1
|
Bug DS, Moiseev IS, Porozov YB, Petukhova NV. Shedding light on the DICER1 mutational spectrum of uncertain significance in malignant neoplasms. Front Mol Biosci 2024; 11:1441180. [PMID: 39421690 PMCID: PMC11484276 DOI: 10.3389/fmolb.2024.1441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The Dicer protein is an indispensable player in such fundamental cell pathways as miRNA biogenesis and regulation of protein expression in a cell. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancers, which suggests Dicer mutations can lead to cancer progression. In addition to well-known hotspot mutations in RNAase III domains, DICER1 is characterized by a wide spectrum of variants in all the functional domains; most are of uncertain significance and unstated clinical effects. Moreover, various new somatic DICER1 mutations continuously appear in cancer genome sequencing. The latest contemporary methods of variant effect prediction utilize machine learning algorithms on bulk data, yielding suboptimal correlation with biological data. Consequently, such analysis should be conducted based on the functional and structural characteristics of each protein, using a well-grounded targeted dataset rather than relying on large amounts of unsupervised data. Domains are the functional and evolutionary units of a protein; the analysis of the whole protein should be based on separate and independent examinations of each domain by their evolutionary reconstruction. Dicer represents a hallmark example of a multidomain protein, and we confirmed the phylogenetic multidomain approach being beneficial for the clinical effect prediction of Dicer variants. Because Dicer was suggested to have a putative role in hematological malignancies, we examined variants of DICER1 occurring outside the well-known hotspots of the RNase III domain in this type of cancer using phylogenetic reconstruction of individual domain history. Examined substitutions might disrupt the Dicer function, which was demonstrated by molecular dynamic simulation, where distinct structural alterations were observed for each mutation. Our approach can be utilized to study other multidomain proteins and to improve clinical effect evaluation.
Collapse
Affiliation(s)
- D. S. Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| | - I. S. Moiseev
- R. M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Yu. B. Porozov
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
- Advitam Laboratory, Belgrade, Serbia
| | - N. V. Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| |
Collapse
|
2
|
Kato K, Goto H, Tanaka M, Suzuki T, Toyoda Y, Shinkai M, Kitagawa N, Nishi T, Kigasawa H, Kurosawa K, Aida N, Yoshimi A, Noda A, Ito Y, Seki M, Takita J, Nagahara N, Tsuchida M, Tanaka Y. Establishment and Characterization of a Novel Pleuropulmonary Blastoma Cell Line. Genes Chromosomes Cancer 2024; 63:e23276. [PMID: 39400393 DOI: 10.1002/gcc.23276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE Pleuropulmonary blastoma (PPB) is an infrequently encountered childhood malignant intrathoracic neoplasm associated with unfavorable clinical behavior. Since a well-characterized preclinical model is essential for developing competent agents for PPB, we aim to establish and characterize the world's first cell line of PPB, and attempt to perform the cytotoxicity assay on the PPB cell line. EXPERIMENTAL DESIGN The index case is a 2-year-old female who developed a right thoracic tumor that was surgically removed and treated with multi-agent chemotherapy. The patient is free from recurrence, although it was 9 years after the diagnosis when she developed a thyroid tumor. We performed in vitro cultivation of the isolated neoplastic cells from the tumor, cytogenetic findings and molecular analysis, and tetrazolium colorimetric assay. RESULT The histology was consistent with PPB. Serial passage of cultivation produced a continuously growing cell line, KCMC-PPB-1. Conventional cytogenetic analysis of the established cell line revealed complex numerical and structural chromosomal abnormalities, including add(17)(p11). Mutation analysis on the cultured cells revealed amino-acid substitution mutation on exon 4 of TP53 (NM_001276760.3:c.212_213delTG; NP_001263689.1:p.Leu72ArgfsTer37) and compound heterozygous mutations of DICER1 (NM_177438.3:c. 4910C>A; NP_803187.1:Ser1637* and NM_177438.3:c. 5114A>T; NP_803187.1:Glu1705Val). The cultivated cells demonstrated vulnerability to bortezomib on cytotoxicity assay. CONCLUSION Our KCMC-PPB-1 is the first genuine, molecularly characterized PPB cell line. The cell line is transplantable to nu/nu mice; therefore, it is suitable for a preclinical model for new drug development. The cytotoxicity assay demonstrated that bortezomib is active in the current PPB model.
Collapse
Affiliation(s)
- Keisuke Kato
- Division of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
- Institute of Pediatric Medicine and Cancer Research, Ibaraki Children's Hospital, Mito, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
- Children's Cancer Center, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mio Tanaka
- Division of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
- Children's Cancer Center, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tetsuomi Suzuki
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yasunori Toyoda
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Masato Shinkai
- Children's Cancer Center, Kanagawa Children's Medical Center, Yokohama, Japan
- Division of Pediatric Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Norihiko Kitagawa
- Children's Cancer Center, Kanagawa Children's Medical Center, Yokohama, Japan
- Division of Pediatric Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Toshiji Nishi
- Division of Pediatric Surgery, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hisato Kigasawa
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Division of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Ai Yoshimi
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
- Institute of Pediatric Medicine and Cancer Research, Ibaraki Children's Hospital, Mito, Japan
| | - Asami Noda
- Institute of Pediatric Medicine and Cancer Research, Ibaraki Children's Hospital, Mito, Japan
| | - Yumi Ito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Masahiro Tsuchida
- Division of Pediatric Hematology and Oncology, Ibaraki Children's Hospital, Mito, Japan
- Institute of Pediatric Medicine and Cancer Research, Ibaraki Children's Hospital, Mito, Japan
| | - Yukichi Tanaka
- Division of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
3
|
Oikawa K, Ohno SI, Ono K, Hirao K, Murakami A, Harada Y, Kumagai K, Sudo K, Takanashi M, Ishikawa A, Mineo S, Fujita K, Umezu T, Watanabe N, Murakami Y, Ogawa S, Schultz KA, Kuroda M. Liver-specific DICER1 syndrome model mice develop cystic liver tumors with defective primary cilia. J Pathol 2024; 264:17-29. [PMID: 38922876 DOI: 10.1002/path.6320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
DICER1 syndrome is a tumor predisposition syndrome caused by familial genetic mutations in DICER1. Pathogenic variants of DICER1 have been discovered in many rare cancers, including cystic liver tumors. However, the molecular mechanisms underlying liver lesions induced by these variants remain unclear. In the present study, we sought to gain a better understanding of the pathogenesis of these variants by generating a mouse model of liver-specific DICER1 syndrome. The mouse model developed bile duct hyperplasia with fibrosis, similar to congenital hepatic fibrosis, as well as cystic liver tumors resembling those in Caroli's syndrome, intrahepatic cholangiocarcinoma, and hepatocellular carcinoma. Interestingly, the mouse model of DICER1 syndrome showed abnormal formation of primary cilia in the bile duct epithelium, which is a known cause of bile duct hyperplasia and cyst formation. These results indicated that DICER1 mutations contribute to cystic liver tumors by inducing defective primary cilia. The mouse model generated in this study will be useful for elucidating the potential mechanisms of tumorigenesis induced by DICER1 variants and for obtaining a comprehensive understanding of DICER1 syndrome. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Keiki Oikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kana Ono
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kaito Hirao
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Ayano Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Katsuyoshi Kumagai
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Katsuko Sudo
- Department of Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | | | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shouichirou Mineo
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Noriko Watanabe
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shinichiro Ogawa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kris Ann Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, MN, USA
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Inoue S, Nakano Y, Tanaka M, Yamada Y, Watanabe K, Hidaka M, Sekiguchi M, Kato S, Watadani T, Fujishiro J, Kume H, Ushiku T, Kato M. DICER1 syndrome with an intronic germline variant causing splice alteration. Pediatr Blood Cancer 2024; 71:e31055. [PMID: 38733125 DOI: 10.1002/pbc.31055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Shutaro Inoue
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshiko Nakano
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mariko Tanaka
- Division of Pathology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kentaro Watanabe
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Moe Hidaka
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shota Kato
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Takeyuki Watadani
- Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tetsuo Ushiku
- Division of Pathology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatrics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Chong AL, Thorner P, Ellis M, Swensen J, Benlimame N, Fiset PO, Gatalica Z, Evans MG, Foulkes WD. Fetal Type Morphologies Suggest the Presence of DICER1 Hotspot Mutations in Non-small Cell Lung Cancer. Am J Surg Pathol 2024; 48:221-229. [PMID: 38050371 DOI: 10.1097/pas.0000000000002162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Germline and somatic pathogenic variants (PVs) in DICER1 , encoding a miRNA biogenesis protein, are associated with a wide variety of highly specific pathologic entities. The lung tumors pleuropulmonary blastoma, pulmonary blastoma (PB), and well-differentiated fetal lung adenocarcinoma (WDFLAC) are all known to harbor DICER1 biallelic variants (loss of function and/or somatic hotspot missense mutations), and all share pathologic features reminiscent of the immature lung. However, the role of DICER1 PVs in non-small cell lung cancer (NSCLC) is relatively unknown. Here, we aimed to establish the spectrum of lung pathologies associated with DICER1 hotspot PVs and to compare the mutational landscape of DICER1 -mutated NSCLC with and without hotspots. We queried DNA sequencing data from 12,146 NSCLCs featuring somatic DICER1 variants. 235 (1.9%) cases harboring ≥ 1 DICER1 PV were found and 9/235 (3.8%) were DICER1 hotspot-positive cases. Histologic review of DICER1 hotspot-positive cases showed that all but one tumor were classified as within the histologic spectrum of PB/WDFLAC, whereas all the DICER1 non-hotspot double variants were classified as lung adenocarcinomas, not otherwise specified. Comparison between the mutational landscape of DICER1 hotspot-positive and hotspot-negative cases revealed a higher frequency of CTNNB1 mutations in the hotspot-positive cases (5/9 vs. 2/225; P <0.00001). We conclude that DICER1 somatic hotspots are not implicated in the most common forms of NSCLC but rather select for morphologic features of lung tumor types such as PB and WDFLAC. As a corollary, cases showing this tumor morphology should undergo testing for DICER1 variants, and if positive, genetic counseling should be considered.
