1
|
Zhang S, Wang L, Lu Y, Guo C, Zhang T, Zhang L. Targeting spleen tyrosine kinase (SYK): structure, mechanisms and drug discovery. Drug Discov Today 2025; 30:104257. [PMID: 39653169 DOI: 10.1016/j.drudis.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Spleen tyrosine kinase (SYK) is a crucial non-receptor tyrosine kinase involved in signaling pathways that regulate various cellular processes. It is primarily expressed in hematopoietic cells and myeloid cells, which are crucial for B-cell development, maturation and antibody production, and it is a key therapeutic target for autoimmune and allergic diseases. Overexpression of SYK is also associated with cancer and cardiovascular, cerebrovascular and neurodegenerative diseases, contributing to their initiation and progression. SYK is a promising target for drug development, and several inhibitors have already been reported. This review covers the structure and regulatory pathways of SYK, as well as its links to various diseases. It also highlights key small-molecule SYK inhibitors, their design strategies and their potential therapeutic benefits, aiming to enhance our understanding and aid in the discovery of more-effective SYK inhibitors.
Collapse
Affiliation(s)
- Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lilin Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanxin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group, Shanghai 201805, China.
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
2
|
Dangelmaier C, Vari HR, Vajipayajula DN, Elzoheiry M, Wright M, Iyer A, Tsygankov AY, Kunapuli SP. Phosphorylation of (Ser 291) in the linker insert of Syk negatively regulates ITAM signaling in platelets. Platelets 2024; 35:2369766. [PMID: 38904212 PMCID: PMC11322839 DOI: 10.1080/09537104.2024.2369766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Receptor-induced tyrosine phosphorylation of spleen tyrosine kinase (Syk) has been studied extensively in hematopoietic cells. Metabolic mapping and high-resolution mass spectrometry, however, indicate that one of the most frequently detected phosphorylation sites encompassed S297 (S291 in mice) located within the linker B region of Syk. It has been reported that Protein kinase C (PKC) phosphorylates Syk S297, thus influencing Syk activity. However, conflicting studies suggest that this phosphorylation enhances as well as reduces Syk activity. To clarify the function of this site, we generated Syk S291A knock-in mice. We used platelets as a model system as they possess Glycoprotein VI (GPVI), a receptor containing an immunoreceptor tyrosine-based activation motif (ITAM) which transduces signals through Syk. Our analysis of the homozygous mice indicated that the knock-in platelets express only one isoform of Syk, while the wild-type expresses two isoforms at 69 and 66 kDa. When the GPVI receptor was activated with collagen-related peptide (CRP), we observed an increase in functional responses and phosphorylations in Syk S291A platelets. This potentiation did not occur with AYPGKF or 2-MeSADP, although they also activate PKC isoforms. Although there was potentiation of platelet functional responses, there was no difference in tail bleeding times. However, the time to occlusion in the FeCl3 injury model was enhanced. These data indicate that the effects of Syk S291 phosphorylation represent a significant outcome on platelet activation and signaling in vitro but also reveals its multifaceted nature demonstrated by the differential effects on physiological responses in vivo.
Collapse
Affiliation(s)
- Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Dhruv N Vajipayajula
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Manal Elzoheiry
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ashvin Iyer
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Lin B, Wang Q, Wang X, Wei H, Nie X, Li L, Shi Y. Expression of variant isoforms of the tyrosine kinase SYK differentially regulates cervical cancer progression through PI3K/AKT pathway. Sci Rep 2024; 14:29080. [PMID: 39580521 PMCID: PMC11585633 DOI: 10.1038/s41598-024-80579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
Invasion and metastasis are the main reasons for the poor prognosis of patients with cervical cancer(CC). SYK is closely related to tumor development. However, the functions of its two isoforms, SYK (L) or SYK (S), are not fully understood to date. In this study, we investigated their biologic functions and possible prognostic values in CC. qRT-PCR was performed to detect the expression of SYK and two variant isoforms in cervical cancer tissues and cells. The association of SYK(L) and SYK(S) with Clinical pathological parameters were evaluated. The migration and invasion was detected by scratch assay and transwell. Western blot was conducted to measure the changes of epithelial mesenchymal transition (EMT)-related markers and PI3K/AKT signaling pathway proteins in cervical cancer cells. LY294002 (inhibitor of PI3K/AKT pathway) and IGF-1 (activator of PI3K/AKT pathway) were applied to evaluate the contribution of PI3K/AKT signaling pathway in cervical cancer cells. The expression of SYK(S) in cervical cancer tissues was significantly higher than that of SYK(L). SYK(L) and SYK(S) were correlated with muscular infiltration, SYK(L) high expression had a better prognosis, whereas SYK(S) high expression predicted a worse disease outcome. Cox multivariate regression analysis demonstrated that SYK(L) expression was an independent prognostic factor. SYK(L) significantly inhibited the proliferation, migration and invasion, while SYK(S) showed the opposite effects. LY294002 blocked SYK (L) knockdown-induced enhancement of migration and invasion as well as the expression EMT-related markers, whereas IGF-1 rescued the decreased migration, invasion and EMT induced by SYK (S) knockdown. The results suggest that SYK(L) and SYK(S) are involved in the progression of cervical cancer through PI3K/AKT signaling pathway, and may serve as potential targets for clinical treatment of advanced cervical cancer.
Collapse
Affiliation(s)
- Bingjie Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China
| | - Qixin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China
| | - Xin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China
| | - Hongjian Wei
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China
| | - Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China
| | - Li Li
- Department of Gynecology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
| |
Collapse
|
4
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
5
|
Singh PK, Dangelmaier CA, Vari HR, Tsygankov AY, Kunapuli SP. Biochemical characterization of spleen tyrosine kinase (SYK) isoforms in platelets. Platelets 2023; 34:2249549. [PMID: 37661351 PMCID: PMC10502920 DOI: 10.1080/09537104.2023.2249549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
Alternate splicing is among the regulatory mechanisms imparting functional diversity in proteins. Studying protein isoforms generated through alternative splicing is therefore critical for understanding protein functions in many biological systems. Spleen tyrosine kinase (Syk) plays an essential role in ITAM/hemITAM signaling in many cell types, including platelets. However, the spectrum of Syk isoforms expressed in platelets has not been characterized. Syk has been shown to have a full-length long isoform SykL and a shorter SykS lacking 23 amino acid residues within its interdomain B. Furthermore, putative isoforms lacking another 23 amino acid-long sequence or a combination of the two deletions have been postulated to exist. In this report, we demonstrate that mouse platelets express full-length SykL and the previously described shorter isoform SykS, but lack other shorter isoforms, whereas human platelets express predominantly SykL. These results both indicate a possible role of alternative Syk splicing in the regulation of receptor signaling in mouse platelets and a difference between signaling regulation in mouse and human platelets.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Carol A. Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Y. Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Chen Y, Zhang XF, Ou-Yang L. Inferring cancer common and specific gene networks via multi-layer joint graphical model. Comput Struct Biotechnol J 2023; 21:974-990. [PMID: 36733706 PMCID: PMC9873583 DOI: 10.1016/j.csbj.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is a complex disease caused primarily by genetic variants. Reconstructing gene networks within tumors is essential for understanding the functional regulatory mechanisms of carcinogenesis. Advances in high-throughput sequencing technologies have provided tremendous opportunities for inferring gene networks via computational approaches. However, due to the heterogeneity of the same cancer type and the similarities between different cancer types, it remains a challenge to systematically investigate the commonalities and specificities between gene networks of different cancer types, which is a crucial step towards precision cancer diagnosis and treatment. In this study, we propose a new sparse regularized multi-layer decomposition graphical model to jointly estimate the gene networks of multiple cancer types. Our model can handle various types of gene expression data and decomposes each cancer-type-specific network into three components, i.e., globally shared, partially shared and cancer-type-unique components. By identifying the globally and partially shared gene network components, our model can explore the heterogeneous similarities between different cancer types, and our identified cancer-type-unique components can help to reveal the regulatory mechanisms unique to each cancer type. Extensive experiments on synthetic data illustrate the effectiveness of our model in joint estimation of multiple gene networks. We also apply our model to two real data sets to infer the gene networks of multiple cancer subtypes or cell lines. By analyzing our estimated globally shared, partially shared, and cancer-type-unique components, we identified a number of important genes associated with common and specific regulatory mechanisms across different cancer types.
