1
|
Wang L, Wang H. The putative role of ferroptosis in gastric cancer: a review. Eur J Cancer Prev 2023; 32:575-583. [PMID: 37318883 PMCID: PMC10538621 DOI: 10.1097/cej.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Ferroptosis is a unique cell death modality triggered by iron-dependent lipid peroxidation, with cysteine metabolism and glutathione-dependent antioxidant defence responses as the primary triggering mechanisms. Ferroptosis is an independent tumour suppression mechanism and has been implicated in various disorders. In tumourigenesis, ferroptosis plays a dual role in promoting and inhibiting tumours. P53, NFE2L2, BAP1, HIF, and other tumour suppressor genes regulate ferroptosis, releasing damage-associated molecular patterns or lipid metabolites to influence cellular immune responses. Ferroptosis is also involved in tumour suppression and metabolism. The combination of amino acid, lipid, and iron metabolism is involved in the initiation and execution of ferroptosis, and metabolic regulatory mechanisms also play roles in malignancies. Most investigations into ferroptosis in gastric cancer are concentrated on predictive models, not the underlying processes. This review investigates the underlying mechanisms of ferroptosis, tumour suppressor genes, and the tumour microenvironment.
Collapse
Affiliation(s)
- Li Wang
- Department of Emergency Medicine, Second Affiliated Hospital of School of Medicine and
| | - Haibin Wang
- Department of Radiology, Hangzhou First People’s Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Du Y, Xu T, Luo D, Wang Y, Yin H, Liu C, Li S. Perfluorooctane sulfonate-induced apoptosis in kidney cells by triggering the NOX4/ROS/JNK axis and antagonism of cannabidiol. ENVIRONMENTAL TOXICOLOGY 2023; 38:1651-1664. [PMID: 36988283 DOI: 10.1002/tox.23794] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the persistent organic pollutants (POPs), which can cause severe nephrotoxicity in mammals. Cannabinol (CBD), a nonpsychoactive cannabinoid obtained from the cannabis plant, has attracted attention in recent years for its excellent antioxidant properties. NADPH oxidase 4 (NOX4) has an important effect in supporting normal renal physiological function. The potential mechanisms of PFOS nephrotoxicity and whether CBD can prevent renal damage caused by PFOS remain unclear. This work aimed to study the mechanisms of PFOS-induced kidney damage and the protective role of CBD against PFOS-induced kidney damage. We demonstrated that PFOS led to renal insufficiency and structural damage in mice, induced overexpression of NOX4 and the onset of oxidative stress, and activated apoptosis of the mitochondrial pathway via the JNK signaling pathway. However, treatment with CBD reversed these changes. For further investigation of the potential mechanism of PFOS-induced renal cell apoptosis, the expression of NOX4 was inhibited in vitro experiments using Apocynin, an effective NOX4 inhibitor. The outcomes showed that PFOS-induced ROS production and JNK signaling pathway activation and apoptosis in human embryonic kidney (HEK293) cells were significantly reduced after inhibition of NOX4. This suggests that PFOS-induced NOX4 overexpression serves as an upstream event for JNK pathway activation. In conclusion, the findings suggest that PFOS induces apoptosis in renal cells via the NOX4/ROS/JNK pathway. Meanwhile, CBD alleviated PFOS-induced renal apoptosis through the inhibition of NOX4/ROS/JNK axis activation.
Collapse
Affiliation(s)
- Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Chengguo Liu
- Instrumental Analysis Center, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, 150030, Harbin, People's Republic of China
| |
Collapse
|
3
|
Qiu H, Gu G, Zuo E, Cheng X. Tumoral Overexpression of Hepcidin is Associated with Poor Prognosis of Patients with Clear Cell Renal Cell Carcinoma. Cancer Invest 2023; 41:84-92. [PMID: 36205556 DOI: 10.1080/07357907.2022.2133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study aimed to investigate the prognostic value of tumoral HAMP expression in patients with clear cell renal cell carcinoma (ccRCC). In a TCGA dataset, we found that HAMP mRNA expression was increased in ccRCC tumors compared with normal controls. Tumoral HAMP mRNA expression was positively correlated with clinical stage, tumor grade, and TNM stages. Patients with high HAMP expression had poorer overall survival than those with low HAMP expression. Tumoral HAMP mRNA level independently predicted the survival of patients. HAMP protein expression was increased in real-world ccRCC tumors compared with those in paired, adjacent noncancerous tissue and was positively correlates with tumor grading. These results suggest HAMP as a potential prognostic factor for ccRCC patients.
Collapse
Affiliation(s)
- Huizhu Qiu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Jiangsu, China
| | - Guojian Gu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Jiangsu, China
| | - Erdong Zuo
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People's Hospital of Taicang), Jiangsu, China
| |
Collapse
|
4
|
Gong S, Wang S, Shao M. NADPH Oxidase 4: A Potential Therapeutic Target of Malignancy. Front Cell Dev Biol 2022; 10:884412. [PMID: 35646942 PMCID: PMC9130727 DOI: 10.3389/fcell.2022.884412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/27/2022] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the regulation of tumor occurrence and development. As a main source of ROS, NADPH oxidases are key enzymes that mediate electron transport within intracellular membranes. Of the NOX members that have been reported to be dysregulated in a wide variety of tumors, NOX4 is the member to be most frequently expressed. Numerous studies have elucidated that NOX4 gets involved in the regulation of tumor proliferation, metastasis, therapy resistance, tumor-stromal interaction and dysregulated tumor metabolism. In this review, we primarily discussed the biological function of NOX4 in tumorigenesis and progression of multiple cancer models, including its role in activating oncogenic signaling pathways, rewiring the metabolic phenotype and mediating immune response. Besides, the development of NOX4 inhibitors has also been unraveled. Herein, we discussed the interplay between NOX4 and tumorigenesis, proposing NOX4 as a promising therapeutic target waiting for further exploration.
Collapse
Affiliation(s)
- Shulei Gong
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiyang Wang
- Department of Geriatric Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingrui Shao
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingrui Shao,
| |
Collapse
|
5
|
Potential Key Markers for Predicting the Prognosis of Gastric Adenocarcinoma Based on the Expression of Ferroptosis-Related lncRNA. J Immunol Res 2022; 2022:1249290. [PMID: 35528617 PMCID: PMC9076347 DOI: 10.1155/2022/1249290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background. Gastric cancer is one of the most common malignant tumors, and it ranks third in global cancer-related mortality. This research was aimed at identifying new targeted treatments for gastric adenocarcinoma by constructing a ferroptosis-related lncRNA prognostic feature model. Methods. The gene expression profile and clinical data of gastric adenocarcinoma patients were downloaded from TCGA database. FerrDb database was used to determine the expression of iron death-related genes. We used R software to clean the TCAG gastric adenocarcinoma gene expression cohort and screen iron death-related differential genes and lncRNAs. The potential prognostic markers and immune infiltration characteristics were determined by constructing prognostic model and multivariate validation of lncRNA related to ferroptosis prognosis. Finally, the characteristics of immune infiltration were determined by immune correlation analysis. Results. We identified 26 ferroptosis-related lncRNAs with independent prognostic value. The Kaplan-Meier analysis identified high-risk lncRNAs associated with poor prognosis of STAD. The risk scoring model constructed by AC115619.1, AC005165.1, LINC01614, and AC002451.1 was better than traditional clinicopathological features. The 1-, 3-, and 5-year survival rates of STAD patients were predicted by the nomogram. GSEA reveals the oxidative respiration and tumor-related pathways in different risk groups. Immune analysis found significant differences in the expression of immune checkpoint-related genes TNFSF9, TNFSF4, and PDCD1LG2 between the two groups of patients. Meanwhile, there were significant differences in APC co stimulation, CCR, and checkpoint between the two groups. Conclusion. Based on the prognostic characteristics of ferroptosis-related lncRNAs, we identified the potential ferroptosis-related lncRNAs and immune infiltration characteristics in gastric adenocarcinoma, which will help provide new targeted treatments for gastric adenocarcinoma.
