1
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
2
|
Zhao J, Li Y, Huang Y, Su P, Nie F, Yang P, Yang C. Tumor-Derived GDF15 Induces Tumor Associated Fibroblast Transformation From BMSCs and Fibroblasts in Oral Squamous Cell Carcinoma. J Cell Physiol 2025; 240:e31498. [PMID: 39639678 DOI: 10.1002/jcp.31498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Cancer associated fibroblasts (CAFs) are the predominant stromal cell-type in the solid tumor microenvironment, originating from various cell types and playing a crucial role in promoting tumor progression and metastasis The generation of CAFs is influenced by complex factors secreted by tumor cells, with particular emphasis on transforming growth factor-β (TGF-β). However, it remains largely unknown whether growth/differentiation factor-15 (GDF15), as a member of the TGF-β superfamily, exerts similar effects to TGF-β in oral squamous cell carcinoma (OSCC). In this study, we investigated the impact of GDF15 derived from tumor cells on CAF transformation and elucidated the underlying mechanisms. Exogenous GDF15 and OSCC cells induced the transformation of bone marrow mesenchymal stem cells (BMSCs) and human gingival fibroblasts (HGFs) into CAFs, as evidenced by α-smooth muscle actin (α-SMA) as a phenotypic marker and TGF-β, interleukin 6 (IL-6), and vascular endothelial-derived growth factor (VEGF) as functional markers. Conversely, knockdown of GDF15 in OSCC cells reversed CAF transformation. Mechanistically, extracellular signal-regulated kinases 1/2(ERK1/2) pathway was associated with GDF15-mediated promotion of CAF transformation. Furthermore, OSCC-induced CAFs enhanced migration and invasion abilities of OSCC cells; but this pro-cancer effect was abolished upon knockdown of GDF15 in OSCC cells. Subcutaneous coinjection of OSCC cells with BMSCs or HGFs into mice revealed the promoted tumor growth along with increased expression levels of α-SMA and Ki67 compared with alone OSCC cells injection; these effects were attenuated when GDF15 was knocked down in OSCC cells. Collectively, our findings suggest that tumor-derived GDF15 contributes to the progression of OSCC by promoting CAF transformation through activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yingying Huang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Su
- Department of Pathology, Jinan, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Salminen A. GDF15/MIC-1: a stress-induced immunosuppressive factor which promotes the aging process. Biogerontology 2024; 26:19. [PMID: 39643709 PMCID: PMC11624233 DOI: 10.1007/s10522-024-10164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The GDF15 protein, a member of the TGF-β superfamily, is a stress-induced multifunctional protein with many of its functions associated with the regulation of the immune system. GDF15 signaling provides a defence against the excessive inflammation induced by diverse stresses and tissue injuries. Given that the aging process is associated with a low-grade inflammatory state, called inflammaging, it is not surprising that the expression of GDF15 gradually increases with aging. In fact, the GDF15 protein is a core factor secreted by senescent cells, a state called senescence-associated secretory phenotype (SASP). Many age-related stresses, e.g., mitochondrial and endoplasmic reticulum stresses as well as inflammatory, metabolic, and oxidative stresses, induce the expression of GDF15. Although GDF15 signaling is an effective anti-inflammatory modulator, there is robust evidence that it is a pro-aging factor promoting the aging process. GDF15 signaling is not only an anti-inflammatory modulator but it is also a potent immunosuppressive enhancer in chronic inflammatory states. The GDF15 protein can stimulate immune responses either non-specifically via receptors of the TGF-β superfamily or specifically through the GFRAL/HPA/glucocorticoid pathway. GDF15 signaling stimulates the immunosuppressive network activating the functions of MDSCs, Tregs, and M2 macrophages and triggering inhibitory immune checkpoint signaling in senescent cells. Immunosuppressive responses not only suppress chronic inflammatory processes but they evoke many detrimental effects in aged tissues, such as cellular senescence, fibrosis, and tissue atrophy/sarcopenia. It seems that the survival functions of GDF15 go awry in persistent inflammation thus promoting the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
4
|
Stacchiotti S, Martini S, Pasquali S, Frezza AM, Beretta A, Percio S, Lecchi M, Tortoreto M, Barisella M, Collini P, Dagrada GP, Merlini A, Huang PH, Jenks A, Jones RL, Tap WD, Ingrosso M, Morosi C, Brich S, Giani C, Verderio P, Casali PG, Leonard H, Gronchi A, Zuco V, Zaffaroni N. GDF-15 Predicts Epithelioid Hemangioendothelioma Aggressiveness and Is Downregulated by Sirolimus through ATF4/ATF5 Suppression. Clin Cancer Res 2024; 30:5122-5137. [PMID: 39283723 PMCID: PMC11565171 DOI: 10.1158/1078-0432.ccr-23-3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/24/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Epithelioid hemangioendothelioma (EHE), an ultra-rare sarcoma, poses therapeutic challenges because of limited efficacy of conventional chemotherapy in advanced cases, necessitating exploration of new treatment avenues and identification of novel aggressive biomarkers. This study aimed at (i) utilizing a patient-derived xenograft model of EHE and its associated cell line to assess the efficacy of sirolimus and (ii) analyzing two distinct patient cohorts to pinpoint circulating biomarkers of EHE aggressiveness. EXPERIMENTAL DESIGN A patient-derived xenograft model and corresponding cell line were established from a patient with advanced EHE, demonstrating consistency with the original tumor in terms of histomorphology, WWTR1::CAMTA1 fusion presence, and genomic and transcriptomic profiles. Two independent patient series were employed to investigate the association between growth/differentiation factor 15 (GDF-15) serum levels and EHE aggressiveness. RESULTS ELISA analyses on EHE cell culture medium and blood from EHE-carrying mice revealed the release of GDF-15 by EHE cells. Sirolimus exhibited markedly higher antitumor activity compared with doxorubicin, concurrently reducing GDF-15 expression/release both in vivo and in vitro. This reduction was attributed to the drug-induced inhibition of phosphorylation/activation of 4E-BP1 and subsequent downregulation of the GDF-15 transcription factors ATF4 and ATF5. Blood sample analyses from two independent patient series showed a significant correlation between GDF-15 and EHE aggressiveness. CONCLUSIONS This study identifies GDF-15 as a novel biomarker of EHE aggressiveness and underscores the superior efficacy of sirolimus compared with doxorubicin in our experimental models. The observed inhibition of GDF-15 release by sirolimus suggests its potential as a biomarker for monitoring the drug's activity in patients.
Collapse
Affiliation(s)
- Silvia Stacchiotti
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | - Silvia Martini
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Anna M. Frezza
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | - Alessia Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Stefano Percio
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mara Lecchi
- Unit of Bioinformatics and Biostatistics, Department Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gian Paolo Dagrada
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Paul H. Huang
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Andrew Jenks
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Robin L. Jones
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matilde Ingrosso
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | - Carlo Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Silvia Brich
- Soft Tissue Tumor Pathology Unit, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Claudia Giani
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Department Epidemiology and Data Science, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo G. Casali
- Medical Oncology Unit 2, Cancer Medicine Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori, Milan, Italy
| | - Hugh Leonard
- Chair of Trustees of the EHE Rare Cancer Charity UK, Charity Number 1162472, Kingston-Upon-Thames, United Kingdom
| | - Alessandro Gronchi
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
5
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
6
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
7
|
El-Sayed MM, Bianco JR, Li Y, Fabian Z. Tumor-Agnostic Therapy-The Final Step Forward in the Cure for Human Neoplasms? Cells 2024; 13:1071. [PMID: 38920700 PMCID: PMC11201516 DOI: 10.3390/cells13121071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer accounted for 10 million deaths in 2020, nearly one in every six deaths annually. Despite advancements, the contemporary clinical management of human neoplasms faces a number of challenges. Surgical removal of tumor tissues is often not possible technically, while radiation and chemotherapy pose the risk of damaging healthy cells, tissues, and organs, presenting complex clinical challenges. These require a paradigm shift in developing new therapeutic modalities moving towards a more personalized and targeted approach. The tumor-agnostic philosophy, one of these new modalities, focuses on characteristic molecular signatures of transformed cells independently of their traditional histopathological classification. These include commonly occurring DNA aberrations in cancer cells, shared metabolic features of their homeostasis or immune evasion measures of the tumor tissues. The first dedicated, FDA-approved tumor-agnostic agent's profound progression-free survival of 78% in mismatch repair-deficient colorectal cancer paved the way for the accelerated FDA approvals of novel tumor-agnostic therapeutic compounds. Here, we review the historical background, current status, and future perspectives of this new era of clinical oncology.