Collapse
Affiliation(s)
- Yuanxiao Chen
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China,Corresponding author.
| |
Collapse
|
7
|
Zhao Y, Liu R, Li M, Liu P. The spleen tyrosine kinase (SYK): A crucial therapeutic target for diverse liver diseases. Heliyon 2022; 8:e12130. [PMID: 36568669 PMCID: PMC9768320 DOI: 10.1016/j.heliyon.2022.e12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/14/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is an enigmatic protein tyrosine kinase, and involved in signal transduction related with lots of cellular processes. It's highly expressed in the cells of hematopoietic origin and acts as an important therapeutic target in the treatment of autoimmune diseases and allergic disorders. In recent years, more and more evidences indicate that SYK is expressed in non-hematopoietic cells and effectively regulates various non-immune biological responses as well. In this review, we mainly summary the role of SYK in different liver diseases. Robust SYK expression has been discovered in hepatocytes, hepatic stellate cells, as well as Kupffer cells, which participates in the regulation of numerous signal transduction in various liver diseases (e.g. hepatitis, liver fibrosis and hepatocellular carcinoma). In addition, the blockage of SYK activity using small molecule modulators is considered as a significant therapeutic strategy against liver diseases, and both hepatic SYK and non-hepatic SYK could become highly promising therapeutic targets. Totally, even though some critical points about the significance of SYK in liver diseases treatment still need further elaboration, more reliable biotechnical or pharmacological therapy modes will be established based on the better understanding of the relationship between SYK and liver diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongrong Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Miaomiao Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China,Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China,Corresponding author.
| |
Collapse
|
8
|
Denis V, Cassagnard N, Del Rio M, Cornillot E, Bec N, Larroque C, Jeanson L, Jarlier M, Combès E, Robert B, Gongora C, Martineau P, Dariavach P. Targeting the splicing isoforms of spleen tyrosine kinase affects the viability of colorectal cancer cells. PLoS One 2022; 17:e0274390. [PMID: 36103569 PMCID: PMC9473616 DOI: 10.1371/journal.pone.0274390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Spleen tyrosine kinase (Syk) expression have been both positively and negatively associated with tumorigenesis. Our goal was to evaluate the contribution of Syk and its two splice variants, full length Syk (L) and short isoform Syk (S), in the tumor biology of colorectal cancer cells (CRC). The analysis of Syk expression in primary human colorectal tumors, as well as the analysis of TCGA database, revealed a high Syk mRNA expression score in colorectal cancer tumors, suggesting a tumor promotor role of Syk in CRC. Our analysis showed that Syk (L) isoform is highly expressed in the majority of the tumor tissues and that it remains expressed in tumors in which global Syk expression is downregulated, suggesting the dependence of tumors to Syk (L) isoform. We also identified a small cluster of tumor tissues, which express a high proportion of Syk (S) isoform. This specific cluster is associated with overexpressed genes related to translation and mitochondria, and down regulated genes implicated in the progression of mitosis. For our functional studies, we used short hairpin RNA tools to target the expression of Syk in CRC cells bearing the activating K-Ras (G13D) mutation. Our results showed that while global Syk knock down increases cell proliferation and cell motility, Syk (L) expression silencing affects the viability and induces the apoptosis of the cells, confirming the dependence of cells on Syk (L) isoform for their survival. Finally, we report the promising potential of compound C-13, an original non-enzymatic inhibitor of Syk isolated in our group. In vitro studies showed that C-13 exerts cytotoxic effects on Syk-positive CRC cells by inhibiting their proliferation and their motility, and by inducing their apoptosis, while Syk-negative cell lines viability was not affected. Moreover, the oral and intraperitoneal administration of C-13 reduced the tumor growth of CRC DLD-1 cells xenografts in Nude mice in vivo.
Collapse
Affiliation(s)
- Vincent Denis
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Maguy Del Rio
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Nicole Bec
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Laura Jeanson
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Marta Jarlier
- Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Eve Combès
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Bruno Robert
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Céline Gongora
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Pierre Martineau
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- * E-mail: (PD); (PM)
| | - Piona Dariavach
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- * E-mail: (PD); (PM)
| |
Collapse
|
9
|
Aguirre-Ducler A, Gianino N, Villarroel-Espindola F, Desai S, Tang D, Zhao H, Syrigos K, Trepicchio WL, Kannan K, Gregory RC, Schalper KA. Tumor cell SYK expression modulates the tumor immune microenvironment composition in human cancer via TNF-α dependent signaling. J Immunother Cancer 2022; 10:jitc-2022-005113. [PMID: 35868661 PMCID: PMC9315908 DOI: 10.1136/jitc-2022-005113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The expression of SYK in cancer cells has been associated with both tumor promoting and tumor suppressive effects. Despite being proposed as anticancer therapeutic target, the possible role of SYK in modulating local adaptive antitumor immune responses remains uncertain. Using detailed analysis of primary human tumors and in vitro models, we reveal the immunomodulatory effect of SYK protein in human solid cancer. METHODS We spatially mapped SYK kinase in tumor cells, stromal cells and tumor-infiltrating leukocytes (TILs) in 808 primary non-small cell lung carcinomas (NSCLCs) from two cohorts and in 374 breast carcinomas (BCs) from two independent cohorts. We established the associations of localized SYK with clinicopathologic variables and outcomes. The immunomodulatory role of SYK on tumor cells was assessed using in vitro cytokine stimulation, transcriptomic analysis and selective SYK blockade using a small molecule inhibitor. Functional responses were assessed using cocultures of tumor cells with peripheral blood lymphocytes. T cell responses in baseline and post-treatment biopsies from patients with BC treated with a SYK inhibitor in a phase I clinical trial were also studied. RESULTS Elevated tumor cell or leukocyte SYK expression was associated with high CD4+ and CD8+ TILs and better outcome in both NSCLC and BC. Tumor cell SYK was associated with oncogenic driver mutations in EGFR or KRAS in lung adenocarcinomas and with triple negative phenotype in BC. In cultured tumor cells, SYK was upregulated by TNFα and required for the TNFα-induced proinflammatory responses and T cell activation. SYK blockade after nivolumab in a phase I clinical trial including three patients with advanced triple negative BC reduced TILs and T cell proliferation. Our work establishes the proinflammatory function of tumor cell SYK in lung and breast cancer. SYK signaling in cultured tumor cells is required for T cell activation and SYK blockade limits adaptive antitumor immune responses and tumor rejection in patients with cancer. CONCLUSIONS Together, our results establish the immunomodulatory role of SYK expression in human solid tumors. This information could be used to develop novel biomarkers and/or therapeutic strategies.
