.
| | - Marcela C Robaina
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - André L S Cruz
- Laboratório de Fisiopatologia, Polo Novo Cavaleiros, Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20231-050, Brazil.
| |
Collapse
|
24
|
Assessment of the Levels of Level of Biomarkers of Bone Matrix Glycoproteins and Inflammatory Cytokines from Saudi Parkinson Patients. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2690205. [PMID: 31205938 PMCID: PMC6530158 DOI: 10.1155/2019/2690205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
Background. Parkinson's disease (PD) is the second most commonly neurodegenerative disease after Alzheimer's disease which occurs to nearly 1% of the population > 50 years old. Inflammatory and bone biomarkers have both become valuable tools for PD diagnosis and prognosis. However, no studies have examined these markers in Saudi patients diagnosed with PD. Objectives. To assess the biomarkers and proinflammatory cytokines from blood with PD in serum. Methods. In our study, we included 26 patients with PD and 24 controls. Blood samples were withdrawn from subjects with PD and their matched controls. Biomarkers multiplex assay from Milliplex was used to assess the levels of IL-1B, IL-6, TNF-α, osteoprotegerin (OPG), osteopontin (OPN), and PTH (parathyroid hormone). Data was analyzed using the Statistical Package, GraphPad Prism. Results. We found that IL-1ß cytokine is significantly higher in patients with PD (p value = 0.0014). However, there are no statistically significant variances found among the two studied groups with regard to the IL-6 and TNF-α cytokines levels. We also found that levels of PTH are decreased in the PD subjects than the age-matched controls (p value= 0.003). Also, the bone matrix glycoproteins, including osteoprotegerin (OPG) and osteopontin (OPN), are significantly upregulated (p value= 0.04 for OPG and p value= 0.003 for OPN), as compared to the controls. Conclusions. Our findings are reliable with the possibility that inflammatory and bone markers can be used as biomarkers in PD prognosis. However, to clarify the natural role and consequence of these markers in PD pathology, further larger cohort studies are needed.
Collapse
|
25
|
Øya E, Becher R, Ekeren L, Afanou AKJ, Øvrevik J, Holme JA. Pro-Inflammatory Responses in Human Bronchial Epithelial Cells Induced by Spores and Hyphal Fragments of Common Damp Indoor Molds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16061085. [PMID: 30917597 PMCID: PMC6466608 DOI: 10.3390/ijerph16061085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Damp indoor environments contaminated with different mold species may contribute to the development and exacerbation of respiratory illnesses. Human bronchial epithelial BEAS-2B cells were exposed to X-ray treated spores and hyphal fragments from pure cultures of Aspergillus fumigatus, Penicillum chrysogenum, Aspergillus versicolor and Stachybotrys chartarum. Hyphal fragments of A. fumigatus and P. chrysogenum induced expression and release of the pro-inflammatory cytokine interleukin (IL)-6 and the chemokine IL-8, while none of the other hyphal preparations had effects. Hyphal fragments from A. fumigatus and P. chrysogenum also increased the expression of IL-1α, IL-1β and tumor necrosis factor (TNF)-α, but these cytokines were not released. X-ray treated spores had little or no inflammatory potential. Attenuating Toll-like receptor (TLR)-2 by blocking antibodies strongly reduced the A. fumigatus and P. chrysogenum hyphae-induced IL-6 and IL-8 release, whereas TLR4 antagonist treatment was without effects. Untreated A. fumigatus spores formed hyphae and triggered expression of pro-inflammatory genes with similarities to the effects of hyphal fragments. In conclusion, while X-ray treated spores induced no pro-inflammatory responses, hyphal fragments of A. fumigatus and P. chrysogenum enhanced a TLR2-dependent expression and release of IL-6 and IL-8.