Collapse
Affiliation(s)
| | | | | | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (M.M.E.-S.); (J.R.B.); (Y.L.)
| |
Collapse
|
8
|
Pu T, Wang J, Wei J, Zeng A, Zhang J, Chen J, Yin L, Li J, Lin TP, Melamed J, Corey E, Gao AC, Wu BJ. Stromal-derived MAOB promotes prostate cancer growth and progression. SCIENCE ADVANCES 2024; 10:eadi4935. [PMID: 38335292 PMCID: PMC10857382 DOI: 10.1126/sciadv.adi4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) develops in a microenvironment where the stromal cells modulate adjacent tumor growth and progression. Here, we demonstrated elevated levels of monoamine oxidase B (MAOB), a mitochondrial enzyme that degrades biogenic and dietary monoamines, in human PC stroma, which was associated with poor clinical outcomes of PC patients. Knockdown or overexpression of MAOB in human prostate stromal fibroblasts indicated that MAOB promotes cocultured PC cell proliferation, migration, and invasion and co-inoculated prostate tumor growth in mice. Mechanistically, MAOB induces a reactive stroma with activated marker expression, increased extracellular matrix remodeling, and acquisition of a protumorigenic phenotype through enhanced production of reactive oxygen species. Moreover, MAOB transcriptionally activates CXCL12 through Twist1 synergizing with TGFβ1-dependent Smads in prostate stroma, which stimulates tumor-expressed CXCR4-Src/JNK signaling in a paracrine manner. Pharmacological inhibition of stromal MAOB restricted PC xenograft growth in mice. Collectively, these findings characterize the contribution of MAOB to PC and suggest MAOB as a potential stroma-based therapeutic target.
Collapse
Affiliation(s)
- Tianjie Pu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jing Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Alan Zeng
- Undergraduate Programs, University of Washington, Seattle, WA 98195, USA
| | - Jinglong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Lijuan Yin
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jingjing Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Taipei 11217, Taiwan, Republic of China
- Department of Urology, School of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, Republic of China
| | - Jonathan Melamed
- Department of Pathology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Allen C. Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Boyang Jason Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
9
|
Kashyap D, Bhattacharya S, Irinike S, Khare S, Das A, Singh G, Bal A. Cancer associated fibroblasts modulate the cytotoxicity of anti-cancer drugs in breast cancer: An in vitro study. Breast Dis 2024; 43:25-36. [PMID: 38517765 DOI: 10.3233/bd-230011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Tumour microenvironment (TME) contributes to resistance to anti-cancer drugs through multiple mechanisms including secretion of pro-survival factors by cancer associated fibroblasts (CAFs). In this study, we determined the chemotherapy resistance producing potential of CAFs in molecular subtypes of breast cancer. METHODS The CAFs were isolated from fresh lumpectomy/mastectomy specimens of different molecular subtypes of breast cancer. The CAFs were cultured and secretome was collected from each breast cancer subtype. Breast cancer cell lines MCF-7, SK-BR3, MDA-MB-231, and MDA-MB-468 were treated with different doses of tamoxifen, trastuzumab, cisplatin, and doxorubicin alone respectively and in combination with secretome of CAFs from respective subtypes. MTT assay was done to check cell death after drug treatment. Liquid chromatography-mass spectrometry (LCMS) analysis of CAF secretome was also done. RESULTS MTT assay showed that anti-cancer drugs alone had growth inhibitory effect on the cancer cells however, presence of CAF secretome reduced the anti-cancer effect of the drugs. Resistant to drugs in the presence of secretome, was determined by increased cell viability i.e., MCF-7, 51.02% to 63.02%; SK-BR-3, 34.22% to 44.88%; MDA-MB-231, 52.59% to 78.63%; and MDA-MB-468, 48.92% to 55.08%. LCMS analysis of the secretome showed the differential abundance of CAFs secreted proteins across breast cancer subtypes. CONCLUSIONS The treatment of breast cancer cell lines with anti-cancer drugs in combination with secretome isolated from molecular subtype specific CAFs, reduced the cytotoxic effect of the drugs. In addition, LCMS data also highlighted different composition of secreted proteins from different breast cancer associated fibroblasts. Thus, TME has heterogenous population of CAFs across the breast cancer subtypes and in vitro experiments highlight their contribution to chemotherapy resistance which needs further validation.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Shalmoli Bhattacharya
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Santosh Irinike
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Siddhant Khare
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Gurpreet Singh
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh, India
| |
Collapse
|
10
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
11
|
Chen Y, Deng Q, Chen H, Yang J, Chen Z, Li J, Fu Z. Cancer-associated fibroblast-related prognostic signature predicts prognosis and immunotherapy response in pancreatic adenocarcinoma based on single-cell and bulk RNA-sequencing. Sci Rep 2023; 13:16408. [PMID: 37775715 PMCID: PMC10541448 DOI: 10.1038/s41598-023-43495-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) influence many aspects of pancreatic adenocarcinoma (PAAD) carcinogenesis, including tumor cell proliferation, angiogenesis, invasion, and metastasis. A six-gene prognostic signature was constructed for PAAD based on the 189 CAF marker genes identified in single-cell RNA-sequencing data. Multivariate analyses showed that the risk score was independently prognostic for survival in the TCGA (P < 0.001) and ICGC (P = 0.004) cohorts. Tumor infiltration of CD8 T (P = 0.005) cells and naïve B cells (P = 0.001) was greater in the low-risk than in the high-risk group, with infiltration of these cells negatively correlated with risk score. Moreover, the TMB score was lower in the low-risk than in the high-risk group (P = 0.0051). Importantly, patients in low-risk group had better immunotherapy responses than in the high-risk group in an independent immunotherapy cohort (IMvigor210) (P = 0.039). The CAV1 and SOD3 were highly expressed in CAFs of PAAD tissues, which revealed by immunohistochemical staining. In summary, this comprehensive analysis resulted in the development of a novel prognostic signature, which was associated with immune cell infiltration, drug sensitivity, and TMB, and could predict the prognosis and immunotherapy response of patients with PAAD.
Collapse
Affiliation(s)
- Yajun Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qican Deng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jianguo Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Li
- Department of Surgery, The People's Hospital of Yubei District of Chongqing, Chongqing, China.
| | - Zhongxue Fu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Lin M, Sun X, Lv L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol Ther Oncolytics 2023; 29:91-106. [PMID: 37215386 PMCID: PMC10199166 DOI: 10.1016/j.omto.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.
Collapse
Affiliation(s)
- Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai 201103, China
| |
Collapse
|
13
|
Li D, Xu W, Chang Y, Xiao Y, He Y, Ren S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37294106 DOI: 10.3724/abbs.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The distinct tumor microenvironment (TME) of prostate cancer (PCa), which promotes tumor proliferation and progression, consists of various stromal cells, immune cells, and a dense extracellular matrix (ECM). The understanding of the prostate TME extends to tertiary lymphoid structures (TLSs) and metastasis niches to provide a more concise comprehension of tumor metastasis. These constituents collectively structure the hallmarks of the pro-tumor TME, including immunosuppressive, acidic, and hypoxic niches, neuronal innervation, and metabolic rewiring. In combination with the knowledge of the tumor microenvironment and the advancement of emerging therapeutic technologies, several therapeutic strategies have been developed, and some of them have been tested in clinical trials. This review elaborates on PCa TME components, summarizes various TME-targeted therapies, and provides insights into PCa carcinogenesis, progression, and therapeutic strategies.
Collapse
Affiliation(s)
- Duocai Li
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
14
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Zhang S, Shen T, Zeng Y. Epigenetic Modifications in Prostate Cancer Metastasis and Microenvironment. Cancers (Basel) 2023; 15:cancers15082243. [PMID: 37190171 DOI: 10.3390/cancers15082243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gradual evolution of prostate tissue from benign tumor to malignant lesion or distant metastasis is driven by intracellular epigenetic changes and the tumor microenvironment remodeling. With the continuous study of epigenetic modifications, these tumor-driving forces are being discovered and are providing new treatments for cancer. Here we introduce the classification of epigenetic modification and highlight the role of epigenetic modification in tumor remodeling and communication of the tumor microenvironment.
Collapse
Affiliation(s)
- Shouyi Zhang
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Shen
- Department of Urology, Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yu Zeng
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
16
|
Luo X, Li Y, Hua Z, Xue X, Wang X, Pang M, Xiao C, Zhao H, Lyu A, Liu Y. Exosomes-mediated tumor metastasis through reshaping tumor microenvironment and distant niche. J Control Release 2023; 353:327-336. [PMID: 36464063 DOI: 10.1016/j.jconrel.2022.11.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Tumor-derived exosomes (TDEs) are the particular communicator and messenger between tumor cells and other cells containing cancer-associated genetic materials and proteins. And TDEs who are also one of the important components consisting of the tumor microenvironment (TME) can reshape and interact with TME to promote tumor development and metastasis. Moreover, due to their long-distance transmission by body fluids, TDEs can facilitate the formation of pre-metastatic niche to support tumor colonization. We discuss the main characteristics and mechanism of TDE-mediated tumor metastasis by reshaping TME and pre-metastatic niche as well as the potential of TDEs for diagnosing tumor and predicting future metastatic development.