Collapse
Affiliation(s)
- Anne-Laure Chong
- Department of Human Genetics
- Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital
| | - Paul Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON
| | | | | | - Naciba Benlimame
- Research Pathology Facility, Lady Davis Institute, Jewish General Hospital, Montreal
| | | | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - William D Foulkes
- Department of Human Genetics
- Gerald Bronfman Department of Oncology, McGill University
- Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC
| |
Collapse
|
6
|
Новокрещенных ЕЭ, Колодкина АА, Безлепкина ОБ. [DICER1 syndrome: clinical variety endocrine manifestations and features of diagnostics]. PROBLEMY ENDOKRINOLOGII 2023; 70:78-85. [PMID: 38796764 PMCID: PMC11145573 DOI: 10.14341/probl13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 05/28/2024]
Abstract
DICER1 syndrome is a rare genetic disorder with the progressive development of malignant and non-malignant diseases in childhood. The cause of this syndrome is a dusfunction of the endoribonuclease DICER, which plays an important role in the processing of microRNAs with subsequent regulation of the control of the expression of oncogenes and tumor suppressor genes. Clinical manifestations of dyseropathies is very different and may include both endocrine manifestations - multinodular goiter, differentiated thyroid cancers, ovarian stromal tumors, pituitary blastoma, and non-endocrine formations - pleuropulmonary blastoma, cystic nephroma, pineoblastoma. The presence of somatic mutations of the DICER1 gene is a resultant stage in the pathogenesis of dyseropathies, determining the further path of oncogenesis. At present, DICER1 syndrome is diagnosed extremely rarely, which leads to late detection of the components of the disease in the patient, late diagnosis of neoplasms, lack of family counseling. Diagnosis at the early stages of the disease, the development of screening programs for the management of these patients allows minimizing the risks of developing more malignant, aggressive forms of the disease.
Collapse
Affiliation(s)
| | - А. А. Колодкина
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
7
|
Torrez RM, Nagaraja S, Menon A, Chang L, Ohi MD, Garner AL. Comparative Biochemical Studies of Disease-Associated Human Dicer Mutations on Processing of a Pre-microRNA and snoRNA. Biochemistry 2023; 62:1725-1734. [PMID: 37130292 PMCID: PMC11467860 DOI: 10.1021/acs.biochem.2c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Dicer is an RNase III enzyme that is responsible for the maturation of small RNAs such as microRNAs. As Dicer's cleavage products play key roles in promoting cellular homeostasis through the fine-tuning of gene expression, dysregulation of Dicer activity can lead to several human diseases, including cancers. Mutations in Dicer have been found to induce tumorigenesis and lead to the development of a rare pleiotropic tumor predisposition syndrome found in children and young adults called DICER1 syndrome. These patients harbor germline and somatic mutations in Dicer that lead to defective microRNA processing and activity. While most mutations occur within Dicer's catalytic RNase III domains, alterations within the Platform-PAZ (Piwi-Argonaute-Zwille) domain also cause loss of microRNA production. Using a combination of in vitro biochemical and cellular studies, we characterized the effect of disease-relevant Platform-PAZ-associated mutations on the processing of a well-studied oncogenic microRNA, pre-microRNA-21. We then compared these results to those of a representative from another Dicer substrate class, the small nucleolar RNA, snord37. From this analysis, we provide evidence that mutations within the Platform-PAZ domain result in differential impacts on RNA binding and processing, adding new insights into the complexities of Dicer processing of small RNA substrates.
Collapse
Affiliation(s)
- Rachel M. Torrez
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shruti Nagaraja
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Melanie D. Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Juhlin CC. On the Chopping Block: Overview of DICER1 Mutations in Endocrine and Neuroendocrine Neoplasms. Surg Pathol Clin 2023; 16:107-118. [PMID: 36739158 DOI: 10.1016/j.path.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutational inactivation of the DICER1 gene causes aberrant micro-RNA maturation, which in turn may have consequences for the posttranscriptional regulation of gene expression, thereby contributing to tumor formation in various organs. Germline DICER1 mutations cause DICER1 syndrome, a pleiotropic condition with an increased risk of various neoplastic conditions in the pleura, ovaries, thyroid, pituitary, pineal gland, and mesenchymal tissues. Somatic DICER1 mutations are also frequently observed in a wide variety of solid tumors, thereby highlighting the importance of this gene in tumor development. In this review, the importance of DICER1 inactivation in endocrine tumors is discussed.
Collapse
|
9
|
Pelletier D, Rivera B, Fabian MR, Foulkes WD. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet 2023; 39:401-414. [PMID: 36863945 DOI: 10.1016/j.tig.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.
Collapse
Affiliation(s)
- Dylan Pelletier
- Department of Human Genetics, Medicine, McGill University, Montreal, QC, Canada; Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Barbara Rivera
- Molecular Mechanisms and Experimental Therapy in Oncology Program - Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Marc R Fabian
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William D Foulkes
- Department of Human Genetics, Medicine, McGill University, Montreal, QC, Canada; Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
10
|
Wolf T, Coca AH, Weingertner N, Chenard MP, Meurgey A, Reita D, Pencreach E, Varlet P, Entz-Werlé N, Lhermitte B. All pineal tumors expressing germ cell tumor markers are not necessarily germ cell tumors: histopathological and molecular study of a midline primary intracranial sarcoma DICER1-mutant. Virchows Arch 2023; 482:431-435. [PMID: 36307659 DOI: 10.1007/s00428-022-03440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
Primary intracranial sarcoma DICER1-mutant is a rare and newly recognized tumor type introduced in the 2021 WHO Classification of Central Nervous System Tumors. It is defined as a spindle cell sarcoma dysplaying eosinophilic intracytoplasmic globules, myogenic differentiation, and DICER1 gene mutation, either somatic or germline. Most reported cases were hemispheric except one, recently described in the pineal region. Here, we report the case of a 12 year-old boy with a pineally located tumor. Despite midline location, poorly differenciated morphology and germ cell marker expression, the association of DICER1 and NF1 hotspot mutations and a specific DNA methylation signature finally lead to the diagnosis of primary intracranial sarcoma DICER1-mutant instead of germ cell tumor. Furthermore, our molecular exploratory results involved a pathway, which was not previously evidenced in those DICER1 mutated cerebral sarcoma that is the canonical Wnt signaling driving likely a part of oncogenesis in this newly described pineal entity.
Collapse
Affiliation(s)
- Thibaut Wolf
- Department of Pathology, University Hospital of Strasbourg, 67098, Strasbourg Cedex, France
| | - Andres Hugo Coca
- Neurosurgery Department, University Hospital of Strasbourg, 67098, Strasbourg Cedex, France
| | - Noelle Weingertner
- Department of Pathology, University Hospital of Strasbourg, 67098, Strasbourg Cedex, France
| | - Marie Pierre Chenard
- Department of Pathology, University Hospital of Strasbourg, 67098, Strasbourg Cedex, France
| | | | - Damien Reita
- Department of Molecular Biology and Oncobiology, University Hospital of Strasbourg, 67098, Cedex, France
| | - Erwan Pencreach
- Department of Molecular Biology and Oncobiology, University Hospital of Strasbourg, 67098, Cedex, France
| | - Pascale Varlet
- Neuropathology department, Sainte-Anne University Hospital, 75674, Paris Cedex 14, France
| | - Natacha Entz-Werlé
- Department of Pediatric Onco-Hematology, University Hospital of Strasbourg, 67098, Strasbourg Cedex, France
| | - Benoît Lhermitte
- Department of Pathology, University Hospital of Strasbourg, 67098, Strasbourg Cedex, France.
| |
Collapse
|
11
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Antonescu CR, Reuter VE, Keohan ML, Hwang S, Chi P. DICER1-Associated Anaplastic Sarcoma of the Kidney With Coexisting Activating PDGFRA D842V Mutations and Response to Targeted Kinase Inhibitors in One Patient. JCO Precis Oncol 2022; 6:e2100554. [PMID: 35797510 DOI: 10.1200/po.21.00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mary Lou Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
13
|
Sauer M, Barletta JA. Proceedings of the North American Society of Head and Neck Pathology, Los Angeles, CA, March 20, 2022: DICER1-Related Thyroid Tumors. Head Neck Pathol 2022; 16:190-199. [PMID: 35307774 PMCID: PMC9018915 DOI: 10.1007/s12105-022-01417-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 10/18/2022]
Abstract
DICER1 syndrome is an autosomal dominant tumor predisposition syndrome caused by germline DICER1 mutations. In the thyroid, DICER1 syndrome is associated with early-onset multinodular goiter and thyroid carcinomas. Subsequent studies have shown that somatic DICER1 mutations, though rare, can occur in follicular-patterned thyroid tumors, such as follicular adenomas and follicular thyroid carcinomas, with a higher rate seen in pediatric follicular thyroid carcinomas and in follicular thyroid carcinomas with a macrofollicular architecture. Somatic DICER1 mutations have also been reported in pediatric papillary thyroid carcinomas lacking other alterations typically associated with thyroid tumorigenesis. Although thyroid carcinomas with underlying DICER1 mutations are usually indolent, recent studies have shown that pediatric poorly differentiated thyroid carcinoma and thyroblastoma, both aggressive tumors, also harbor DICER1 mutations. This review will discuss mechanisms of DICER1 tumorigenesis and describe thyroid tumors associated with germline and somatic DICER1 mutations.
Collapse
Affiliation(s)
- Madeline Sauer
- University of Missouri School of Medicine, Columbia, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Leung SS, Donuru A, Kandula V, Parekh MR, Saul D. Multimodality Imaging of Pleuropulmonary Blastoma: Pearls, Pitfalls, and Differential Diagnosis. Semin Ultrasound CT MR 2022; 43:61-72. [PMID: 35164911 DOI: 10.1053/j.sult.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pleuropulmonary blastomas are rare, potentially aggressive embryonal cancers of the lung parenchyma and pleural surfaces that account for 0.25%-0.5% of primary pulmonary malignancies in children. Pleuropulmonary blastomas are classified as cystic (type I), mixed cystic and solid (type II), and solid (type III). Pleuropulmonary blastoma occurs in the same age group (0-6 years) as other more common solid tumors such as neuroblastoma and Wilms tumor. Differential diagnosis includes metastasis from Wilms tumor and macrocystic congenital pulmonary airway malformation (CPAM). A key pathologic and genetic discriminator is the DICER1 germline mutation found in patients with pleuropulmonary blastoma. Imaging, histopathologic, and clinical data are important to use in conjunction in order to determine the diagnosis and risk stratification of pleuropulmonary blastomas. Survival varies from poor to good, depending on type. However, the spectrum of pleuropulmonary blastoma is insufficiently understood due to the variable presentation of this rare disease. We present a current review of the literature regarding pleuropulmonary blastomas in this article.