Collapse
Affiliation(s)
- Adam Aguirre-Ducler
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Translational Medicine Laboratory, Department of Cancer Research, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago 8320000, Chile
| | - Nicole Gianino
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Shruti Desai
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daiwei Tang
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Hongyu Zhao
- Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
11
|
Shao Y, Zhang S, Zhang Y, Liu Z. Recent advance of spleen tyrosine kinase in diseases and drugs. Int Immunopharmacol 2020; 90:107168. [PMID: 33264719 DOI: 10.1016/j.intimp.2020.107168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, also known as p72Syk. It is important for downstream signaling from cell surface receptors, such as Fc receptors, complement receptors and integrin. Syk plays the critical role in triggering immune and allergic reactions, the signaling pathway of Syk has become the research focus on drugs for allergic disease and human malignancies. This review summarized the characteristics of Syk, its mechanism in related reactions, and mainly discussed the signal transduction pathway mediated by Syk. With the development of industry and the aggravation of environmental pollution, the incidence of allergic diseases is increasing, it has become a global priority disease. In this process, Syk participates in IgE/FcεRI signaling pathway plays a critical role in triggering allergic reactions. This review described the characteristics and the interaction mechanism of Syk and its binding proteins in disease, and summarized the research status of targeted Syk inhibitors.
Collapse
Affiliation(s)
- Yuxin Shao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Su Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Kurniawan DW, Storm G, Prakash J, Bansal R. Role of spleen tyrosine kinase in liver diseases. World J Gastroenterol 2020; 26:1005-1019. [PMID: 32205992 PMCID: PMC7081001 DOI: 10.3748/wjg.v26.i10.1005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto 53132, Indonesia
| | - Gert Storm
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmaceutics, University of Utrecht, Utrecht 3454, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Enschede 7500, the Netherlands
| |
Collapse
|
13
|
Yu Y, Suryo Rahmanto Y, Shen YA, Ardighieri L, Davidson B, Gaillard S, Ayhan A, Shi X, Xuan J, Wang TL, Shih IM. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine 2019; 47:184-194. [PMID: 31492560 PMCID: PMC6796592 DOI: 10.1016/j.ebiom.2019.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America.
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Laura Ardighieri
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu and Hiroshima Universities Schools of Medicine, Hamamatsu 431-3192, Japan
| | - Xu Shi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| |
Collapse
|
14
|
Chen D, Pan J, Chen Y, Xing W, Yan Y, Yuan Y, Zeng W. The mu-opioid receptor is a molecular marker for poor prognosis in hepatocellular carcinoma and represents a potential therapeutic target. Br J Anaesth 2019; 122:e157-e167. [DOI: 10.1016/j.bja.2018.09.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/17/2023] Open
|
15
|
SYK Inhibition Potentiates the Effect of Chemotherapeutic Drugs on Neuroblastoma Cells in Vitro. Cancers (Basel) 2019; 11:cancers11020202. [PMID: 30744170 PMCID: PMC6406899 DOI: 10.3390/cancers11020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma. In this study, we observed elevated SYK gene expression in neuroblastoma compared to neural crest and benign neurofibroma. While SYK protein was detected in the majority of examined neuroblastoma tissues it was less frequently observed in neuroblastoma cell lines. Depletion of SYK by siRNA and the use of small molecule SYK inhibitors significantly reduced the cell viability of neuroblastoma cell lines expressing SYK protein. Moreover, SYK inhibition decreased ERK1/2 and Akt phosphorylation. The SYK inhibitor BAY 61-3606 enhanced the effect of different chemotherapeutic drugs. Transient expression of a constitutive active SYK variant increased the viability of neuroblastoma cells independent of endogenous SYK levels. Collectively, our findings suggest that targeting SYK in combination with conventional chemotherapy should be further evaluated as a treatment option in neuroblastoma.
Collapse
|
16
|
Moncayo G, Grzmil M, Smirnova T, Zmarz P, Huber RM, Hynx D, Kohler H, Wang Y, Hotz HR, Hynes NE, Keller G, Frank S, Merlo A, Hemmings BA. SYK inhibition blocks proliferation and migration of glioma cells and modifies the tumor microenvironment. Neuro Oncol 2019; 20:621-631. [PMID: 29401256 DOI: 10.1093/neuonc/noy008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastoma (GBM) is one of the most aggressive human brain tumors, with a median survival of 15-18 months. There is a desperate need to find novel therapeutic targets. Various receptor protein kinases have been identified as potential targets; however, response rates in clinical studies have been somewhat disappointing. Targeting the spleen tyrosine kinase (SYK), which acts downstream of a range of oncogenic receptors, may therefore show more promising results. Methods Kinase expression of brain tumor samples including GBM and low-grade tumors were compared with normal brain and normal human astrocytes by microarray analysis. Furthermore, SYK, LYN, SLP76, and PLCG2 protein expressions were analyzed by immunohistochemistry, western blot, and immunofluorescence of additional GBM patient samples, murine glioma samples, and cell lines. SYK was then blocked chemically and genetically in vitro and in vivo in 2 different mouse models. Multiphoton intravital imaging and multicolor flow cytometry were performed in a syngeneic immunocompetent C57BL/6J mouse GL261 glioma model to study the effect of these inhibitors on the tumor microenvironment. Results SYK, LYN, SLP76, and PLCG2 were found expressed in human and murine glioma samples and cell lines. SYK inhibition blocked proliferation, migration, and colony formation. Flow cytometric and multiphoton imaging imply that targeting SYK in vivo attenuated GBM tumor growth and invasiveness and reduced B and CD11b+ cell mobility and infiltration. Conclusions Our data suggest that gliomas express a SYK signaling network important in glioma progression, inhibition of which results in reduced invasion with slower tumor progression.