Collapse
Affiliation(s)
- Elisabeth Øya
- Department of Air Pollution and Noise, Division of Infection Control and Environment and Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Rune Becher
- Department of Air Pollution and Noise, Division of Infection Control and Environment and Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Leni Ekeren
- Department of Air Pollution and Noise, Division of Infection Control and Environment and Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Anani K J Afanou
- Department for the Chemical and Biological Work Environment, National Institute of Occupational Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environment and Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, N-0315 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environment and Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
26
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
27
|
Friedrich J, Heim L, Trufa DI, Sirbu H, Rieker RJ, Chiriac MT, Finotto S. STAT1 deficiency supports PD-1/PD-L1 signaling resulting in dysfunctional TNFα mediated immune responses in a model of NSCLC. Oncotarget 2018; 9:37157-37172. [PMID: 30647851 PMCID: PMC6324686 DOI: 10.18632/oncotarget.26441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
In this study we described that Signal Transducer and Activator of Transcription 1 (STAT1) is a key point regulator of PD-1 in tumour infiltrating lymphocytes and PD-L1 in Tumour associated macrophages (TAM) in NSCLC. In our murine model of adenocarcinoma targeted deletion of Stat1 was found associated with enhanced tumour growth, impaired differentiation into M1-like macrophages from the bone marrow, the accumulation of tumor associated macrophages overexpressing PD-L1 and impaired T cell responses in the tumor microenvironment by affecting TNFα responses. In our human NSCLC patient cohort we found that loss of isoforms STAT1 α and STAT1β mRNA in the tumoural region of the lung correlates with increased tumor size in NSCLC patients. Therefore, STAT1 isoform regulation could be considered for future therapeutical strategies associated to current immune-checkpoint blockade therapy in NSCLC.
Collapse
Affiliation(s)
- Juliane Friedrich
- Department of Molecular Pneumology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lisanne Heim
- Department of Molecular Pneumology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I Trufa
- Department of Thoracic Surgery, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf J Rieker
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mircea T Chiriac
- Department of Medicine 1-Gastroenterology, Pneumology and Endocrinology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR, Jafri A. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med 2018; 16:242. [PMID: 30170620 PMCID: PMC6119315 DOI: 10.1186/s12967-018-1611-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)-alpha was originally identified in the 1970s as the serum mediator of innate immunity capable of inducing hemorrhagic necrosis in tumors. Today, a wide spectrum of biological activities have been attributed to this molecule, and clinical translation has mainly occurred not in using it to treat cancer, but rather to inhibit its effects to treat autoimmunity. Clinical trials utilizing systemic TNF-alpha administration have resulted in an unacceptable level of toxicities, which blocked its development. In contrast, localized administration of TNF-alpha in the form of isolated limb perfusion have yielded excellent results in soft tissue sarcomas. Here we describe a novel approach to leveraging the potent antineoplastic activities of TNF-alpha by enhancing activity of locally produced TNF-alpha through extracorporeal removal of soluble TNF-alpha receptors. Specifically, it is known that cancerous tissues are infiltrated with monocytes, T cells, and other cells capable of producing TNF-alpha. It is also known that tumors, as well as cells in the tumor microenvironment produce soluble TNF-alpha receptors. The authors believe that by selectively removing soluble TNF-alpha receptors local enhancement of endogenous TNF-alpha activity may provide for enhanced tumor cell death without associated systemic toxicities.