Collapse
|
6
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Qin Y, Ma X, Guo C, Cai S, Ma H, Zhao L. MeCP2 confers 5-fluorouracil resistance in gastric cancer via upregulating the NOX4/PKM2 pathway. Cancer Cell Int 2022; 22:86. [PMID: 35180871 PMCID: PMC8857846 DOI: 10.1186/s12935-022-02489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing evidence suggests that aberrant methylation is involved in 5-fluorouracil (5-FU) resistance in gastric cancer (GC). Our previous work has identified that Methyl-CpG binding protein 2 (MeCP2) promotes GC progression by binding to the methylation sites of promoter regions of specific genes to affect the downstream signaling pathways. However, the function and molecular mechanisms of MeCP2 in GC 5-FU resistance remain unclear. Methods We detected the expression of MeCP2 in 5-FU-resistant GC cells and examined cell behaviors when MeCP2 was silenced. The molecular mechanisms were explored through chromatin immunoprecipitation (ChIP)-qRT-PCR, luciferase reporter assay, clinical tissue samples analysis, and in vivo tumorigenicity assay. Results MeCP2 was up-regulated in 5-FU-resistant GC cells. Knockdown of MeCP2 enhanced the sensitivity of the cells to 5-FU. Moreover, MeCP2 promoted NOX4 transcription in the cells by binding to the promoter of NOX4. Silencing NOX4 rescued the inductive effect of MeCP2 overexpression on 5-FU sensitivity of GC cells and reduced the expression of NOX4 and PKM2 in MeCP2 overexpressed 5-FU-resistant GC cells. In addition, our in vivo experiments demonstrated that MeCP2 knockdown enhanced 5-FU sensitivity in tumors. Conclusion MeCP2 confers 5-FU resistance in GC cells via upregulating the NOX4/PKM2 pathway, which may lead to a promising therapeutic strategy for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02489-y.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Shuang Cai
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hailin Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Bi Y, Lei X, Chai N, Linghu E. NOX4: a potential therapeutic target for pancreatic cancer and its mechanism. J Transl Med 2021; 19:515. [PMID: 34930338 PMCID: PMC8686284 DOI: 10.1186/s12967-021-03182-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is one of the seven isoforms of NOX family, which is upregulated in pancreatic cancer cell, mouse model of pancreatic cancer and human pancreatic cancer tissue. NOX4 is a constitutively active enzyme that primarily produces hydrogen peroxide, which exhibits completely different properties from other subtypes of NOX family. More importantly, recent studies illuminate that NOX4 promotes pancreatic cancer occurrence and development in different ways. This review summarizes the potential roles and its mechanism of NOX4 in pancreatic cancer and explores NOX4 as the potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Yawei Bi
- Department of Gastroenterology and Hepatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Xiao Lei
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100859, China
| | - Ningli Chai
- Department of Gastroenterology and Hepatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Enqiang Linghu
- Department of Gastroenterology and Hepatology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Angiulli F, Colombo T, Fassetti F, Furfaro A, Paci P. Mining sponge phenomena in RNA expression data. J Bioinform Comput Biol 2021; 20:2150022. [PMID: 34794369 DOI: 10.1142/s0219720021500220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last few years, the interactions among competing endogenous RNAs (ceRNAs) have been recognized as a key post-transcriptional regulatory mechanism in cell differentiation, tissue development, and disease. Notably, such sponge phenomena substracting active microRNAs from their silencing targets have been recognized as having a potential oncosuppressive, or oncogenic, role in several cancer types. Hence, the ability to predict sponges from the analysis of large expression data sets (e.g. from international cancer projects) has become an important data mining task in bioinformatics. We present a technique designed to mine sponge phenomena whose presence or absence may discriminate between healthy and unhealthy populations of samples in tumoral or normal expression data sets, thus providing lists of candidates potentially relevant in the pathology. With this aim, we search for pairs of elements acting as ceRNA for a given miRNA, namely, we aim at discovering miRNA-RNA pairs involved in phenomena which are clearly present in one population and almost absent in the other one. The results on tumoral expression data, concerning five different cancer types, confirmed the effectiveness of the approach in mining interesting knowledge. Indeed, 32 out of 33 miRNAs and 22 out of 25 protein-coding genes identified as top scoring in our analysis are corroborated by having been similarly associated with cancer processes in independent studies. In fact, the subset of miRNAs selected by the sponge analysis results in a significant enrichment of annotation for the KEGG32 pathway "microRNAs in cancer" when tested with the commonly used bioinformatic resource DAVID. Moreover, often the cancer datasets where our sponge analysis identified a miRNA as top scoring match the one reported already in the pertaining literature.
Collapse
|
10
|
Wang X, Liu Z, Sun J, Song X, Bian M, Wang F, Yan F, Yu Z. Inhibition of NADPH oxidase 4 attenuates lymphangiogenesis and tumor metastasis in breast cancer. FASEB J 2021; 35:e21531. [PMID: 33769605 DOI: 10.1096/fj.202002533r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Lymphangiogenesis is thought to contribute to promote tumor cells to enter lymphatic vessels and plant at a secondary site. Endothelial cells are the cornerstone of the generation of new lymphatic vessels. NADPH oxidase 4 (Nox4) is the most abundant one of NADPH oxidases in endothelial cells and the most studied one in relevance with cancer. Our purpose is to analyze the relationship between Nox4 and lymphangiogenesis and find out whether the newborn lymphatic vessels lead to cancer metastasis. We first explored the expression of Nox4 in lymphatic endothelial cells of primary invasive breast tumors and human normal mammary glands using GEO databases and found that Nox4 was upregulated in primary invasive breast tumors samples. In addition, its high expression correlated with lymph node metastasis in breast cancer patients. Nox4 could increase the tube formation and lymphatic vessel sprouting in a three-dimensional setting. In vivo, inhibition of Nox4 in 4T1 tumor-bearing mice could significantly decrease the tumor lymphangiogenesis and metastasis. Nox4 may increase tumor lymphangiogenesis via ROS/ERK/CCL21 pathway and attract CCR7-positive breast cancer cells to entry lymphatic vessels and distant organs. In conclusion, our results show that Nox4 is a factor that promotes lymphangiogenesis and is a potential target of antitumor metastasis.
Collapse
Affiliation(s)
- Xinzhao Wang
- Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Zhaoyun Liu
- Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Jujie Sun
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Xiang Song
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Mengxue Bian
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Fukai Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhiyong Yu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| |
Collapse
|
11
|
Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021; 22:6022. [PMID: 34199590 PMCID: PMC8199685 DOI: 10.3390/ijms22116022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | | - Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
12
|
Hu C, Zhao Y, Wang X, Zhu T. Intratumoral Fibrosis in Facilitating Renal Cancer Aggressiveness: Underlying Mechanisms and Promising Targets. Front Cell Dev Biol 2021; 9:651620. [PMID: 33777960 PMCID: PMC7991742 DOI: 10.3389/fcell.2021.651620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 01/01/2023] Open
Abstract
Intratumoral fibrosis is a histologic manifestation of fibrotic tumor stroma. The interaction between cancer cells and fibrotic stroma is intricate and reciprocal, involving dysregulations from multiple biological processes. Different components of tumor stroma are implicated via distinct manners. In the kidney, intratumoral fibrosis is frequently observed in renal cell carcinoma (RCC). However, the underlying mechanisms remain largely unclear. In this review, we recapitulate evidence demonstrating how fibrotic stroma interacts with cancer cells and mechanisms shared between RCC tumorigenesis and renal fibrogenesis, providing promising targets for future studies.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yufeng Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
13
|
Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers (Basel) 2021; 13:cancers13030576. [PMID: 33540838 PMCID: PMC7867364 DOI: 10.3390/cancers13030576] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is the eighth leading malignancy in the world, accounting for 4% of all cancers with poor outcome when metastatic. Protein kinases are highly druggable proteins, which are often aberrantly activated in cancers. The aim of our study was to identify candidate targets for metastatic clear cell renal cell carcinoma therapy, using chemo-genomic-based high-throughput screening. We found that the combined inhibition of the CK2 and ATM kinases in renal tumor cells and patient-derived tumor samples induces synthetic lethality. Mechanistic investigations unveil that this drug combination triggers apoptosis through HIF-2α-(Hypoxic inducible factor HIF-2α) dependent reactive oxygen species (ROS) overproduction, giving a new option for patient care in metastatic RCC. Abstract Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.
Collapse
|
14
|
Pan MS, Wang H, Ansari KH, Li XP, Sun W, Fan YZ. Gallbladder cancer-associated fibroblasts promote vasculogenic mimicry formation and tumor growth in gallbladder cancer via upregulating the expression of NOX4, a poor prognosis factor, through IL-6-JAK-STAT3 signal pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:234. [PMID: 33153467 PMCID: PMC7643415 DOI: 10.1186/s13046-020-01742-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
Background Cancer-associated fibroblasts (CAFs) and vasculogenic mimicry (VM) play important roles in the occurrence and development of tumors. However, the relationship between CAFs and VM formation, especially in gallbladder cancer (GBC) has not been clarified. In this study, we investigated whether gallbladder CAFs (GCAFs) can promote VM formation and tumor growth and explored the underlying molecular mechanism. Methods A co-culture system of human GBC cells and fibroblasts or HUVECs was established. VM formation, proliferation, invasion, migration, tube formation assays, CD31-PAS double staining, optic/electron microscopy and tumor xenograft assay were used to detect VM formation and malignant phenotypes of 3-D co-culture matrices in vitro, as well as the VM formation and tumor growth of xenografts in vivo, respectively. Microarray analysis was used to analyze gene expression profile in GCAFs/NFs and VM (+)/VM (−) in vitro. QRT-PCR, western blotting, IHC and CIF were used to detected NOX4 expression in GCAFs/NFs, 3-D culture/co-culture matrices in vitro, the xenografts in vivo and human gallbladder tissue/stroma samples. The correlation between NOX4 expression and clinicopathological and prognostic factors of GBC patients was analyzed. And, the underlying molecular mechanism of GCAFs promoting VM formation and tumor growth in GBC was explored. Results GCAFs promote VM formation and tumor growth in GBC; and the finding was confirmed by facts that GCAFs induced proliferation, invasion, migration and tube formation of GBC cells in vitro, and promoted VM formation and tumor growth of xenografts in vivo. NOX4 is highly expressed in GBC and its stroma, which is the key gene for VM formation, and is correlated with tumor aggression and survival of GBC patients. The GBC patients with high NOX4 expression in tumor cells and stroma have a poor prognosis. The underlying molecular mechanism may be related to the upregulation of NOX4 expression through paracrine IL-6 mediated IL-6/JAK/STAT3 signaling pathway. Conclusions GCAFs promote VM formation and tumor growth in GBC via upregulating NOX4 expression through the activation of IL-6-JAK-STAT3 signal pathway. NOX4, as a VM-related gene in GBC, is overexpressed in GBC cells and GCAFs, which is related to aggression and unfavorable prognosis of GBC patients.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Hui Wang
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Kamar Hasan Ansari
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Xin-Ping Li
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China
| | - Wei Sun
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P.R. China.