Collapse
Affiliation(s)
- Gerald Moncayo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Panamá
| | - Michal Grzmil
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Tatiana Smirnova
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Pawel Zmarz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Roland M Huber
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Novartis Pharma AG, Basel, Switzerland
| | - Debby Hynx
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yuhua Wang
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Novartis Pharma AG, Basel, Switzerland
| | - Hans-Rudolf Hotz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, Basel University Hospitals, Basel, Switzerland
| | - Adrian Merlo
- Neurosurgery and Glioma Research, Bern, Switzerland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
17
|
Zhang Z, Gao Y, Qiao X. WITHDRAWN: Spleen tyrosine kinase (SYK) protects renal tubular epithelial cell against hypoxia injury in children with acute kidney injury. Gene 2018:S0378-1119(18)31156-9. [PMID: 30408549 DOI: 10.1016/j.gene.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/13/2018] [Accepted: 11/03/2018] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Medicine School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| | - Ximin Qiao
- Central Hospital of Xianyang, Xianyang 712000, Shaanxi, China
| |
Collapse
|
18
|
Gao D, Wang L, Zhang H, Yan X, Yang J, Zhou R, Chang X, Sun Y, Tian S, Yao Z, Zhang K, Liu Z, Ma Z. Spleen tyrosine kinase
SYK
(L) interacts with
YY
1 and coordinately suppresses
SNAI
2
transcription in lung cancer cells. FEBS J 2018; 285:4229-4245. [DOI: 10.1111/febs.14665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Dan Gao
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Lingling Wang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Hua Zhang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Xiaojie Yan
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Ruimin Zhou
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Xinzhong Chang
- Department of Breast Cancer Breast Cancer Center Tianjin Medical University Cancer Institute and Hospital China
| | - Yanan Sun
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Shanshan Tian
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Zhi Yao
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education Tianjin Medical University China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| | - Zhe Liu
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education Tianjin Medical University China
| | - Zhenyi Ma
- Department of Biochemistry and Molecular Biology, Immunology School of Basic Medical Sciences Tianjin Key Laboratory of Medical Epigenetics Tianjin Medical University China
| |
Collapse
|
19
|
Qu C, Zheng D, Li S, Liu Y, Lidofsky A, Holmes JA, Chen J, He L, Wei L, Liao Y, Yuan H, Jin Q, Lin Z, Hu Q, Jiang Y, Tu M, Chen X, Li W, Lin W, Fuchs BC, Chung RT, Hong A. Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology 2018; 68. [PMID: 29537660 PMCID: PMC6138581 DOI: 10.1002/hep.29881] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spleen tyrosine kinase (SYK) plays a critical role in immune cell signaling pathways and has been reported as a biomarker for human hepatocellular carcinoma (HCC). We sought to investigate the mechanism by which SYK promotes liver fibrosis and to evaluate SYK as a therapeutic target for liver fibrosis. We evaluated the cellular localization of SYK and the association between SYK expression and liver fibrogenesis in normal, hepatitis B virus (HBV)-infected, hepatitis C virus (HCV)-infected and non-alcoholic steatohepatitis (NASH) liver tissue (n=36, 127, 22 and 30, respectively). A polymerase chain reaction (PCR) array was used to detect the changes in transcription factor (TF) expression in hepatic stellate cells (HSCs) with SYK knockdown. The effects of SYK antagonism on liver fibrogenesis were studied in LX-2 cells, TWNT-4 cells, primary human HSCs, and three progressive fibrosis/cirrhosis animal models, including a CCL4 mouse model, and diethylnitrosamine (DEN) and bile duct ligation (BDL) rat models. We found that SYK protein in HSCs and hepatocytes correlated positively with liver fibrosis stage in human liver tissue. HBV or HCV infection significantly increased SYK and cytokine expression in hepatocytes. Increasing cytokine production further induced SYK expression and fibrosis-related gene transcription in HSCs. Up-regulated SYK in HSCs promoted HSC activation by increasing the expression of specific TFs related to activation of HSCs. SYK antagonism effectively suppressed liver fibrosis via inhibition of HSC activation, and decreased obstructive jaundice and reduced HCC development in animal models. Conclusion: SYK promotes liver fibrosis via activation of HSCs and is an attractive potential therapeutic target for liver fibrosis and prevention of HCC development. (Hepatology 2018).
Collapse
Affiliation(s)
- Chen Qu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Dandan Zheng
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Sai Li
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Yingjun Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan 450008, China
| | - Anna Lidofsky
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacinta A. Holmes
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jianning Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Lu He
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Yadi Liao
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Hui Yuan
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Qimeng Jin
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zelong Lin
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Qiaoting Hu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Yuchuan Jiang
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Mengxian Tu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Xijun Chen
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Weiming Li
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - andJian Hong
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China,Cancer Center, Southern Medical University, Guangzhou, Guangdong 510315, China,Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Corresponding author. Contact Information. Dr. Jian Hong, Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510135, China. Phone & Fax: (+86 20) 6165 0514;
| |
Collapse
|
20
|
Ni B, Li S, Liu Y, Huang Y, Li Z. Prognostic value of spleen tyrosine kinase in human solid tumors. Onco Targets Ther 2018; 11:3377-3384. [PMID: 29922076 PMCID: PMC5996858 DOI: 10.2147/ott.s163136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Spleen tyrosine kinase (SYK) was reported to be dysregulated in solid tumors and played an important role in cancer progression. However, the clinical and prognostic values of SYK in solid tumors remain unclear. This meta-analysis investigated the association between SYK expression and clinical outcomes in the patients with solid tumors. Methods A comprehensive literature search was conducted by screening the online electronic databases of PubMed, Embase, and the China National Knowledge Infrastructure. The hazard ratio (HR) with its corresponding 95% CI was used to explore the prognostic value of SYK. Results We analyzed a total of 1,075 patients from 10 studies, which met the criteria for this meta-analysis. Our pooled results demonstrated that a low expression of SYK did not correlate significantly with shorter overall survival (OS; HR=0.64, 95% CI: 0.34-1.21, P=0.169) or poorer disease-free survival (HR=0.51, 95% CI: 0.13-2.02, P=0.338). However, in a subgroup analysis based on tumor type and test method, under-expression of SYK was positively associated with worse OS in the groups of breast cancer (BC; HR=0.51, 95% CI: 0.32-0.80, P=0.003), hepatocellular carcinoma (HCC; HR=0.44, 95% CI: 0.29-0.69, P<0.001), methylation (HR=0.39, 95% CI: 0.30-0.51, P<0.001), and quantitative reverse transcription polymerase chain reaction (HR=0.24, 95% CI: 0.09-0.65, P=0.005). Conclusion This meta-analysis demonstrated that under-expression of SYK may serve as a predictive biomarker for poor prognosis in BC and HCC patients. In other solid tumors, the clinical usefulness should be confirmed by large-scale studies.