Collapse
Affiliation(s)
- Stephan S Leung
- Department of Radiology, Thomas Jefferson University Hospitals, Philadelphia, PA
| | - Achala Donuru
- Department of Radiology, Thomas Jefferson University Hospitals, Philadelphia, PA.
| | - Vinay Kandula
- Department of Medical Imaging, A. I. DuPont Hospital for Children, Wilmington, DE
| | - Maansi R Parekh
- Department of Radiology, Thomas Jefferson University Hospitals, Philadelphia, PA
| | - David Saul
- Department of Medical Imaging, A. I. DuPont Hospital for Children, Wilmington, DE
| |
Collapse
|
15
|
Watanabe T, Soeda S, Endo Y, Okabe C, Sato T, Kamo N, Ueda M, Kojima M, Furukawa S, Nishigori H, Takahashi T, Fujimori K. Rare Hereditary Gynecological Cancer Syndromes. Int J Mol Sci 2022; 23:1563. [PMID: 35163487 PMCID: PMC8835983 DOI: 10.3390/ijms23031563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Hereditary cancer syndromes, which are characterized by onset at an early age and an increased risk of developing certain tumors, are caused by germline pathogenic variants in tumor suppressor genes and are mostly inherited in an autosomal dominant manner. Therefore, hereditary cancer syndromes have been used as powerful models to identify and characterize susceptibility genes associated with cancer. Furthermore, clarification of the association between genotypes and phenotypes in one disease has provided insights into the etiology of other seemingly different diseases. Molecular genetic discoveries from the study of hereditary cancer syndrome have not only changed the methods of diagnosis and management, but have also shed light on the molecular regulatory pathways that are important in the development and treatment of sporadic tumors. The main cancer susceptibility syndromes that involve gynecologic cancers include hereditary breast and ovarian cancer syndrome as well as Lynch syndrome. However, in addition to these two hereditary cancer syndromes, there are several other hereditary syndromes associated with gynecologic cancers. In the present review, we provide an overview of the clinical features, and discuss the molecular genetics, of four rare hereditary gynecological cancer syndromes; Cowden syndrome, Peutz-Jeghers syndrome, DICER1 syndrome and rhabdoid tumor predisposition syndrome 2.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Yuta Endo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Chikako Okabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Tetsu Sato
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Norihito Kamo
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Makiko Ueda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Manabu Kojima
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Shigenori Furukawa
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| | - Hidekazu Nishigori
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan; (H.N.); (T.T.)
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima 960-1295, Japan; (S.S.); (Y.E.); (C.O.); (T.S.); (N.K.); (M.U.); (M.K.); (S.F.); (K.F.)
| |
Collapse
|
16
|
González IA, Stewart DR, Schultz KAP, Field AP, Hill DA, Dehner LP. DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma. Mod Pathol 2022; 35:4-22. [PMID: 34599283 PMCID: PMC8695383 DOI: 10.1038/s41379-021-00905-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
DICER1 syndrome (OMIM 606241, 601200) is a rare autosomal dominant familial tumor predisposition disorder with a heterozygous DICER1 germline mutation. The most common tumor seen clinically is the pleuropulmonary blastoma (PPB), a lung neoplasm of early childhood which is classified on its morphologic features into four types (IR, I, II and III) with tumor progression over time within the first 4-5 years of life from the prognostically favorable cystic type I to the unfavorable solid type III. Following the initial report of PPB, its association with other cystic neoplasms was demonstrated in family studies. The detection of the germline mutation in DICER1 provided the opportunity to identify and continue to recognize a number seemingly unrelated extrapulmonary neoplasms: Sertoli-Leydig cell tumor, gynandroblastoma, embryonal rhabdomyosarcomas of the cervix and other sites, multinodular goiter, differentiated and poorly differentiated thyroid carcinoma, cervical-thyroid teratoma, cystic nephroma-anaplastic sarcoma of kidney, nasal chondromesenchymal hamartoma, intestinal juvenile-like hamartomatous polyp, ciliary body medulloepithelioma, pituitary blastoma, pineoblastoma, primary central nervous system sarcoma, embryonal tumor with multilayered rosettes-like cerebellar tumor, PPB-like peritoneal sarcoma, DICER1-associated presacral malignant teratoid neoplasm and other non-neoplastic associations. Each of these neoplasms is characterized by a second somatic mutation in DICER1. In this review, we have summarized the salient clinicopathologic aspects of these tumors whose histopathologic features have several overlapping morphologic attributes particularly the primitive mesenchyme often with rhabdomyoblastic and chondroid differentiation and an uncommitted spindle cell pattern. Several of these tumors have an initial cystic stage from which there is progression to a high grade, complex patterned neoplasm. These pathologic findings in the appropriate clinical setting should serve to alert the pathologist to the possibility of a DICER1-associated neoplasm and initiate appropriate testing on the neoplasm and to alert the clinician about the concern for a DICER1 mutation.
Collapse
Affiliation(s)
- Iván A. González
- grid.239552.a0000 0001 0680 8770Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Douglas R. Stewart
- grid.48336.3a0000 0004 1936 8075Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
| | - Kris Ann P. Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry, Children’s Minnesota, Minneapolis, MN USA ,Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, MN USA
| | | | - D. Ashley Hill
- International Pleuropulmonary Blastoma/DICER1 Registry, Children’s Minnesota, Minneapolis, MN USA ,ResourcePath LLC, Sterling, VA USA ,grid.253615.60000 0004 1936 9510Division of Pathology, Children’s National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Louis P. Dehner
- International Pleuropulmonary Blastoma/DICER1 Registry, Children’s Minnesota, Minneapolis, MN USA ,grid.411019.cThe Lauren V. Ackerman Laboratory of Surgical Pathology, Barnes-Jewish and St. Louis Children’s Hospitals, Washington University Medical Center, St. Louis, MO USA
| |
Collapse
|
17
|
Tanaka R, Inoue K, Yamada Y, Yoshida M, Shima H, Ito J, Okita H, Miwa T, Kato M, Shimada H. A case of primary CNS embryonal rhabdomyosarcoma with PAX3-NCOA2 fusion and systematic meta-review. J Neurooncol 2021; 154:247-256. [PMID: 34398431 DOI: 10.1007/s11060-021-03823-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Primary central nervous system (CNS) rhabdomyosarcoma is a rare mesenchymal tumor predominantly seen in children and associated with a poor outcome. We report a case of primary CNS rhabdomyosarcoma with PAX3-NCOA2 fusion and present a systematic meta-review of primary CNS rhabdomyosarcoma to characterize this rare tumor. METHODS We present the case of a 6-year-old boy with primary CNS rhabdomyosarcoma in the posterior fossa. In a systematic meta-review, we compare the demographic data of primary CNS rhabdomyosarcoma with data of rhabdomyosarcoma at all sites from the SEER database and analyze clinical factors associated with survival outcome. RESULTS Our patient underwent gross total resection and received vincristine, actinomycin-D, cyclophosphamide with early introduction of concurrent focal radiation and remained alive with no evidence of disease for 2 years after the end of therapy. Histopathological review revealed embryonal-type rhabdomyosarcoma, and whole-transcriptome analysis revealed PAX3 (EX6)-NCOA2 (EX12) fusion. In all, 77 cases of primary CNS rhabdomyosarcoma were identified through the meta-review. The demographic data of primary CNS rhabdomyosarcoma were similar to data of rhabdomyosarcoma at all sites. Overall and event-free survival outcomes were available for 64 and 56 patients, respectively, with a 3-year OS of 29.0% and a 3-year EFS of 25.7%. The group that received trimodal treatment exhibited better survival outcomes, with a 3-year OS of 57.4% and a 3-year EFS of 46.3%. CONCLUSIONS Primary CNS rhabdomyosarcoma shares common histological, molecular, and demographic features with non-CNS rhabdomyosarcoma. A trimodal treatment approach with early introduction of radiation therapy may result in favorable survival outcomes.
Collapse
Affiliation(s)
- Ryuma Tanaka
- Division of Hem/Onc/BMT, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC3018, Milwaukee, WI, 53226, USA. .,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| | - Kyohei Inoue
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Yamada
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.,Department of Pediatric Hematology and Oncology Research, National Center for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Haruko Shima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Jumpei Ito
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoru Miwa
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Shimada
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Kommoss FKF, Stichel D, Mora J, Esteller M, Jones DTW, Pfister SM, Brack E, Wachtel M, Bode PK, Sinn HP, Schmidt D, Mentzel T, Kommoss F, Sahm F, von Deimling A, Koelsche C. Clinicopathologic and molecular analysis of embryonal rhabdomyosarcoma of the genitourinary tract: evidence for a distinct DICER1-associated subgroup. Mod Pathol 2021; 34:1558-1569. [PMID: 33846547 PMCID: PMC8295035 DOI: 10.1038/s41379-021-00804-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022]
Abstract
Embryonal rhabdomyosarcoma (ERMS) of the uterus has recently been shown to frequently harbor DICER1 mutations. Interestingly, only rare cases of extrauterine DICER1-associated ERMS, mostly located in the genitourinary tract, have been reported to date. Our goal was to study clinicopathologic and molecular profiles of DICER1-mutant (DICER1-mut) and DICER1-wild type (DICER1-wt) ERMS in a cohort of genitourinary tumors. We collected a cohort of 17 ERMS including nine uterine (four uterine corpus and five cervix), one vaginal, and seven urinary tract tumors. DNA sequencing revealed mutations of DICER1 in 9/9 uterine ERMS. All other ERMS of our cohort were DICER1-wt. The median age at diagnosis of patients with DICER1-mut and DICER1-wt ERMS was 36 years and 5 years, respectively. Limited follow-up data (available for 15/17 patients) suggested that DICER1-mut ERMS might show a less aggressive clinical course than DICER1-wt ERMS. Histological features only observed in DICER1-mut ERMS were cartilaginous nodules (6/9 DICER1-mut ERMS), in one case accompanied by foci of ossification. Recurrent mutations identified in both DICER1-mut and DICER1-wt ERMS affected KRAS, NRAS, and TP53. Copy number analysis revealed similar structural variations with frequent gains on chromosomes 2, 3, and 8, independent of DICER1 mutation status. Unsupervised hierarchical clustering of array-based whole-genome DNA methylation data of our study cohort together with an extended methylation data set including different RMS subtypes from genitourinary and extra-genitourinary locations (n = 102), revealed a distinct cluster for DICER1-mut ERMS. Such tumors clearly segregated from the clusters of DICER1-wt ERMS, alveolar RMS, and MYOD1-mutant spindle cell and sclerosing RMS. Only one tumor, previously diagnosed as ERMS arising in the maxilla of a 6-year-old boy clustered with DICER1-mut ERMS of the uterus. Subsequent sequencing analysis identified two DICER1 mutations in the latter case. Our results suggest that DICER1-mut ERMS might qualify as a distinct subtype in future classifications of RMS.