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065, P.R. China.
| |
Collapse
|
15
|
Bacigalupa ZA, Rathmell WK. Beyond glycolysis: Hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Lett 2020; 489:19-28. [PMID: 32512023 PMCID: PMC7429250 DOI: 10.1016/j.canlet.2020.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
The relationship between kidney cancer, specifically clear cell renal cell carcinoma (ccRCC), and the hypoxia signaling program has been extensively characterized. Its underlying role as the primary driver of the disease has led to the development of the most effective targeted therapies to date. Cellular responses to hypoxia or mutations affecting the von Hippel-Lindau (VHL) tumor suppressor gene stabilize the hypoxia inducible factor (HIF) transcription factors which then orchestrate elaborate downstream signaling events resulting in adaptations to key biological processes, such as reprogramming metabolism. The direct link of hypoxia signaling to glucose uptake and glycolysis has long been appreciated; however, the HIF family of proteins directly regulate many downstream targets, including other transcription factors with their own extensive networks. In this review, we will summarize our current understanding of how hypoxia signaling regulates other metabolic pathways and how this contributes to the development and progression of clear cell renal cell carcinomas.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Nuclear NADPH oxidase-4 associated with disease progression in renal cell carcinoma. Transl Res 2020; 223:1-14. [PMID: 32492552 PMCID: PMC8111697 DOI: 10.1016/j.trsl.2020.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/03/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Nuclear NADPH oxidase-4 (Nox4) is a key component of metabolic reprogramming and is often overexpressed in renal cell carcinoma (RCC). However, its prognostic role in RCC remains unclear. Here we examined the significance of nuclear Nox4 on disease progression and development of drug resistance in advanced RCC. We analyzed human RCC tissue from multiple regions in the primary index tumor, cancer-associated normal adjacent parenchyma, intravascular tumor in locally advanced cancer patients. We found that the higher nuclear Nox4 expression was significantly associated with progression and death. These findings were consistent after controlling for other competing clinical variables. In contrast, patients with lower nuclear Nox4, even in higher stage RCC had better prognosis. We identified a subset of patients with high nuclear Nox4 who had rapid disease progression or died within 6 months of surgery. In addition, higher nuclear Nox4 level correlated with resistance to targeted therapy and immunotherapy. Western blotting performed on fresh human RCC tissue as well as cell-lines revealed increased nuclear Nox4 expression. Our data support an important prognostic role of Nox4 mediated regulation of RCC independent of other competing variables. Nox4 localizes to the nucleus in high-grade, high-stage RCC. Higher nuclear Nox4 has prognostic significance for disease progression, poor survival, and development of drug resistance in RCC.
Collapse
|
17
|
Li ZM, Xu SY, Feng YZ, Cheng YR, Xiong JB, Zhou Y, Guan CX. The role of NOX4 in pulmonary diseases. J Cell Physiol 2020; 236:1628-1637. [PMID: 32780450 DOI: 10.1002/jcp.30005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sheng-Ya Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi-Zhuo Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Liu X, Zhong L, Li P, Zhao P. MicroRNA-100 Enhances Autophagy and Suppresses Migration and Invasion of Renal Cell Carcinoma Cells via Disruption of NOX4-Dependent mTOR Pathway. Clin Transl Sci 2020; 15:567-575. [PMID: 32356935 PMCID: PMC8841407 DOI: 10.1111/cts.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney malignancy and has a poor prognosis owing to its resistance to chemotherapy. Recently, microRNAs (miRNAs or miRs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer. In the present study, we aim to explore the potential role of miR‐100 in RCC by targeting nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) through the mammalian target of rapamycin (mTOR) pathway. Initially, microarray‐based gene expression profiling of RCC was used to identify differentially expressed genes. Next, the expression of miR‐100 and NOX4 was examined in RCC tissues and cell lines. Then, the interaction between miR‐100 and NOX4 was identified using bioinformatics analysis and dual‐luciferase reporter assay. Gain‐of‐function or loss‐of‐function approaches were adopted to manipulate miR‐100 and NOX4 in order to explore the functional roles in RCC. The results revealed the presence of an upregulated NOX4 and a downregulated miR‐100 in both RCC tissues and cell lines. NOX4 was verified as a target of miR‐100 in cells. In addition, overexpression of miR‐100 or NOX4 silencing could increase autophagy while decreasing the expression of mTOR pathway‐related genes and migration and invasion. Conjointly, upregulated miR‐100 can potentially increase the autophagy and inhibit the invasion and migration of RCC cells by targeting NOX4 and inactivating the mTOR pathway, which contributes to an extensive understanding of RCC and may provide novel therapeutic options for this disease.
Collapse
Affiliation(s)
- Xiumin Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Peng Zhao
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Serrano JJ, Delgado B, Medina MÁ. Control of tumor angiogenesis and metastasis through modulation of cell redox state. Biochim Biophys Acta Rev Cancer 2020; 1873:188352. [PMID: 32035101 DOI: 10.1016/j.bbcan.2020.188352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Redox reactions pervade all biology. The control of cellular redox state is essential for bioenergetics and for the proper functioning of many biological functions. This review traces a timeline of findings regarding the connections between redox and cancer. There is ample evidence of the involvement of cellular redox state on the different hallmarks of cancer. Evidence of the control of tumor angiogenesis and metastasis through modulation of cell redox state is reviewed and highlighted.
Collapse
Affiliation(s)
- José J Serrano
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Belén Delgado
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
20
|
Cheng G, Pan J, Podsiadly R, Zielonka J, Garces AM, Dias Duarte Machado LG, Bennett B, McAllister D, Dwinell MB, You M, Kalyanaraman B. Increased formation of reactive oxygen species during tumor growth: Ex vivo low-temperature EPR and in vivo bioluminescence analyses. Free Radic Biol Med 2020; 147:167-174. [PMID: 31874251 PMCID: PMC6948008 DOI: 10.1016/j.freeradbiomed.2019.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that reactive oxygen species (ROS) such as superoxide or hydrogen peroxide generated at low levels can exert a tumor-promoting role via a redox-signaling mechanism. Reports also suggest that both tumorigenesis and tumor growth are associated with enhanced ROS formation. However, whether ROS levels or ROS-derived oxidative marker levels increase during tumor growth remains unknown. In this study, in vivo bioluminescence imaging with a boronate-based pro-luciferin probe was used to assess ROS formation. Additionally, probe-free cryogenic electron paramagnetic resonance was used to quantify a characteristic aconitase [3Fe4S]+ center that arises in the tumor tissue of mouse xenografts from the reaction of the native [4Fe4S]2+ cluster with superoxide. Results indicated that tumor growth is accompanied by increased ROS formation, and revealed differences in oxidant formation in the inner and outer sections of tumor tissue, respectively, demonstrating redox heterogeneity. Studies using luciferin and pro-luciferin probes enabled the assessment of tumor size, ROS formation, and bioenergetic status (e.g., ATP) in luciferase-transfected mice tumor xenografts. Probe-free ex vivo low-temperature electron paramagnetic resonance can also be translated to clinical studies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Jing Pan
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Radoslaw Podsiadly
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Alexander M Garces
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | | | - Brian Bennett
- Department of Physics, Marquette University, 1420 West Clybourn Street, Milwaukee, WI 53233, United States
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Michael B Dwinell
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Ming You
- Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
21
|
TXNIP deficiency mitigates podocyte apoptosis via restraining the activation of mTOR or p38 MAPK signaling in diabetic nephropathy. Exp Cell Res 2020; 388:111862. [PMID: 31982382 DOI: 10.1016/j.yexcr.2020.111862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Thioredoxin-interacting protein (TXNIP), is identified as an inhibitor of the thiol oxidoreductase thioredoxin that acts endogenously, and is increased by high glucose (HG). In this study, we investigated the potential function of TXNIP on apoptosis of podocytes and its potential mechanism in vivo and in vitro in diabetic nephropathy (DN). TXNIP silencing attenuated HG-induced apoptosis and obliterated the activation of signaling pathways of mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase (MAPK) in conditionally immortalized mouse podocytes. Furthermore, the Raptor and Rictor shRNAs, mTOR specific inhibitor KU-0063794 and p38 MAPK inhibitor SB203580 were used to assess the role of mTOR or p38 MAPK pathway on podocyte apoptosis induced by HG. The Rictor and Raptor shRNAs and KU-0063794 appeared to reduce HG-induced apoptosis in podocytes. Simultaneously, SB203580 could also restrain HG-induced apoptosis in podocytes. Streptozotocin rendered equivalent diabetes in TXNIP-/- (TKO) and wild-type (WT) control mice. TXNIP deficiency mitigated renal injury in diabetic mice. Additionally, TXNIP deficiency also descended the apoptosis-related protein and Nox4 levels, the mTOR signaling activation and the p38 MAPK phosphorylation in podocytes of diabetic mice. All these data indicate that TXNIP deficiency may mitigate apoptosis of podocytes by inhibiting p38 MAPK or mTOR signaling pathway in DN, underlining TXNIP as a putative target for therapy.