Collapse
Affiliation(s)
- Xinyi Luo
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Li
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
17
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
18
|
Wang Y, Chen J, Chen C, Peng H, Lin X, Zhao Q, Chen S, Wang X. Growth differentiation factor-15 overexpression promotes cell proliferation and predicts poor prognosis in cerebral lower-grade gliomas correlated with hypoxia and glycolysis signature. Life Sci 2022; 302:120645. [PMID: 35588865 DOI: 10.1016/j.lfs.2022.120645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
AIMS Growth differentiation factor-15 (GDF15) plays complex and controversial roles in cancer. In this study, the prognostic value and the exact biological function of GDF15 in cerebral lower-grade gliomas (LGGs) and its potential molecular targets were examined. MAIN METHODS Wilcoxon signed-rank test and logistic regression were applied to analyze associations between GDF15 expression and clinical characteristics using the Cancer Genome Atlas (TCGA) database. Overall survival was analyzed using Kaplan-Meier and Cox analyses. Gene set enrichment analysis (GSEA) and the hypoxia risk model was conducted to identify the potential molecular mechanisms underlying the effects of GDF15 on LGGs tumorigenesis. The biological function of GDF15 was examined using gain- and loss-of-function experiments, and a recombinant hGDF15 protein in LGG SW1783 cells in vitro. KEY FINDINGS We found that higher GDF15 expression is associated with poor clinical features in LGG patients, and an independent risk factor for overall survival among LGG patients. GSEA results showed that the poor prognostic role of GDF15 in LGGs is related to hypoxia and glycolysis signatures, which was further validated using the hypoxia risk model. Furthermore, GDF15 overexpression facilitated cell proliferation, while GDF15 siRNA inhibits cell proliferation in LGG SW1783 cells. In addition, GDF15 was upregulated upon CoCl2 treatment which induces hypoxia, correlating with the upregulation of the expressions of HIF-1α and glycolysis-related key genes in SW1783 cells. SIGNIFICANCE GDF15 may promote LGG tumorigenesis that is associated with the hypoxia and glycolysis pathways, and thus could serve as a promising molecular target for LGG prevention and therapy.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jiajun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Chaojie Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - He Peng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiaojian Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Shengjia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xingya Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
19
|
Szymoński K, Milian-Ciesielska K, Lipiec E, Adamek D. Current Pathology Model of Pancreatic Cancer. Cancers (Basel) 2022; 14:2321. [PMID: 35565450 PMCID: PMC9105915 DOI: 10.3390/cancers14092321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive and lethal malignant neoplasms, ranking in seventh place in the world in terms of the incidence of death, with overall 5-year survival rates still below 10%. The knowledge about PC pathomechanisms is rapidly expanding. Daily reports reveal new aspects of tumor biology, including its molecular and morphological heterogeneity, explain complicated "cross-talk" that happens between the cancer cells and tumor stroma, or the nature of the PC-associated neural remodeling (PANR). Staying up-to-date is hard and crucial at the same time. In this review, we are focusing on a comprehensive summary of PC aspects that are important in pathologic reporting, impact patients' outcomes, and bring meaningful information for clinicians. Finally, we show promising new trends in diagnostic technologies that might bring a difference in PC early diagnosis.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland;
| | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland;
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| |
Collapse
|
20
|
Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol 2022; 6:31. [PMID: 35508696 PMCID: PMC9068628 DOI: 10.1038/s41698-022-00272-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is characterized by a high degree of heterogeneity, which poses a major challenge to precision therapy and drug development. In this review, we discuss how nongenetic factors contribute to heterogeneity of prostate cancer. We also discuss tumor heterogeneity and phenotypic switching related to anticancer therapies. Lastly, we summarize the challenges targeting the tumor environments, and emphasize that continued exploration of tumor heterogeneity is needed in order to offer a personalized therapy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Rongbin Ge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongwei Wang
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Giusti I, Di Francesco M, Poppa G, Esposito L, D’Ascenzo S, Dolo V. Tumor-Derived Extracellular Vesicles Activate Normal Human Fibroblasts to a Cancer-Associated Fibroblast-Like Phenotype, Sustaining a Pro-Tumorigenic Microenvironment. Front Oncol 2022; 12:839880. [PMID: 35280782 PMCID: PMC8905682 DOI: 10.3389/fonc.2022.839880] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts in the tumor microenvironment have been proven to actively participate in tumor progression; they can be "educated" by cancer cells acquiring an activated state and, as such, are identified as cancer-associated fibroblasts (CAFs); CAFs, in turn, remodel tumor stroma to be more advantageous for cancer progression by modulating several processes, including angiogenesis, immunosuppression, and drug access, presumably driving the chemoresistance. That is why they are believed to hamper the response to clinical therapeutic options. The communication between cancer cells and fibroblasts can be mediated by extracellular vesicles (EVs), composed of both exosomes (EXOs) and microvesicles (MVs). To verify the role of different subpopulations of EVs in this cross-talk, a nearly pure subpopulation of EXO-like EVs and the second one of mixed EXO- and MV-like EVs were isolated from ovarian cancer cells and administered to fibroblasts. It turned out that EVs can activate fibroblasts to a CAF-like state, supporting their proliferation, motility, invasiveness, and enzyme expression; EXO-like EV subpopulation seems to be more efficient in some of those processes, suggesting different roles for different EV subpopulations. Moreover, the secretome of these "activated" fibroblasts, composed of both soluble and EV-associated molecules, was, in turn, able to modulate the response of bystander cells (fibroblasts, tumor, and endothelial cells), supporting the idea that EVs sustain the mutual cross-talk between tumor cells and CAFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
22
|
The Immune Underpinnings of Barrett's-Associated Adenocarcinogenesis: a Retrial of Nefarious Immunologic Co-Conspirators. Cell Mol Gastroenterol Hepatol 2022; 13:1297-1315. [PMID: 35123116 PMCID: PMC8933845 DOI: 10.1016/j.jcmgh.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022]
Abstract
There is no doubt that chronic gastroesophageal reflux disease increases the risk of esophageal adenocarcinoma (EAC) by several fold (odds ratio, 6.4; 95% CI, 4.6-9.1), and some relationships between reflux disease-mediated inflammation and oncogenic processes have been explored; however, the precise interconnections between the immune response and genomic instabilities underlying these pathologic processes only now are emerging. Furthermore, the precise cell of origin of the precancerous stages associated with EAC development, Barrett's esophagus, be it cardia resident or embryonic remnant, may shape our interpretation of the likely immune drivers. This review integrates the current collective knowledge of the immunology underlying EAC development and outlines a framework connecting proinflammatory pathways, such as those mediated by interleukin 1β, tumor necrosis factor α, leukemia inhibitory factor, interleukin 6, signal transduction and activator of transcription 3, nuclear factor-κB, cyclooxygenase-2, and transforming growth factor β, with oncogenic pathways in the gastroesophageal reflux disease-Barrett's esophagus-EAC cancer sequence. Further defining these immune and molecular railroads may show a map of the routes taken by gastroesophageal cells on their journey toward EAC tumor phylogeny. The selective pressures applied by this immune-induced journey likely impact the phenotype and genotype of the resulting oncogenic destination and further exploration of lesser-defined immune drivers may be useful in future individualized therapies or enhanced selective application of recent immune-driven therapeutics.
Collapse
|
23
|
Vaish U, Jain T, Are AC, Dudeja V. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. Int J Mol Sci 2021; 22:13408. [PMID: 34948209 PMCID: PMC8706283 DOI: 10.3390/ijms222413408] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.
Collapse
Affiliation(s)
| | | | | | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (U.V.); (T.J.); (A.C.A.)
| |
Collapse
|
24
|
Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2021; 64:71-83. [PMID: 34836750 DOI: 10.1016/j.cytogfr.2021.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.
Collapse
|
25
|
Giovannelli P, Di Donato M, Galasso G, Monaco A, Licitra F, Perillo B, Migliaccio A, Castoria G. Communication between cells: exosomes as a delivery system in prostate cancer. Cell Commun Signal 2021; 19:110. [PMID: 34772427 PMCID: PMC8586841 DOI: 10.1186/s12964-021-00792-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite the considerable efforts in screening and diagnostic protocols, prostate cancer still represents the second leading cause of cancer-related death in men. Many patients with localized disease and low risk of recurrence have a favourable outcome. In a substantial proportion of patients, however, the disease progresses and becomes aggressive. The mechanisms that promote prostate cancer progression remain still debated. Many findings point to the role of cross-communication between prostate tumor cells and their surrounding microenvironment during the disease progression. Such a connection fosters survival, proliferation, angiogenesis, metastatic spreading and drug-resistance of prostate cancer. Recent years have seen a profound interest in understanding the way by which prostate cancer cells communicate with the surrounding cells in the microenvironment. In this regard, direct cell-to-cell contacts and soluble factors have been identified. Increasing evidence indicates that PC cells communicate with the surrounding cells through the release of extracellular vesicles, mainly the exosomes. By directly acting in stromal or prostate cancer epithelial cells, exosomes represent a critical intercellular communication system. By querying the public database ( https://pubmed.ncbi.nlm.nih.gov ) for the past 10 years, we have found more than four hundred papers. Among them, we have extrapolated the most relevant about the role of exosomes in prostate cancer malignancy and progression. Emerging data concerning the use of these vesicles in diagnostic management and therapeutic guidance of PC patients are also presented. Video Abstract.