Collapse
Affiliation(s)
- Felix K F Kommoss
- Institute of Pathology, Department of General Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Soft-Tissue Sarcoma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jaume Mora
- Department of Pediatric Onco‑Hematology and Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eva Brack
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Peter Karl Bode
- Institute of Pathology and Molecular Pathology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Hans-Peter Sinn
- Institute of Pathology, Department of General Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dietmar Schmidt
- MVZ für Histologie, Zytologie und molekulare Diagnostik Trier GmbH, Trier, Germany
| | | | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus Bodensee, Friedrichshafen, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Christian Koelsche
- Institute of Pathology, Department of General Pathology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
19
|
Nadaf J, de Kock L, Chong AS, Korbonits M, Thorner P, Benlimame N, Fu L, Peet A, Warner J, Ploner O, Shuangshoti S, Albrecht S, Hamel N, Priest JR, Rivera B, Ragoussis J, Foulkes WD. Molecular characterization of DICER1-mutated pituitary blastoma. Acta Neuropathol 2021; 141:929-944. [PMID: 33644822 DOI: 10.1007/s00401-021-02283-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Pituitary blastoma (PitB) has recently been identified as a rare and potentially lethal pediatric intracranial tumor. All cases that have been studied molecularly possess at least one DICER1 pathogenic variant. Here, we characterized nine pituitary samples, including three fresh frozen PitBs, three normal fetal pituitary glands and three normal postnatal pituitary glands using small-RNA-Seq, RNA-Seq, methylation profiling, whole genome sequencing and Nanostring® miRNA analyses; an extended series of 21 pituitary samples was used for validation purposes. These analyses demonstrated that DICER1 RNase IIIb hotspot mutations in PitBs induced improper processing of miRNA precursors, resulting in aberrant 5p-derived miRNA products and a skewed distribution of miRNAs favoring mature 3p over 5p miRNAs. This led to dysregulation of hundreds of 5p and 3p miRNAs and concomitant dysregulation of numerous mRNA targets. Gene expression analysis revealed PRAME as the most significantly upregulated gene (500-fold increase). PRAME is a member of the Retinoic Acid Receptor (RAR) signaling pathway and in PitBs, the RAR, WNT and NOTCH pathways are dysregulated. Cancer Hallmarks analysis showed that PI3K pathway is activated in the tumors. Whole genome sequencing demonstrated a quiet genome with very few somatic alterations. The comparison of methylation profiles to publicly available data from ~ 3000 other central nervous system tumors revealed that PitBs have a distinct methylation profile compared to all other tumors, including pituitary adenomas. In conclusion, this comprehensive characterization of DICER1-related PitB revealed key molecular underpinnings of PitB and identified pathways that could potentially be exploited in the treatment of this tumor.
Collapse
Affiliation(s)
- Javad Nadaf
- Department of Medical Genetics, The Lady Davis Institute, Jewish General Hospital, 3755 Cote St. Catherine Road, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Leanne de Kock
- Department of Medical Genetics, The Lady Davis Institute, Jewish General Hospital, 3755 Cote St. Catherine Road, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Anne-Sophie Chong
- Department of Medical Genetics, The Lady Davis Institute, Jewish General Hospital, 3755 Cote St. Catherine Road, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Paul Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Naciba Benlimame
- Research Pathology Facility, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Lili Fu
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Andrew Peet
- Birmingham Children's NHS Foundation Trust, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Justin Warner
- Department of Child Health, University Hospital of Wales, Heath Park, Cardiff, UK
| | | | - Shanop Shuangshoti
- Department of Pathology and Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Steffen Albrecht
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Nancy Hamel
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Barbara Rivera
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - William D Foulkes
- Department of Medical Genetics, The Lady Davis Institute, Jewish General Hospital, 3755 Cote St. Catherine Road, Montreal, QC, H3T 1E2, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
20
|
Lee M, Kim TI, Jang SJ, Cho KJ, Lee SM, Kim HR, Song JS. Pleuropulmonary Blastoma with Hotspot Mutations in RNase IIIb Domain of DICER 1: Clinicopathologic Study of 10 Cases in a Single-Institute Experience. Pathobiology 2021; 88:251-260. [PMID: 33567437 DOI: 10.1159/000512957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pleuropulmonary blastoma (PPB) is a rare sarcomatous malignancy involving the lung and pleura which occurs in early childhood. Cystic PPB in the early stage can be misdiagnosed as other cystic diseases. Early detection of this entity is important for appropriate treatment and prevention of disease progression. Hotspot mutations in the ribonuclease IIIb (RNase IIIb) domain of DICER1 have been reported to have a crucial role as genetic factors of PPB and DICER1 familial syndrome. We reviewed the clinicopathologic findings of PPB and the status of DICER1 hotspot mutation and patients' clinical course. METHODS We retrospectively reviewed all patients with histologically confirmed PPB at Asan Medical Center between 2000 and 2017. Ten cases were identified in the database, and their clinicopathologic parameters were evaluated. PPB was classified into the following 3 pathologic subtypes: type I (purely cystic), type II (mixed cystic and solid), and type III (entirely solid). The status of DICER1 mutation in 2 hotspot regions of the RNase IIIb domain was evaluated by Sanger sequencing. RESULTS The most frequent PPB type was II (6 cases), followed by I and III (2 cases each). The age at diagnosis ranged from 16 months to 15 years. All patients underwent surgery, and all patients received adjuvant or neoadjuvant chemotherapy. Four of 7 patients had missense mutations in the RNase IIIb hotspot; the base and predicted corresponding amino acid changes were c.5113 G>A (p.E1705K), c.5407 G>A (p.E1803K), c.5425 G>A (p.G1809R), and c.5428 G>T (p.D1810Y). There was no particular association between the presence of the hotspot mutation and histologic type. Nine patients survived with no evidence of disease for a median interval of 93 (range, 13-199) months. Only 1 patient diagnosed with type III PPB at the age of 18 years had recurrence after 20.8 months and eventually died 66 months after the initial diagnosis. CONCLUSIONS Late detection of solid PPB is associated with poor prognosis. Considering the rarity of PPB disease and the importance of DICER1 hotspot mutation in pathogenesis, DICER1 hotspot mutation testing and identification in the early cystic stage can improve patient outcomes.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Im Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung-Ja Cho
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyeong Ryul Kim
- Department of Cardiovascular and Thoracic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Seon Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea,
| |
Collapse
|
21
|
Vasta LM, Khan NE, Higgs CP, Harney LA, Carr AG, Harris AK, Schultz KAP, McMaster ML, Stewart DR. Hematologic indices in individuals with pathogenic germline DICER1 variants. Blood Adv 2021; 5:216-223. [PMID: 33570641 PMCID: PMC7805337 DOI: 10.1182/bloodadvances.2020002651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogenic germline variants in DICER1 underlie an autosomal dominant, pleiotropic tumor-predisposition disorder. Murine models with the loss of DICER1 in hematopoietic stem cell progenitors demonstrate hematologic aberrations that include reductions in red and white blood cell counts, hemoglobin volume, and impaired maturation resulting in dysplasia. We investigated whether hematologic abnormalities such as those observed in DICER1-deficient mice were observed in humans with a pathogenic germline variant in DICER1. A natural history study of individuals with germline pathogenic DICER1 variants and family controls conducted through the National Cancer Institute (NCI) evaluated enrollees at the National Institutes of Health Clinical Center during a comprehensive clinical outpatient visit that included collecting routine clinical laboratory studies. These were compared against normative laboratory values and compared between the DICER1 carriers and controls. There were no statistical differences in routine clinical hematology laboratory studies observed in DICER1 carriers and family controls. A review of the medical history of DICER1 carriers showed that none of the individuals in the NCI cohort developed myelodysplastic syndrome or leukemia. Query of the International Pleuropulmonary Blastoma/DICER1 Registry revealed 1 DICER1 carrier who developed a secondary leukemia after treatment of pleuropulmonary blastoma. We found limited evidence that the hematologic abnormalities observed in murine DICER1 models developed in our cohort of DICER1 carriers. In addition, no cases of myelodysplastic syndrome were observed in either the NCI cohort or the International Pleuropulmonary Blastoma/DICER1 Registry; 1 case of presumed secondary leukemia was reported. Abnormalities in hematologic indices should not be solely attributed to DICER1. This trial was registered at www.clinicaltrials.gov as #NCT01247597.
Collapse
Affiliation(s)
- Lauren M Vasta
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
- National Capital Consortium, Walter Reed National Military Medical Center, Bethesda, MD
| | - Nicholas E Khan
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
- Rush Medical College, Chicago, IL
| | - Cecilia P Higgs
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | | | - Anne K Harris
- International Pleuropulmonary Blastoma/DICER1 Registry
- Cancer and Blood Disorders, and
- International Ovarian and Testicular Stromal Tumor Registry, Children's Minnesota, Minneapolis, MN; and
| | - Kris Ann P Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry
- Cancer and Blood Disorders, and
- International Ovarian and Testicular Stromal Tumor Registry, Children's Minnesota, Minneapolis, MN; and
| | - Mary L McMaster
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
- Commissioned Corps of the United States Public Health Service, Department of Health and Human Services, Washington, DC
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
22
|
Alipour Z, Schultz KAP, Chen L, Harris AK, Gonzalez IA, Pfeifer J, Hill DA, He M, Dehner LP. Programmed Death Ligand 1 Expression and Related Markers in Pleuropulmonary Blastoma. Pediatr Dev Pathol 2021; 24:523-530. [PMID: 34266329 PMCID: PMC9196202 DOI: 10.1177/10935266211027417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Pleuropulmonary blastoma (PPB), a rare childhood neoplasm of the lung, is linked to pathogenic DICER1 variants. We investigated checkpoint inhibitor markers including Programmed Death Ligand 1 (PD-L1), PD1, CD8 and tumor mutational burden (TMB) in PPB. MATERIAL AND METHODS Cases were collected from departmental archives and the International PPB/DICER1 Registry. Immunohistochemistry (IHC) for PD-L1, PD-1, CD8 and DNA mismatch repair (MMR) genes were performed. In addition, normal-tumor paired whole exome sequencing (WES) was performed in two cases. RESULTS Twenty-five PPB cases were studied, consisting of Type I (n = 8, including 2 Ir), Type II (n = 8) and Type III (n = 9). PD-L1 combined positive score (CPS) of 1, 4 and 80 was seen in three (3/25, 12.0%) cases of Type II PPB with negative staining in the remaining cases. PD-1 and CD8 stains demonstrated positive correlation (P < .05). The density of PD1 and CD8 in the interface area was higher than within tumor (P < .05). The MMR proteins were retained. TMB was 0.65 mutations/Mb in type II PPB with high expression of PD-L1, and 0.94 mutations/Mb in one negative PD-L1 case with metastatic tumor. CONCLUSION A small subpopulation of PPB patient might benefit from checkpoint immunotherapy due to positive PD-L1 staining.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kris Ann P. Schultz
- International Pleuropulmonary Blastoma/DICER1 Registry, Children's Minnesota, Minneapolis, Minnesota
- Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, Minnesota
| | - Ling Chen
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Anne K. Harris
- International Pleuropulmonary Blastoma/DICER1 Registry, Children's Minnesota, Minneapolis, Minnesota
- Cancer and Blood Disorders Program, Children's Minnesota, Minneapolis, Minnesota
| | - Ivan A. Gonzalez
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - John Pfeifer
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - D. Ashley Hill
- Department of Pathology, Center for Cancer and Immunology Research, Children's National Medical Center, Washington D.C
| | - Mai He
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Louis P. Dehner
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
23
|
Apellaniz-Ruiz M, McCluggage WG, Foulkes WD. DICER1-associated embryonal rhabdomyosarcoma and adenosarcoma of the gynecologic tract: Pathology, molecular genetics, and indications for molecular testing. Genes Chromosomes Cancer 2020; 60:217-233. [PMID: 33135284 DOI: 10.1002/gcc.22913] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Gynecologic sarcomas are uncommon neoplasms, the majority occurring in the uterus. Due to the diverse nature of these, the description of "new" morphological types and the rarity of some of them, pathological diagnosis and treatment is often challenging. Finding genetic alterations specific to, and frequently occurring, in a certain type can aid in the diagnosis. DICER1 is a highly conserved ribonuclease crucial in the biogenesis of microRNAs and mutations in DICER1 (either somatic or germline) have been detected in a wide range of sarcomas including genitourinary embryonal rhabdomyosarcomas (ERMS) and adenosarcomas. Importantly, DICER1-associated sarcomas share morphological features irrespective of the site of origin such that the pathologist can strongly suspect a DICER1 association. A review of the literature shows that almost all gynecologic ERMS reported (outside of the vagina) harbor DICER1 alterations, while approximately 20% of adenosarcomas also do so. These two tumor types exhibit significant morphological overlap and DICER1 tumor testing may be helpful in distinguishing between them, because a negative result makes ERMS unlikely. Given that germline pathogenic DICER1 variants are frequent in uterine (corpus and cervix) ERMS and pathogenic germline variants in this gene cause a hereditary cancer predisposition syndrome (DICER1 syndrome), patients diagnosed with these neoplasms should be referred to medical genetic services. Cooperation between pathologists and geneticists is crucial and will help in improving the diagnosis and management of these uncommon sarcomas.