Collapse
Affiliation(s)
- Beibei Ni
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Genitourinary Tumor, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Shi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Genitourinary Tumor, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Genitourinary Tumor, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Yuqian Huang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Genitourinary Tumor, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Zesong Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Genitourinary Tumor, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
21
|
Li S, Yang E, Shen L, Niu D, Breitzig M, Tan LC, Wu X, Huang M, Sun H, Wang F. The novel truncated isoform of human manganese superoxide dismutase has a differential role in promoting metastasis of lung cancer cells. Cell Biol Int 2018; 42:1030-1040. [DOI: 10.1002/cbin.10972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shuaiguang Li
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Enze Yang
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Lianghua Shen
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Dewei Niu
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Mason Breitzig
- University of South Florida; 12901 Bruce B Downs Blvd, MDC 19 Tampa 33612 Florida
| | - Lee Charles Tan
- University of South Florida; 12901 Bruce B Downs Blvd, MDC 19 Tampa 33612 Florida
| | - Xiaocong Wu
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Meiyan Huang
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Hanxiao Sun
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| | - Feng Wang
- Institute of Genomic Medicine; College of Pharmacy, Jinan University; Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Pharmacodynamics Constituents of TCM and New Drugs Research; Jinan University; Guangzhou 510632 China
| |
Collapse
|
22
|
Liu Y, Jiang P, Wang G, Liu X, Luo S. Downregulation of RFX1 predicts poor prognosis of patients with small hepatocellular carcinoma. Eur J Surg Oncol 2018; 44:1087-1093. [PMID: 29764705 DOI: 10.1016/j.ejso.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Regulatory factor X1 (RFX1) deletion has been reported to be correlated with poor prognosis of some types of cancer. The present study aimed to investigate the prognostic value of RFX1 in HCC, especially in small hepatocellular carcinoma. METHODS Immunohistochemical assay was used to investigate RFX1 expression in 221 HCC tissues and another validation cohort of 71 small HCC samples. We also performed in vitro experiments to investigate if RFX1 regulated invasive capacity of HCC cells and expression of epithelial-mesenchymal transition (EMT) markers. RESULTS We found that RFX1 expression was significantly lower in HCC tissues compared to the corresponding non-tumor tissues. Further survival analysis suggested that the downregulation of RFX1 correlated with poor prognosis and a high recurrence risk in HCC patients, particularly in small HCC patients. Furthermore, another validation cohort of small HCC samples confirmed that downregulation of RFX1 in HCC tissues predicted high recurrence risk and poor prognosis for early stage HCC patients. In vitro studies suggested that knocking down RFX1 facilitated HCC cell invasion, while overexpression of RFX1 reduced the invasion of HCC cells. Western blot assays also indicated that RFX1 regulated expression of some EMT markers. Knocking down RFX1 decreased E-cadherin and increased vimentin expression, while RFX1 overexpression enhanced E-cadherin and decreased vimentin expression. CONCLUSIONS Our study demonstrated that RFX1 downregulation is a new predictive marker of high recurrence risk and poor prognosis of HCC; It has potential to help guide treatment for postoperative HCC patients, especially for small HCC patients.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Peng Jiang
- Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gangcheng Wang
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaonyong Liu
- Department of General Surgery, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
23
|
SYK protects cardiocytes against anoxia and hypoglycemia-induced injury in ischemic heart failure. Mol Immunol 2017; 91:35-41. [DOI: 10.1016/j.molimm.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/30/2023]
|
24
|
High mRNA expression of splice variant SYK short correlates with hepatic disease progression in chemonaive lymph node negative colon cancer patients. PLoS One 2017; 12:e0185607. [PMID: 28957395 PMCID: PMC5619807 DOI: 10.1371/journal.pone.0185607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/15/2017] [Indexed: 01/20/2023] Open
Abstract
Objective Overall and splice specific expression of Spleen Tyrosine Kinase (SYK) has been posed as a marker predicting both poor and favorable outcome in various epithelial malignancies. However, its role in colorectal cancer is largely unknown. The aim of this study was to explore the prognostic role of SYK in three cohorts of colon cancer patients. Methods Total messenger RNA (mRNA) expression of SYK, SYK(T), and mRNA expression of its two splice variants SYK short (S) and SYK long (L) were measured using quantitative reverse transcriptase (RT-qPCR) in 240 primary colon cancer patients (n = 160 patients with chemonaive lymph node negative [LNN] and n = 80 patients with adjuvant treated lymph node positive [LNP] colon cancer) and related to microsatellite instability (MSI), known colorectal cancer mutations, and disease-free (DFS), hepatic metastasis-free (HFS) and overall survival (OS). Two independent cohorts of patients with respectively 48 and 118 chemonaive LNN colon cancer were used for validation. Results Expression of SYK and its splice variants was significantly lower in tumors with MSI, and in KRAS wild type, BRAF mutant and PTEN mutant tumors. In a multivariate Cox regression analysis, as a continuous variable, increasing SYK(S) mRNA expression was associated with worse HFS (Hazard Ratio[HR] = 1.83; 95% Confidence Interval[CI] = 1.08–3.12; p = 0.026) in the LNN group, indicating a prognostic role for SYK(S) mRNA in patients with chemonaive LNN colon cancer. However, only a non-significant trend between SYK(S) and HFS in one of the two validation cohorts was observed (HR = 4.68; 95%CI = 0.75–29.15; p = 0.098). Conclusion In our cohort, we discovered SYK(S) as a significant prognostic marker for HFS for patients with untreated LNN colon cancer. This association could however not be confirmed in two independent smaller cohorts, suggesting that further extensive validation is needed to confirm the prognostic value of SYK(S) expression in chemonaive LNN colon cancer.
Collapse
|
25
|
Qu C, Zhao Y, Feng G, Chen C, Tao Y, Zhou S, Liu S, Chang H, Zeng M, Xia Y. RPA3 is a potential marker of prognosis and radioresistance for nasopharyngeal carcinoma. J Cell Mol Med 2017; 21:2872-2883. [PMID: 28557284 PMCID: PMC5661258 DOI: 10.1111/jcmm.13200] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Radioresistance-induced residual and recurrent tumours are the main cause of treatment failure in nasopharyngeal carcinoma (NPC). Thus, the mechanisms of NPC radioresistance and predictive markers of NPC prognosis and radioresistance need to be investigated and identified. In this study, we identified RPA3 as a candidate radioresistance marker using RNA-seq of NPC samples. In vitro studies further confirmed that RPA3 affected the radiosensitivity of NPC cells. Specifically, the overexpression of RPA3 enhanced radioresistance and the capacity for DNA repair of NPC cells, whereas inhibiting RPA3 expression sensitized NPC cells to irradiation and decreased the DNA repair capacity. Furthermore, the overexpression of RPA3 enhanced RAD51 foci formation in NPC cells after irradiation. Immunohistochemical assays in 104 NPC specimens and 21 normal epithelium specimens indicated that RPA3 was significantly up-regulated in NPC tissues, and a log-rank test suggested that in patients with NPC, high RPA3 expression was associated with shorter overall survival (OS) and a higher recurrence rate compared with low expression (5-year OS rates: 67.2% versus 86.2%; 5-year recurrence rates: 14.8% versus 2.3%). Moreover, TCGA data also indicated that high RPA3 expression correlated with poor OS and a high recurrence rate in patients with head and neck squamous cell carcinoma (HNSC) after radiotherapy. Taken together, the results of our study demonstrated that RPA3 regulated the radiosensitivity and DNA repair capacity of NPC cells. Thus, RPA3 may serve as a new predictive biomarker for NPC prognosis and radioresistance to help guide the diagnosis and individualized treatment of patients with NPC.
Collapse
Affiliation(s)
- Chen Qu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yiying Zhao
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Yalan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Shu Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Songran Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China.,Department of Experimental Research, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yunfei Xia
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| |
Collapse
|
26
|
Lidocaine Induces Apoptosis and Suppresses Tumor Growth in Human Hepatocellular Carcinoma Cells In Vitro and in a Xenograft Model In Vivo. Anesthesiology 2017; 126:868-881. [DOI: 10.1097/aln.0000000000001528] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Recent epidemiologic studies have focused on the potential beneficial effects of regional anesthetics, and the differences in cancer prognosis may be the result of anesthetics on cancer biologic behavior. However, the function and underlying mechanisms of lidocaine in hepatocellular carcinoma both in vitro and in vivo have been poorly studied.
Methods
Human HepG2 cells were treated with lidocaine. Cell viability, colony formation, cell cycle, and apoptosis were assessed. The effects of lidocaine on apoptosis-related and mitogen-activated protein kinase protein expression were evaluated by Western blot analysis. The antitumor activity of lidocaine in hepatocellular carcinoma with or without cisplatin was investigated with in vitro experiments and also with animal experiments.