Collapse
|
22
|
Rajaram RD, Dissard R, Jaquet V, de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrol Dial Transplant 2020; 34:567-576. [PMID: 29931336 DOI: 10.1093/ndt/gfy161] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
The main function of NADPH oxidases is to catalyse the formation of reactive oxygen species (ROS). NADPH oxidase 4 (NOX4) is expressed at high levels in kidney tubular cells, and at lower levels in endothelial cells, cardiomyocytes and other cell types under physiological conditions. NOX4 is constitutively active producing hydrogen peroxide (H2O2) as the prevalent ROS detected, whereas other NOX isoforms present in the renal and cardiovascular systems (i.e. NOX1, NOX2 and NOX5) generate superoxide radical anions as main products. Pharmacological inhibition of NOX4 has received enormous attention for its potential therapeutic benefit in fibrotic disease and nephropathologies. Ongoing clinical trials are testing this approach in humans. Diabetes elevates NOX4 expression in podocytes and mesangial cells, which was shown to damage glomeruli leading to podocyte loss, mesangial cell hypertrophy and matrix accumulation. Consequently, NOX4 represents an interesting therapeutic target in diabetic nephropathy. On the contrary, experiments using NOX4-deficient mice have shown that NOX4 is cytoprotective in tubular cells, cardiomyocytes, endothelial cells and vascular smooth muscle cells, and has a metabolism-regulating role when these cells are subjected to injury. Mice with systemic NOX4 deletion are more susceptible to acute and chronic tubular injury, heart failure and atherosclerosis. Overall, the current literature suggests a detrimental role of increased NOX4 expression in mesangial cells and podocytes during diabetic nephropathy, but a cytoprotective role of this enzyme in other cellular types where it is expressed endogenously. We review here the recent evidence on the role of NOX4 in the kidneys and cardiovascular system. With the emergence of pharmacological NOX4 inhibitors in clinical trials, caution should be taken in identifying potential side effects in patients prone to acute kidney injury and cardiovascular disease.
Collapse
Affiliation(s)
- Renuga D Rajaram
- Laboratory of Nephrology, Service of Nephrology, Departments of Internal Medicine Specialties and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Romain Dissard
- Laboratory of Nephrology, Service of Nephrology, Departments of Internal Medicine Specialties and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Service of Nephrology, Departments of Internal Medicine Specialties and Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 2019; 15:641-659. [PMID: 31488900 DOI: 10.1038/s41581-019-0182-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.
Collapse
|
24
|
Yang WH, Ding CKC, Sun T, Rupprecht G, Lin CC, Hsu D, Chi JT. The Hippo Pathway Effector TAZ Regulates Ferroptosis in Renal Cell Carcinoma. Cell Rep 2019; 28:2501-2508.e4. [PMID: 31484063 PMCID: PMC10440760 DOI: 10.1016/j.celrep.2019.07.107] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances, the poor outcomes in renal cell carcinoma (RCC) suggest novel therapeutics are needed. Ferroptosis is a form of regulated cell death, which may have therapeutic potential toward RCC; however, much remains unknown about the determinants of ferroptosis susceptibility. We found that ferroptosis susceptibility is highly influenced by cell density and confluency. Because cell density regulates the Hippo-YAP/TAZ pathway, we investigated the roles of the Hippo pathway effectors in ferroptosis. TAZ is abundantly expressed in RCC and undergoes density-dependent nuclear or cytosolic translocation. TAZ removal confers ferroptosis resistance, whereas overexpression of TAZS89A sensitizes cells to ferroptosis. Furthermore, TAZ regulates the expression of Epithelial Membrane Protein 1 (EMP1), which, in turn, induces the expression of nicotinamide adenine dinucleotide phosphate (NADPH) Oxidase 4 (NOX4), a renal-enriched reactive oxygen species (ROS)-generating enzyme essential for ferroptosis. These findings reveal that cell density-regulated ferroptosis is mediated by TAZ through the regulation of EMP1-NOX4, suggesting its therapeutic potential for RCC and other TAZ-activated tumors.
Collapse
Affiliation(s)
- Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chien-Kuang Cornelia Ding
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tianai Sun
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gabrielle Rupprecht
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Hsu
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Chen YY, Yu XY, Chen L, Vaziri ND, Ma SC, Zhao YY. Redox signaling in aging kidney and opportunity for therapeutic intervention through natural products. Free Radic Biol Med 2019; 141:141-149. [PMID: 31199964 DOI: 10.1016/j.freeradbiomed.2019.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Kidney diseases are serious public problems with high morbidity and mortality in the general population and heavily retard renal function with aging regardless of the cause. Although myriad strategies have been assigned to prevent or harness disease progression, unfortunately, thus far, there is a paucity of effective therapies partly due to an insufficient knowledge of underlying pathological mechanisms, indicating deeper studies are urgently needed. Additionally, natural products are increasingly recognized as an alternative source for disease intervention owing to the potent safety and efficacy, which might be exploited for novel drug discovery. In this review, we primarily expatiate the new advances on mediators that might be amenable to targeting aging kidney and kidney diseases, including nicotinamide adenine dinucleotide phosphate oxidase (NOX), transforming growth factor-β (TGF-β), renin-angiotensin system (RAS), nuclear factor-erythroid 2 related factor 2 (Nrf2), peroxisome proliferator-activated γ receptor (PPARγ), advanced glycation endproducts (AGEs) as well as microRNAs and vitagenes. Of note, we conclude by highlighting some natural products which have the potential to facilitate the development of novel treatment for patients with myriad renal diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China
| | - Lin Chen
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, No. 2 Tiantan Xili, Beijing, 100050, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
26
|
Du S, Miao J, Lu X, Shi L, Sun J, Xu E, Wang X, Zhao M, Chen H, Wang F, Kang X, Ding J, Guan W, Xia X. NADPH oxidase 4 is correlated with gastric cancer progression and predicts a poor prognosis. Am J Transl Res 2019; 11:3518-3530. [PMID: 31312363 PMCID: PMC6614607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
NADPH oxidase 4 (NOX4) is one of the main sources of reactive oxygen species, and plays a crucial role in the occurrence and development of tumors. However, there is currently little evidence demonstrating that NOX4 expression is associated with gastric cancer. To establish whether NOX4 plays a role in gastric cancer progression and prognosis, we performed immunohistochemistry on gastric cancer tissues and paired adjacent normal tissues from 90 gastric cancer patients to detect and compare NOX4 expression. Next, we analyzed the association between NOX4 expression and clinicopathological characteristics. Survival analysis was performed to explore the association between NOX4 expression and the prognosis of gastric cancer patients. Furtherly, we investigated the effect of NOX4-knockdown using siRNA on gastric cancer progression in vitro and in vivo. Our results revealed that NOX4 expression in gastric cancer tissues is higher than in paired adjacent normal tissues (P = 0.0009). NOX4 expression is significantly correlated with tumor size (P = 0.0321), lymphatic metastasis (P = 0.0125) and vascular invasion (P = 0.0017) and a poor prognosis (P = 0.0000) in gastric cancer patients. NOX4 depletion could significantly inhibit the invasion, proliferation, EMT and MMP7 expression of gastric cancer cells and suppress the progression of gastric cancer in vivo. In conclusion, NOX4 is related to gastric cancer development and predicts a poor prognosis. NOX4 may play an essential role in the progression of gastric cancer, and is a promising target for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Shangce Du
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Ji Miao
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Xiaofeng Lu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Linsen Shi
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Jie Sun
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - En Xu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Xingzhou Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Min Zhao
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Hong Chen
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Feng Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Xin Kang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Jie Ding
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| | - Xuefeng Xia
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical UniversityGulou District, Nanjing 210008, Jiangsu Province, P. R. China
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School321 Zhongshan Road, Nanjing 210008, Jiangsu Province, P. R. China
| |
Collapse
|
27
|
Accumulation of fructose 1,6-bisphosphate protects clear cell renal cell carcinoma from oxidative stress. J Transl Med 2019; 99:898-908. [PMID: 30760861 DOI: 10.1038/s41374-019-0203-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by the activation of hypoxia-inducible factors and enhanced aerobic glycolysis. In our previous study, metabolic profiling revealed a threefold increase of fructose 1,6-bisphosphate (FBP) in ccRCC tissue compared with normal kidney tissue. As an important intermediate metabolite, its role in cancer development remains unknown. We found that high levels of FBP were required for cancer growth because of its ability to affect the redox status. Mechanistically, FBP regulated the redox status partially by suppressing NADPH oxidase isoform NOX4 activity in ccRCC cells. ccRCC maintained high levels of FBP through the downregulation of aldolase B (ALDOB). Reduction of FBP levels in cancer cells by the ectopic expression of ALDOB disrupted redox homeostasis, arrested cancer proliferation, and sensitized ccRCC cells to a chemotherapy agent (paclitaxel). Furthermore, low expression of ALDOB portended significantly worse disease-free survival and overall survival in ccRCC patients. In summary, the downregulation of ALDOB and accumulation of FBP promote ccRCC growth by counteracting oxidative stress.