Collapse
Affiliation(s)
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Rabban JT, Karnezis AN, Devine WP. Practical roles for molecular diagnostic testing in ovarian adult granulosa cell tumour, Sertoli-Leydig cell tumour, microcystic stromal tumour and their mimics. Histopathology 2020; 76:11-24. [PMID: 31846522 DOI: 10.1111/his.13978] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the last decade, molecular advances have provided insights into the genetics of several ovarian sex cord-stromal tumours that have otherwise been enigmatic. Chief among these advances are the identification of FOXL2, DICER1 and CTNNB1 mutations in adult granulosa cell tumours, Sertoli-Leydig cell tumours (SLCTs), and microcystic stromal tumours (MCSTs), respectively. As access to molecular diagnostic laboratories continues to become more widely available, the potential roles for tumour mutation testing in the pathological diagnosis of these tumours merit discussion. Furthermore, links to inherited cancer susceptibility syndromes may exist for some women with SLCT (DICER1 syndrome) and MCST [familial adenomatous polyposis (FAP)]. This review will address practical issues in deciding when and how to apply mutation testing in the diagnosis of these three sex cord-stromal tumours. The pathologist's role in recommending referral for formal risk assessment for DICER1 syndrome and FAP will also be discussed.
Collapse
Affiliation(s)
- Joseph T Rabban
- Pathology Department, University of California San Francisco, San Francisco, CA, USA
| | - Anthony N Karnezis
- Pathology Department, University of California Davis, Sacramento, CA, USA
| | - W Patrick Devine
- Clinical Cancer Genomics Laboratory and Pathology Department, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Macrofollicular Variant of Follicular Thyroid Carcinoma (MV-FTC) with a Somatic DICER1 Gene Mutation: Case Report and Review of the Literature. Head Neck Pathol 2020; 15:668-675. [PMID: 32712880 PMCID: PMC8134796 DOI: 10.1007/s12105-020-01208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
Benign thyroid lesions such as multinodular goiter and adenomatoid nodules are well-circumscribed lesions displaying a macrofollicular growth pattern and lack of nuclear atypia. The highly unusual macrofollicular variant of follicular thyroid carcinoma (MV-FTC) mirrors these attributes and is thereby misclassified by cytological examination of fine-needle aspiration biopsies. The MV-FTC diagnosis is instead suggested following histological investigation, in which malignant attributes, most commonly capsular invasion, are noted. The bulk of MV-FTCs described in the literature arise in younger female patients and carry an excellent prognosis. A recent coupling to mutations in the DICER1 tumor suppressor gene has been proposed, possibly indicating aberrancies in micro-RNA (miRNA) patterns as responsible of the tumorigenic process. We describe the cytological, histological and molecular phenotype of a 35 mm large MV-FTC arising in the right thyroid lobe of a 33-year-old female with a family history of multinodular goiter. The tumor was encapsulated and strikingly inconspicuous in terms of cellularity and atypia, but nevertheless displayed multiple foci with capsular invasion. A next-generation molecular screening of tumor DNA revealed missense variants in DICER1 (p. D1709N) and MET (p. T1010I), but no established fusion gene events. After sequencing of germline DNA, the DICER1 mutation was confirmed as somatic, while the MET variant was constitutional. The patient is alive and well, currently awaiting radioiodine treatment. This MV-FTC mirrors previous publications, suggesting that these tumors carry a favorable prognosis and predominantly arise in younger females. Moreover, DICER1 mutations should be considered a common driver event in the development of MV-FTCs.
Collapse
|
26
|
Poorly differentiated thyroid carcinoma of childhood and adolescence: a distinct entity characterized by DICER1 mutations. Mod Pathol 2020; 33:1264-1274. [PMID: 31937902 PMCID: PMC7329587 DOI: 10.1038/s41379-020-0458-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022]
Abstract
Poorly differentiated thyroid carcinomas (PDTC) in young individuals are rare and their clinical and histopathologic features, genetic mechanisms, and outcomes remain largely unknown. Here, we report a detailed characterization of a series of six PDTC in patients ≤21 years old defined by Turin diagnostic criteria studied for mutations and gene fusions characteristic of thyroid cancer using targeted next-generation sequencing (NGS) and whole-exome sequencing (WES). All tumors had solid, insular, or trabecular growth pattern and high mitotic rate, and five out of six tumors showed tumor necrosis. Targeted NGS assay identified somatic mutations in the DICER1 gene in five of six (83%) tumors, all of which were "hotspot" mutations encoding the metal-ion binding sites of the RNase IIIb domain of DICER1. WES was performed in five cases which confirmed all hotspot mutations and detected two tumors with additional inactivating DICER1 alterations. Of these two, one was a germline pathogenic DICER1 variant and the other had loss of heterozygosity for DICER1. No other mutations or gene fusions characteristic of adult well-differentiated thyroid cancer and PDTC (BRAF, RAS, TERT, RET/PTC, and other) were detected. On follow-up, available for five patients, three patients died of disease 8-24 months after diagnosis, whereas two were alive with no disease. The results of our study demonstrate that childhood- and adolescent-onset PDTC are genetically distinct from adult-onset PDTC in that they are strongly associated with DICER1 mutations and may herald DICER1 syndrome in a minority. As such, all young persons with PDTC may benefit from genetic counseling. Furthermore, their clinically aggressive behavior contrasts sharply with the indolent nature of the great majority of thyroid tumors with DICER1 mutations reported to date.
Collapse
|
27
|
Identification of Homozygous Somatic DICER1 Mutation in Pleuropulmonary Blastoma. J Pediatr Hematol Oncol 2020; 42:307-309. [PMID: 30585947 DOI: 10.1097/mph.0000000000001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pleuropulmonary blastoma (PPB) is a rare, progressive, and aggressive malignant intrathoracic tumor observed during childhood. Mutations in the DICER1 gene have been considered a major etiologic factor of PPB and cause a variety of tumor types in children and young adults. We present a 3-year-old boy with type II PPB. Multimodal treatment consisting of surgery and neoadjuvant chemotherapy was effective. DICER1 mutations were examined by Sanger sequencing, microarray comparative genomic hybridization, and microsatellite markers. The results revealed that a somatic biallelic DICER1 mutation with uniparental disomy was present in the tumor tissue.
Collapse
|
28
|
de Kock L, Priest JR, Foulkes WD, Alexandrescu S. An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol 2020; 139:689-701. [PMID: 30953130 DOI: 10.1007/s00401-019-01997-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
DICER1 syndrome is a rare tumor predisposition syndrome with manifestations that predominantly affect children and young adults. The syndrome is typically caused by heterozygous germline loss-of-function DICER1 alterations accompanied on the other allele by somatic missense mutations occurring at one of a few mutation hotspots within the sequence encoding the RNase IIIb domain. DICER1 encodes a member of the microRNA biogenesis machinery. The syndrome spectrum is highly pleiotropic and features a unique constellation of benign and malignant neoplastic and dysplastic lesions. Pleuropulmonary blastoma (PPB), the most common primary lung cancer in children, is the hallmark tumor of the syndrome. Other manifestations include ovarian Sertoli-Leydig cell tumor, cystic nephroma arising in childhood, multinodular goiter, thyroid carcinoma, anaplastic sarcoma of the kidney, embryonal rhabdomyosarcoma, and nasal chondromesenchymal hamartoma, in addition to other rare entities. Several central nervous system (CNS) manifestations have also been defined, including metastases of PPB to the cerebrum, pituitary blastoma, pineoblastoma, ciliary body medulloepithelioma, and most recently primary DICER1-associated CNS sarcomas and ETMR-like infantile cerebellar embryonal tumor. Macrocephaly is a recently reported non-neoplastic, haploinsufficient phenotype. In this manuscript, we review the CNS manifestations of DICER1 syndrome.
Collapse
Affiliation(s)
- Leanne de Kock
- Department of Human Genetics, McGill University, 3640 Rue University, Room W-315D, Montreal, QC, H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Cote-Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | | | - William D Foulkes
- Department of Human Genetics, McGill University, 3640 Rue University, Room W-315D, Montreal, QC, H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Cote-Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Bader 104, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Lambo S, Gröbner SN, Rausch T, Waszak SM, Schmidt C, Gorthi A, Romero JC, Mauermann M, Brabetz S, Krausert S, Buchhalter I, Koster J, Zwijnenburg DA, Sill M, Hübner JM, Mack N, Schwalm B, Ryzhova M, Hovestadt V, Papillon-Cavanagh S, Chan JA, Landgraf P, Ho B, Milde T, Witt O, Ecker J, Sahm F, Sumerauer D, Ellison DW, Orr BA, Darabi A, Haberler C, Figarella-Branger D, Wesseling P, Schittenhelm J, Remke M, Taylor MD, Gil-da-Costa MJ, Łastowska M, Grajkowska W, Hasselblatt M, Hauser P, Pietsch T, Uro-Coste E, Bourdeaut F, Masliah-Planchon J, Rigau V, Alexandrescu S, Wolf S, Li XN, Schüller U, Snuderl M, Karajannis MA, Giangaspero F, Jabado N, von Deimling A, Jones DTW, Korbel JO, von Hoff K, Lichter P, Huang A, Bishop AJR, Pfister SM, Korshunov A, Kool M. The molecular landscape of ETMR at diagnosis and relapse. Nature 2019; 576:274-280. [PMID: 31802000 PMCID: PMC6908757 DOI: 10.1038/s41586-019-1815-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.