Results
Lidocaine inhibited the growth of HepG2 cells in a dose- and time-dependent manner. The authors also found that lidocaine arrested cells in the G0/G1 phase of the cell cycle (63.7 ± 1.7% vs. 72.4 ± 3.2%; P = 0.0143) and induced apoptosis (1.7 ± 0.3% vs. 5.0 ± 0.7%; P = 0.0009). Lidocaine may exert these functions by causing an increase in Bax protein and activated caspase-3 and a corresponding decrease in Bcl-2 protein through the extracellular signal-regulated kinase 1/2 and p38 pathways. More importantly, for the first time, xenograft experiments (n = 8 per group) indicated that lidocaine suppressed tumor development (P < 0.0001; lidocaine vs. control) and enhanced the sensitivity of cisplatin (P = 0.0008; lidocaine plus cisplatin vs. cisplatin).
Conclusions
The authors’ findings suggest that lidocaine may exert potent antitumor activity in hepatocellular carcinoma. Furthermore, combining lidocaine with cisplatin may be a novel treatment option for hepatocellular carcinoma.
Collapse
|
27
|
Alternative splicing of spleen tyrosine kinase differentially regulates colorectal cancer progression. Oncol Lett 2016; 12:1737-1744. [PMID: 27602108 PMCID: PMC4998349 DOI: 10.3892/ol.2016.4858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/21/2015] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase (SYK) has been reported as a potential tumor suppressor in colorectal cancer (CRC). However, the role of alternative splicing of SYK in carcinogenesis remains unclear. In the present study, SYK isoforms were overexpressed in the human CRC HCT 116 cell line using lentiviral expression vectors to investigate the biological functions of full length SYK [SYK(L)] and short form SYK [SYK(S)] in CRC. Real-time cellular analysis and the 5-ethynyl-2-deoxyuridine assay were used to detect the effects of SYK(L) and SYK(S) on cell proliferation. Cell cycle progression and migration were assessed via flow cytometry and Transwell assays, respectively. The results revealed that the recombinant lentivirus with SYK(L) overexpression significantly suppressed the proliferation and metastasis of CRC cells, while SYK(S) overexpression did not. In addition, MTS assays demonstrated that SYK(L) and SYK(S) increased the cellular sensitivity to 5-fluorouracil (5-FU), suggesting that SYK(L) and 5-FU produce a significant synergistic effect on CRC cell proliferation, while SYK(S) has an effect on modulating CRC 5-FU sensitivity. Furthermore, quantitative polymerase chain reaction results revealed that SYK(L) was downregulated in 69% of 26 pairs of CRC and adjacent non-cancerous tissues, whereas SYK(S) exhibited no significant differences between tumor and normal tissues. Overall, the present data provides evidence that SYK(L) is a tumor suppressor in CRC, and both SYK(L) and SYK(S) may serve as important predictors in the chemotherapeutic treatment of CRC.
Collapse
|
28
|
Dasgupta N, Thakur BK, Ta A, Dutta P, Das S. Suppression of Spleen Tyrosine Kinase (Syk) by Histone Deacetylation Promotes, Whereas BAY61-3606, a Synthetic Syk Inhibitor Abrogates Colonocyte Apoptosis by ERK Activation. J Cell Biochem 2016; 118:191-203. [PMID: 27293079 DOI: 10.1002/jcb.25625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase, regulates tumor progression, either negatively or positively, depending on the tissue lineage. Information about the role of Syk in colorectal cancers (CRC) is limited, and conflicting reports have been published. We studied Syk expression and its role in differentiation and apoptosis of the colonocytes. Here, we reported for the first time that expression of two transcript variants of Syk is suppressed in colonocytes during butyrate-induced differentiation, which mediates apoptosis of HT-29 cells. Despite being a known HDAC inhibitor, butyrate deacetylates histone3/4 around the transcription start site (TSS) of Syk. Histone deacetylation precludes the binding of RNA Polymerase II to the promoter and inhibits transcription. Since butyrate is a colonic metabolite derived from undigested fibers, our study offers a plausible explanation of the underlying mechanisms of the protective role of butyrate as well as the dietary fibers against CRC through the regulation of Syk. We also report that combined use of butyrate and highly specific Syk inhibitor BAY61-3606 does not enhance differentiation and apoptosis of colonocytes. Instead, BAY completely abolishes butyrate-induced differentiation and apoptosis in a Syk- and ERK1/2-dependent manner. While butyrate dephosphorylates ERK1/2 in HT-29 cells, BAY re-phosphorylates it, leading to its activation. This study describes a novel mechanism of butyrate action in CRC and explores the role of Syk in butyrate-induced differentiation and apoptosis. In addition, our study highlights those commercial small molecule inhibitors, although attractive drug candidates should be used with concern because of their frequent off-target effects. J. Cell. Biochem. 118: 191-203, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Bhupesh Kumar Thakur
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Pujarini Dutta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
29
|
Bukong TN, Iracheta-Vellve A, Gyongyosi B, Ambade A, Catalano D, Kodys K, Szabo G. Therapeutic Benefits of Spleen Tyrosine Kinase Inhibitor Administration on Binge Drinking-Induced Alcoholic Liver Injury, Steatosis, and Inflammation in Mice. Alcohol Clin Exp Res 2016; 40:1524-30. [PMID: 27177528 PMCID: PMC4930418 DOI: 10.1111/acer.13096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Binge drinking is increasingly recognized as an important cause of liver disease with limited therapeutic options for patients. Binge alcohol use, similar to chronic alcohol consumption, induces numerous deregulated signaling events that drive liver damage, steatosis, and inflammation. In this article, we evaluated the role of spleen tyrosine kinase (SYK), which modulates numerous signaling events previously identified linked in the development alcohol-induced liver pathology. METHODS A 3-day alcohol binge was administered to C57BL/6 female mice, and features of alcoholic liver disease were assessed. Some mice were treated daily with intraperitoneal injections of a SYK inhibitor (R406; 5 to 10 mg/kg body weight) or drug vehicle control. Liver and serum samples were collected and were assessed by Western blotting, biochemical, ELISA, electrophoretic mobility shift assays, real-time quantitative polymerase chain reaction, and histopathological analysis. RESULTS We found that binge drinking induced significant SYK activation (SYK(Y525/526) ) with no change in total SYK expression in the liver. Functional inhibition of SYK activation using a potent SYK inhibitor, R406, was associated with a significant decrease in alcohol-induced hepatic inflammation as demonstrated by decreased phospho-nuclear factor kappa beta (NF-κB) p65, NF-κB nuclear binding, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 mRNA in the liver. Compared to vehicle controls, SYK inhibitor treatment decreased alcohol binge-induced hepatocyte injury indicated by histology and serum alanine aminotransferase. Strikingly, SYK inhibitor treatment also resulted in a significant reduction in alcohol-induced liver steatosis. CONCLUSIONS Our novel observations demonstrate the role of SYK, activation in the pathomechanism of binge drinking-induced liver disease highlighting SYK a potential multifaceted therapeutic target.