Collapse
Affiliation(s)
- Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Alessandra Monaco
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Fabrizio Licitra
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Bruno Perillo
- Istituto di Scienze dell’Alimentazione, C.N.R., 83100 Avellino, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università Della Campania ‘L. Vanvitelli’, Via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
26
|
Hou CP, Tsui KH, Chang KS, Sung HC, Hsu SY, Lin YH, Yang PS, Chen CL, Feng TH, Juang HH. Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed J 2021; 45:763-775. [PMID: 34662721 DOI: 10.1016/j.bj.2021.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Caffeic acid phenethyl ester (CAPE), a bioactive component of propolis, has beneficial effects on cancer prevention. Growth differentiation factor 15 (GDF15) is an antitumor gene of bladder cancer. Therefore, this study investigated the anti-cancer effect of CAPE on bladder carcinoma cells and related mechanisms. METHODS The expressions of GDF15, N-myc downstream-regulated gene 1 (NDRG1), and maspin, and the activations of ERK, JNK, p38, and AMPKα1/2 in human bladder cells after gene transfection or knockdown were determined by immunoblot, RT-qPCR, and reporter assays. The assays of 5-ethynyl-2'-deoxyuridine (EdU), CyQUANT cell proliferation, and Matrigel invasion, and the xenograft animal study were used to assess the cell proliferation, invasion, and tumorigenesis. RESULTS GDF15 expression in epithelial cells was negatively correlated with neoplasia in vitro. Also, GDF15 exhibits in bladder fibroblasts and smooth muscle cells. CAPE-induced expressions of NDRG1 and maspin decreased cell proliferation and invasion of bladder carcinoma cells in a GDF15-dependent manner in vitro. The xenograft animal study suggesting CAPE attenuated tumor growth in vivo. CAPE increased phosphorylation of ERK, JNK, p38, and AMPKα1/2 to modulate the GDF15 expressions. Pretreatments with ERK, JNK, or p38 inhibitors partially inhibited the CAPE effects on the inductions of GDF15, NDRG1, or maspin. Knockdown of AMPKα1/2 attenuated the CAPE-induced GDF15 expression and cell proliferation in bladder carcinoma cells. CONCLUSIONS Our findings indicate that CAPE is a promising agent for anti-tumor growth in human bladder carcinoma cells via the upregulation of GDF15.
Collapse
Affiliation(s)
- Chen-Pang Hou
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Shuang Ho Hospital, New Taipei City, Taiwan; Department of Medicine; TMU Research Center of Urology and Kindey, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Shuo Chang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Yuan Hsu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Pei-Shan Yang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Hsia Feng
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Jin Y, Jung SN, Lim MA, Oh C, Piao Y, Kim HJ, Liu L, Kang YE, Chang JW, Won HR, Song K, Koo BS. Transcriptional Regulation of GDF15 by EGR1 Promotes Head and Neck Cancer Progression through a Positive Feedback Loop. Int J Mol Sci 2021; 22:ijms222011151. [PMID: 34681812 PMCID: PMC8538541 DOI: 10.3390/ijms222011151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15), a divergent member of the transforming growth factor-β (TGF-β) superfamily, has been reported to be overexpressed in different kinds of cancer types. However, the function and mechanism of GDF15 in head and neck cancer (HNC) remains unclear. The Cancer Genome Atlas (TCGA) data show that the expression of GDF15 is significantly associated with tumor AJCC stage, lymph vascular invasion and tumor grade in HNC. In this study, we confirmed that knockdown of GDF15 attenuated: cell proliferation, migration and invasion via regulation of EMT through a canonical pathway; SMAD2/3 and noncanonical pathways; PI3K/AKT and MEK/ERK in HNC cell lines. Furthermore, we found that early growth response 1 (EGR1) was a transcription factor of GDF15. Interestingly, we also demonstrated that GDF15 could regulate the expression of EGR1, which meant a positive feedback loop occurred between these two factors. Moreover, combined inhibition of both GDF15 and EGR1 in a HNC mouse xenograft model showed significantly decreased tumor volume compared to inhibition of EGR1 or GDF15 alone. Our study showed that the GDF15–EGR1 signaling axis may be a good target in HNC patients.
Collapse
Affiliation(s)
- Yanli Jin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Chan Oh
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yudan Piao
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Lihua Liu
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon 35015, Korea;
| | - Jae Won Chang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Ho-Ryun Won
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Kunho Song
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
| | - Bon Seok Koo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea; (Y.J.); (C.O.); (Y.P.); (H.J.K.); (L.L.); (J.W.C.); (H.-R.W.)
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon 35015, Korea; (S.-N.J.); (M.A.L.); (K.S.)
- Correspondence: ; Tel.: +82-42-280-7690
| |
Collapse
|
28
|
Organ Specificity and Heterogeneity of Cancer-Associated Fibroblasts in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms222010973. [PMID: 34681633 PMCID: PMC8540283 DOI: 10.3390/ijms222010973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Fibroblasts constitute a ubiquitous mesenchymal cell type and produce the extracellular matrix (ECM) of connective tissue, thereby providing the structural basis of various organs. Fibroblasts display differential transcriptional patterns unique to the organ of their origin and they can be activated by common stimuli such as transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) signaling. Cancer-associated fibroblasts (CAFs) reside in the cancer tissue and contribute to cancer progression by influencing cancer cell growth, invasion, angiogenesis and tumor immunity. CAFs impact on the tumor microenvironment by remodeling the ECM and secreting soluble factors such as chemokines and growth factors. Differential expression patterns of molecular markers suggest heterogeneous features of CAFs in terms of their function, pathogenic role and cellular origin. Recent studies elucidated the bimodal action of CAFs on cancer progression and suggest a subgroup of CAFs with tumor-suppressive effects. This review attempts to describe cellular features of colorectal CAFs with an emphasis on their heterogeneity and functional diversity.
Collapse
|
29
|
Yoon CI, Ahn SG, Cha YJ, Kim D, Bae SJ, Lee JH, Ooshima A, Yang KM, Park SH, Kim SJ, Jeong J. Metastasis Risk Assessment Using BAG2 Expression by Cancer-Associated Fibroblast and Tumor Cells in Patients with Breast Cancer. Cancers (Basel) 2021; 13:cancers13184654. [PMID: 34572878 PMCID: PMC8470501 DOI: 10.3390/cancers13184654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) promote tumor progression and play an important role in evading immune surveillance. The previous study showed that BAG2 could be elevated in cancer associated fibroblasts (CAFs). Here, we evaluated BAG2 expression of CAF and tumor cells and assessed metastasis risk in patients with breast cancer. We found that patients with either BAG2-high or BAG2(+) CAF had significantly worse distant metastasis-free survival than those with BAG2-double negative. Evaluation of BAG2 expression on both CAFs and tumor cells could be helpful to estimate the risk of metastasis in breast cancer. Abstract Few studies have examined the role of BAG2 in malignancies. We investigated the prognostic value of BAG2-expression in cancer-associated fibroblasts (CAFs) and tumor cells in predicting metastasis-free survival in patients with breast cancer. Tissue-microarray was constructed using human breast cancer tissues obtained by surgical resection between 1992 and 2015. BAG2 expression was evaluated by immunohistochemistry in CAFs or the tumor cells. BAG2 expression in the CAFs and cytoplasm of tumor cells was classified as positive and negative, and low and high, respectively. BAG2-CAF was evaluated in 310 patients and was positive in 67 (21.6%) patients. Kaplan–Meier plots showed that distant metastasis-free survival (DMFS) was lesser in patients with BAG2(+) CAF than in patients with BAG2(−) CAF (p = 0.039). Additionally, we classified the 310 patients into two groups: 109 in either BAG2-high or BAG2(+) CAF and 201 in BAG2-low and BAG2(−) CAF. DMFS was significantly reduced in patients with either BAG2-high or BAG2(+) CAF than in the patients of the other group (p = 0.005). Multivariable analysis demonstrated that DMFS was prolonged in patients with BAG2(−) CAF or BAG2-low. Evaluation of BAG2 expression on both CAFs and tumor cells could help in determining the risk of metastasis in breast cancer.