Collapse
|
28
|
Zhao X, Lei Y, Li G, Cheng Y, Yang H, Xie L, Long H, Jiang R. Integrative analysis of cancer driver genes in prostate adenocarcinoma. Mol Med Rep 2019; 19:2707-2715. [PMID: 30720096 PMCID: PMC6423600 DOI: 10.3892/mmr.2019.9902] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022] Open
Abstract
Large-scale genomics studies have identified recurrently mutated genes in the ETS gene family, including fusions and copy number variations (CNVs), which are involved in the development of prostate adenocarcinoma (PRAD). However, the aetiology of PRAD remains to be fully elucidated. In the present study, 333 driver genes were identified using four computational tools: OncodriveFM, OncodriveCLUST, iCAGES and DrGaP. In addition, 32 driver pathways were identified using DrGaP. SPOP, TP53, SPTA1, AHNAK, HMCN1, ATM, FOXA1, CSMD3, LRP1B and FREM2 were the 10 most recurrently mutated genes in PRAD. ITGAL, TAGAP, SIGLEC10, RAC2 and ITGA4 were the five hub genes in the yellow module that were associated with the number of positive lymph nodes. Hierarchical clustering analysis of the 20 driver genes with the most frequent CNVs revealed three clusters of patients with PRAD. Cluster 3 tumours exhibited significantly higher numbers of positive lymph nodes, higher Gleason scores, more advanced cancer stages and poorer prognosis than cluster 1 and 2 tumours. A total of 48 genes were significantly associated with the number of positive lymph nodes, Gleason scores and pathologic stage in patients with PRAD. The identified set of cancer genes and pathways sheds light on the tumorigenesis of PRAD and creates avenues for the development of prognostic biomarkers and driver gene-targeted therapies in PRAD.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Lei
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ge Li
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yong Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Haifan Yang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Libo Xie
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hao Long
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
29
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
30
|
NADPH oxidase NOX4 is a glycolytic regulator through mROS-HIF1α axis in thyroid carcinomas. Sci Rep 2018; 8:15897. [PMID: 30367082 PMCID: PMC6203707 DOI: 10.1038/s41598-018-34154-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
The function of the NAD(P)H oxidases (NOXs) family member NOX4 is to generate reactive oxygen species (ROS), however, the molecular function of NOX4 has not been fully studied and waiting to be clarified. To elucidate the function of endogenous Nox4 in human thyroid carcinomas, papillomatosis thyroid cancer cells were used to study the cell growth by knocking down the expression of NOX4 and knocking out its functional partner p22phox/CYBA. As a result, the increasement of mitochondrial ROS(mROS) was abolished due to both knockdown of NOX4 and p22phox knockout in hypoxia, which destabilized HIF1α decreasing glycolysis and retarded cell growth. These data suggests that Nox4 is potent oncotarget due to its role in regulating glycolysis through mROS-HIF1α pathway, thereby mediating proliferation in thyroid carcinomas.
Collapse
|
31
|
Tang CT, Gao YJ, Ge ZZ. NOX4, a new genetic target for anti-cancer therapy in digestive system cancer. J Dig Dis 2018; 19:578-585. [PMID: 30058122 DOI: 10.1111/1751-2980.12651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been implicated as an important factor in tumorigenesis and tumor progression. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 4 (NOX4), a substrate of NADPH that can generate H2 O2 reactive oxygen species, has been reported to be highly expressed in gastrointestinal tumors. In this review we summarize the available evidence on the biological function of NOX4 in digestive system tumors by focusing on its correlation with classical cell signaling pathways, including VEGF, MAPK and PI3K/AKT, and with biochemical mediators, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP)-1 and transforming growth factor (TGF)-β. According to the clinical and database studies on tumors of the digestive system, such as colorectal, gastric and pancreatic cancer, there are significant associations between NOX4 expression and tumor prognosis as well as patient's survival. Animal studies using NOX4 inhibitors such as diphenylene iodonium and GKT137831, which selectively block NOX4, indicate their potential as therapeutic agents for targeting cancer cells.
Collapse
Affiliation(s)
- Chao Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yun Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
32
|
Du S, Miao J, Zhu Z, Xu E, Shi L, Ai S, Wang F, Kang X, Chen H, Lu X, Guan W, Xia X. NADPH oxidase 4 regulates anoikis resistance of gastric cancer cells through the generation of reactive oxygen species and the induction of EGFR. Cell Death Dis 2018; 9:948. [PMID: 30237423 PMCID: PMC6148243 DOI: 10.1038/s41419-018-0953-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Anoikis is a type of programmed cell death induced by detachment from the extracellular matrix. In cancer cells, anoikis resistance is essential for cancer cell survival in blood circulation and distant metastasis. However, the mechanisms behind anoikis resistance of gastric cancer remain largely unknown. Herein, we demonstrate that NADPH oxidase 4 (NOX4) expression and reactive oxygen species (ROS) generation are upregulated in suspension gastric cell cultures compared with adherent cultures. Silencing of NOX4 decreases ROS generation and downregulates EGFR, sensitizing cells to anoikis. NOX4 overexpression upregulates ROS and EGFR levels and promotes anoikis resistance. NOX4 depletion inhibits gastric cancer survival in blood circulation and attenuates distant metastasis. NOX4 expression is correlated with EGFR expression in patients. In conclusion, induction of NOX4 expression by detachment promotes anoikis resistance of gastric cancer through ROS generation and downstream upregulation of EGFR, which is critical for the metastatic progression of gastric cancer.
Collapse
Affiliation(s)
- Shangce Du
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Ji Miao
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Zhouting Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - En Xu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Linsen Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Shichao Ai
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Feng Wang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Xing Kang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Hong Chen
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Xiaofeng Lu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.
| | - Xuefeng Xia
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, 210008, Nanjing, Jiangsu, P. R. China.
| |
Collapse
|
33
|
Yang Q, Wu FR, Wang JN, Gao L, Jiang L, Li HD, Ma Q, Liu XQ, Wei B, Zhou L, Wen J, Ma TT, Li J, Meng XM. Nox4 in renal diseases: An update. Free Radic Biol Med 2018; 124:466-472. [PMID: 29969717 DOI: 10.1016/j.freeradbiomed.2018.06.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species derived from NADPH oxidase contribute to a wide variety of renal diseases. Nox4, the major NADPH isoform in kidney, produces mainly H2O2 that regulates physiological functions. Nox4 contributes to redox processes involved in diabetic nephropathy, acute kidney injury, obstructive nephropathy, hypertensive nephropathy, renal cell carcinoma and other renal diseases by activating multiple signaling pathways. Although Nox4 is found in a variety of cell types, including epithelial cells, podocytes, mesangial cells, endothelial cells and fibroblasts, its role is not clear and even controversial. In some conditions, Nox4 protects cells by promoting cell survival in response to harmful stimuli. In other scenarios it induces cell apoptosis, inflammation or fibrogenesis. This functional variability may be attributed to distinct cell types, subcellular localization, molecular concentrations, disease type or stage, and other factors yet unexplored. In this setting, we reviewed the function and mechanism of Nox4 in renal diseases, highlighted the contradictions in Nox4 literature, and discussed promising therapeutic strategies targeting Nox4 in the treatment of certain types of renal diseases.