Collapse
Affiliation(s)
- Terence N Bukong
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Benedek Gyongyosi
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aditya Ambade
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donna Catalano
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Kodys
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
30
|
Wang L, Yin J, Wang X, Shao M, Duan F, Wu W, Peng P, Jin J, Tang Y, Ruan Y, Sun Y, Gu J. C-Type Lectin-Like Receptor 2 Suppresses AKT Signaling and Invasive Activities of Gastric Cancer Cells by Blocking Expression of Phosphoinositide 3-Kinase Subunits. Gastroenterology 2016; 150:1183-1195.e16. [PMID: 26855187 DOI: 10.1053/j.gastro.2016.01.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS C-type lectin-like receptor 2 (CLEC2) is a transmembrane receptor expressed on platelets and several hematopoietic cells. CLEC2 regulates platelet aggregation and the immune response. We investigated its expression and function in normal and transformed gastric epithelial cells from human tissues. METHODS We performed tissue microarray analyses of gastric carcinoma samples collected from 96 patients who underwent surgery at Zhongshan Hospital of Fudan University in Shanghai, China and performed real-time polymerase chain reaction assays from an independent group of 60 patients; matched nontumor gastric mucosa tissues were used as the control. Full-length and mutant forms of CLEC2 were expressed in gastric cancer cell line (MGC80-3), or CLEC2 protein was knocked down using small-hairpin RNAs in gastric cancer cell lines (NCI-N87 and AGS). CLEC2 signaling was stimulated by incubation of cells with recombinant human podoplanin or an antibody agonist of CLEC2; cell migration and invasion were assessed by transwell and wound-healing assays. Immunoblot, immunofluorescence microscopy, and real-time polymerase chain reaction assays were used to measure expression of markers of the epithelial to mesenchymal transition and activation of signaling pathways. Immunoprecipitation experiments were performed with an antibody against spleen tyrosine kinase (SYK). Cells were injected into lateral tail vein of BALB/C nude mice; some mice were also given injections of the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Lung and liver tissues were collected and analyzed for metastases. RESULTS Levels of CLEC2 were higher in nontumor gastric mucosa (control) than in gastric tumor samples. Levels of CLEC2 protein in gastric tumor tissues correlated with depth of tumor invasion, metastasis to lymph node, tumor TNM stage, and 5-year survival of patients. Activation of CLEC2 in gastric cancer cells reduced their invasive activities in vitro and expression of epithelial to mesenchymal transition markers; these tumor-suppressive effects of CLEC2 required SYK. CLEC2 and SYK interacted physically, and SYK maintained the stability of CLEC2 in cells. AGS cells with CLEC2 knockdown had increased levels of phosphorylated AKT and glycogen synthase kinase-3 beta, increased expression of Snail, reduced levels of E-cadherin, and formed more metastases in mice than AGS cells that expressed CLEC2; these knockdown changes were prevented by the PI3K inhibitor LY294002. Activation of CLEC2 in AGS cells reduced protein and messenger RNA levels of PI3K subunits p85 and p110; this effect was blocked by SYK inhibitor R406. Levels of CLEC2 and SYK proteins and messenger RNAs correlated in gastric tumor samples. CONCLUSIONS CLEC2 suppresses metastasis of gastric cancer cells injected into mice, and prevents activation of AKT and glycogen synthase kinase-3 beta signaling, as well as invasiveness and expression of epithelial to mesenchymal transition markers in gastric cancer cell lines. CLEC2 prevents expression of PI3K subunits, in a SYK-dependent manner.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Jie Yin
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Miaomiao Shao
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Fangfang Duan
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Weicheng Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Peike Peng
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Jing Jin
- Institute of Glycobiological Engineering, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yue Tang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China.
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
31
|
Sveen A, Kilpinen S, Ruusulehto A, Lothe RA, Skotheim RI. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 2015; 35:2413-27. [PMID: 26300000 DOI: 10.1038/onc.2015.318] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.
Collapse
Affiliation(s)
- A Sveen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - R A Lothe
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - R I Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Zhu C, Xiao F, Hong J, Wang K, Liu X, Cai D, Fusco DN, Zhao L, Jeong SW, Brisac C, Chusri P, Schaefer EA, Zhao H, Peng LF, Lin W, Chung RT. EFTUD2 Is a Novel Innate Immune Regulator Restricting Hepatitis C Virus Infection through the RIG-I/MDA5 Pathway. J Virol 2015; 89:6608-18. [PMID: 25878102 PMCID: PMC4468487 DOI: 10.1128/jvi.00364-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/03/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The elongation factor Tu GTP binding domain-containing protein 2 (EFTUD2) was identified as an anti-hepatitis C virus (HCV) host factor in our recent genome-wide small interfering RNA (siRNA) screen. In this study, we sought to further determine EFTUD2's role in HCV infection and investigate the interaction between EFTUD2 and other regulators involved in HCV innate immune (RIG-I, MDA5, TBK1, and IRF3) and JAK-STAT1 pathways. We found that HCV infection decreased the expression of EFTUD2 and the viral RNA sensors RIG-I and MDA5 in HCV-infected Huh7 and Huh7.5.1 cells and in liver tissue from in HCV-infected patients, suggesting that HCV infection downregulated EFTUD2 expression to circumvent the innate immune response. EFTUD2 inhibited HCV infection by inducing expression of the interferon (IFN)-stimulated genes (ISGs) in Huh7 cells. However, its impact on HCV infection was absent in both RIG-I knockdown Huh7 cells and RIG-I-defective Huh7.5.1 cells, indicating that the antiviral effect of EFTUD2 is dependent on RIG-I. Furthermore, EFTUD2 upregulated the expression of the RIG-I-like receptors (RLRs) RIG-I and MDA5 to enhance the innate immune response by gene splicing. Functional experiments revealed that EFTUD2-induced expression of ISGs was mediated through interaction of the EFTUD2 downstream regulators RIG-I, MDA5, TBK1, and IRF3. Interestingly, the EFTUD2-induced antiviral effect was independent of the classical IFN-induced JAK-STAT pathway. Our data demonstrate that EFTUD2 restricts HCV infection mainly through an RIG-I/MDA5-mediated, JAK-STAT-independent pathway, thereby revealing the participation of EFTUD2 as a novel innate immune regulator and suggesting a potentially targetable antiviral pathway. IMPORTANCE Innate immunity is the first line defense against HCV and determines the outcome of HCV infection. Based on a recent high-throughput whole-genome siRNA library screen revealing a network of host factors mediating antiviral effects against HCV, we identified EFTUD2 as a novel innate immune regulator against HCV in the infectious HCV cell culture model and confirmed that its expression in HCV-infected liver tissue is inversely related to HCV infection. Furthermore, we determined that EFTUD2 exerts its antiviral activity mainly through governing its downstream regulators RIG-I and MDA5 by gene splicing to activate IRF3 and induce classical ISG expression independent of the JAT-STAT signaling pathway. This study broadens our understanding of the HCV innate immune response and provides a possible new antiviral strategy targeting this novel regulator of the innate response.