Collapse
Affiliation(s)
- Chang-Ik Yoon
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (C.-I.Y.); (D.K.)
| | - Sung-Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.-G.A.); (S.-J.B.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Yoon-Jin Cha
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Dooreh Kim
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (C.-I.Y.); (D.K.)
| | - Soong-June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.-G.A.); (S.-J.B.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Ji-Hyung Lee
- Department of Biological Sciences, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (J.-H.L.); (S.-H.P.)
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul 06668, Korea; (A.O.); (K.-M.Y.); (S.-J.K.)
- Medpacto Inc., Seocho-gu, Seoul 06668, Korea
| | - Kyung-Min Yang
- GILO Institute, GILO Foundation, Seoul 06668, Korea; (A.O.); (K.-M.Y.); (S.-J.K.)
- Medpacto Inc., Seocho-gu, Seoul 06668, Korea
| | - Seok-Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (J.-H.L.); (S.-H.P.)
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Korea; (A.O.); (K.-M.Y.); (S.-J.K.)
- Medpacto Inc., Seocho-gu, Seoul 06668, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (S.-G.A.); (S.-J.B.)
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea;
- Correspondence: ; Tel.: +82-2-2019-3379
| |
Collapse
|
30
|
Lodi RS, Yu B, Xia L, Liu F. Roles and Regulation of Growth differentiation factor-15 in the Immune and tumor microenvironment. Hum Immunol 2021; 82:937-944. [PMID: 34412918 DOI: 10.1016/j.humimm.2021.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Growth differentiation factor-15 (GDF-15), a member of the TGF-β superfamily, plays multiple roles in a wide variety of cellular processes. It is expressed at low levels under normal conditions but is highly expressed in tumor and tumor microenvironment (TME)-related cells, such as fibroblasts and immune cells. The TME consists of the noncancerous cells present in the tumor, including immune cells, fibroblasts, blood vessel signaling molecules and extracellular matrix, which play a key role in tumor development. GDF-15 affects both stromal cells and immune cells in the TME. It also acts on immune checkpoints, such as PD-1/PDL-1 that regulate stemness of cancer cells, indicating that GDF-15 plays a prominent role in cancer, exhibiting both protumorigenic and antitumorigenic effects, although the latter are reported much less often than the former. The present review addresses novel ideas regarding communication between GDF-15 and stromal cells, immune cells, and cancer cells in the TME. In addition, it discusses the possibility of GDF-15's clinical application as a diagnostic biomarker and therapeutic target in cancer.
Collapse
Affiliation(s)
| | - Bin Yu
- The Central Laboratory, Changzhou Woman and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
31
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
32
|
Dzobo K, Dandara C. Architecture of Cancer-Associated Fibroblasts in Tumor Microenvironment: Mapping Their Origins, Heterogeneity, and Role in Cancer Therapy Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 24:314-339. [PMID: 32496970 DOI: 10.1089/omi.2020.0023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor stroma, a key component of the tumor microenvironment (TME), is a key determinant of response and resistance to cancer treatment. The stromal cells, extracellular matrix (ECM), and blood vessels influence cancer cell response to therapy and play key roles in tumor relapse and therapeutic outcomes. Of the stromal cells present in the TME, much attention has been given to cancer-associated fibroblasts (CAFs) as they are the most abundant and important in cancer initiation, progression, and therapy resistance. Besides releasing several factors, CAFs also synthesize the ECM, a key component of the tumor stroma. In this expert review, we examine the role of CAFs in the regulation of tumor cell behavior and reveal how CAF-derived factors and signaling influence tumor cell heterogeneity and development of novel strategies to combat cancer. Importantly, CAFs display both phenotypic and functional heterogeneity, with significant ramifications on CAF-directed therapies. Principal anti-cancer therapies targeting CAFs take the form of: (1) CAFs' ablation through use of immunotherapies, (2) re-education of CAFs to normalize the cells, (3) cellular therapies involving CAFs delivering drugs such as oncolytic adenoviruses, and (4) stromal depletion via targeting the ECM and its related signaling. The CAFs' heterogeneity could be a result of different cellular origins and the cancer-specific tumor microenvironmental effects, underscoring the need for further multiomics and biochemical studies on CAFs and the subsets. Lastly, we present recent advances in therapeutic targeting of CAFs and the success of such endeavors or their lack thereof. We recommend that to advance global public health and personalized medicine, treatments in the oncology clinic should be combinatorial in nature, strategically targeting both cancer cells and stromal cells, and their interactions.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Hou P, Lin T, Meng S, Shi M, Chen F, Jiang T, Li Z, Li M, Chu S, Zheng J, Bai J. Long noncoding RNA SH3PXD2A-AS1 promotes colorectal cancer progression by regulating p53-mediated gene transcription. Int J Biol Sci 2021; 17:1979-1994. [PMID: 34131400 PMCID: PMC8193262 DOI: 10.7150/ijbs.58422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in various human cancers. We aimed to determine the key lncRNAs mediating colorectal cancer (CRC) progression. We identified some lncRNAs aberrantly expressed in CRC tissues by using lncRNA microarrays and demonstrated that SH3PXD2A-AS1 was one of the most highly overexpressed lncRNAs in CRC. We further aimed to explore the roles and possible molecular mechanisms of SH3PXD2A-AS1 in CRC. RNA ISH revealed that SH3PXD2A-AS1 was overexpressed in CRC compared with adjacent normal colon tissues and indicated poor prognosis in CRC. Functional analyses showed that SH3PXD2A-AS1 enhanced cell proliferation, angiogenesis, and metastasis. Mechanistically, SH3PXD2A-AS1 can directly interact with p53 protein and regulate p53-mediated gene transcription in CRC. We provided mechanistic insights into the regulation of SH3PXD2A-AS1 on p53-mediated gene transcription and suggested its potential as a new prognostic biomarker and target for the clinical management of CRC.
Collapse
Affiliation(s)
- Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tian Lin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meilin Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
34
|
Wang Y, Sima X, Ying Y, Huang Y. Exogenous BMP9 promotes lung fibroblast HFL-1 cell activation via ALK1/Smad1/5 signaling in vitro. Exp Ther Med 2021; 22:728. [PMID: 34007337 PMCID: PMC8120641 DOI: 10.3892/etm.2021.10160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has recently been described as a crucial regulator in modulating fibroblast-type cell activation. Activin receptor-like kinase 1 (ALK1) is a high affinity receptor for BMP9 that exerts its role via Smad1/5. However, the functional roles of BMP9 in activating lung fibroblasts and the underlying signaling pathway are not completely understood. The present study aimed to explore the effect of exogenous BMP9 on human lung fibroblast HFL-1 cell proliferation and differentiation, as well as the potential role of the ALK1/Smad1/5 signaling pathway. In the present study, fibroblast proliferation was assessed using Cell Counting Kit-8 and colony formation assays, and the mRNA and protein expression of target genes was examined using reverse transcription-quantitative PCR and western blot assays, respectively. Compared with the control group, BMP9 treatment increased HFL-1 cell proliferation, mRNA and protein expression of differentiated markers, including α-smooth muscle actin, type I collagen and type III collagen, and the expression of ALK1 and phosphorylated Smad1/5 expression. Furthermore, the effects of BMP9 were partially rescued by dorsomorphin-1, an inhibitor of ALK1. The results indicated that BMP9 may serve as a key inducer of lung fibroblast activation and ALK1/Smad1/5 signaling might be associated with BMP9-mediated effects in HFL-1 cells. Therefore, the present study highlighted that the potential role of the BMP9/ALK1/Smad1/5 signaling pathway in the development of pulmonary fibrosis requires further investigation.
Collapse
Affiliation(s)
- Yaqun Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Graduate College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaonan Sima
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ying Ying
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
35
|
Hu G, Huang L, Zhong K, Meng L, Xu F, Wang S, Zhang T. PDGFR-β + fibroblasts deteriorate survival in human solid tumors: a meta-analysis. Aging (Albany NY) 2021; 13:13693-13707. [PMID: 33946048 PMCID: PMC8202854 DOI: 10.18632/aging.202952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022]
Abstract
Fibroblasts are a highly heterogeneous population in tumor microenvironment. PDGFR-β+ fibroblasts, a subpopulation of activated fibroblasts, have proven to correlate with cancer progression through multiple of mechanisms including inducing angiogenesis and immune evasion. However, the prognostic role of these cells in solid tumors is still not conclusive. Herein, we carried out a meta-analysis including 24 published studies with 6752 patients searched from PubMed, Embase and EBSCO to better comprehend the value of such subpopulation in prognosis prediction for solid tumors. We noted that elevated density of intratumoral PDGFR-β+ fibroblasts was remarkably associated with worse overall survival (OS) and disease-free survival (DFS) of patients. In subgroup analyses, the data showed that PDGFR-β+ fibroblast infiltration considerably decreased OS in non-small cell lung cancer (NSCLC), breast and pancreatic cancer, and reduced DFS in breast cancer. In addition, increased number of PDGFR-β+ fibroblasts appreciably correlated with advanced TNM stage of patients. In conclusion, PDGFR-β+ fibroblast infiltration deteriorates survival in human solid tumors especially in NSCLC, breast and pancreatic cancer. Hence, they may offer a practicable prognostic biomarker and a potential therapeutic strategy for these patients.