Collapse
Affiliation(s)
- Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Fan-Rong Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Li Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ling Jiang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qiuying Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xue-Qi Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Biao Wei
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Luyu Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jiagen Wen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Tao Tao Ma
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Institute of Innovative Drugs, Anhui, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, 230032, China.
| |
Collapse
|
34
|
Abstract
Abstract
NADPH oxidase is the main source of intracellular reactive oxygen species (ROS). ROS plays an important role in a variety of tumor types. The ROS mediated by NADPH oxidase increases the expression of hypoxia-inducible factor alpha (HIF-α) through multiple signaling pathways in tumor, and HIF-α could be regulated and controlled by downstream multiple targeted genes such as vascular endothelial growth factor, glucose transporter to promote tumor angiogenesis, cell energy metabolism reprogram and tumor metastasis. Meanwhile, HIF-α can also regulate the expression of NADPH oxidase by ROS, thus further promoting development of tumor. In this review, we summarized the functions of NADPH in tumorigenesis and discussed their potential implications in cancer therapy.
Collapse
|
35
|
Meng XM, Ren GL, Gao L, Yang Q, Li HD, Wu WF, Huang C, Zhang L, Lv XW, Li J. NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. J Transl Med 2018; 98:63-78. [PMID: 29106395 DOI: 10.1038/labinvest.2017.120] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to elucidate the functional role of Nox4 during acute kidney injury (AKI). NADPH oxidases are a major source of reactive oxygen species (ROS) in the kidney in normal and pathological conditions. Among NADPH oxidase isoforms, NADPH oxidase4 (Nox4) is highly expressed in the kidney and has an important role in kidney diseases, such as diabetic nephropathy and renal carcinoma. We previously found that Nox4 expression significantly increased in the toxic AKI model. However, its functional role and mechanism of action in AKI are still unknown. We scavenged ROS with apocynin in vitro and in vivo and found it attenuated cisplatin-triggered renal function decline. It also alleviated programmed cell death and renal inflammation, indicating a critical role for ROS in mediating AKI. Nox4 protein and mRNA levels were substantially upregulated by cisplatin in vivo and in vitro. Nox4 knockdown alleviated cisplatin-induced cell death and inflammatory response, while Nox4 overexpression aggravated them. Moreover, N-acetyl-L-cysteine (NAC)-mediated inhibition of ROS suppressed cell injury led by Nox4 overexpression, indicating Nox4-mediated ROS generation may be the key mediator in cisplatin-induced nephrotoxicity. Mechanistically, excessive expression of Nox4 induced programmed cell death, especially RIP-mediated necroptosis. Finally, we tested whether Nox4 is a potential therapeutic target using an AKI mouse model by injecting a lentivirus-packaged Nox4 shRNA plasmid through tail vein. Disruption of Nox4 led to renal function recovery, kidney damage relief and reduced inflammation. We conclude that Nox4 aggravates cisplatin-induced nephrotoxicity by promoting ROS-mediated programmed cell death and inflammation. Thus Nox4 may serve as a potential therapeutic target in the treatment of AKI.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Gui-Ling Ren
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui, China
| | - Li Gao
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Qin Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Wei-Feng Wu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.,Anhui Institute of Innovative Drugs, Hefei, Anhui, China.,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
36
|
Greene CJ, Attwood K, Sharma NJ, Gross KW, Smith GJ, Xu B, Kauffman EC. Transferrin receptor 1 upregulation in primary tumor and downregulation in benign kidney is associated with progression and mortality in renal cell carcinoma patients. Oncotarget 2017; 8:107052-107075. [PMID: 29291011 PMCID: PMC5739796 DOI: 10.18632/oncotarget.22323] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022] Open
Abstract
The central dysregulated pathway of clear cell (cc) renal cell carcinoma (RCC), the von Hippel Lindau/hypoxia inducible factor-α axis, is a key regulator of intracellular iron levels, however the role of iron uptake in human RCC tumorigenesis and progression remains unknown. We conducted a thorough, large-scale investigation of the expression and prognostic significance of the primary iron uptake protein, transferrin receptor 1 (TfR1/CD71/TFRC), in RCC patients. TfR1 immunohistochemistry was performed in over 1500 cores from 574 renal cell tumor patient tissues (primary tumors, matched benign kidneys, metastases) and non-neoplastic tissues from 36 different body sites. TfR1 levels in RCC tumors, particularly ccRCC, were significantly associated with adverse clinical prognostic features (anemia, lower body mass index, smoking), worse tumor pathology (size, stage, grade, multifocality, sarcomatoid dedifferentiation) and worse survival outcomes, including after adjustments for tumor pathology. Highest TfR1 tissue levels in the non-gravid body were detected in benign renal tubule epithelium. Opposite to TfR1 changes in the primary tumor, TfR1 levels in benign kidney dropped during tumor progression and were inversely associated with worse survival outcomes, independent of tumor pathology. Quantitative measurement of TfR1 subcellular localization in cell lines demonstrated mixed cytoplasmic and membranous expression with increased TfR1 in clusters in ccRCC versus benign renal cell lines. Results of this study support an important role for TfR1 in RCC progression and identify TfR1 as a novel RCC biomarker and therapeutic target.
Collapse
Affiliation(s)
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Nitika J. Sharma
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Gary J. Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Bo Xu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Eric C. Kauffman
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
37
|
G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3. Oncotarget 2017; 8:109043-109060. [PMID: 29312589 PMCID: PMC5752502 DOI: 10.18632/oncotarget.22566] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
Ectopic Glucose 6-phosphate dehydrogenase (G6PD) expression plays important role in tumor cell metabolic reprogramming and results in poor prognosis of multiple malignancies. Our previous study indicated that G6PD is overexpressed in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC. However, its role in RCC is still unclear. Here, we demonstrate that G6PD is not only up-regulated in all types of RCC specimens but also displays higher activities in RCC cell lines. G6PD overexpression promoted RCC cell proliferation, altered cell cycle distribution, and enhanced xenografted RCC development. G6PD up-regulated ROS generation by facilitating NADPH-dependent NOX4 activation, which led to increased expression of p-STAT3 and CyclinD1. Enhanced ROS generation rescued the p-STAT3 and CyclinD1 expression reduction in G6PD-knockdown cells, while ROS scavengers reversed the up-regulated p-STAT3 and CyclinD1 expression in G6PD-overexpressing cells. Furthermore, p-STAT3 activated G6PD gene expression via binding to the G6PD promoter, demonstrating that p-STAT3 forms a positive feedback regulatory loop for G6PD overexpression. G6PD expression was up or down-regulated in response to the impact of p-STAT3 activators or inhibitors. Therefore, G6PD may be an effective RCC therapeutic target.
Collapse
|
38
|
Miyata Y, Matsuo T, Sagara Y, Ohba K, Ohyama K, Sakai H. A Mini-Review of Reactive Oxygen Species in Urological Cancer: Correlation with NADPH Oxidases, Angiogenesis, and Apoptosis. Int J Mol Sci 2017; 18:ijms18102214. [PMID: 29065504 PMCID: PMC5666894 DOI: 10.3390/ijms18102214] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress refers to elevated reactive oxygen species (ROS) levels, and NADPH oxidases (NOXs), which are one of the most important sources of ROS. Oxidative stress plays important roles in the etiologies, pathological mechanisms, and treatment strategies of vascular diseases. Additionally, oxidative stress affects mechanisms of carcinogenesis, tumor growth, and prognosis in malignancies. Nearly all solid tumors show stimulation of neo-vascularity, termed angiogenesis, which is closely associated with malignant aggressiveness. Thus, cancers can be seen as a type of vascular disease. Oxidative stress-induced functions are regulated by complex endogenous mechanisms and exogenous factors, such as medication and diet. Although understanding these regulatory mechanisms is important for improving the prognosis of urothelial cancer, it is not sufficient, because there are controversial and conflicting opinions. Therefore, we believe that this knowledge is essential to discuss observations and treatment strategies in urothelial cancer. In this review, we describe the relationships between members of the NOX family and tumorigenesis, tumor growth, and pathological mechanisms in urological cancers including prostate cancer, renal cell carcinoma, and urothelial cancer. In addition, we introduce natural compounds and chemical agents that are associated with ROS-induced angiogenesis or apoptosis.
Collapse
Affiliation(s)
- Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Yuji Sagara
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Kaname Ohyama
- Department of Pharmaceutical Science, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| |
Collapse
|
39
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
The Role of NOX4 and TRX2 in Angiogenesis and Their Potential Cross-Talk. Antioxidants (Basel) 2017; 6:antiox6020042. [PMID: 28594389 PMCID: PMC5488022 DOI: 10.3390/antiox6020042] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) family is the major source of reactive oxygen species (ROS) in the vascular system. In this family, NOX4, a constitutive active form of NOXs, plays an important role in angiogenesis. Thioredoxin 2 (TRX2) is a key mitochondrial redox protein that maintains normal protein function and also provides electrons to peroxiredoxin 3 (PRX3) to scavenge H₂O₂ in mitochondria. Angiogenesis, a process of new blood vessel formation, is involved in a variety of physiological processes and pathological conditions. It seems to be paradoxical for ROS-producing NOX4 and ROS-scavenging TRX2 to have a similar role in promoting angiogenesis. In this review, we will focus on data supporting the role of NOX4 and TRX2 in angiogenesis and their cross-talks and discuss how ROS can positively or negatively regulate angiogenesis, depending on their species, levels and locations. NOX4 and TRX2-mediated ROS signaling could be promising targets for the treatment of angiogenesis-related diseases.