Collapse
Affiliation(s)
| | | | | | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| | | | | | | |
Collapse
|
29
|
Tyrinova T, Leplina O, Mishinov S, Tikhonova M, Kalinovskiy A, Chernov S, Dolgova E, Stupak V, Voronina E, Bogachev S, Shevela E, Ostanin A, Chernykh E. Defective Dendritic Cell Cytotoxic Activity of High-Grade Glioma Patients' Results from the Low Expression of Membrane TNFα and Can Be Corrected In Vitro by Treatment with Recombinant IL-2 or Exogenic Double-Stranded DNA. J Interferon Cytokine Res 2018; 38:298-310. [PMID: 29932796 DOI: 10.1089/jir.2017.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Besides initiation of tumor-specific T cell immunity, dendritic cells (DCs) are endowed with tumoricidal activity. Previously, we showed that monocyte-derived DCs of high-grade glioma patients generated in the presence of interferon alpha (IFNα) (IFN-DCs) have impaired cytotoxic activity against tumor necrosis factor alpha (TNFα)-sensitive HEp-2 tumor cells. Herein, we demonstrate that decreased transmembrane TNFα (tmTNFα) expression, but not soluble TNFα (sTNFα) production by high-grade glioma patient IFN-DCs, determines the defective tumoricidal activity against TNFα-sensitive HEp-2 cells. Blocking TNFα-converting enzyme or stimulation of patient IFN-DCs with rIL-2 or dsDNA enhances tmTNFα expression on IFN-DCs and significantly increases their cytotoxicity. Decreased tmTNFα expression on patient IFN-DCs is not caused by downregulation of pNFκB. Neither rIL-2 nor dsDNA upregulates tmTNFα expression on patient IFN-DCs via an increase of pNFκB. The current study shows an important role of tmTNFα as mediator of IFN-DC tumoricidal activity and as molecular target for the restoration of defective DC killer activity in high-grade glioma patients.
Collapse
Affiliation(s)
- Tamara Tyrinova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Olga Leplina
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Sergey Mishinov
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Marina Tikhonova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Anton Kalinovskiy
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Sergey Chernov
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Evgeniya Dolgova
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Vyacheslav Stupak
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Evgeniya Voronina
- 5 Laboratory of Morphological and Molecular Biology Techniques, Regional Center of High Medical Technologies , Novosibirsk, Russia
| | - Sergey Bogachev
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Ekaterina Shevela
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Alexander Ostanin
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Elena Chernykh
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| |
Collapse
|
30
|
Qu Y, Zhao G, Li H. Forward and Reverse Signaling Mediated by Transmembrane Tumor Necrosis Factor-Alpha and TNF Receptor 2: Potential Roles in an Immunosuppressive Tumor Microenvironment. Front Immunol 2017; 8:1675. [PMID: 29234328 PMCID: PMC5712345 DOI: 10.3389/fimmu.2017.01675] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic inflammatory cytokine produced mainly by activated macrophages, lymphocytes and other cell types. Two distinct forms of TNF-α have been identified: soluble TNF-α (sTNF-α) and transmembrane TNF-α (mTNF-α). mTNF-α, which is the precursor of sTNF-α, can be cleaved by the TNF-α converting enzyme (TACE) and is released as sTNF-α. sTNF-α binds primarily to TNF receptor 1 (TNFR1) and plays an important role in the inflammatory immune response, whereas mTNF-α interacts primarily with TNF receptor 2 (TNFR2) and mediates the promotion of cellular proliferation and survival and other biological effects. It has been reported that the interaction between mTNF-α and TNFR2 induces bi-directional (forward and reverse) signaling in both mTNF-α- and TNFR2-expressing cells. Increasing evidence shows that the forward and reverse signaling mediated by mTNF-α and TNFR2 might play a significant role in the tumor microenvironment. In this review, the role of the crosstalk between mTNF-α and TNFR2 in the tumor microenvironment will be discussed.