Collapse
Affiliation(s)
- Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China
| | - Kefang Zhong
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China
| | - Liwei Meng
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China
| | - Feng Xu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China
| | - Shimin Wang
- Department of Nephrology, Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China
| | - Tao Zhang
- Department of General Surgery III, Affiliated Hospital of Shaoxing University, Zhejiang 312000, China
| |
Collapse
|
36
|
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov 2021; 11:933-959. [PMID: 33811125 DOI: 10.1158/2159-8290.cd-20-1808] [Citation(s) in RCA: 763] [Impact Index Per Article: 190.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Strategies to therapeutically target the tumor microenvironment (TME) have emerged as a promising approach for cancer treatment in recent years due to the critical roles of the TME in regulating tumor progression and modulating response to standard-of-care therapies. Here, we summarize the current knowledge regarding the most advanced TME-directed therapies, which have either been clinically approved or are currently being evaluated in trials, including immunotherapies, antiangiogenic drugs, and treatments directed against cancer-associated fibroblasts and the extracellular matrix. We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field. SIGNIFICANCE: This review provides a comprehensive analysis of the current therapies targeting the TME, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Marta J C Jordāo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Myojin Y, Hikita H, Sugiyama M, Sasaki Y, Fukumoto K, Sakane S, Makino Y, Takemura N, Yamada R, Shigekawa M, Kodama T, Sakamori R, Kobayashi S, Tatsumi T, Suemizu H, Eguchi H, Kokudo N, Mizokami M, Takehara T. Hepatic Stellate Cells in Hepatocellular Carcinoma Promote Tumor Growth Via Growth Differentiation Factor 15 Production. Gastroenterology 2021; 160:1741-1754.e16. [PMID: 33346004 DOI: 10.1053/j.gastro.2020.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Although the tumor microenvironment plays an important role in tumor growth, it is not fully understood what role hepatic stellate cells (HSCs) play in the hepatocellular carcinoma (HCC) microenvironment. METHODS A high-fat diet after streptozotocin was administered to HSC-specific Atg7-deficient (GFAP-Atg7 knockout [KO]) or growth differentiation factor 15 (GDF15)-deficient (GFAP-GDF15KO) mice. LX-2 cells, a human HSC cell line, were cultured with human hepatoma cells. RESULTS In the steatohepatitis-based tumorigenesis model, GFAP-Atg7KO mice formed fewer and smaller liver tumors than their wild-type littermates. Mixed culture of LX-2 cells and hepatoma cells promoted LX-2 cell autophagy and hepatoma cell proliferation, which were attenuated by Atg7 KO in LX-2 cells. Hepatoma cell xenograft tumors grew rapidly in the presence of LX-2 cells, but Atg7 KO in LX-2 cells abolished this growth. RNA-sequencing revealed that LX-2 cells cultured with HepG2 cells highly expressed GDF15, which was abolished by Atg7 KO in LX-2 cells. GDF15 KO LX-2 cells did not show a growth-promoting effect on hepatoma cells either in vitro or in the xenograft model. GDF15 deficiency in HSCs reduced liver tumor size caused by the steatohepatitis-based tumorigenesis model. GDF15 was highly expressed and GDF15-positive nonparenchymal cells were more abundant in human HCC compared with noncancerous parts. Single-cell RNA sequencing showed that GDF15-positive rates in HSCs were higher in HCC than in background liver. Serum GDF15 levels were high in HCC patients and increased with tumor progression. CONCLUSIONS In the HCC microenvironment, an increase of HSCs that produces GDF15 in an autophagy-dependent manner may be involved in tumor progression.
Collapse
Affiliation(s)
- Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Fukumoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryoko Yamada
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Suemizu
- Department of Laboratory Animal Research, Central Institute for Experimental Animals
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
38
|
Huang M, Narita S, Koizumi A, Nara T, Numakura K, Satoh S, Nanjo H, Habuchi T. Macrophage inhibitory cytokine-1 induced by a high-fat diet promotes prostate cancer progression by stimulating tumor-promoting cytokine production from tumor stromal cells. Cancer Commun (Lond) 2021; 41:389-403. [PMID: 33773090 PMCID: PMC8118591 DOI: 10.1002/cac2.12137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies have indicated that a high‐fat diet (HFD) and/or HFD‐induced obesity may influence prostate cancer (PCa) progression, but the role of HFD in PCa microenvironment is unclear. This study aimed to delineate the molecular mechanisms of PCa progression under HFD milieus and define the stromal microenvironment focusing on macrophage inhibitory cytokine‐1 (MIC‐1) activation. Methods We investigated the effects of HFD on PCa stromal microenvironment and MIC‐1 signaling activation using PC‐3M‐luc‐C6 PCa model mice fed with HFD or control diet. Further, we explored the effect of periprostatic adipocytes derived from primary PCa patients on activation and cytokine secretion of prostate stromal fibroblasts. Expression patterns and roles of MIC‐1 signaling on human PCa stroma activation and progression were also investigated. Results HFD stimulated PCa cell growth and invasion as a result of upregulated MIC‐1 signaling and subsequently increased the secretion of interleukin (IL)‐8 and IL‐6 from prostate stromal fibroblasts in PC‐3M‐luc‐C6 PCa mouse model. In addition, periprostatic adipocytes directly stimulated MIC‐1 production from PC‐3 cells and IL‐8 secretion in prostate stromal fibroblasts through the upregulation of adipose lipolysis and free fatty acid release. The increased serum MIC‐1 was significantly correlated with human PCa stroma activation, high serum IL‐8, IL‐6, and lipase activity, advanced PCa progression, and high body mass index of the patients. Glial‐derived neurotrophic factor receptor α‐like (GFRAL), a specific receptor of MIC‐1, was highly expressed in both cytoplasm and membrane of PCa cells and surrounding stromal fibroblasts, and the expression level was decreased by androgen deprivation therapy and chemotherapy. Conclusion HFD‐mediated activation of the PCa stromal microenvironment through metabolically upregulated MIC‐1 signaling by increased available free fatty acids may be a critical mechanism of HFD and/or obesity‐induced PCa progression.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Taketoshi Nara
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shigeru Satoh
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
39
|
de Cos Gomez M, Benito Hernandez A, Garcia Unzueta MT, Mazon Ruiz J, Lopez del Moral Cuesta C, Perez Canga JL, San Segundo Arribas D, Valero San Cecilio R, Ruiz San Millan JC, Rodrigo Calabia E. Growth Differentiation Factor 15: A Biomarker with High Clinical Potential in the Evaluation of Kidney Transplant Candidates. J Clin Med 2020; 9:E4112. [PMID: 33419237 PMCID: PMC7766056 DOI: 10.3390/jcm9124112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Kidney transplantation implies a significant improvement in patient survival. Nevertheless, early mortality after transplant remains high. Growth differentiation factor 15 (GDF-15) is a novel biomarker under study as a mortality predictor in multiple scenarios. The aim of this study is to assess the utility of GDF-15 to predict survival in kidney transplant candidates. For this purpose, 395 kidney transplant recipients with pretransplant stored serum samples were included. The median GDF-15 was 5331.3 (50.49-16242.3) pg/mL. After a mean of 90.6 ± 41.5 months of follow-up, 82 (20.8%) patients died. Patients with higher GDF-15 levels (high risk tertile) had a doubled risk of mortality after adjustment by clinical characteristics (p = 0.009). After adjustment by EPTS (Estimated Post Transplant Survival score) the association remained significant for medium hazards ratios (HR) 3.24 95%CI (1.2-8.8), p = 0.021 and high risk tertiles HR 4.3 95%CI (1.65-11.54), p = 0.003. GDF-15 improved the prognostic accuracy of EPTS at 1-year (ΔAUC = 0.09, p = 0.039) and 3-year mortality (ΔAUC = 0.11, p = 0.036). Our study suggests an independent association between higher GDF-15 levels and mortality after kidney transplant, adding accuracy to the EPTS score, an established risk prediction model currently used in kidney transplant candidates.
Collapse
Affiliation(s)
- Marina de Cos Gomez
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - Adalberto Benito Hernandez
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - Maria Teresa Garcia Unzueta
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
- Clinical Analysis Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain
| | - Jaime Mazon Ruiz
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - Covadonga Lopez del Moral Cuesta
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - Jose Luis Perez Canga
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - David San Segundo Arribas
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
- Clinical Immunology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain
| | - Rosalia Valero San Cecilio
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - Juan Carlos Ruiz San Millan
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| | - Emilio Rodrigo Calabia
- Nephrology Department, Hospital Universitario Marques de Valdecilla, Avenida Valdecilla n 5, 39724 Santander, Spain; (A.B.H.); (J.M.R.); (C.L.d.M.C.); (J.L.P.C.); (R.V.S.C.); (J.C.R.S.M.); (E.R.C.)