Collapse
Affiliation(s)
- Sander Lambo
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne N Gröbner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Christin Schmidt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aparna Gorthi
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - July Carolina Romero
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Monika Mauermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Krausert
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivo Buchhalter
- Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Norman Mack
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Schwalm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Volker Hovestadt
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Papillon-Cavanagh
- Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pablo Landgraf
- Department of Pediatrics, Pediatric Oncology and Hematology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ben Ho
- Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Sumerauer
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czech Republic
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Anna Darabi
- Department of Clinical Sciences Lund, Section of Neurosurgery, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Dominique Figarella-Branger
- Aix-Marseille University, Neurophysiopathology Institute (INP), CNRS, Marseille, France
- Department of Pathology, APHM, Marseille, France
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/location VUmc, Amsterdam, The Netherlands
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tübingen, Tübingen, Germany
- Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital of Tübingen, Tübingen, Germany
| | - Marc Remke
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Maria J Gil-da-Costa
- Pediatric Hematology and Oncology Division, University Hospital São João Alameda Hernani Monteiro, Porto, Portugal
| | - Maria Łastowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Wiesława Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center of the German Society of Neuropathology and Neuroanatomy, University of Bonn Medical Center, Bonn, Germany
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Paris Sciences Lettres Research University, Curie Institute, Paris, France
| | - Julien Masliah-Planchon
- Pediatric Oncology Department, SIREDO Pediatric Oncology Centre, Curie Institute, Paris, France
- Paris Sciences et Lettres Research University, Institut Curie Hospital, Laboratory of Somatic Genetics, Paris, France
| | - Valérie Rigau
- Department of Pathology, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier (INM), INSERM U1051, Montpellier University Hospital, Montpellier, France
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephan Wolf
- Genomics and Proteomics Core Facility, High Throughput Sequencing Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiao-Nan Li
- Brain Tumor Program, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Matthias A Karajannis
- Division of Pediatric Hematology/Oncology, NYU Langone Medical Center, The Stephen D. Hassenfeld Children's Center for Cancer and Blood Disorders, New York, NY, USA
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed-Mediterranean Neurological Institute, Pozzilli, Italy
| | - Nada Jabado
- Department of Pediatrics, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Andreas von Deimling
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology/Hematology, Charité University Medicine, Berlin, Germany
- Department for Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Lichter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annie Huang
- Division of Hematology/Oncology Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, Medical Biophysics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander J R Bishop
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
Kock L, Wu MK, Foulkes WD. Ten years of
DICER1
mutations: Provenance, distribution, and associated phenotypes. Hum Mutat 2019; 40:1939-1953. [DOI: 10.1002/humu.23877] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Leanne Kock
- Department of Human Genetics McGill University Montréal Québec Canada
- Cancer Axis Lady Davis Institute, Jewish General Hospital Montréal Québec Canada
| | - Mona K. Wu
- Department of Human Genetics McGill University Montréal Québec Canada
- Cancer Axis Lady Davis Institute, Jewish General Hospital Montréal Québec Canada
| | - William D. Foulkes
- Department of Human Genetics McGill University Montréal Québec Canada
- Cancer Axis Lady Davis Institute, Jewish General Hospital Montréal Québec Canada
- Cancer Research Program Research Institute of the McGill University Health Centre Montreal Quebec Canada
| |
Collapse
|
31
|
Vedanayagam J, Chatila WK, Aksoy BA, Majumdar S, Skanderup AJ, Demir E, Schultz N, Sander C, Lai EC. Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis. Nat Commun 2019; 10:3682. [PMID: 31417090 PMCID: PMC6695490 DOI: 10.1038/s41467-019-11610-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/25/2019] [Indexed: 11/09/2022] Open
Abstract
Somatic mutations in the RNase IIIb domain of DICER1 arise in cancer and disrupt the cleavage of 5' pre-miRNA arms. Here, we characterize an unstudied, recurrent, mutation (S1344L) in the DICER1 RNase IIIa domain in tumors from The Cancer Genome Atlas (TCGA) project and MSK-IMPACT profiling. RNase IIIa/b hotspots are absent from most cancers, but are notably enriched in uterine cancers. Systematic analysis of TCGA small RNA datasets show that DICER1 RNase IIIa-S1344L tumors deplete 5p-miRNAs, analogous to RNase IIIb hotspot samples. Structural and evolutionary coupling analyses reveal constrained proximity of RNase IIIa-S1344 to the RNase IIIb catalytic site, rationalizing why mutation of this site phenocopies known hotspot alterations. Finally, examination of DICER1 hotspot endometrial tumors reveals derepression of specific miRNA target signatures. In summary, comprehensive analyses of DICER1 somatic mutations and small RNA data reveal a mechanistic aspect of pre-miRNA processing that manifests in specific cancer settings.
Collapse
Affiliation(s)
- Jeffrey Vedanayagam
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Walid K Chatila
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Bülent Arman Aksoy
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Immunology and Microbiology Department, Medical University of South Carolina, Charleston, SC, 29412, USA
| | - Sonali Majumdar
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Anders Jacobsen Skanderup
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Emek Demir
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.,Oregon Health and Science University, Computational Biology Program, Portland, OR, 97239, USA
| | - Nikolaus Schultz
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Departments of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chris Sander
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA. .,cBio Center, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Eric C Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA. .,Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Stewart DR, Best AF, Williams GM, Harney LA, Carr AG, Harris AK, Kratz CP, Dehner LP, Messinger YH, Rosenberg PS, Hill DA, Schultz KAP. Neoplasm Risk Among Individuals With a Pathogenic Germline Variant in DICER1. J Clin Oncol 2019; 37:668-676. [PMID: 30715996 PMCID: PMC6553836 DOI: 10.1200/jco.2018.78.4678] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE DICER1 syndrome is an autosomal-dominant, pleiotropic tumor-predisposition disorder caused by pathogenic germline variants in DICER1. We sought to quantify risk, hazard rates, and the probability of neoplasm incidence accounting for competing risks ("cumulative incidence") of neoplasms (benign and malignant) and standardized incidence ratios for malignant tumors in individuals with DICER1 pathogenic variation. PATIENTS AND METHODS We combined data from three large cohorts of patients who carry germline pathogenic variation in DICER1. To reduce ascertainment bias, we distinguished probands from nonprobands. Neoplasm diagnoses were confirmed by review of pathology reports and/or central review of surgical pathology materials. Standardized cancer incidence ratios were determined relative to the SEER program, which does not capture all DICER1-associated neoplasms. For all malignancies and benign tumors ("neoplasms," excluding type Ir pleuropulmonary blastoma and thyroid nodules), we used the Kaplan-Meier method and nonparametric cumulative incidence curves to estimate neoplasm-free survival. RESULTS We calculated the age at first neoplasm diagnosis (systematically ascertained cancers plus DICER1-associated neoplasms pleuropulmonary blastoma, cystic nephroma, and nasal chondromesenchymal hamartoma) in 102 female and male nonproband DICER1 carriers. By age 10 years, 5.3% (95% CI, 0.6% to 9.7%) of nonproband DICER1 carriers had developed a neoplasm (females, 4.0%; males, 6.6%). By age 50 years, 19.3% (95% CI, 8.4% to 29.0%) of nonprobands had developed a neoplasm (females, 26.5%; males, 10.2%). After age 10 years, female risk was elevated compared with male risk. Standardized cancer incidence ratio analysis of 102 nonproband DICER1 carriers, which represented 3,344 person-years of observation, showed significant cancer excesses overall, particularly of gynecologic and thyroid cancers. CONCLUSION This work provides the first quantitative analysis of site-specific neoplasm risk and excess malignancy risk in 102 systematically characterized nonproband DICER1 carriers. Our findings inform DICER1 syndrome phenotype, natural history, and genetic counseling.
Collapse
Affiliation(s)
| | | | - Gretchen M. Williams
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
- International Pleuropulmonary Blastoma/DICER1 Registry, Minneapolis, MN
| | | | | | - Anne K. Harris
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
- International Pleuropulmonary Blastoma/DICER1 Registry, Minneapolis, MN
- International Ovarian and Testicular Stromal Tumor Registry, Minneapolis, MN
| | | | - Louis P. Dehner
- International Pleuropulmonary Blastoma/DICER1 Registry, Minneapolis, MN
- International Ovarian and Testicular Stromal Tumor Registry, Minneapolis, MN
- Washington University, St. Louis, MO
| | - Yoav H. Messinger
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
- International Pleuropulmonary Blastoma/DICER1 Registry, Minneapolis, MN
| | | | - D. Ashley Hill
- Children's National Health System, Washington, DC
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kris Ann P. Schultz
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN
- International Pleuropulmonary Blastoma/DICER1 Registry, Minneapolis, MN
- International Ovarian and Testicular Stromal Tumor Registry, Minneapolis, MN
| |
Collapse
|
33
|
Kim J, Schultz KAP, Hill DA, Stewart DR. The prevalence of germline DICER1 pathogenic variation in cancer populations. Mol Genet Genomic Med 2019; 7:e555. [PMID: 30672147 PMCID: PMC6418698 DOI: 10.1002/mgg3.555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The DICER1 syndrome is an autosomal dominant tumor-predisposition disorder associated with pleuropulmonary blastoma, a rare pediatric lung cancer. Somatic missense variation in "hotspot" codons in the RNaseIIIb domain (E1705, D1709, G1809, D1810, E1813) is observed in DICER1-associated tumors. Previously, we found the prevalence of germline pathogenic DICER1 variation in the general population is 1:10,600. In this study, we investigated the prevalence of pathogenic DICER1 germline variation in The Cancer Genome Atlas (TCGA; 32 adult cancer types; 9,173 exomes) and the Therapeutically Applicable Research to Generate Effective Treatment (TARGET; two pediatric cancer types; 175 exomes) cohorts. METHODS All datasets were annotated and binned into four categories: pathogenic, likely pathogenic, variant of unknown significance, or likely benign. RESULTS The prevalence of DICER1 pathogenic variants was 1:4,600 in TCGA. A single participant with a uterine corpus endometrial carcinoma harbored two pathogenic germline DICER1 (hotspot and splice-donor) variants, and a single participant with a rectal adenocarcinoma harbored a germline DICER1 stop-gained variant. In the smaller TARGET dataset, we observed no pathogenic germline variants. CONCLUSION This is the largest comprehensive analysis of DICER1 pathogenic variation in adult and pediatric cancer populations using publicly available data. The observation of germline DICER1 variation with uterine corpus endometrial carcinoma merits additional investigation.