Collapse
Affiliation(s)
- Yang Qu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
31
|
Edwardson DW, Boudreau J, Mapletoft J, Lanner C, Kovala AT, Parissenti AM. Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance. PLoS One 2017; 12:e0183662. [PMID: 28915246 PMCID: PMC5600395 DOI: 10.1371/journal.pone.0183662] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Tumor Necrosis Factor alpha (TNF-α) has been shown to be released by tumor cells in response to docetaxel, and lipopolysaccharides (LPS), the latter through activation of toll-like receptor 4 (TLR4). However, it is unclear whether the former involves TLR4 receptor activation through direct binding of the drug to TLR4 at the cell surface. The current study was intended to better understand drug-induced TNF-α production in tumor cells, whether from short-term drug exposure or in cells selected for drug resistance. ELISAs were employed to measure cytokine release from breast and ovarian tumor cells in response to several structurally distinct chemotherapy agents and/or TLR4 agonists or antagonists. Drug uptake and drug sensitivity studies were also performed. We observed that several drugs induced TNF-αrelease from multiple tumor cell lines. Docetaxel-induced cytokine production was distinct from that of LPS in both MyD88-positive (MCF-7) and MyD88-deficient (A2780) cells. The acquisition of docetaxel resistance was accompanied by increased constitutive production of TNF-αand CXCL1, which waned at higher levels of resistance. In docetaxel-resistant MCF-7 and A2780 cell lines, the production of TNF-α could not be significantly augmented by docetaxel without the inhibition of P-gp, a transporter protein that promotes drug efflux from tumor cells. Pretreatment of tumor cells with LPS sensitized MyD88-positive cells (but not MyD88-deficient) to docetaxel cytotoxicity in both drug-naive and drug-resistant cells. Our findings suggest that taxane-induced inflammatory cytokine production from tumor cells depends on the duration of exposure, requires cellular drug-accumulation, and is distinct from the LPS response seen in breast tumor cells. Also, stimulation of the LPS-induced pathway may be an attractive target for treatment of drug-resistant disease.
Collapse
Affiliation(s)
- Derek W. Edwardson
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
| | - Justin Boudreau
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
| | - Jonathan Mapletoft
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Carita Lanner
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - A. Thomas Kovala
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Amadeo M. Parissenti
- Ph.D. Program in Biomolecular Science, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
- Faculty of Medicine, Division of Oncology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
STAT1 mediates transmembrane TNF-alpha-induced formation of death-inducing signaling complex and apoptotic signaling via TNFR1. Cell Death Differ 2017; 24:660-671. [PMID: 28186502 DOI: 10.1038/cdd.2016.162] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) exists in two forms: secretory TNF-α (sTNF-α) and transmembrane TNF-α (tmTNF-α). Although both forms of TNF-α induce tumor cell apoptosis, tmTNF-α is able to kill tumor cells that are resistant to sTNF-α-mediated cytotoxicity, indicating their differences in signal transduction. Here, we demonstrate that internalization of TNFR1 is crucial for sTNF-α- but not for tmTNF-α-induced apoptosis. sTNF-α induces binding of tumor necrosis factor receptor type 1-associated death domain protein (TRADD) to the death domain (DD) of TNFR1 and subsequent activation of nuclear factor kappa B (NF-κB), and the formation of death-inducing signaling complexes (DISCs) in the cytoplasm after internalization. In contrast, tmTNF-α induces DISC formation on the membrane in a DD-independent manner. It leads to the binding of signal transducer and activator of transcription 1 (STAT1) to a region spanning amino acids 319-337 of TNFR1 and induces phosphorylation of serine at 727 of STAT1. The phosphorylation of STAT1 promotes its binding to TRADD, and thus recruits Fas-associated protein with DD (FADD) and caspase 8 to form DISC complexes. This STAT1-dependent signaling results in apoptosis but not NF-κB activation. STAT1-deficiency in U3A cells counteracts tmTNF-α-induced DISC formation and apoptosis. Conversely, reconstitution of STAT1 expression restores tmTNF-α-induced apoptotic signaling in the cell line. Consistently, tmTNF-α suppresses the growth of STAT1-containing HT1080 tumors, but not of STAT1-deficient U3A tumors in vivo. Our data reveal an unappreciated molecular mechanism of tmTNF-α-induced apoptosis and may provide a new clue for cancer therapy.