- Valdecilla Biomedical Research Institute (IDIVAL), Cardenal Herrera Oria S/N, 39011 Santander, Spain; (M.T.G.U.); (D.S.S.A.)
| |
Collapse
|
40
|
Luo S, Schooling CM, Wong ICK, Au Yeung SL. Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: a Mendelian randomisation study. Diabetologia 2020; 63:2349-2358. [PMID: 32748028 DOI: 10.1007/s00125-020-05243-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Whether metformin reduces cardiovascular or cancer risk is unclear owing to concerns over immortal time bias and confounding in observational studies. This study evaluated the effect of AMP-activated protein kinase (AMPK), the target of metformin, on risk of cardiovascular disease and cancer. METHODS This is a Mendelian randomisation design, using AMPK, the pharmacological target of metformin, to infer the AMPK pathway-dependent effects of metformin on risk of cardiovascular disease and cancer in participants of white British ancestry in the UK Biobank. RESULTS A total of 391,199 participants were included (mean age 56.9 years; 54.1% women), including 26,690 cases of type 2 diabetes, 38,098 cases of coronary artery disease and 80,941 cases of overall cancer. Genetically predicted reduction in HbA1c (%) instrumented by AMPK variants was associated with a 61% reduction in risk of type 2 diabetes (OR 0.39; 95% CI 0.20, 0.78; p = 7.69 × 10-3), a 53% decrease in the risk of coronary artery disease (OR 0.47; 95% CI 0.26, 0.84; p = 0.01) and a 44% decrease in the risk of overall cancer (OR 0.56; 95% CI 0.36, 0.85; p = 7.23 × 10-3). Results were similar using median or quartiles of AMPK score, with dose-response effects (p for trend = 4.18 × 10-3 for type 2 diabetes, 4.37 × 10-3 for coronary artery disease and 4.04 × 10-3 for overall cancer). CONCLUSIONS/INTERPRETATION This study provides some genetic evidence that AMPK activation by metformin may protect against cardiovascular disease and cancer, which needs to be confirmed by randomised controlled trials.
Collapse
Affiliation(s)
- Shan Luo
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building (North Wing), 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building (North Wing), 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
- School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Research Department of Practice and Policy, School of Pharmacy, University College London, London, UK
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building (North Wing), 7 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
41
|
Dong G, Huang X, Jiang S, Ni L, Ma L, Zhu C, Chen S. SCAP Mediated GDF15-Induced Invasion and EMT of Esophageal Cancer. Front Oncol 2020; 10:564785. [PMID: 33123476 PMCID: PMC7573169 DOI: 10.3389/fonc.2020.564785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background: GDF15 is a potential biomarker for patients with esophageal cancer (EC). However, the mechanistic role of GDF15 in the invasion and metastasis of EC remains poorly understood. Methods: We determined the expression and function of GDF15 in esophageal cancer cells (ESCCs) and in patient tissue samples using western blotting, migration, and invasion assays, immunohistochemistry, Co-IP assays, and quantitative real-time-PCR. In addition, a pulmonary metastatic nude mouse model was used to determine the function of GDF15. We then supplemented our experimental results with database analysis to validate our findings. Results: GDF15 was upregulated in EC, and was associated with poor differentiation, high metastasis rates, and worse prognosis. GDF15 knock-down reduced the migration and invasion of ESCCs. Co-IP assays demonstrated its association with SCAP, while GDF15 knock-down decreased SCAP levels. SCAP overexpression reversed the migration, invasion and EMT in GDF15-siRNA ESCCs. However, after incubation with β-cyclodextrin (β-CD), the ability of migration and invasion was weakened, EMT was reversed again. Migration, invasion, and EMT were enhanced in GDF15-siRNA ESCCs cultured in the presence of cholesterol and were similar to GDF15-siRNA ESCCs overexpressing SCAP. In vivo, knockdown of GDF15 inhibited lung metastasis of ESCCs and was reversed by SCAP overexpression or high cholesterol diet. Increased lung metastasis after SCAP overexpression was partially suppressed by intraperitoneal injection of β-CD. In addition, we determined that GDF15 was a direct target of miR-1324, miR-1324 was down-regulated in EC tissues. MiR-1324 upregulation resulted in decreased GDF15 expression and metastasis in ESCCs. Conclusions: We demonstrated that SCAP mediated GDF15-induced the invasion and metastasis of EC by regulating cholesterol metabolism. In addition, GDF15 was shown to be a direct target of miR-1324.
Collapse
Affiliation(s)
- Gang Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoquan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyuan Ni
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chouwen Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Shiyao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Dos Santos JM, Joiakim A, Kaplan DJ, Putt DA, Perez Bakovic G, Servoss SL, Rybicki BA, Dombkowski AA, Kim H. Levels of plasma glycan-binding auto-IgG biomarkers improve the accuracy of prostate cancer diagnosis. Mol Cell Biochem 2020; 476:13-22. [PMID: 32816187 DOI: 10.1007/s11010-020-03876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
Strategies to improve the early diagnosis of prostate cancer will provide opportunities for earlier intervention. The blood-based prostate-specific antigen (PSA) assay is widely used for prostate cancer diagnosis but specificity of the assay is not satisfactory. An algorithm based on serum levels of PSA combined with other serum biomarkers may significantly improve prostate cancer diagnosis. Plasma glycan-binding IgG/IgM studies suggested that glycan patterns differ between normal and tumor cells. We hypothesize that in prostate cancer glycoproteins or glycolipids are secreted from tumor tissues into the blood and induce auto-immunoglobulin (Ig) production. A 24-glycan microarray and a 5-glycan subarray were developed using plasma samples obtained from 35 prostate cancer patients and 54 healthy subjects to identify glycan-binding auto-IgGs. Neu5Acα2-8Neu5Acα2-8Neu5Acα (G81)-binding auto-IgG was higher in prostate cancer samples and, when levels of G81-binding auto-IgG and growth differentiation factor-15 (GDF-15 or NAG-1) were combined with levels of PSA, the prediction rate of prostate cancer increased from 78.2% to 86.2% than with PSA levels alone. The G81 glycan-binding auto-IgG fraction was isolated from plasma samples using G81 glycan-affinity chromatography and identified by N-terminal sequencing of the 50 kDa heavy chain variable region of the IgG. G81 glycan-binding 25 kDa fibroblast growth factor-1 (FGF1) fragment was also identified by N-terminal sequencing. Our results demonstrated that a multiplex diagnostic combining G81 glycan-binding auto-IgG, GDF-15/NAG-1 and PSA (≥ 2.1 ng PSA/ml for cancer) increased the specificity of prostate cancer diagnosis by 8%. The multiplex assessment could improve the early diagnosis of prostate cancer thereby allowing the prompt delivery of prostate cancer treatment.
Collapse
Affiliation(s)
- Julia Matzenbacher Dos Santos
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA.,Department of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, USA
| | - Aby Joiakim
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - David J Kaplan
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - David A Putt
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA
| | - German Perez Bakovic
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shannon L Servoss
- Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hyesook Kim
- Detroit R&D, Inc., 2727 Second Ave. Suite 4113, Detroit, MI, USA.
| |
Collapse
|
43
|
Bonollo F, Thalmann GN, Kruithof-de Julio M, Karkampouna S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers (Basel) 2020; 12:E1887. [PMID: 32668821 PMCID: PMC7409163 DOI: 10.3390/cancers12071887] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor-stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.