Collapse
Affiliation(s)
- Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIHRockvilleMaryland
| | - Kris Ann P. Schultz
- Cancer and Blood DisordersChildren's MinnesotaMinneapolisMinnesota
- International Pleuropulmonary Blastoma/DICER1 RegistryMinneapolisMinnesota
- International Ovarian and Testicular Stromal Tumor RegistryMinneapolisMinnesota
| | - Dana Ashley Hill
- Division of Pathology and Center for Cancer and Immunology ResearchChildren’s National Health SystemWashingtonDistrict of Columbia
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIHRockvilleMaryland
| |
Collapse
|
34
|
Kimura S, Hasegawa D, Yoshimoto Y, Seki M, Daida A, Sekiguchi M, Hirabayashi S, Hosoya Y, Kobayashi M, Miyano S, Ogawa S, Takita J, Manabe A. Duplication of ALK F1245 missense mutation due to acquired uniparental disomy associated with aggressive progression in a patient with relapsed neuroblastoma. Oncol Lett 2019; 17:3323-3329. [PMID: 30867766 PMCID: PMC6396392 DOI: 10.3892/ol.2019.9985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Recent genome-wide analysis of neuroblastoma (NBL) revealed amplification and heterozygous mutation of anaplastic lymphoma kinase (ALK) are responsible for oncogenicity, frequently observed during relapses. A 3-year-old girl with relapsed high-risk NBL had a heterozygous ALK F1245L mutation at diagnosis, which became homozygous due to uniparental disomy (UPD) of the entire chromosome 2, confirmed by single nucleotide polymorphism array and variant allele frequency of this mutation. The ALK inhibitor, crizotinib, failed to control the tumor and the patient died of the disease. Further genomic analysis using targeted capture sequencing for 381 genes related to pediatric cancers identified more alterations acquired at relapse, such as TSC complex subunit 2 and protein tyrosine phosphatase receptor type D. In addition to these several acquired mutations, this extremely rare duplication of ALK mutation might explain the aggressive clinical course after relapse, because acquired UPD, resulting in the duplication of an oncogenic mutation, has been reported for various neoplasms. Although a clinical benefit of ALK inhibitors in patients with NBL has not been confirmed yet, a treatment based on the ALK mutation status will be promising in future using more potent next-generation ALK inhibitors.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan.,Department of Pediatrics, The University of Tokyo, Tokyo 113-8654, Japan.,Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Minami, Hiroshima 734-8553, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan
| | - Yuri Yoshimoto
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan
| | - Masafumi Seki
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8654, Japan
| | - Atsuro Daida
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan
| | - Masahiro Sekiguchi
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shinsuke Hirabayashi
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan
| | - Yosuke Hosoya
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Minami, Hiroshima 734-8553, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junko Takita
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8654, Japan
| | - Atsushi Manabe
- Department of Pediatrics, St Luke's International Hospital, Tokyo 104-8560, Japan
| |
Collapse
|
35
|
Robertson JC, Jorcyk CL, Oxford JT. DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers (Basel) 2018; 10:cancers10050143. [PMID: 29762508 PMCID: PMC5977116 DOI: 10.3390/cancers10050143] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
DICER1 syndrome is a rare genetic disorder that predisposes individuals to multiple cancer types. Through mutations of the gene encoding the endoribonuclease, Dicer, DICER1 syndrome disrupts the biogenesis and processing of miRNAs with subsequent disruption in control of gene expression. Since the first description of DICER1 syndrome, case reports have documented novel germline mutations of the DICER1 gene in patients with cancers as well as second site mutations that alter the function of the Dicer protein expressed. Here, we present a review of mutations in the DICER1 gene, the respective protein sequence changes, and clinical manifestations of DICER1 syndrome. Directions for future research are discussed.
Collapse
Affiliation(s)
- Jake C Robertson
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725-1511, USA.
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725-1511, USA.
| |
Collapse
|
36
|
Chen KS, Stuart SH, Stroup EK, Shukla AS, Wang J, Rajaram V, Vujanic GM, Slone T, Rakheja D, Amatruda JF. Distinct DICER1 Hotspot Mutations Identify Bilateral Tumors as Separate Events. JCO Precis Oncol 2018; 2. [PMID: 31893257 PMCID: PMC6938390 DOI: 10.1200/po.17.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | | | | | - Jason Wang
- University of Texas Southwestern Medical Center
| | | | | | - Tamra Slone
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
37
|
Garg K, Karnezis AN, Rabban JT. Uncommon hereditary gynaecological tumour syndromes: pathological features in tumours that may predict risk for a germline mutation. Pathology 2018; 50:238-256. [PMID: 29373116 DOI: 10.1016/j.pathol.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022]
Abstract
The most common hereditary gynaecological tumour syndromes are hereditary breast and ovarian cancer syndrome and Lynch syndrome. However, pathologists also may encounter gynaecological tumours in women with rare hereditary syndromes. Many of these tumours exhibit distinctive gross and microscopic features that are associated with a risk for an inherited gene mutation. The sensitivity and specificity of these tumour pathology features for predicting an inherited mutation vary depending on the syndrome. By recognising these tumour features, pathologists may potentially contribute to the diagnosis of an unsuspected syndrome by recommending referral of the patient for formal risk assessment by genetic counselling. Patients additionally benefit from diagnosis of an inherited syndrome because many also carry a lifetime risk for developing primary malignancies outside of the gynaecological tract. Early diagnosis of an inherited syndrome permits early screening, detection, and management of additional malignancies associated with the syndrome. This review highlights these rare syndromes and their tumour pathology, including Peutz-Jeghers syndrome (gastric type mucinous carcinoma of the cervix; ovarian sex cord tumour with annular tubules); hereditary leiomyoma renal cell carcinoma syndrome (uterine leiomyoma); tuberous sclerosis complex (uterine PEComa; uterine lymphangioleiomyomatosis); DICER1 syndrome (ovarian Sertoli-Leydig cell tumour; cervical embryonal rhabdomyosarcoma); rhabdoid tumour predisposition syndrome 2 (small cell carcinoma of the ovary, hypercalcaemic type); Cowden syndrome (endometrial endometrioid adenocarcinoma); naevoid basal cell carcinoma syndrome (ovarian fibroma); and Von Hippel-Lindau syndrome (clear cell papillary cystadenoma of the broad ligament).
Collapse
Affiliation(s)
- Karuna Garg
- University of California San Francisco, Pathology Department, San Francisco, CA, United States
| | - Anthony N Karnezis
- University of British Columbia, Department of Pathology and Laboratory Medicine, Vancouver, Canada
| | - Joseph T Rabban
- University of California San Francisco, Pathology Department, San Francisco, CA, United States.
| |
Collapse
|
38
|
Anaplastic sarcomas of the kidney are characterized by DICER1 mutations. Mod Pathol 2018; 31:169-178. [PMID: 28862265 DOI: 10.1038/modpathol.2017.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/11/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022]
Abstract
Anaplastic sarcoma of the kidney is a rare tumor (≤25 reported cases) characterized by the presence of cysts, and solid areas composed of bundles of undifferentiated spindle cells, showing marked cellular anaplasia (usually accompanied by TP53 overexpression). These tumors often feature prominent areas of cartilage or chondroid material. Germline mutations in DICER1, encoding the microRNA (miRNA) processor DICER1, cause an eponymous syndrome. Recent reports suggest that anaplastic sarcoma of the kidney should be included in DICER1 syndrome as germline DICER1 mutations are associated with the occurrence of such tumors. Therefore, we sought to determine the following: (1) what proportion of anaplastic sarcoma of the kidney have DICER1 mutations; (2) whether the identified mutations affect both alleles of DICER1 (ie, are biallelic); (3) whether somatic missense mutations in the DICER1 RNase IIIb domain impact miRNA generation; and (4) whether TP53 alteration always occurs in these tumors. DICER1 mutations were evaluated by Sanger sequencing and next-generation sequencing in nine tumor/normal pairs. Impact of DICER1 mutations on miRNA generation was evaluated via an in vitro DICER1 cleavage assay. TP53 status was assessed by immunohistochemistry and next-generation sequencing. Eight of the nine cases had at least one RNase IIIb DICER1 mutation that impacted the generation of miRNAs. There were six tumors with truncating DICER1 mutations and in four of them, the mutation found in the tumor was also detected in adjacent normal tissue, and therefore was likely to be either mosaic or germline in origin. Analysis of mutation phase revealed that two of three tumors had biallelic DICER1 mutations. Six of nine anaplastic sarcomas of the kidney had aberrant TP53 immunohistochemisty with damaging TP53 mutations identified in three cases. Taken together, these data suggest that the great majority of anaplastic sarcomas of the kidney have DICER1 mutations and confirm that these tumors are part of the DICER1 syndrome.
Collapse
|
39
|
Vokuhl C, de Leon-Escapini L, Leuschner I. Strong Expression and Amplification of IGF1R in Pleuropulmonary Blastomas. Pediatr Dev Pathol 2017; 20:475-481. [PMID: 28382840 DOI: 10.1177/1093526617700945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pleuropulmonary blastoma (PPB) is a rare malignant intrathoracic tumor primarily affecting children under 5 years of age. PPBs are histologically divided into 3 subtypes: Type 1 PPBs are composed of multiple cysts, and type 3 is a solid lesion with a variable morphologic appearance. Type 2 has a mixed morphology consisting of cystic and solid areas. The genetics of PPB are poorly understood. We analyzed 16 cases of the Kiel Paediatric Tumor Registry with the diagnosis of PPB by comparative genomic hybridization and confirmed some genetic changes by fluorescence in situ hybridization. Furthermore, we performed immunohistochemistry to evaluate insulin-like growth factor type 1 (IGF1R) protein expression. Frequent findings by comparative genomic hybridization were losses on 4q, 5q, 9p and gains on chromosome 8, 17, and 20q. Genomic amplification was observed in 5 cases, 4 related to 15q25qter and 1 to 1p. Fluorescence in situ hybridization could confirm 7 gains of chromosome 8 (7/16, 44%) and 4 amplifications of the IGF1R-gene on 15q26 (4/16, 25%). All of the tumors with IGF1R amplification were type 3 PPBs. One of the PPBs with gain of chromosome 8 was a type 2 tumor and 6 tumors were type 3 PPBs. All but one PPB showed an IGF1R expression by immunohistochemistry. In our series of 16 PPBs, 25% of the tumors have an amplification of the IGF1R gene and 44% show a gain of chromosome 8. All of the tumors with IGF1R amplification were PPBs type 3, indicating that it is a later event in tumor progression, while the gain of chromosome 8 was found in both type 2 and type 3 tumors indicating that these changes are probably earlier events in tumor development. Furthermore, the strong IGF1R protein expression could be a possible therapeutic target in refractory chemoresistant PPBs.