Collapse
Affiliation(s)
- Chuanlong Zhu
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Xiao
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Hong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kun Wang
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dachuan Cai
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dahlene N Fusco
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Zhao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soung Won Jeong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cynthia Brisac
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pattranuch Chusri
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Zhao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Lee F Peng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Abstract
Lung cancer is one of the most frequently diagnosed cancers and is the leading cause of cancer-related death worldwide. Non-small-cell lung cancer (NSCLC), a heterogeneous class of tumours, represents approximately 85% of all new lung cancer diagnoses. Tobacco smoking remains the main risk factor for developing this disease, but radon exposure and air pollution also have a role. Most patients are diagnosed with advanced-stage disease owing to inadequate screening programmes and late onset of clinical symptoms; consequently, patients have a very poor prognosis. Several diagnostic approaches can be used for NSCLC, including X-ray, CT and PET imaging, and histological examination of tumour biopsies. Accurate staging of the cancer is required to determine the optimal management strategy, which includes surgery, radiochemotherapy, immunotherapy and targeted approaches with anti-angiogenic monoclonal antibodies or tyrosine kinase inhibitors if tumours harbour oncogene mutations. Several of these driver mutations have been identified (for example, in epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)), and therapy continues to advance to tackle acquired resistance problems. Also, palliative care has a central role in patient management and greatly improves quality of life. For an illustrated summary of this Primer, visit: http://go.nature.com/rWYFgg.
Collapse
|
34
|
Secchi C, Carta M, Crescio C, Spano A, Arras M, Caocci G, Galimi F, La Nasa G, Pippia P, Turrini F, Pantaleo A. T cell tyrosine phosphorylation response to transient redox stress. Cell Signal 2015; 27:777-88. [PMID: 25572700 DOI: 10.1016/j.cellsig.2014.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/09/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
Abstract
Reactive Oxygen Species (ROS) are crucial to multiple biological processes involved in the pathophysiology of inflammation, and are also involved in redox signaling responses. Although previous reports have described an association between oxidative events and the modulation of innate immunity, a role for redox signaling in T cell mediated adaptive immunity has not been described yet. This work aims at assessing if T cells can sense redox stress through protein sulfhydryl oxidation and respond with tyrosine phosphorylation changes. Our data show that Jurkat T cells respond to -SH group oxidation with specific tyrosine phosphorylation events. The release of T cell cytokines TNF, IFNγ and IL2 as well as the expression of a number of receptors are affected by those changes. Additionally, experiments with spleen tyrosine kinase (Syk) inhibitors showed a major involvement of Syk in these responses. The experiments described herein show a link between cysteine oxidation and tyrosine phosphorylation changes in T cells, as well as a novel mechanism by which Syk inhibitors exert their anti-inflammatory activity through the inhibition of a response initiated by ROS.
Collapse
Affiliation(s)
- Christian Secchi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100, Sassari, Italy
| | - Marissa Carta
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Claudia Crescio
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Alessandra Spano
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Marcella Arras
- Haematology, Hospital Binaghi, ASL 8 Cagliari, I-09126, Cagliari, Italy
| | - Giovanni Caocci
- Haematology, Department of Medical Sciences, University of Cagliari, I-09042 Cagliari, Italy
| | - Francesco Galimi
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy; Istituto Nazionale Biostrutture e Biosistemi, University of Sassari, I-07100, Sassari, Italy
| | - Giorgio La Nasa
- Haematology, Department of Medical Sciences, University of Cagliari, I-09042 Cagliari, Italy
| | - Proto Pippia
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy
| | - Francesco Turrini
- Department of Genetics, Biology and Biochemistry, University of Turin, I-10126 Turin, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, I-07100 Sassari, Italy.
| |
Collapse
|
35
|
Krisenko MO, Geahlen RL. Calling in SYK: SYK's dual role as a tumor promoter and tumor suppressor in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:254-63. [PMID: 25447675 DOI: 10.1016/j.bbamcr.2014.10.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022]
Abstract
SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.
Collapse
Affiliation(s)
- Mariya O Krisenko
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
36
|
Rizzo F, Hashim A, Marchese G, Ravo M, Tarallo R, Nassa G, Giurato G, Rinaldi A, Cordella A, Persico M, Sulas P, Perra A, Ledda-Columbano GM, Columbano A, Weisz A. Timed regulation of P-element-induced wimpy testis-interacting RNA expression during rat liver regeneration. Hepatology 2014; 60:798-806. [PMID: 24930433 DOI: 10.1002/hep.27267] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Small noncoding RNAs comprise a growing family of molecules that regulate key cellular processes, including messenger RNA (mRNA) degradation, translational repression, and transcriptional gene silencing. P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) represent a class of small RNAs initially identified in the germline of a variety of species, where they contribute to maintenance of genome stability, and recently found expressed also in stem and somatic cells, where their role and responsiveness to physiopathological signals remain elusive. Here, we investigated piRNA expression in rat liver and its response to the stimuli exerted by regenerative proliferation of this organ. Quantitative polymerase chain reaction analysis identify in the liver the RNAs encoding PIWIL2/HILI, PIWIL4/HIWI2, and other components of the piRNA biogenesis pathways, suggesting that this is indeed functional. RNA sequencing before, during, and after the wave of cell proliferation that follows partial hepatectomy (PH) identified ∼1,400 mammalian germline piRNAs expressed in rat liver, including 72 showing timed changes in expression 24-48 hours post-PH, a timing that corresponds to cell transition through the S phase, returning to basal levels by 168 hours, when organ regeneration is completed and hepatocytes reach quiescence. CONCLUSION The piRNA pathway is active in somatic cells of the liver and is subject to regulation during the pathophysiological process of organ regeneration, when these molecules are available to exert their regulatory functions on the cell genome and transcriptome, as demonstrated by the identification of several liver mRNAs representing candidate targets of these regulatory RNAs.
Collapse
Affiliation(s)
- Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aberrant expression of nuclear KPNA2 is correlated with early recurrence and poor prognosis in patients with small hepatocellular carcinoma after hepatectomy. Med Oncol 2014; 31:131. [PMID: 25031071 DOI: 10.1007/s12032-014-0131-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/09/2014] [Indexed: 01/05/2023]
Abstract
Karyopherin α2 (KPNA2) functions as an adaptor that transports several proteins to the nucleus. Emerging evidence suggests that KPNA2 plays a crucial role in oncogenesis and early recurrence. In the present study, we evaluated the expression pattern of KPNA2 in 221 hepatocellular carcinoma (HCC) specimens and matching adjacent, non-tumorous tissues (NT) by immunohistochemical assays. We found that nuclear KPNA2 expression was significantly upregulated (30.3 %, 67/221) in HCC tissues; however, no nuclear expression of KPNA2 in NT tissues was observed. A correlation analysis demonstrated that nuclear KPNA2 expression was positively associated with serum AFP level, tumor differentiation, vascular invasion, BCLC stage and early recurrence (all p < 0.05). Nuclear KPNA2 expression was associated with a poor prognosis in HCC patients. Univariate and multivariate analyses demonstrated that KPNA2 was an independent prognostic factor for both overall survival (p < 0.001) and time to recurrence (p < 0.001) in HCC patients. Furthermore, in a validation cohort, nuclear expression of KPNA2 was observed in 16 of 47 (34.0 %) small hepatocellular carcinoma patients. Importantly, the risk of recurrence associated with nuclear KPNA2 expression (9/16, 56.2 %) was significantly higher than the risk associated with an absence of nuclear KPNA2 expression (6/31, 19.3 %; p = 0.01). Our results demonstrate that nuclear KPNA2 expression is a poor prognostic biomarker for HCC, especially for early-stage HCC.
Collapse
|