Collapse
|
33
|
Samineni D, Girish S, Li C. Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies. Expert Rev Clin Pharmacol 2016; 9:1557-1569. [DOI: 10.1080/17512433.2016.1243055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Udommethaporn S, Tencomnao T, McGowan EM, Boonyaratanakornkit V. Assessment of Anti-TNF-α Activities in Keratinocytes Expressing Inducible TNF- α: A Novel Tool for Anti-TNF-α Drug Screening. PLoS One 2016; 11:e0159151. [PMID: 27415000 PMCID: PMC4945017 DOI: 10.1371/journal.pone.0159151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine important in normal and pathological biological processes. Newly synthesized pro-TNF-α is expressed on the plasma membrane and cleaved to release soluble TNF-α protein: both are biologically active. Secreted TNF-α signals through TNF receptors and the membrane-bound TNF-α acts by cell contact-dependent signaling. Anti-TNF-α antibodies have been used effectively for treatment of chronic inflammation, however with adverse side effects. Thus, there is a need for new anti-TNF-α small molecule compounds. Anti-TNF-α activity assays involve treatment of keratinocytes with exogenous TNF-α before or after anti-TNF-α incubation. However, this model fails to address the dual signaling of TNF-α. Here we describe a Doxycycline (Dox)-inducible TNF-α (HaCaT-TNF-α) expression system in keratinocytes. Using this in-vitro model, we show cell inhibition and induced expression of pro-inflammatory cytokines and markers, including IL-1β, IL-6, IL-8, NF-κB1, and KRT-16, similar to cells treated with exogenous TNF-α. Sufficient secreted TNF-α produced also activated IL-1β and IL-8 expression in wt HaCaT cells. Importantly, stimulated expression of IL-1β and IL-8 in HaCaT-TNF-α were blocked by Quercetin, a flavanol shown to possess anti-TNF-α activities. This novel in vitro cell model provides an efficient tool to investigate the dual signaling of TNF-α. Importantly, this model provides an effective, fast, and simple screening for compounds with anti-TNF-α activities for chronic inflammatory disease therapies.
Collapse
Affiliation(s)
- Sutthirat Udommethaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, Sydney, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
35
|
Albarbar B, Dunnill C, Georgopoulos NT. Regulation of cell fate by lymphotoxin (LT) receptor signalling: Functional differences and similarities of the LT system to other TNF superfamily (TNFSF) members. Cytokine Growth Factor Rev 2015; 26:659-71. [DOI: 10.1016/j.cytogfr.2015.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022]
|
36
|
Yang P, Zhou W, Li C, Zhang M, Jiang Y, Jiang R, Ba H, Li C, Wang J, Yin B, Gong F, Li Z. Kupffer-cell-expressed transmembrane TNF-α is a major contributor to lipopolysaccharide and D-galactosamine-induced liver injury. Cell Tissue Res 2015; 363:371-83. [PMID: 26267221 DOI: 10.1007/s00441-015-2252-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF)-α exists in two bioactive forms, a 26-kDa transmembrane form (tmTNF-α) and a 17-kDa soluble form (sTNF-α). sTNF-α has been recognized as a key regulator of hepatitis; however, serum sTNF-α disappears in mice during the development of severe liver injury, and high levels of serum sTNF-α do not necessarily result in liver damage. Interestingly, in a mouse model of acute hepatitis, we have found that tmTNF-α expression on Kupffer cells (KCs) significantly increases when mice develop severe liver injury caused by lipopolysaccharide (LPS)/D-galactosamine (D-gal), and the level of tmTNF-α expression is positively related to the activity of serum transaminases. Therefore, we hypothesized that KC-expressed tmTNF-α constitutes a pathomechanism in hepatitis and have explored the role of tmTNF-α in this disease model. Here, we have compared the impact of KCs(tmTNFlow) and KCs(tmTNFhigh) on acute hepatitis in vivo and ex vivo and have further demonstrated that KCs(tmTNFhigh), rather than KCs(tmTNFlow), not only exhibit an imbalance in secretion of pro- and anti-inflammatory cytokines, favoring inflammatory response and exacerbating liver injury, but also induce hepatocellular apoptosis via tmTNF-α and the expression of another pro-apoptotic factor, Fas ligand. Our data suggest that KC(tmTNFhigh) is a major contributor to liver injury in LPS/D-gal-induced hepatitis.