Collapse
Affiliation(s)
- Christian Vokuhl
- 1 Department of Pediatric Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Ivo Leuschner
- 1 Department of Pediatric Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
40
|
Abstract
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.
Collapse
Affiliation(s)
- Benjamin Roche
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoît Arcangioli
- b Genome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur , Paris , France
| | - Rob Martienssen
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| |
Collapse
|
41
|
Abstract
It has been reported that germline DICER1 mutations correlate with a distinctive human disease syndrome. Many published studies within this field have been conducted based on rare cases. We systematically searched bibliographic databases, including PubMed, Embase, and COSMIC for articles which are related to diseases covered by DICER1 syndrome. The weighted summary of mutation frequencies among patients with pleuropulmonary blastoma (PPB), cystic nephroma (CN), and Sertoli-Leydig cell tumor (SLCT) were calculated. Forty-nine eligible articles were included. In total, 72 cases with multimorbidity of DICER1 syndrome were identified. More females (n=46, 64%) presented with multimorbidity than males (n=18, 25%) and the remaining 8 patients' sex were unknown. Nineteen of 72 patients with multimorbidity suffered from another disease that was not yet included in DICER1 syndrome, which would provide potential phenotypes of DICER1 syndrome. The germline DICER1 mutation frequencies in PPB, CN, and SLCT were 66.9%, 73.2%, and 57.1%, respectively. The somatic DICER1 mutation frequencies of PPB, CN, and SLCT were 92.4%, 87.9%, and 43.3%, respectively. Majority of patients with multimorbidity of DICER1 syndrome were mutation positive individuals so that multimorbidity may suggest the possible germline mutation of these patients and their relatives.
Collapse
|
42
|
Cai S, Wang X, Zhao W, Fu L, Ma X, Peng X. DICER1 mutations in twelve Chinese patients with pleuropulmonary blastoma. SCIENCE CHINA-LIFE SCIENCES 2017. [PMID: 28624956 DOI: 10.1007/s11427-017-9081-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our aim is to examine the impact of DICER1 mutations on the pathogenesis of pleuropulmonary blastoma (PPB) by evaluating the mutation frequency and investigating the family history of Chinese patients with PPB. The family histories of 12 children with PPB recruited consecutively were surveyed. Blood samples from patients and their first-degree relatives were tested for DICER1 mutations. Whole-genome sequencing of blood samples and formalin-fixed and paraffin-embedded (FFPE) tumor tissue was performed in one family with twins. Twelve patients with PPB included six type II and six type III cases. Seven of the 12 patients harbored DICER1 mutations, six of which were frameshift or nonsense mutations. Another case carried a germline DICER1 mutation affecting the splice site. FFPE sample had a nonsense mutation in TDG and missense mutations in DICER1. In addition, two cases with DICER1 mutations were found to have lung cysts preceding the diagnosis of PPB. Furthermore, one patient had a family history remarkable for thyroid diseases. Our results indicate that the germline mutation frequency in Chinese patients with PPB is similar to the ones reported for patients from USA, UK, and Japan. Moreover, our study strongly suggests that investigating the family history and detecting germline DICER1 mutations might be of benefit to increasing awareness and improving the accuracy of the differential diagnosis of PPB from non-malignant lung cysts.
Collapse
Affiliation(s)
- Siyu Cai
- Center for Clinical Epidemiology & Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xisi Wang
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wen Zhao
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Libing Fu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Xiaoli Ma
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China. .,Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, 100045, China. .,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijng, 100045, China.
| | - Xiaoxia Peng
- Center for Clinical Epidemiology & Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. .,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijng, 100045, China.
| |
Collapse
|
43
|
Mullen MM, Divine LM, Hagemann IS, Babb S, Powell MA. Endometrial adenosarcoma in the setting of a germline DICER1 mutation: A case report. Gynecol Oncol Rep 2017; 20:121-124. [PMID: 28459098 PMCID: PMC5397585 DOI: 10.1016/j.gore.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/04/2022] Open
Abstract
DICER1 mutations play a significant role in gynecologic malignancy. DICER1 may be involved in the sarcomagenesis of endometrial adenosarcoma. The knowledge of a genetic mutation can help clarify a patient's medical history.
Collapse
Affiliation(s)
- Mary M Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Laura M Divine
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Ian S Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheri Babb
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Matthew A Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, Alvin J. Siteman Cancer Center, St Louis, MO, USA
| |
Collapse
|
44
|
Ohno M, Takezoe T, Watanabe T, Tahara K, Hishiki T, Fujino A, Matsuo M, Higuchi M, Kawasaki K, Shioda Y, Kato M, Kiyotani C, Matsumoto K, Takakuwa E, Irie R, Yoshioka T, Kimura S, Seki M, Takita J, Kanamori Y. A female case of pleuropulmonary blastoma type 1 whose pulmonary cystic lesion was followed since neonate. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2017. [DOI: 10.1016/j.epsc.2017.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Yoshida M, Hamanoue S, Seki M, Tanaka M, Yoshida K, Goto H, Ogawa S, Takita J, Tanaka Y. Metachronous anaplastic sarcoma of the kidney and thyroid follicular carcinoma as manifestations of DICER1 abnormalities. Hum Pathol 2016; 61:205-209. [PMID: 27697588 DOI: 10.1016/j.humpath.2016.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/02/2016] [Accepted: 06/15/2016] [Indexed: 12/23/2022]
Abstract
Anaplastic sarcoma of the kidney (ASK) is a tumor found in the pediatric age group and shows many histopathological similarities to pleuropulmonary blastoma (PPB). We present a 12-year-old girl diagnosed with ASK and, 3 years later, with thyroid follicular carcinoma (TFC) with DICER1 abnormalities. Germline insertion/deletion (p. G1809_S1814delinsA) and independent somatic mutations (p. E1705K in ASK, p. E1813D in TFC) were identified. All of these abnormalities are in the catalytic domain of RNase IIIb. Single-nucleotide polymorphism genotyping microarray revealed independent copy number alterations (trisomy 8, monosomy 10, loss of 17p, and partial gain of 17q in ASK; trisomy 5 and partial loss of Xq in TFC). The copy number alteration pattern of ASK was similar to the pattern previously reported in PPB. The present case implies that ASK is a renal counterpart of PPB and that ASK with DICER1 abnormalities should be suspected in a broader age group than PPB.
Collapse
Affiliation(s)
- Misa Yoshida
- Department of Pathology, Kanagawa Children's Medical Center, Kanagawa 232-8555, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Satoshi Hamanoue
- Department of Hematology/Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Kanagawa 232-8555, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mio Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Kanagawa 232-8555, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroaki Goto
- Department of Hematology/Oncology and Regenerative Medicine, Kanagawa Children's Medical Center, Kanagawa 232-8555, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Kanagawa 232-8555, Japan.
| |
Collapse
|
46
|
Abstract
Dr. Louis Dehner is an internationally renowned surgical pathologist who has published multiple textbooks and has authored or co-authored nearly 400 original articles in the medical literature. While many think of him as a pediatric pathologist, he has contributed to the literature across virtually the entire breadth of surgical pathology, and the lung and pleura is no exception. This review will highlight Dr. Dehner׳s contributions to the pulmonary and pleural pathology literature in the areas of infectious disease, medical lung disease and transplant pathology, and a number of neoplasms of the lung and pleura, with the remainder of this manuscript dedicated to the still evolving story of the pleuropulmonary blastoma as the signature contribution of his long and distinguished career.
Collapse
Affiliation(s)
- Jon H Ritter
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid, St. Louis, Missouri.
| | - D Ashley Hill
- Department of Pathology, Children׳s National Medical Center, Washington, DC
| |
Collapse
|
47
|
High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget 2016; 6:23399-416. [PMID: 26156018 PMCID: PMC4695126 DOI: 10.18632/oncotarget.4351] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 11/27/2022] Open
Abstract
A growing body of evidence indicates that miRNAs may be a class of genetic elements that can either drive or suppress oncogenesis. In this study we analyzed the somatic copy number variation of 14 miRNA genes frequently found to be either over- or underexpressed in lung cancer, as well as two miRNA biogenesis genes, DICER1 and DROSHA, in non-small-cell lung cancer (NSCLC). Our analysis showed that most analyzed miRNA genes undergo substantial copy number alteration in lung cancer. The most frequently amplified miRNA genes include the following: miR-30d, miR-21, miR-17 and miR-155. We also showed that both DICER1 and DROSHA are frequently amplified in NSCLC. The copy number variation of DICER1 and DROSHA correlates well with their expression and survival of NSCLC and other cancer patients. The increased expression of DROSHA and DICER1 decreases and increases the survival, respectively. In conclusion, our results show that copy number variation may be an important mechanism of upregulation/downregulation of miRNAs in cancer and suggest an oncogenic role for DROSHA.
Collapse
|
48
|
The modulation of Dicer regulates tumor immunogenicity in melanoma. Oncotarget 2016; 7:47663-47673. [PMID: 27356752 PMCID: PMC5216969 DOI: 10.18632/oncotarget.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.
Collapse
|
49
|
de Kock L, Bah I, Brunet J, Druker H, Astigarraga I, Bosch-Barrera J, Soglio DBD, Nguyen VH, Malkin D, Priest JR, Foulkes WD. Somatic DICER1 mutations in adult-onset pulmonary blastoma. Eur Respir J 2016; 47:1879-82. [PMID: 27126690 DOI: 10.1183/13993003.00172-2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Leanne de Kock
- Dept of Human Genetics, McGill University, Montreal, QC, Canada Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Ismaël Bah
- Dept of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Joan Brunet
- Dept of Medical Oncology, Hereditary Cancer Program, Catalan Institute of Oncology, Hospital Josep Trueta, Girona, Spain
| | - Harriet Druker
- Division of Genetic Counselling and Haematology/Oncology, The Hospital for Sick Children; Dept of Molecular Genetics, The University of Toronto, Toronto, ON, Canada
| | - Itziar Astigarraga
- Servicio de Pediatria, Bio Cruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain Departamento de Pediatria, Universidad del Pais Vasco UPV/EHU, Spain
| | - Joaquim Bosch-Barrera
- Dept of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Spain
| | | | - Van-Hung Nguyen
- Division of Pediatric Pathology, The Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children; Depts of Pediatrics and Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | | | - William D Foulkes
- Dept of Human Genetics, McGill University, Montreal, QC, Canada Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada Dept of Medical Genetics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Durieux E, Descotes F, Mauduit C, Decaussin M, Guyetant S, Devouassoux-Shisheboran M. The co-occurrence of an ovarian Sertoli-Leydig cell tumor with a thyroid carcinoma is highly suggestive of a DICER1 syndrome. Virchows Arch 2016; 468:631-6. [DOI: 10.1007/s00428-016-1922-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/10/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
|