Collapse
|
41
|
Teixeira G, Szyndralewiez C, Molango S, Carnesecchi S, Heitz F, Wiesel P, Wood JM. Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br J Pharmacol 2017; 174:1647-1669. [PMID: 27273790 PMCID: PMC5446584 DOI: 10.1111/bph.13532] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
The NADPH oxidase (NOX) family of enzymes produces ROS as their sole function and is becoming recognized as key modulators of signal transduction pathways with a physiological role under acute stress and a pathological role after excessive activation under chronic stress. The seven isoforms differ in their regulation, tissue and subcellular localization and ROS products. The most studied are NOX1, 2 and 4. Genetic deletion of NOX1 and 4, in contrast to NOX2, has revealed no significant spontaneous pathologies and a pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases and in particular inflammatory and fibrotic diseases. This has stimulated interest in NOX inhibitors for therapeutic application. GKT136901 and GKT137831 are two structurally related compounds demonstrating a preferential inhibition of NOX1 and 4 that have suitable properties for in vivo studies and have consequently been evaluated across a range of disease models and compared with gene deletion. In contrast to gene deletion, these inhibitors do not completely suppress ROS production, maintaining some basal level of ROS. Despite this and consistent with most gene deletion studies, these inhibitors are well tolerated and slow or prevent disease progression in a range of models of chronic inflammatory and fibrotic diseases by modulating common signal transduction pathways. Clinical trials in patients with GKT137831 have demonstrated excellent tolerability and reduction of various markers of chronic inflammation. NOX1/4 inhibition may provide a safe and effective therapeutic strategy for a range of inflammatory and fibrotic diseases. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Teixeira
- Evotec International GmbHGoettingenGermany
| | | | - S Molango
- Genkyotex SAPlan les OuatesSwitzerland
| | | | - F Heitz
- Genkyotex SAPlan les OuatesSwitzerland
| | - P Wiesel
- Genkyotex SAPlan les OuatesSwitzerland
| | | |
Collapse
|
42
|
Crosas-Molist E, Bertran E, Rodriguez-Hernandez I, Herraiz C, Cantelli G, Fabra À, Sanz-Moreno V, Fabregat I. The NADPH oxidase NOX4 represses epithelial to amoeboid transition and efficient tumour dissemination. Oncogene 2017; 36:3002-3014. [PMID: 27941881 PMCID: PMC5354266 DOI: 10.1038/onc.2016.454] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
Epithelial to mesenchymal transition is a common event during tumour dissemination. However, direct epithelial to amoeboid transition has not been characterized to date. Here we provide evidence that cells from hepatocellular carcinoma (HCC), a highly metastatic cancer, undergo epithelial to amoeboid transition in physiological environments, such as organoids or three-dimensional complex matrices. Furthermore, the NADPH oxidase NOX4 inhibits this transition and therefore suppresses efficient amoeboid bleb-based invasion. Moreover, NOX4 expression is associated with E-cadherin levels and inversely correlated with invasive features. NOX4 is necessary to maintain parenchymal structures, increase cell-cell and cell-to-matrix adhesion, and impair actomyosin contractility and amoeboid invasion. Importantly, NOX4 gene deletions are frequent in HCC patients, correlating with higher tumour grade. Contrary to that observed in mesenchymal cell types, here NOX4 suppresses Rho and Cdc42 GTPase expression and downstream actomyosin contractility. In HCC patients, NOX4 expression inversely correlates with RhoC and Cdc42 levels. Moreover, low expression of NOX4 combined with high expression of either RhoC or Cdc42 is associated with worse prognosis. Therefore, loss of NOX4 increases actomyosin levels and favours an epithelial to amoeboid transition contributing to tumour aggressiveness.
Collapse
Affiliation(s)
- E Crosas-Molist
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - E Bertran
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - I Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - C Herraiz
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - G Cantelli
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - À Fabra
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - V Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - I Fabregat
- Molecular Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques II, University of Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol 2017; 11:240-253. [PMID: 28012439 PMCID: PMC5198743 DOI: 10.1016/j.redox.2016.12.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress, mainly contributed by reactive oxygen species (ROS), has been implicated in pathogenesis of several diseases. We review two primary examples; fibrosis and cancer. In fibrosis, ROS promote activation and proliferation of fibroblasts and myofibroblasts, activating TGF-β pathway in an autocrine manner. In cancer, ROS account for its genomic instability, resistance to apoptosis, proliferation, and angiogenesis. Importantly, ROS trigger cancer cell invasion through invadopodia formation as well as extravasation into a distant metastasis site. Use of antioxidant supplements, enzymes, and inhibitors for ROS-generating NADPH oxidases (NOX) is a logical therapeutic intervention for fibrosis and cancer. We review such attempts, progress, and challenges. Lastly, we review how nanoparticles with inherent antioxidant activity can also be a promising therapeutic option, considering their additional feature as a delivery platform for drugs, genes, and imaging agents.
Collapse
Affiliation(s)
- Jingga Morry
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Ave, Portland, OR 97239, USA; PDX Pharmaceuticals, LLC, 3303 SW Bond Ave, Portland, OR 97239, USA.
| |
Collapse
|
44
|
Zhang Q, Yi X, Yang Z, Han Q, Di X, Chen F, Wang Y, Yi Z, Kuang Y, Zhu Y. Overexpression of G6PD Represents a Potential Prognostic Factor in Clear Cell Renal Cell Carcinoma. J Cancer 2017; 8:665-673. [PMID: 28367246 PMCID: PMC5370510 DOI: 10.7150/jca.16858] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose metabolism and it acts as the rate-limiting enzyme of the pentose phosphate pathway (PPP). Recently, G6PD dysregulation has been found in a variety of human cancers. Through analyzing published data in The Cancer Genome Atlas (TCGA), our pilot study indicated that G6PD mRNA expression was significantly higher in advanced Fuhrman grade in clear cell renal cell carcinoma (ccRCC). These clues promoted us to further evaluate the expression profile of G6PD and its prognostic impact in patients with ccRCC. In this study, G6PD expression levels were analyzed in 149 human ccRCC and normal tissues using immunohistochemistry. The results showed that compared with that in the normal renal samples, G6PD was found highly expressed in 51.0% of ccRCC (p<0.05). High expression of G6PD was significantly correlated to tumor extent, lymph node metastasis, Fuhrman grade, and TNM stage of ccRCC (all p<0.05). Moreover, positive G6PD expression was associated with poorer overall survival in ccRCC (p<0.001). In Cox regression analyses, high expression of G6PD also could be an independent prognostic factor for overall survival in ccRCC (p=0.007). This study suggests that overexpression of G6PD is associated with advanced disease status and therefore may become an important prognosticator for poor outcomes in ccRCC, as well as a potential therapeutic target for developing effective treatment modalities.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Xiaojia Yi
- Department of pathology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhe Yang
- Department of pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Qiaoqiao Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Xuesong Di
- Department of organ transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Fufei Chen
- Department of organ transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yanling Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| | - Yingmin Kuang
- Department of organ transplantation, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, China
| |
Collapse
|
45
|
Regulation of anoikis resistance by NADPH oxidase 4 and epidermal growth factor receptor. Br J Cancer 2017; 116:370-381. [PMID: 28081539 PMCID: PMC5294491 DOI: 10.1038/bjc.2016.440] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Normal cells are sensitive to anoikis, which is a cell detachment-induced apoptosis. However, cancer cells acquire anoikis resistance that is essential for successful metastasis. This study aimed to demonstrate the function and potential mechanism of NADPH oxidase 4 (NOX4) and EGFR activation in regulating anoikis resistance in lung cancer. METHODS Cells were cultured either in the attached or suspended condition. Cell viability was measured by cell counting and live and dead cell staining. Expression levels of NOX4 and EGFR were measured by PCR and immunoblotting. Reactive oxygen species (ROS) levels were measured by flow cytometry. Effects of NOX4 overexpression or NOX4 knockdown by si-NOX4 on anoikis sensitivity were explored. Levels of NOX4 and EGFR in lung cancer tissues were evaluated by IHC staining. RESULTS NOX4 was upregulated but EGFR decreased in suspended cells compared with attached cells. Accordingly, ROS levels were increased in suspended cells, resulting in the activation of Src and EGFR. NOX4 knockdown decreased activation of Src and EGFR, and thus sensitised cells to anoikis. NOX4 overexpression increased EGFR levels and attenuated anoikis. NOX4 expression is upregulated and is positively correlated with EGFR levels in the lung cancer patient tissues. CONCLUSIONS NOX4 upregulation confers anoikis resistance by ROS-mediated activation of EGFR and Src, and by maintaining EGFR levels, which is critical for cell survival.