Collapse
Affiliation(s)
- Peng Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Wenjing Zhou
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Chenxi Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Meng Zhang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Yaping Jiang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Rui Jiang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Hongping Ba
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Cheng Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Wang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Bingjiao Yin
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhuoya Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
37
|
Transmembrane TNF-α preferentially expressed by leukemia stem cells and blasts is a potent target for antibody therapy. Blood 2015. [PMID: 26224647 DOI: 10.1182/blood-2015-01-624833] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To design an effective antibody therapy to improve clinical outcomes in leukemia, the identification of novel cell surface antigens is needed. Herein, we demonstrate a role for transmembrane tumor necrosis factor-α (tmTNF-α) in leukemia. To characterize tmTNF-α expression in acute leukemia (AL), normal hematopoietic cells, and nonhematopoietic tissues, we used a monoclonal antibody, termed C1, which specifically recognizes the tmTNF-α domain. We found that tmTNF-α was preferentially expressed by AL and leukemia stem cells (LSCs). More abundant expression correlated with poor risk stratification, extramedullary infiltration, and adverse clinical parameters. Moreover, knockdown of tmTNF-α(+) expression rendered leukemia cells more sensitive to chemotherapy in vitro and delayed regeneration of leukemia in NOD-SCID mice. Targeting tmTNF-α by C1 resulted in leukemia cell killing via antibody-dependent cell-mediated and complement-dependent cytotoxicity in vitro and inhibited leukemia cell growth in vivo while simultaneously sparing normal hematopoietic cells. Notably, C1 administration impaired the regeneration of leukemia in secondary serial transplantation into NOD-SCID mice. In conclusion, tmTNF-α has a favorable AL- and LSC-associated expression profile and is important for the survival and proliferation of these cells. C1-mediated targeting shows potent anti-LSC activity, indicating that tmTNF-α represents a novel target antigen in AL.
Collapse
|
38
|
Interaction between TNFR1 and TNFR2 dominates the clinicopathologic features of human hypopharyneal carcinoma. Tumour Biol 2015; 36:9421-9. [DOI: 10.1007/s13277-015-3684-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/16/2015] [Indexed: 01/08/2023] Open
|
39
|
Bertrand F, Rochotte J, Colacios C, Montfort A, Tilkin-Mariamé AF, Touriol C, Rochaix P, Lajoie-Mazenc I, Andrieu-Abadie N, Levade T, Benoist H, Ségui B. Blocking Tumor Necrosis Factor α Enhances CD8 T-cell–Dependent Immunity in Experimental Melanoma. Cancer Res 2015; 75:2619-28. [DOI: 10.1158/0008-5472.can-14-2524] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
|
40
|
Neagu M, Constantin C, Dumitrascu GR, Lupu AR, Caruntu C, Boda D, Zurac S. Inflammation markers in cutaneous melanoma - edgy biomarkers for prognosis. Discoveries (Craiova) 2015; 3:e38. [PMID: 32309563 PMCID: PMC6941591 DOI: 10.15190/d.2015.30] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is a fine balance between inflammation and tumorigenesis. While environmentally induced inflammatory condition can precede a malignant transformation, in other cases an oncogenic change of unknown origin can induce an inflammatory microenvironment that promotes the development of tumors. Regardless of its origin, maintaining the inflammation milieu has many tumor-promoting effects. As a result, inflammation can aid the proliferation and survival of malignant cells, can promote angiogenesis and metastasis, can down-regulate innate/adaptive immune responses, and can alter responses to hormones and chemotherapeutic agents. There is an abundance of studies unveiling molecular pathways of cancer-related inflammation; this wealth of information brings new insights into biomarkers domain in the diagnosis and treatment improvement pursue.