Collapse
Affiliation(s)
- Francesco Bonollo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| | - George N. Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (F.B.); (G.N.T.)
| |
Collapse
|
44
|
Volodarsky-Perel A, Cohen Y, Arab S, Son WY, Suarthana E, Dahan MH, Tulandi T, Buckett W. Effects of cancer stage and grade on fertility preservation outcome and ovarian stimulation response. Hum Reprod 2020; 34:530-538. [PMID: 30689898 DOI: 10.1093/humrep/dey382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
STUDY QUESTION Do the stage and grade of malignancy affect the fertility preservation outcome in females? SUMMARY ANSWER Patients with high-grade cancer have a decreased number of retrieved mature oocytes and cryopreserved embryos. WHAT IS KNOWN ALREADY Cancer has local and systemic effects on the host. The effects of cancer spread and aggressiveness on the ovarian function and stimulation response remain unclear. STUDY DESIGN, SIZE, DURATION Retrospective cohort study evaluating data of all fertility preservation treatment cycles among women with cancer at the reproductive unit of the McGill University Health Centre in the period from 2008 to 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS Study inclusion criteria were age 18-38 years, first stimulation cycle, GnRH-antagonist protocol and early follicular phase stimulation start. Only one stimulation cycle per patient was included. Patients with ovarian pathology, previous ovarian surgery and previous chemo- or radiotherapy were excluded. The outcomes of women with low-stage cancer (local tumor Stage I-II, no lymph node involvement, no metastases) were compared with those with high-stage disease (local tumor Stage III-IV, lymph node involvement or metastases). Similarly we compared those with low-grade (G1-2) and high-grade (G3-4) malignancies. The primary outcome measure was the number of mature oocytes retrieved. The secondary outcomes included the total number of retrieved oocytes, the number of vitrified oocytes, and the number of frozen embryos. We used Student's t-test for normally distributed data and Wilcoxon test for skewed data. To determine factors associated with good fertility preservation outcome defined as over 10 retrieved mature oocytes, we used multivariate logistic regression. MAIN RESULTS AND THE ROLE OF CHANCE A total of 147 patients were included in the final analysis. Age, body mass index, ovarian reserve parameters of the study groups in stage- and grade-based analyses were similar. Compared to women with low-stage cancer (n = 83), those with high-stage cancer (n = 64) required a higher dose of gonadotropin (P = 0.02). The number of retrieved mature oocytes (9 (7-13) versus 8 (5-12); P = 0.37) and vitrified oocytes (10 (7-15) versus 10 (7-13); P = 0.53) were similar between the two groups. However, in cycles where fertilization of all retrieved oocytes was performed, the fertilization rate (82.7% versus 71.5%; P = 0.03) and the number of vitrified embryos (6.2 ± 3.2 versus 4.3 ± 2.1; P = 0.01) were higher in the low-stage group. Compared to patients with low-grade cancer (n = 62), those with high-grade disease (n = 85) had significantly lower number of retrieved mature oocytes (11 (7-15) versus 8 (5-11); P = 0.002) and vitrified oocytes (12 (8-15) versus 10 (7-11); P = 0.005). The number of vitrified embryos was lower in high-grade group (6.5 ± 3.5 versus 4.6 ± 2.3; P = 0.03) in cycles where the fertilization was performed. In multivariate logistical analysis, the low-grade cancer was significantly associated with retrieval of over 10 mature oocytes (OR = 4.26; 95% CI 1.82-9.98; P = 0.0009). LIMITATIONS, REASONS FOR CAUTION The main limitations of the study include its retrospective design and the relatively small sample size in the embryological outcome analysis. The results of our study should be viewed with caution as different malignancy types were included in the study groups, although their distribution between the study groups was similar. WIDER IMPLICATIONS OF THE FINDINGS Cancer grade seems to have a negative impact on the fertility preservation outcome and the ovarian stimulation response. STUDY FUNDING/COMPETING INTEREST(S) Authors have not received any funding to support this study. There are no conflicts of interest to declare.
Collapse
Affiliation(s)
| | - Yoni Cohen
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Suha Arab
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Weon-Young Son
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Eva Suarthana
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Michael Haim Dahan
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - Togas Tulandi
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Growth differentiation factor 15 (GDF15) in cancer cell metastasis: from the cells to the patients. Clin Exp Metastasis 2020; 37:451-464. [PMID: 32504264 DOI: 10.1007/s10585-020-10041-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/31/2020] [Indexed: 12/19/2022]
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor β superfamily, has been postulated to be implicated in cancer cell metastasis although its role has not been fully elucidated yet. The purpose of this review is to clarify the role of GDF-15 in cancer cell metastasis based on current advances in the field. The studies were divided into those involving evaluation of GDF15 expression in the serum or tissue of cancer patients, and those involving in vitro experiments in cancer cell lines or in vivo experiments in animal models. GDF15 was shown to be elevated in the serum or tissues of cancer patients with its expression being correlated with decreased survival. Moreover, most in vitro and in vivo studies also corroborated a metastasis-promoting role for GDF15. However, there were a few studies, where GDF15 was shown to suppress the metastatic properties of cells. As, GDF15 has been known for its pleiotropic effects, it is not surprising to behave differently in different types of cancer. Thus, GDF15 has the potential of not only being a useful metastasis biomarker, but also a promising therapeutic target against cancer cell metastasis in many cancer types.
Collapse
|
46
|
Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front Immunol 2020; 11:951. [PMID: 32508832 PMCID: PMC7248355 DOI: 10.3389/fimmu.2020.00951] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Growth/differentiation factor-15 (GDF-15), also named macrophage inhibitory cytokine-1, is a divergent member of the transforming growth factor β superfamily. While physiological expression is barely detectable in most somatic tissues in humans, GDF-15 is abundant in placenta. Elsewhere, GDF-15 is often induced under stress conditions, seemingly to maintain cell and tissue homeostasis; however, a moderate increase in GDF-15 blood levels is observed with age. Highly elevated GDF-15 levels are mostly linked to pathological conditions including inflammation, myocardial ischemia, and notably cancer. GDF-15 has thus been widely explored as a biomarker for disease prognosis. Mechanistically, induction of anorexia via the brainstem-restricted GDF-15 receptor GFRAL (glial cell-derived neurotrophic factor [GDNF] family receptor α-like) is well-documented. GDF-15 and GFRAL have thus become attractive targets for metabolic intervention. Still, several GDF-15 mediated effects (including its physiological role in pregnancy) are difficult to explain via the described pathway. Hence, there is a clear need to better understand non-metabolic effects of GDF-15. With particular emphasis on its immunomodulatory potential this review discusses the roles of GDF-15 in pregnancy and in pathological conditions including myocardial infarction, autoimmune disease, and specifically cancer. Importantly, the strong predictive value of GDF-15 as biomarker may plausibly be linked to its immune-regulatory function. The described associations and mechanistic data support the hypothesis that GDF-15 acts as immune checkpoint and is thus an emerging target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jörg Wischhusen
- Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University of Würzburg Medical School, Würzburg, Germany
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Immunology and Immunotherapy Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Wolf Herman Fridman
- INSERM, UMR_S 1138, Cordeliers Research Center, Université de Paris, Sorbonne Université Team Cancer, Immune Control and Escape, Paris, France
| |
Collapse
|
47
|
Kim Y, Kang B, Kim JC, Park TJ, Kang HY. Senescent Fibroblast-Derived GDF15 Induces Skin Pigmentation. J Invest Dermatol 2020; 140:2478-2486.e4. [PMID: 32416083 DOI: 10.1016/j.jid.2020.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Senescent fibroblasts play a role in aging pigmentation. In this study, we found that GDF15 expression levels are increased in UV-irradiated senescent fibroblasts and photoaged hyperpigmented skin. To investigate the effects of GDF15 on melanogenesis, normal human melanocytes were cocultured with fibroblasts infected with the GDF15 lentivirus or GDF15 short hairpin RNA. It was found that GDF15 stimulates melanogenesis in melanocytes through MITF/tyrosinase upregulation via β-catenin signaling. The stimulatory action of GDF15 during pigmentation was further confirmed in ex vivo cultured skin and in a reconstituted human skin sample. These results suggest that senescent fibroblast-derived GDF15 stimulates skin pigmentation and may play a role in aging-associated pigmentation.
Collapse
Affiliation(s)
- Yeongeun Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea
| | - Bogyeong Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea
| | - Jin Cheol Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Tae Jun Park
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea; Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea.
| |
Collapse
|
48
|
Abstract
Tumours reprogram host physiology, metabolism and immune responses during cancer progression. The release of soluble factors, exosomes and metabolites from tumours leads to systemic changes in distant organs, where cancer cells metastasize and grow. These tumour-derived circulating factors also profoundly impact tissues that are rarely inhabited by metastatic cancer cells such as skeletal muscle and adipose tissue. In fact, the majority of patients with metastatic cancer develop a debilitating muscle-wasting syndrome, known as cachexia, that is associated with decreased tolerance to antineoplastic therapy, poor prognosis and accelerated death, with no approved treatments. In this Perspective, we discuss the development of cachexia in the context of metastatic progression. We briefly discuss how circulating factors either directly or indirectly promote cachexia development and examine how signals from the metastatic process can trigger and amplify this process. Finally, we highlight promising therapeutic opportunities for targeting cachexia in the context of metastatic cancers.
Collapse
Affiliation(s)
- Anup K Biswas
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
49
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20:174-186. [PMID: 31980749 PMCID: PMC7046529 DOI: 10.1038/s41568-019-0238-1] [Citation(s) in RCA: 2157] [Impact Index Per Article: 431.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
Collapse
Affiliation(s)
- Erik Sahai
- The Francis Crick Institute, London, UK.
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David G DeNardo
- Division of Oncology, Washington University Medical School, St Louis, MO, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Douglas Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, NY, USA
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, University of Manchester, Nether Alderley, UK
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Robert G Maki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - R Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell Health System, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sheila Stewart
- Department of Cell Biology and Physiology, Department of Medicine, ICCE Institute, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Thea D Tlsty
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|