Collapse
|
46
|
Bernard K, Logsdon NJ, Miguel V, Benavides GA, Zhang J, Carter AB, Darley-Usmar VM, Thannickal VJ. NADPH Oxidase 4 (Nox4) Suppresses Mitochondrial Biogenesis and Bioenergetics in Lung Fibroblasts via a Nuclear Factor Erythroid-derived 2-like 2 (Nrf2)-dependent Pathway. J Biol Chem 2017; 292:3029-3038. [PMID: 28049732 DOI: 10.1074/jbc.m116.752261] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/29/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.
Collapse
Affiliation(s)
- Karen Bernard
- From the Division of Pulmonary, Allergy, and Critical Care Medicine,
| | - Naomi J Logsdon
- From the Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Veronica Miguel
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Gloria A Benavides
- Department of Pathology, and.,Center for Free Radicals Biology and Medicine, University of Alabama at Birmingham and
| | - Jianhua Zhang
- Department of Pathology, and.,Center for Free Radicals Biology and Medicine, University of Alabama at Birmingham and
| | - A Brent Carter
- From the Division of Pulmonary, Allergy, and Critical Care Medicine.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama 35294 and
| | - Victor M Darley-Usmar
- Department of Pathology, and.,Center for Free Radicals Biology and Medicine, University of Alabama at Birmingham and
| | | |
Collapse
|
47
|
Shanmugasundaram K, Block K. Renal Carcinogenesis, Tumor Heterogeneity, and Reactive Oxygen Species: Tactics Evolved. Antioxid Redox Signal 2016; 25:685-701. [PMID: 27287984 PMCID: PMC5069729 DOI: 10.1089/ars.2015.6569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The number of kidney cancers is growing 3-5% each year due to unknown etiologies. Intra- and inter-tumor mediators increase oxidative stress and drive tumor heterogeneity. Recent Advances: Technology advancement in state-of-the-art instrumentation and methodologies allows researchers to detect and characterize global landscaping modifications in genes, proteins, and pathophysiology patterns at the single-cell level. CRITICAL ISSUES We postulate that the sources of reactive oxygen species (ROS) and their activation within subcellular compartments will change over a timeline of tumor evolvement and contribute to tumor heterogeneity. Therefore, the complexity of intracellular changes within a tumor and ROS-induced tumor heterogeneity coupled to the advancement of detecting these events globally are limited at the level of data collection, organization, and interpretation using software algorithms and bioinformatics. FUTURE DIRECTIONS Integrative and collaborative research, combining the power of numbers with careful experimental design, protocol development, and data interpretation, will translate cancer biology and therapeutics to a heightened level or leave the abundant raw data as stagnant and underutilized. Antioxid. Redox Signal. 25, 685-701.
Collapse
Affiliation(s)
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
- South Texas Veterans Health Care System, Audie L. Murphy Memorial Hospital Division, San Antonio, Texas
| |
Collapse
|
48
|
Yang HC, Wu YH, Liu HY, Stern A, Chiu DTY. What has passed is prolog: new cellular and physiological roles of G6PD. Free Radic Res 2016; 50:1047-1064. [PMID: 27684214 DOI: 10.1080/10715762.2016.1223296] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
G6PD deficiency has been the most pervasive inherited disorder in the world since having been discovered. G6PD has an antioxidant role by functioning as a major nicotinamide adenine dinucleotide phosphate (NADPH) provider to reduce excessive oxidative stress. NADPH can produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) mediated by NADPH oxidase (NOX) and nitric oxide synthase (NOS), respectively. Hence, G6PD also has a pro-oxidant role. Research in the past has focused on the enhanced susceptibility of G6PD-deficient cells or individuals to oxidative challenge. The cytoregulatory role of G6PD has largely been overlooked. By using a metabolomic approach, it is noted that upon oxidant challenge, G6PD-deficient cells will reprogram the GSH metabolism from regeneration to synthesis with exhaustive energy consumption. Recently, new cellular/physiologic roles of G6PD have been discovered. By using a proteomic approach, it has been found that G6PD plays a regulatory role in xenobiotic metabolism possibly via NOX and the redox-sensitive Nrf2-signaling pathway to modulate the expression of xenobiotic-metabolizing enzymes. Since G6PD is a key regulator responsible for intracellular redox homeostasis, G6PD deficiency can alter redox balance leading to many abnormal cellular effects such as the cellular inflammatory and immune response against viral infection. G6PD may play an important role in embryogenesis as G6PD-knockdown mouse cannot produce offspring and G6PD-deficient C. elegans with defective egg production and hatching. This array of findings indicates that the cellular and physiologic roles of G6PD, other than the classical role as an antioxidant enzyme, deserve further attention.
Collapse
Affiliation(s)
- Hung-Chi Yang
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Yi-Hsuan Wu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Hui-Ya Liu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- c Department of Biochemistry and Molecular Pharmacology , New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Department of Medical Biotechnology and Laboratory Sciences , College of Medicine, Chang Gung University , Taoyuan , Taiwan.,b Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,d Department of Pediatric Hematology/Oncology , Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
49
|
The proinflammatory LTB4/BLT1 signal axis confers resistance to TGF-β1-induced growth inhibition by targeting Smad3 linker region. Oncotarget 2016; 6:41650-66. [PMID: 26497676 PMCID: PMC4747179 DOI: 10.18632/oncotarget.6146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent pro-inflammatory eicosanoid that is derived from arachidonic acid, and its signaling is known to have a tumor-promoting role in several cancer types. In this study, we investigated whether enhanced LTB4 signaling confers resistance to the cytostatic transforming growth factor-β1 (TGF-β1) response. We found that LTB4 pretreatment or ectopic expression of BLT1, a high affinity LTB4 receptor, fully abrogated TGF-β1-induced cell cycle arrest and expression of p15INK4B and p27KIP1. Mechanism study revealed that LTB4-mediated suppression of TGF-β1-induced Smad3 activation and growth inhibition was due to enhanced phosphorylation of Smad3 linker region (pSmad3L) through activation of BLT1-NAD(P)H oxidase (NOX)-reactive oxygen species (ROS)-epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3-K)-extracellular signal-activated kinase1/2 (ERK1/2)-linked signaling cascade. Furthermore, the LTB4/BLT1 signaling pathway leading to pSmad3L was constitutively activated in breast cancer cells and was correlated with TGF-β1-resistant growth of the cells in vitro and in vivo. In human breast cancer tissues, the expression level of pSmad3L (Thr179) had a positive correlation with BLT1 expression. Collectively, our data demonstrate for the first time that the induction of pSmad3L through BLT1-NOX-ROS-EGFR-PI3K-ERK1/2 signaling pathway is a key mechanism by which LTB4 blocks the anti-proliferative responses of TGF-β1, providing a novel mechanistic insight into the connection between enhanced inflammatory signal and cancer cell growth.
Collapse
|
50
|
Kim HJ, Magesh V, Lee JJ, Kim S, Knaus UG, Lee KJ. Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget 2016; 6:16287-303. [PMID: 25915537 PMCID: PMC4599270 DOI: 10.18632/oncotarget.3843] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 12/22/2022] Open
Abstract
This study explored the role of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in the production of ROS and tumor invasion. UCH-L1 was found to increase cellular ROS levels and promote cell invasion. Silencing UCH-L1, as well as inhibition of H2O2 generation by catalase or by DPI, a NOX inhibitor, suppressed the migration potential of B16F10 cells, indicating that UCH-L1 promotes cell migration by up-regulating H2O2 generation. Silencing NOX4, which generates H2O2, with siRNA eliminated the effect of UCH-L1 on cell migration. On the other hand, NOX4 overexpressed in HeLa cells happens to be ubiquitinated, and NOX4 following deubiquitination by UCH-L1, restored H2O2-generating activity. These in vitro findings are consistent with the results obtained in vivo with catalase (−/−) C57BL/6J mice. When H2O2 and UCH-L1 levels were independently varied in these animals, the former by infecting with H2O2-scavenging adenovirus-catalase, and the latter by overexpressing or silencing UCH-L1, pulmonary metastasis of B16F10 cells overexpressing UCH-L1 increased significantly in catalase (−/−) mice. In contrast, invasion did not increase when UCH-L1 was silenced in the B16F10 cells. These findings indicate that H2O2 levels regulated by UCH-L1 are necessary for cell invasion to occur and demonstrate that UCH-L1 promotes cell invasion by up-regulating H2O2 via deubiquitination of NOX4.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Venkataraman Magesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ulla G Knaus
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|