In cutaneous tissue there is an established link between tissue damage, inflammation, and cancer development. Inflammation is a self-limiting process in normal healthy physiological conditions, while tumorigenesis is a complex mechanism of constitutive pathway activation. Once more, in cutaneous melanoma, there is an unmet need for inflammatory biomarkers that could improve prognostication. Targeting inflammation and coping with the phenotypic plasticity of melanoma cells represent rational strategies to specifically interfere with metastatic progression. We have shown that there is a prototype of intratumor inflammatory infiltrate depicting a good prognosis, infiltrate that is composed of numerous T cells CD3+, Langerhans cells, few/absent B cells CD20+ and few/absent plasma cells. Circulating immune cells characterized by phenotype particularities are delicately linked to the stage melanoma is diagnosed in. Hence circulatory immune sub-populations, with activated or suppressor phenotype would give the physician a more detailed immune status of the patient. A panel of tissue/circulatory immune markers can complete the immune status, can add value to the overall prognostic of the patient and, as a result direct/redirect the therapy choice. The future lies within establishing low-cost, affordable/available, easily reproducible assays that will complete the pre-clinical parameters of the patient.
Collapse
Affiliation(s)
- Monica Neagu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania.,Faculty of Biochemistry, University of Bucharest, Romania
| | - Carolina Constantin
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Georgiana Roxana Dumitrascu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Andreea Roxana Lupu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania
| | - Constantin Caruntu
- Immunobiology Laboratory, "Victor Babes" National Institute of Pathology and Biomedical Sciences, Bucharest, Romania.,Dermatology Research Laboratory, "Carol Davila" University of Medicine & Pharmacy, Bucharest, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, "Carol Davila" University of Medicine & Pharmacy, Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Colentina University Hospital, Bucharest, Romania
| |
Collapse
|
41
|
TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 2014; 5:4944. [PMID: 25229256 DOI: 10.1038/ncomms5944] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/07/2014] [Indexed: 12/31/2022] Open
Abstract
Inflammation and lymphangiogenesis are two cohesively coupled processes that promote tumour growth and invasion. Here we report that TNF-α markedly promotes tumour lymphangiogenesis and lymphatic metastasis. The TNF-α-TNFR1 signalling pathway directly stimulates lymphatic endothelial cell activity through a VEGFR3-independent mechanism. However, VEGFR3-induced lymphatic endothelial cell tips are a prerequisite for lymphatic vessel growth in vivo, and a VEGFR3 blockade completely ablates TNF-α-induced lymphangiogenesis. Moreover, TNF-α-TNFR1-activated inflammatory macrophages produce high levels of VEGF-C to coordinately activate VEGFR3. Genetic deletion of TNFR1 (Tnfr1(-/-)) in mice or depletion of tumour-associated macrophages (TAMs) virtually eliminates TNF-α-induced lymphangiogenesis and lymphatic metastasis. Gain-of-function experiments show that reconstitution of Tnfr1(+/+) macrophages in Tnfr1(-/-) mice largely restores tumour lymphangiogenesis and lymphatic metastasis. These findings shed mechanistic light on the intimate interplay between inflammation and lymphangiogenesis in cancer metastasis, and propose therapeutic intervention of lymphatic metastasis by targeting the TNF-α-TNFR1 pathway.
Collapse
|
42
|
Correction: Membrane versus Soluble Isoforms of TNF-α Exert Opposing Effects on Tumor Growth and Survival of Tumor-Associated Myeloid Cells. Cancer Res 2013. [DOI: 10.1158/0008-5472.can-13-3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Tada N, Tsuno NH, Kawai K, Murono K, Nirei T, Ishihara S, Sunami E, Kitayama J, Watanabe T. Changes in the plasma levels of cytokines/chemokines for predicting the response to chemoradiation therapy in rectal cancer patients. Oncol Rep 2013; 31:463-71. [PMID: 24253593 DOI: 10.3892/or.2013.2857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 01/15/2023] Open
Abstract
In the present study, we aimed to characterize the predictive value of cytokines/chemokines in rectal cancer (RC) patients receiving chemoradiation therapy (CRT). Blood samples were obtained pre- and post-CRT from 35 patients with advanced RC, who received neoadjuvant CRT followed by surgery, and the correlation between plasma levels of cytokines/chemokines and the response to CRT was analyzed. The pre-CRT levels of soluble CD40-ligand (sCD40L) and the post-CRT levels of chemokine ligand-5 (CCL-5) were significantly associated with the depth of tumor invasion and with venous invasion. In addition, a significant decrease in sCD40L and CCL-5, as well as in platelet counts, was associated with a favorable response to CRT. A significant correlation between pre-CRT platelet counts and sCD40L was observed in patients with a favorable response. By contrast, higher post-CRT interleukin (IL)-6 was associated with a poor response. Platelets, immune system and cancer cells, cross-linked through various cytokines/chemokines, appear to play an important role in the response to CRT, and by understanding their roles, new approaches for the improvement of the therapy might be proposed.
Collapse
Affiliation(s)
- Noriko Tada
- Department of Surgical Oncology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ardestani S, Deskins DL, Young PP. Membrane TNF-alpha-activated programmed necrosis is mediated by Ceramide-induced reactive oxygen species. J Mol Signal 2013; 8:12. [PMID: 24180579 PMCID: PMC3895838 DOI: 10.1186/1750-2187-8-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022] Open
Abstract
Background Programmed necrosis is a form of caspase-independent cell death whose molecular regulation is poorly understood. While tumor necrosis factor-alpha (TNF-α) has been identified as an activator of programmed necrosis, the specific context under which this can happen is unclear. Recently we reported that TNF-α can be expressed by human tumor cells as both a membrane tethered (mTNF-α) and a soluble (sTNF-α) form. Whereas low level, tumor-derived sTNF-α acts as a tumor promoter, tumor cell expression of mTNF-α significantly delays tumor growth in mice, in large part by induction of programmed necrosis of tumor associated myeloid cells. In this study we sought to determine the molecular mechanism involved in mTNF-α oxidative stress-induced cell death by evaluating the known pathways involved in TNF receptor-induced programmed necrosis. Methods The source of Reactive Oxygen Species (ROS) in mTNF-α treated cells was determined by coculturing RAW 264.7 monocytic and L929 fibroblasts cells with fixed B16F10 control or mTNF-α expressing-melanoma cells in the presence of inhibitors of NADPH and mitochondria ROS. To identify the down-stream effector of TNF-a receptors (TNFR), level of phospho-RIP-1 and ceramide activity were evaluated. To determine whether mTNF-mediated cell death was dependent on a specific TNFR, cell death was measured in primary CD11b myeloid cells isolated from wild-type or TNFR-1, TNFR-2, TNFR-1 and TNFR-2 double knockout mice, cocultured with various TNF-α isoform. Results Tumor derived-mTNF-α increased ROS-mediated cytotoxicity, independent of caspase-3 activity. Although TNFR on target cells were required for this effect, we observed that mTNF-induced cell death could be mediated through both TNFR-1 and the death domain-lacking TNFR-2. ROS generation and cytotoxicity were inhibited by a mitochondrial respiratory chain inhibitor but not by an inhibitor of NADPH oxidase. mTNF-α mediated cytotoxicity was independent of RIP-1, a serine/threonine kinase that serves as a main adaptor protein of sTNF-α induced programmed necrosis. Instead, mTNF-α-induced ROS and cell death was prohibited by the ceramide-activated protein kinase (CAPK) inhibitor. Conclusion These findings demonstrate that the mTNF-α isoform is an effective inducer of programmed necrosis through a caspase independent, ceramide-related pathway. Interestingly, unlike sTNFα, mTNF-induced programmed necrosis is not dependent on the presence of TNFR1.
Collapse
Affiliation(s)
- Shidrokh Ardestani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, C2217A MCN, Nashville, TN 37232, USA.
| | | | | |
Collapse
|